TABLE OF CONTENTS

STUDENT ORIENTATION AND TO DO LIST 3

IMPORTANT CONTACT INFORMATION FOR COSI MA STUDENTS 4

GRADUATE SCHOOL OF ARTS AND SCIENCE 5

MA3/MA4 REQUIREMENTS AND ADVICE 6

ACADEMIC CALENDAR 7

COURSE SCHEDULE 8

ACADEMIC INTEGRITY 9

FACULTY BY DISCIPLINE 10

FREQUENTLY ASKED QUESTIONS 16

MAP OF BRANDEIS 18
To Do List

- Read this Orientation Handbook for Computer Science.
- Walk through the checklist (http://www.brandeis.edu/gsas/admissions/checklist.html) and the Accepted Student page (https://www.brandeis.edu/gsas/admissions/accepted-students.html) for incoming graduate students organized by the Graduate School of Arts and Sciences.
- Plan to attend the Computer Science Orientation which takes place on Monday, August 28 at 9:00 am, in Rapaport Treasure Hall, located in the Goldfarb Library.
- Please fill out this Google Form so we can assign you an advisor. https://docs.google.com/a/brandeis.edu/forms/d/1cEEKvM0IkHJ012nUGtAEgip8NNjJvYxpVz3ZsXES6P8yQ/prefill
- Plan to attend the Graduate School of Arts and Science (GSAS) orientation on Monday afternoon, August 28th, from 2:00 – 4:00 pm in the Graduate School of Arts and Science
 - If you are an international student, there is also mandatory orientation at 4:15 pm that same afternoon.
- The Graduate Student Affairs office hosts social and educational events throughout the year, so follow them at: http://www.brandeis.edu/gradstudent/activities.html
- Do you have your housing all set? Check out the link to the Key Housing Resources: http://www.brandeis.edu/gradstudent/housing/index.html
CONTACT INFORMATION

WEBSITE: http://www.cs.brandeis.edu

MAILING ADDRESS

Brandeis University
Computer Science Department
MS 018
415 South Street
Waltham, MA 02453 USA

*Mail sent to you at this address will be placed in your mailbox in the Dept. Office for you to pick up.

BUILDING ACCESS

Once you have a Brandeis ID card, bring it to the office to activate access to the Volen building, doors within Volen, and the Vertica Lounge during off-hours when locked.

STAFF

Dept. Administrator Jane Wilmot Volen 261 jwilmot@brandeis.edu (781) 736-2701
Program Coordinator Anne Gudaitis Volen 261 gudaitis@brandeis.edu (781) 736-2723
Dept. Coordinator TBA Volen 261 TBA (781) 736-2700
Chief Systems Admin Chris Page Volen 125 cpage@brandeis.edu (781) 736-2717
Systems/Gurus Info http://pages.cs.brandeis.edu/~guru/
As a graduate student, you will often use different campus offices than Brandeis undergraduate students. For instance, Brandeis has an Office of Student Financial Services, and a program of Disabilities Services and Support (within the Academic Services office) – but these are used only by undergraduates. The same services for graduate students are provided instead through the GSAS office.

Additionally, the contact person in a given campus office (e.g. in the Registrar's Office) is sometimes different for graduate versus undergraduate students.

Generally, whatever you need that is not done by COSI advising faculty or the COSI department office is very likely to involve either the GSAS office or the Registrar's Office (with the ISSO office added for international students). The websites for these two offices have a lot of information on them that is extremely helpful and relevant for you (though sometimes a bit difficult to find within each site!).

