Department: Molecular & Cell Biology

Degree: PHD

GRADUATE LEARNING GOALS & OUTCOMES

GRADUATE OUTCOMES: Students trained in the MCB PhD program will learn the theoretical foundations and research experience needed to become an independent and original investigator of basic biological phenomena.

Students graduating with the Ph.D. in Molecular and Cell Biology are expected to:

- Demonstrate a graduate-level understanding of one of the areas of research represented by the program: molecular biology of the regulation of gene expression; chromosome structure and chromosomal rearrangements; mechanisms of recombination and DNA repair; developmental genetics; behavioral genetics, neural development; biophysics of single nerve cells; learning and memory; regulation of small RNAs; immune cell differentiation and development; cytoskeletal architecture; organization of subcellular structures; structure and function of proteins; mammalian embryogenesis and the biotechnology of DNA diagnostics.
- Explore possible research areas and techniques through four first-year laboratory rotations
- Become confident in reading primary literature, critical thinking, and presentation
- Become proficient in scientific writing and oral defense of original research
- Gain experience teaching students in a teaching assistantship role
- Learn ethical practices in the Sciences
- Complete a significant body of original work that advances the field of Biology

Department: Molecular & Cell Biology

Degree: MS

GRADUATE LEARNING GOALS & OUTCOMES

GRADUATE OUTCOMES: The MCB Master’s program will train students to realize their potential as independent scientists, and will foster students’ career development goals toward obtaining a position in research, teaching, or other scientific settings.

Students graduating with a Master’s degree in Molecular and Cell Biology are expected to:

- Demonstrate a graduate-level understanding of one of the areas of research represented by the program: molecular biology of the regulation of gene expression; chromosome structure and chromosomal rearrangements; mechanisms of recombination and DNA repair; developmental genetics; behavioral genetics, neural development; biophysics of single nerve cells; learning and memory; regulation of small RNAs;
immune cell differentiation and development; cytoskeletal architecture; organization of subcellular structures; structure and function of proteins; mammalian embryogenesis and the biotechnology of DNA diagnostics.

• Explore possible research areas and techniques through a semester of independent or semi-independent research
• Become confident in reading primary literature, critical thinking, and presentation
• Learn ethical practices in the Sciences