Intrinsic Fluctuations in the Brusselator Model: Metastability and Switching

Michael Giver, Bulbul Chakraborty
Department of Physics, Brandeis University

Zahera Jabeen
Department of Physics, University of Michigan
THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. University of Manchester

(Received 9 November 1951—Revised 15 March 1952)
Theoretical Motivation

In a chemical reaction system, diffusion can be a destabilizing influence leading to oscillations, waves and spatial patterns.
Problem: Patterns are often only observed when the parameters are fine tuned

Problem: Diffusion coefficients of different chemical species must differ by a large amount

Solution? We must consider fluctuations intrinsic to the system: Demographic noise / Intrinsic Fluctuations
• At the microscopic level, discrete entities are undergoing reactions and diffusion.

• Coarse-grained (Mean-field) rate equation descriptions become suspect either when
 • # of reactants is small or
 • diffusion is slow compared to reaction rates and the characteristic volume, V, is small
 • OR the meanfield equations admit a line of fixed points
- Intrinsic fluctuations give rise to bistability not present in mean-field model
- Mean-field behavior is recovered in large N limit
Example: *Intrinsic* Fluctuations in Predator-Prey Dynamics

\[\dot{u} = p_2 uv - du \]
\[\dot{v} = bv - cv^2 - p_1 uv \]

- \(B \rightarrow 2B \)
- \(B \rightarrow 0 \)
- \(A + B \rightarrow A \)
- \(A + B \rightarrow 2A \)
- \(A \rightarrow 0 \)
Predator-Prey Model With Diffusion

Butler and Goldenfeld, Phys. Rev. E 80, 030902(2009)

- Intrinsic fluctuations allow for pattern formation outside region predicted by standard Turing analysis
- Effect of noise persists in the thermodynamic limit!
Increased Coupling Dead state

Experimental Motivation: Belousov-Zhabotinsky (BZ)

A Model of Chemical Oscillations

The Brusselator

\[\begin{align*}
0 & \rightarrow \quad X : N \\
X & \rightarrow \quad Y : bn_x \\
2X + Y & \rightarrow \quad 3X : cn_x^2 n_y / N^2 \\
X & \rightarrow \quad 0 : n_x
\end{align*} \]

Mean-Field Rate Equations

\[\begin{align*}
\dot{x} &= 1 - (b + 1)x + cx^2y \\
\dot{y} &= bx - cx^2y
\end{align*} \]

Unique Fixed Point: \((x^*, y^*) = (1, b/c) \)

Stability Conditions: \(b < c + 1 \)

Brusselator phase diagram from linear stability analysis
The well mixed Brusselator (Point Oscillator)

Mean-Field Rate Equations

\[
\begin{align*}
\dot{x} &= 1 - (b + 1) x + cx^2 y \\
\dot{y} &= bx - cx^2 y
\end{align*}
\]

Phase Diagram

Stable Fixed Point

Limit Cycle
The well mixed Brusselator (Point Oscillator)

Mean-Field Rate Equations
\[\dot{x} = 1 - (b + 1)x + cx^2y \]
\[\dot{y} = bx - cx^2y \]

Phase Diagram

Stable Fixed Point

Limit Cycle
Timescale Separation: Mean-Field

- $c \ll 1$
- $c = 1$
- $c \gg 1$

$C = c \Delta t$

c sets the ratio of activator to inhibitor timescales.

Amplitude $c = 9.0$.

1.0

0.2 0.0 0.2 0.4 0.6

δ
The Brusselator With Intrinsic Fluctuations
\[\dot{P}_n(t) = \sum_{n' \neq n} \left(T(n|n') P_{n'} - T(n'|n) P_n \right) \]

Master Equation

Random Walk Picture

The Brusselator

\[
\begin{align*}
0 & \rightarrow X : N \\
X & \rightarrow Y : b_n x \\
2X + Y & \rightarrow 3X : c_n^2 n_y / N^2 \\
X & \rightarrow 0 : n_x
\end{align*}
\]
Master Equation

\[\dot{P}_n(t) = \sum_{n' \neq n} \left(T(n|n')P_{n'} - T(n'|n)P_n \right) \]

Random Walk Picture

The Brusselator

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Species</th>
<th>Rate Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 \rightarrow X</td>
<td>X</td>
<td>N</td>
</tr>
<tr>
<td>X \rightarrow Y</td>
<td>Y</td>
<td>bn_x</td>
</tr>
<tr>
<td>2X + Y \rightarrow 3X</td>
<td>X, Y</td>
<td>cn_x^2 n_y/N^2</td>
</tr>
<tr>
<td>X \rightarrow 0</td>
<td>X</td>
<td>n_x</td>
</tr>
</tbody>
</table>
\[\dot{P}_n(t) = \sum_{n' \neq n} \left(T(n|n')P_{n'} - T(n'|n)P_n \right) \]
Master Equation - Small Fluctuation Expansion

\[\dot{P}_n(t) = \sum_{n' \neq n} \left(T(n|n') P_{n'} - T(n'|n) P_n \right) \]

\[\frac{n}{N} = \mathbf{x}(t) + N^{-1/2} \xi \]

Average concentration

Fluctuations about the average

Leading Order:

\[\dot{x} = 1 - (b + 1) x + c x^2 y \]

\[\dot{y} = bx - cx^2 y \]

Next Leading Order:

\[\frac{\partial}{\partial t} \Pi(\vec{\xi}, t) = - \sum_{i,j} K_{ij}(t) \frac{\partial}{\partial \xi_i} (\xi_j \Pi(\vec{\xi}, t)) + \sum D_{ij}(t) \frac{\partial}{\partial \xi_i} \frac{\partial}{\partial \xi_j} \Pi(\vec{\xi}, t) \]
Master Equation - Small Fluctuation Expansion