GSAS Checklist
http://www.brandeis.edu/gsas/admissions/checklist.html

Housing Guide
http://www.brandeis.edu/gradstudent/housing/index.html

HELPFUL OFFICES AND WEBSITES

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>LOCATION</th>
<th>EMAIL</th>
<th>PHONE</th>
<th>WEBSITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRADUATE SCHOOL of ARTS and SCIENCES</td>
<td>Kutz 219</td>
<td>gradschool</td>
<td>(781) 736-3410</td>
<td>gsas/</td>
</tr>
<tr>
<td>(GSAS)</td>
<td></td>
<td>...@brandeis.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGLISH SECOND LANGUAGE (ESL)</td>
<td>Rabb 340</td>
<td></td>
<td>(781) 736-3992</td>
<td>elp/</td>
</tr>
<tr>
<td>BRANDEIS COUNSELING CENTER</td>
<td>Mailman Build</td>
<td>pccgroups</td>
<td>(781) 736-3730</td>
<td>/gradstudent/healthwellness/counseling.html</td>
</tr>
<tr>
<td>CAREER SERVICES OFFICE: Sue Levine</td>
<td>Kutz 207</td>
<td>smlevine</td>
<td>(781) 736-3414</td>
<td>gsas/career/</td>
</tr>
<tr>
<td>HOUSING</td>
<td>Usdan G032</td>
<td>dcl</td>
<td>(781) 736-5060</td>
<td>gradstudent/housing/</td>
</tr>
<tr>
<td>INTERNATIONAL STUDENTS AND SCHOLARS</td>
<td>Kutz 215</td>
<td>isso</td>
<td>(781) 736-3480</td>
<td>isso/</td>
</tr>
<tr>
<td>OFFICE (ISSO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGISTRAR</td>
<td>Kutz 121</td>
<td>registrar</td>
<td>(781) 736-2010</td>
<td>registrar/</td>
</tr>
<tr>
<td>SAGE</td>
<td>Website</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Admitted students with an undergraduate degree in Computer Science must satisfactorily complete an approved schedule of nine courses, which includes elective courses: At least nine COSI courses numbered 100 or greater of which at most three may be chosen from the following courses: COSI 152aj, COSI 152bj, COSI 153aj, COSI 153bj, COSI 154aj, COSI 293aj, COSI 210aj, COSI 200ab and COSI 210a.

Admitted students with an undergraduate degree in a field other than Computer Science must satisfactorily complete an approved schedule of twelve courses, which includes:

A. Four core courses providing fundamental background in Computer Science: COSI 11a, COSI 12b, COSI 21a, and COSI 29a. At most two core courses can be taken a semester.

B. Elective courses: At least eight additional COSI courses numbered 100 or greater of which one must be COSI 131a, one may be chosen from the following courses: COSI 152aj, COSI 152bj, COSI 153aj, COSI 153bj, COSI 154aj, COSI 293aj, COSI 210aj, COSI 200ab and COSI 210a. Students who have previously taken the equivalent of any core course may petition the Graduate Program Director for an exemption allowing them to substitute an additional COSI course numbered 100 or greater.

Residence Requirement
The minimum residency requirement is three semesters.

ADVICE FOR MA3

The minimum degree requirements include an approved schedule of nine courses numbered 100 or above. To graduate you need to take 3 courses a semester. You are free to take whatever courses interest you. Taking at least one course in each of the three major areas -- systems, AI and Interdisciplinary, and theory -- is recommended but not required. There is a three-semester residency requirement for full-time students, though the program may also be completed on a part-time basis.

ADVICE FOR MA4

Students in the 4-semester program need to complete twelve courses, which include 5 core courses and seven electives in the areas of distributed computing, AI, big data, machine learning, and computational linguistics.

In the first semester, a student will take 11a, 29a and an elective of their choice that does not require a pre-requisite; this will then clear the way for a student to have more options in the second semester. If a student petitions out of 11a (see FAQ’s), they can take 21a, 29a and an elective of their choice that meets the pre-requisite(s) guideline.
Academic Status and Progress in the MA4 Program: Students must maintain a minimum of a B+ in the 4 undergraduate courses required for the MA4: COSI 11a, COSI 12b, COSI 21a and COSI 29a. At the end of each semester in the program, students who have an average of less then a B+ for the subset of these courses that they have taken thus far will be subject to probation or withdrawal from the program.

To petition out of 11a: Students who want an exemption to the COSI 11a degree requirement because you have taken a course elsewhere that you believe is equivalent, you must pass the COSI 11a Placement Exam which is offered just once per semester during the first week of school. Test date is Wednesday, September 13th at 4:30 with the location to be announced. Students who wish to take the exam need to email Professor Mitch Cherniack at mfc@brandeis.edu by September 1st to let him know. Students who get an A- or better will be allowed to take 12b and 21a in any order (including concurrently). COSI 12b is now being offered in both the Fall and Spring. This allows students who are exempted from 11a to take 12b in the Fall.

IMPORTANT DATES

<table>
<thead>
<tr>
<th>Academic Calendar</th>
<th>Fall 2017</th>
<th>Spring 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Day of Class</td>
<td>Aug. 30</td>
<td>Jan. 10</td>
</tr>
<tr>
<td>No Class</td>
<td>Sept. 4</td>
<td>Jan. 15</td>
</tr>
<tr>
<td></td>
<td>Sept. 21-22</td>
<td>Feb. 19-23</td>
</tr>
<tr>
<td></td>
<td>Oct. 5</td>
<td>Mar. 30-Apr.6</td>
</tr>
<tr>
<td></td>
<td>Oct. 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov. 22-24</td>
<td></td>
</tr>
<tr>
<td>Brandeis Days</td>
<td>Oct. 3 (Thursday schedule)</td>
<td>Jan. 18 (Monday schedule)</td>
</tr>
<tr>
<td></td>
<td>Oct. 11 (Thursday schedule)</td>
<td>Apr. 26 (Friday schedule)</td>
</tr>
<tr>
<td>Last Day of Class</td>
<td>Dec. 8</td>
<td>Apr. 26</td>
</tr>
<tr>
<td>Study Day(s)</td>
<td>Dec. 11</td>
<td>Apr. 27</td>
</tr>
<tr>
<td>Final Exams</td>
<td>Dec. 12-19</td>
<td>Apr. 30-May 8</td>
</tr>
<tr>
<td>Commencement</td>
<td></td>
<td>May 13</td>
</tr>
</tbody>
</table>

*For a more detailed calendar, see this calendar: https://www.brandeis.edu/registrar/calendar/fall17.html
FALL AND SPRING COURSES

Fall 2017

<table>
<thead>
<tr>
<th>#</th>
<th>COURSE NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>FACULTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>11A - Sec 1</td>
<td>Programming: Java and C</td>
<td>M W TH</td>
<td>1-1:50</td>
<td>DiLillo</td>
</tr>
<tr>
<td>Recitation</td>
<td></td>
<td></td>
<td>6:30 - 7:20</td>
<td></td>
</tr>
<tr>
<td>11A - Sec 2</td>
<td>Programming: Java and C</td>
<td>M W TH</td>
<td>10:00 - 10:50</td>
<td>Hickey</td>
</tr>
<tr>
<td>Recitation</td>
<td></td>
<td></td>
<td>6:30 - 7:20</td>
<td></td>
</tr>
<tr>
<td>12B</td>
<td>Advanced Programming Techniques</td>
<td>M W Th</td>
<td>10:00 - 10:50</td>
<td>Papaemmanouil</td>
</tr>
<tr>
<td>Recitation</td>
<td></td>
<td>W</td>
<td>6:30 - 9:20</td>
<td></td>
</tr>
<tr>
<td>21A</td>
<td>Data Structures</td>
<td>M W Th</td>
<td>11:00 - 11:50</td>
<td>DiLillo</td>
</tr>
<tr>
<td>Recitation</td>
<td></td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29A</td>
<td>Discrete Structures</td>
<td>M W</td>
<td>3:30-4:50</td>
<td>Cherniack</td>
</tr>
<tr>
<td>31A/131A</td>
<td>Operating Systems</td>
<td>T F</td>
<td>11-12:20</td>
<td>Shrira</td>
</tr>
<tr>
<td>125A</td>
<td>Human Computer Interaction</td>
<td>T Th</td>
<td>2:00 - 3:20</td>
<td>Alterman</td>
</tr>
<tr>
<td>134A</td>
<td>Statistical Approaches to Natural Lang Processing</td>
<td>T F</td>
<td>12:30 - 1:50</td>
<td>Wellner</td>
</tr>
<tr>
<td>135B</td>
<td>Computational Semantics</td>
<td>T F</td>
<td>11:00 - 12:20</td>
<td>Pustejovsky</td>
</tr>
<tr>
<td>136A</td>
<td>Automated Speech Recognition</td>
<td>T F</td>
<td>9:30 - 10:50</td>
<td>Meteer</td>
</tr>
<tr>
<td>153A</td>
<td>Mobile App Devel</td>
<td>T Th</td>
<td>6:30-7:50</td>
<td>Chaturvedi</td>
</tr>
<tr>
<td>165A</td>
<td>Advanced Programming</td>
<td>T Th</td>
<td>3:30-4:50</td>
<td>Salas</td>
</tr>
<tr>
<td>178A</td>
<td>Operating Systems</td>
<td>T F</td>
<td>12:30 - 1:50</td>
<td>Salas</td>
</tr>
<tr>
<td>176B</td>
<td>Software Engineering Laboratory</td>
<td>F</td>
<td>2:00 - 4:50</td>
<td>Salas</td>
</tr>
<tr>
<td>180A</td>
<td>Computer Molecular Biology</td>
<td>T F</td>
<td>12:30 - 1:50</td>
<td>Hong</td>
</tr>
<tr>
<td>190A</td>
<td>Algorithms</td>
<td>M W</td>
<td>2:00 - 3:20</td>
<td>Storer</td>
</tr>
<tr>
<td>216A</td>
<td>Intro to Programming Language Theory</td>
<td>T F</td>
<td>9:30 - 10:50</td>
<td>Mairson</td>
</tr>
<tr>
<td>232F</td>
<td>Computational Models of Discourse</td>
<td>M W</td>
<td>2:00 - 3:20</td>
<td>Meteer</td>
</tr>
</tbody>
</table>