Linear Fokker-Planck Equation

\[
\frac{\partial}{\partial t} \Pi(\vec{\xi}, t) = - \sum_{i,j} K_{ij}(t) \frac{\partial}{\partial \xi_i} (\xi_j \Pi(\vec{\xi}, t)) \\
+ \sum D_{ij}(t) \frac{\partial}{\partial \xi_i} \frac{\partial}{\partial \xi_j} \Pi(\vec{\xi}, t)
\]

Linear Langevin Equation

\[
\dot{\vec{\xi}} = K \vec{\xi} + \vec{f}(t)
\]

Gaussian white noise

\[
\langle |\xi(\omega)|^2 \rangle = P_x(\omega) = \frac{2((1 + b)\omega^2 + c^2)}{(c - \omega^2)^2 + (1 + c - b)^2\omega^2}
\]
Master Equation: Gillespie Algorithm

\[c \ll 1 \]

\[c = 1 \]

\[c \gg 1 \]

Time Series of \(x(\text{black}) \) and \(y(\text{red}) \)

"Quasi-cycles"

Master Equation: van Kampen Expansion

\[\dot{P}_n(t) = \sum_{n' \neq n} \left(T(n|n')P_{n'} - T(n'|n)P_n \right) \]

\[\frac{n}{N} = x(t) + N^{-1/2} \xi \]

Power Spectrum

\[P_x(\omega) = \frac{2((1 + b)\omega^2 + c^2)}{(c - \omega^2)^2 + (1 + c - b)^2\omega^2} \]

Average concentration

Fluctuations about the average
c sets the ratio of activator to inhibitor timescales

$$c = \frac{\tau_x}{\tau_y}$$
Master Equation: van Kampen Expansion

\[\dot{P}_n(t) = \sum_{n' \neq n} \left(T(n|n')P_{n'} - T(n'|n)P_n \right) \]

\[\frac{n}{N} = x(t) + N^{-1/2}\xi \]

Average concentration

Fluctuations about the average

\[P_x(\omega) = \frac{2((1 + b)\omega^2 + c^2)}{(c - \omega^2)^2 + (1 + c - b)^2\omega^2} \]

Power Spectrum

\[N = 10^5 \]
Master Equation: van Kampen Expansion

\[\dot{P}_n(t) = \sum_{n' \neq n} \left(T(n|n') P_{n'} - T(n'|n) P_n \right) \]

\[\frac{n}{N} = \mathbf{x}(t) + N^{-1/2} \xi \]

Power Spectrum

\[P_x(\omega) = \frac{2((1 + b)\omega^2 + c^2)}{(c - \omega^2)^2 + (1 + c - b)^2\omega^2} \]
Timescale Separation: Stochastic

\[c \ll 1 \quad \quad c = 1 \quad \quad c \gg 1 \]

\[X/N \quad \text{vs} \quad Y/N \]

Time Series of \(x(\text{black}) \) and \(y(\text{red}) \)
Metastable Oscillations: First Passage

\[\begin{align*}
\tau_L & : \text{First passage time from large to small amplitude oscillations} \\
\tau_S & : \text{First passage time from small to large amplitude oscillations}
\end{align*}\]
First Passage Times

Small to Large

Scaling Function:

\[\langle \tau_s \rangle = N^{-\beta_s} f(\delta N^{\alpha_s}) \]

\[\alpha_s = 0.82 \]

\[\beta_s = -1.12 \]

Large to Small

\[\langle \tau_L \rangle = N^{-\beta_L} g(\delta N^{\alpha_L}) \]

\[\alpha_L = 0.2 \]

\[\beta_L = 0.2 \]
First Passage Times (Finite Thermodynamic Limit)

In the Thermodynamic limit: Oscillations persist contrary to meanfield expectations.
The Future!
Spatially extended Brusselator (1d)

We model the one dimensional system as a lattice of well mixed volumes. Reactants can hop between volumes with specified rates.

Reactions:

- $0 \rightarrow X_i : N$
- $X_i \rightarrow Y_i : bn_x$
- $2X_i + Y_i \rightarrow 3X_i : cn_x^2 n_y/N^2$
- $X_i \rightarrow 0 : n_x$

with hopping:

- $X_i \rightarrow X_{i\pm 1} : D_x$
- $Y_i \rightarrow Y_{i\pm 1} : D_y$
Spatially extended Brusselator (1d)

Mean-Field:

\[
\frac{\partial x}{\partial t} = 1 - (1 + b)x + cx^2y + D_x \nabla^2 x
\]

\[
\frac{\partial y}{\partial t} = bx - cx^2y + D_y \nabla^2 y
\]
Spatially extended Brusselator (1d)

Increasing Inhibitor Diffusion
Spatially Structured Lattice (1d)

Reactions:

\[
\begin{align*}
0 & \rightarrow X_i : N \\
X_i & \rightarrow Y_i : bn_x \\
2X_i + Y_i & \rightarrow 3X_i : cn_x n_y / N^2 \\
X_i & \rightarrow 0 : n_x \\
\end{align*}
\]

\{ odd sites only \}

w/ hopping:

\[
\begin{align*}
X_i & \rightarrow X_{i\pm1} : D_x \\
Y_i & \rightarrow Y_{i\pm1} : D_y \\
\end{align*}
\]
Summary

- Intrinsic fluctuations can give rise to interesting behavior not accessible in the mean-field limit.
- Fluctuations still play an important role in large systems.
- Line of Fixed Points leads to new deterministic behavior.

Thanks to the Fraden Lab for images and movies.

This work has been funded by the NSF IGERT and MRSEC programs at Brandeis University.