Spring 2018

<table>
<thead>
<tr>
<th>#</th>
<th>COURSE NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>FACULTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12B - Sec 1</td>
<td>Advanced Programming</td>
<td>M W Th</td>
<td>1:00 - 1:50</td>
<td>Salas</td>
</tr>
<tr>
<td>21A</td>
<td>Data Structures and Fundamentals of Programming</td>
<td>M W Th</td>
<td>11:00 - 11:50</td>
<td>DiLillo</td>
</tr>
<tr>
<td>Recitation</td>
<td></td>
<td>TBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21B/121B</td>
<td>Structure and Interpretation of Computer Programs</td>
<td>M W Th</td>
<td>10:00 - 10:50</td>
<td>Mairson</td>
</tr>
<tr>
<td>30A/130A</td>
<td>Intro to Theory of Computation</td>
<td>M W</td>
<td>2:00 - 3:20</td>
<td>Storer</td>
</tr>
<tr>
<td>181A</td>
<td>Fundamentals of AI</td>
<td>M W</td>
<td>2:00-3:20</td>
<td>Pollack</td>
</tr>
<tr>
<td>105B</td>
<td>Software Engineering at Scale</td>
<td>T Th</td>
<td>3:30 - 4:50</td>
<td>Salas</td>
</tr>
<tr>
<td>111A</td>
<td>Topics in CompCognitive Science</td>
<td>T Th</td>
<td>2:00 - 3:20</td>
<td>Alterman</td>
</tr>
<tr>
<td>114B</td>
<td>Fundamental of Comp. Linguistics</td>
<td>T F</td>
<td>11:00 - 12:20</td>
<td>Pustejovsky</td>
</tr>
<tr>
<td>120A</td>
<td>Topics in Computer Systems</td>
<td>T F</td>
<td>9:30 - 10:50</td>
<td>Papaemmanouil</td>
</tr>
<tr>
<td>123A</td>
<td>Statistical Machine Learning</td>
<td>T F</td>
<td>9:30 - 10:50</td>
<td>Hong</td>
</tr>
<tr>
<td>127B</td>
<td>Database Management</td>
<td>M W</td>
<td>3:30-4:50</td>
<td>Cherniack</td>
</tr>
<tr>
<td>132A</td>
<td>Information Retrieval</td>
<td>M W</td>
<td>5:00 - 6:30</td>
<td>Anick</td>
</tr>
<tr>
<td>137B</td>
<td>Information Extraction</td>
<td>T F</td>
<td>11:00 - 12:20</td>
<td>Xue</td>
</tr>
<tr>
<td>140B</td>
<td>Natural Lang Pro</td>
<td>T F</td>
<td>9:30-10:50</td>
<td>Meteer</td>
</tr>
<tr>
<td>147A</td>
<td>Distributed Systems</td>
<td>T F</td>
<td>11:00 - 12:20</td>
<td>Shrirha</td>
</tr>
<tr>
<td>155B</td>
<td>Computer Graphics</td>
<td>M MM Th</td>
<td>10:00 - 10:50</td>
<td>Hickey</td>
</tr>
<tr>
<td>177A</td>
<td>Scientific Data Processing</td>
<td>M W Th</td>
<td>1:00 - 1:50</td>
<td>DiLillo</td>
</tr>
<tr>
<td>217B</td>
<td>NLP Systems: Contemp. Approaches to Syntactic and Semantic Parsing</td>
<td>T Th</td>
<td>3:30 - 4:50</td>
<td>Xue</td>
</tr>
<tr>
<td>233F</td>
<td>Dialog Management Systems</td>
<td>TBD</td>
<td>TBD</td>
<td>Meteer</td>
</tr>
</tbody>
</table>
Below is an example of academic honesty policy for a programming class. There may be small variations between classes, but this is a good example of what is acceptable. It is your responsibility to make sure you know the academic honesty policy at the beginning of the semester and abide by it throughout the semester. The ramifications of academic dishonesty are severe and can result in failing a class or worse. Cases of academic dishonesty are routinely referred to the Dean's office.

ACADEMIC INTEGRITY
As stated in the Rights and Responsibilities handbook, "Every member of the University community is expected to maintain the highest standards of academic honesty. A student shall not receive credit for work that is not the product of the student's own effort."

Programming assignments must be completed individually (unless specified otherwise by the instructor); all code you submit must be your own work. You may discuss general ideas of how to approach an assignment, but never specific details about the code to write. Any help you receive from or provide to classmates should be limited and should never involve details of how to code a solution.

As a student of this course you are agreeing to the following rules:

- You may not work as a partner with another student on a programming assignment.
- You may not get code from online sources.
- You may not show another student your solution to an assignment, nor look at his/her solution, for any reason.
- You may not have another person "walk you through" an assignment, describe in detail how to solve it, or sit with you as you write it. You also may not provide such help to another student. This includes current or former students, tutors, friends, TAs, web site forums, or anyone else.
- You may not post your homework solution code online or ask others for online help. This includes
- Public message boards, forums, file sharing sites and services, or any other online system.

Under our policy, a student who gives inappropriate help is equally guilty with one who receives it. Instead of providing such help to someone who does not understand an assignment, point him or her to other class resources such as lecture examples, the textbook, or emailing a TA or instructor. You must not share your solution and ideas with others. You must also ensure that your work is not copied by others, such as making sure to log out of shared computers, not leaving printouts of your code in public places, and not emailing your code to other students or posting it on the web. We enforce this policy by running similarity detection software over all submitted student programs.
<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Research Interests</th>
<th>Classes Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordan Pollack</td>
<td>Professor, Dept. Chairman</td>
<td>Artificial Intelligence; neural networks; machine learning; evolutionary computation and artificial life.</td>
<td>COSI 2a Introduction to Computers
COSI 113b Artificial Life
COSI 217a Topics in Adaptive Systems</td>
</tr>
<tr>
<td>James Pustejovsky</td>
<td>Professor AI and Comp Ling</td>
<td>Theoretical and computational linguistics; artificial intelligence and machine learning; corpus linguistics and annotation; lexical semantics; temporal and spatial reasoning.</td>
<td>COSI 101a Fundamentals of Artificial Intelligence
COSI 112a Modal, Temporal, and Spatial Logic for Lang
COSI 114b Fundamentals of Comp Ling
COSI 129a Introduction to Big Data Analysis
COSI 135b Computational Semantics
COSI 140b Natural Lang Annotation for Machine Learning
COSI 216a Topics in Natural Language Processing</td>
</tr>
<tr>
<td>Rick Alterman</td>
<td>Professor and Graduate Advisor</td>
<td>Computer-supported communication, cooperation, and collaboration; learning and technology; cognitive engineering and modeling; human computer interaction; communication and discourse; internet and society</td>
<td>COSI 125a Human Computer Interaction
COSI 118a Computer Supported Cooperation
COSI 111a Computational Cognitive Science
COSI 133b Internet & Society
COSI 215a Topics in Computer-Supported Cooperation</td>
</tr>
</tbody>
</table>
Tim Hickey
Professor

Research Interests
Educational Technology; Computer Science Education; 3D Game Design; Interval Arithmetic; Scientific Visualization; Computer Supported Learning; Groupware and Collaborative Editing; Constraint Logic Programming.

Classes Taught
COSI 2a Introduction to Computers
COSI 11a Programming in Java and C
COSI 12b Advanced Program Techniques
COSI 89a Research Internship
COSI 152a Web App Development
COSI 152b Web App Development for Social Networks
COSI 153a Mobile Application Dev.
COSI 153b Mobile Game Design
COSI 154a The JBS Incubator
COSI 155b Computer Graphics
COSI 164a Introduction to 3-D Animation
COSI 320a IT Entrepreneurship Pract. I
COSI 320b IT Entrepreneurship Pract. II
EL 94a Experiential Learning Practicum

Pengyu Hong
Associate Professor

Research Interests
Computer Science, Machine Learning; Image Processing, Bioinformatics; Biomedical Informatics; Intelligent Education.

Classes Taught
COSI 101a Fundamentals of Artificial Intelligence
COSI 123a Statistical Machine Learning
COSI 178a Computational Molecular Biology

Antonella DiLillo
Associate Professor

Research Interests
Visual pattern recognition; content-based image retrieval; image processing and analysis; computer vision.

Classes Taught
COSI 2a Introduction to Computers
COSI 11a Programming in Java and C
COSI 12b Advanced Programming Techniques
COSI 21a Data Structures
COSI 120a Topics in Computer Systems
COSI 130a Intro. to Theory of Comp.
COSI 177a Sci. Data Processing in Matlab
EL 94a Experiential Learning Practicum
Harry Mairson
Associate Professor
AI and Theory

Research Interests
Databases and Systems supporting the management of "Big Data"; software engineering.

Classes Taught
- COSI 29a Discrete Structures
- COSI 21b/121b Structure and Interpretation of Computer Programs
- COSI 190a Intro to Programming Language Theory

Jim Storer
Professor
AI and Theory

Research Interests
Computer algorithms; data compression; communications and archiving (including text, images; video and multi-media); image retrieval and classification; object recognition and parallel computing.

Classes Taught
- COSI 21a Data Structures and the Fundamentals of Computing
- COSI 130a Introduction to the Theory of Computation
- COSI 175a Data Compression and Multimedia Processing
- COSI 180a Algorithms

Pito Salas
Associate Professor

Research Interests
Entrepreneurship; software development methodologies, large-scale software systems architectures; user interface and user experience.

Classes Taught
- COSI 12b Advanced Programming Techniques
- COSI 105b Software Engineering for Scalability
- COSI 152a Web Application Programming
- COSI 152b Web App Development for Social Networks
- COSI 154a The JBS Incubator
- COSI 165a Software Entrepreneurship
- COSI 166b Capstone Project for Software Engineering
- COSI 167b Software Engineering Laboratory
- COSI 202b Software Engineering Lab
- COSI 235a IT Entrepreneurship
- COSI 236b Software Development for IT Entrepreneurship
<table>
<thead>
<tr>
<th>Systems</th>
</tr>
</thead>
</table>
| **Liuba Shrira**
Professor
![Liuba Shrira](image)
Research Interests
Distributed Systems; reliable and scalable storage systems.
Classes Taught
COSI 131a Operating Systems
COSI 146a Principles of Computer System Design
COSI 147a Distributed Systems |
| **Mitch Cherniack**
Associate Professor, Undergraduate Advisor
![Mitch Cherniack](image)
Research Interests
Databases and Systems supporting the management of "Big Data"; software engineering.
Classes Taught
COSI 29a Discrete Structures
COSI 31a Computer System Structures and Organization
COSI 127b Database Management Systems
COSI 128a Modern Database Systems
COSI 227b Advanced Topics in Database Systems |
| **Olga Papaemmanouil**
Associate Professor
![Olga Papaemmanouil](image)
Research Interests
Distributed data management; databases; cloud computing; stream processing
Classes Taught
COSI 12b Advanced Programming Techniques
COSI 129a Introduction to Big Data Analysis
COSI 132b Networked Information Systems
COSI 228a Topics in Distributed Systems |
James Pustejovsky
Professor, Dept. Chairman
AI and Comp Ling

Research Interests
Theoretical and computational linguistics; artificial intelligence and machine learning; corpus linguistics and annotation; lexical semantics; temporal and spatial reasoning.

Classes Taught
- COSI 101a Fundamentals of Artificial Intelligence
- COSI 112a Modal, Temporal, and Spatial Logic for Lang
- COSI 114b Fundamentals of Comp Ling
- COSI 129a Introduction to Big Data Analysis
- COSI 135b Computational Semantics
- COSI 140b Natural Lang Annotation for Machine Learning
- COSI 216a Topics in Natural Language Processing

Lotus Goldberg
Associate Professor

Research Interests
Theoretical syntax and the syntax-semantics interface; ellipsis and null anaphora; morphosyntax; structure of Modern Hebrew and other Semitic languages; corpus linguistics.

Courses Taught
- Ling 100a Introduction to Linguistics
- Ling 115a Morphology
- Ling 120b Syntactic Theory
- Ling 121b Syntax II
- Ling 125b Linguistic Typology
- COSI 138a Computational Linguistics
- Ling 190b Topics in Linguistics

Sophia Malamud
Associate Professor

Research Interests
Formal semantics and pragmatics; corpus linguistics; speech acts; game and decision theory; reference and information structure; modality; impersonals and passives; heritage language acquisition.

Courses Taught
- Ling 130a Formal Semantics
- Ling 140a Discourse and Pragmatics
- Ling 160b Mathematical Methods in Linguistics
- Ling 173a Psycholinguistics
- Ling 190a Topics in Linguistics: The Heritage Language Experience
- Ling 197a Language Acquisition and Development
Marie Meteer
Associate Professor,
Industry Liaison
Comp Ling, COSI

Research Interests
Computational linguistics; natural language processing;
speech recognition

Classes Taught
COSI 114b Fundamentals of CL
COSI 115bj Spoken Dialog Design
COSI 136a Automated Speech Rec.
COSI 138a CL Second Year Seminar
COSI 140b NLA for Machine Learning
COSI 154aj The JBS Incubator
COSI 216a Topics in NLP
COSI 217b NLP Systems
COSI 232f Comp. Models of Discourse
COSI 233f Dialog Management Systems

Keith Plaster
Lecturer

Research Interests
Phonological theory; historical linguistics; morphology;
heritage linguistics.

Courses Taught
COSI 138a Computational Linguistics 2nd Seminar
LING 100a Introduction to Linguistics
LING 105a Phonetics
LING 110a Phonological Theory
LING 150a Historical Linguistics and Language Change
LING 160b Mathematical Methods in Linguistics
LING 190b Topics in Linguistics
LING 197a Language Acquisition and Development

Nianwen Bert Xue
Associate Professor
Comp Ling, COSI

Research Interests
Computational linguistics; Chinese language processing;
Semantic role labeling; machine translation and linguistic
annotation, including Chinese Treebank, Chinese
Proposition Bank, OntoNotes.

Classes taught
COSI 137b Information Extraction
COSI 216a Topics in Natural Language Processing
LING 131a Programming for Linguistics
1) Will I have a meeting with my advisor before I choose my classes? Will it be clear what classes I need to take?
YES: After orientation it should be very clear what classes you need to take; you will also meet with your advisor within the first week of classes so you can make sure you’re on the right track. You will also find answers to your questions in the Student Handbook.

2) How many classes do students normally take?
We have designed the program so that a student should be able to comfortably take 3 classes per semester. However, there are those students who wish to take 4, and though we do not recommend it, those with strong computer science backgrounds may be comfortable doing this. Regardless you still have a residency requirement. This Fall, the add deadline is Sept 13, and the drop deadline is Oct. 2, *see detailed academic calendar: https://www.brandeis.edu/registrar/calendar/fall17.html.

3) If I have taken a class equivalent to one that is required in the MA4 program, what do I do?
A Brandeis student can transfer in courses as long as they have not been used toward fulfilling requirements for another degree.

To petition out of 11a: Students who want an exemption to the COSI 11a degree requirement because you have taken a course elsewhere that you believe is equivalent, you must pass the COSI 11a Placement Exam which is offered just once per semester during the first week of school. Test date is Wednesday, September 13th at 4:30 with the location to be announced. Students who wish to take the exam need to email Professor Mitch Cherniack at mfc@brandeis.edu by September 1st to let him know. Students who get a A- or better will be allowed to take 12b and 21a in any order (including concurrently). COSI 12b is now being offered in both the Fall and Spring. This allows students who are exempted from 11a to take 12b in the Fall.

4) How long do I have to decide before I commit to a class?
If you aren’t sure about which elective to take, you should enroll in the course and attend the first couple of classes. You are required to go to the first lecture of any class you are interested in. You will have plenty of time to drop the class if you chose to do so. Please see the academic calendar for deadlines: https://www.brandeis.edu/registrar/calendar/fall17.html

5) If I’m an international student, can I do an internship in the summer?
International master’s students need to complete two academic semesters in residence on an F1 Visa status to be eligible to gain CPT authorization and will enroll in CS 293G, which counts for one academic credit. Usually students enroll in this class during the summer in between their first and second year, once they have found an internship. For further details on procedure please contact Anne Gudaitis at gudaitis@brandeis.edu, and the ISSO Office at isso@brandeis.edu.
6) Are there Teaching Assistant (TA) positions I can apply for to supplement my income?
The number of TA positions available varies per semester. Once you have taken the class and the faculty member is confident that you know the material well, you can apply for an open TA position. Normally a new student would have to wait until their second semester or second year to be eligible for this kind of job, but it would depend on the student's experience. Sometimes an instructor will ask you; feel free to approach them about the position.

7) Are there other jobs on campus that I could apply for?
Yes you may go to Student Financial Services and apply for any job you are qualified for on-campus. However, you cannot apply before you arrive. The website is: https://careers.brandeis.edu/studentjobs/.

8) Does the department help me find an internship during my studies and/or a permanent job after graduation?
We have a dedicated faculty member, Prof. Marie Meteer, who is a Professor of Practice in Computer Science and the Industry Liaison for our graduate programs. She is responsible for bringing companies to Brandeis for Tech Talks in order to begin helping students establish relationships with outside companies. She brings her strong connection to the tech industry to our annual computer science career fair that is held in the fall and organizes 'meet and greets' with outside industries to help students in their search for internships and jobs. Her contact info is Marie Meteer at mmeteer@brandeis.edu.

9) What is a passing grade?
MA students must receive a B- or better on all their 100-level or above classes. In addition, the MA4’s must average a B+ on the required undergraduate courses: 11a, 12b, 21a, and 29a. See page 7 for further explanation on this MA4 requirement.

10) Can I do an Independent Study?
It is possible to do an independent study. An independent study can either be a faculty-supervised research project or ask them if they will supervise you. It is mostly self-taught course that is not offered by the department. If you want to do an independent study approach a faculty member who knows you and ask them about doing it. Masters students are limited to 2 independent studies.

11) If I am an MA4 student, can I take a JBS summer class?
ONLY ONE JBS course or one independent study may count as an 100-level elective from the following list: COSI 115bj, COSI 152aj, COSI 152bj, COSI 153aj, COSI 153bj, COSI 154aj, COSI 293aj, COSI 210aj, COSI 200ab and COSI 210a.

System.out.println("Have a great year!");