The Impact of Litigants’ Baby-Facedness and Attractiveness on Adjudications in Small Claims Courts*

Leslie A. Zebrowitz and Susan M. McDonald†

The effects of litigants’ facial appearance on judicial decisions were investigated in 506 cases heard in small claims courts. Replicating previous laboratory studies, both baby-facedness and attractiveness exerted a significant impact on adjudications. As plaintiffs increased in attractiveness, defendants were more likely to lose the case. Also, as defendants increased in baby-facedness, they were more likely to win cases involving intentional actions and less likely to win cases involving negligent actions, although the latter simple effect was not significant. Finally, as defendants increased in facial maturity, they were required to pay larger monetary awards to baby-faced plaintiffs, albeit not to average or mature-faced plaintiffs. This pattern of decisions was interpreted as reflecting assumptions about the psychological attributes of baby-faced versus mature-faced individuals. The effects of the extralegal variables of litigant attractiveness and baby-facedness were sufficiently large to have practical as well as statistical significance, and they were independent of each other and the age of the litigants as well as of legal variables predicting adjudications.

A fundamental right guaranteed by the Fourteenth Amendment to the U.S. Constitution is that of a fair trial. This constitutional right rests on the principle that there is a presumption of innocence in favor of the accused and that guilt must be proven beyond a reasonable doubt solely on the basis of evidence produced in court (Lown, 1977). Because the influence of extralegal factors on judicial decisions poses a significant threat to this fundamental right, it is important to identify

* This research was supported by NIMH grant No. BSR 5 R01 MH42684 to the first author. Thanks are extended to Philip Shapiro for his help with legal terminology, to Steven Samuels for his help in the data collecton, and to Michael Berbaum and Avron Spiro III for their statistical assistance in the data analysis. Requests for reprints should be addressed to Leslie A. Zebrowitz, Department of Psychology, Brandeis University, Waltham, MA 02254.
† Brandeis University.
those factors that may bias the fact finder's evaluation of evidence produced at a trial. One source of bias that has received considerable attention is the physical appearance of the litigants.

The physical attractiveness of the litigants is one aspect of appearance that has been shown to bias judicial decisions. Studies of simulated criminal trials have revealed that physically attractive defendants are less likely than the physically unattractive to be convicted (Efran, 1974; Kulka & Kessler, 1978; Leventhal & Krate, 1977), and, if convicted, they receive more lenient sentences (Kulka & Kessler, 1978; Leventhal & Krate, 1977; Solomon & Schopler, 1978). These outcomes are consistent with a well-documented attractiveness halo effect, whereby those who are physically attractive are judged more positively than the unattractive on a variety of dimensions (see Berscheid & Walster, 1974). Although there has been little research investigating the impact of litigant attractiveness on actual courtroom decisions, Stewart (1980) found that the rated attractiveness of defendants in criminal trials in Pennsylvania was negatively correlated with sentence length even when seriousness of the crime was statistically controlled. On the other hand, defendants' attractiveness was not correlated with whether or not they were found guilty.

While most of the research on litigants' attractiveness has focused on the defendant, the attractiveness of the plaintiff has also received some attention. Much of this research has focused on rape cases, where it has been found that simulated male jurors were more likely to give guilty verdicts or to recommend longer sentences when the victim was attractive (Thornton, 1977; Villemur & Hyde, 1983), although other studies have failed to confirm these effects (see Bull & Rumsey, 1988, for a review of pertinent research).

Since the appearance of a rape victim may be viewed by some jurors as relevant to the verdict, it is important to consider whether the plaintiff's attractiveness also has an impact on judicial decisions in other types of cases. Kerr (1978) found that defendants were more likely to be found guilty of an automobile theft when a female plaintiff, who had taken precautions against the theft, was attractive than when she was unattractive. This result was paralleled by the degree of sympathy for the plaintiff. The study by Kulka and Kessler (1978), which was cited above as evidence for favoritism toward attractive defendants, may also reflect favoritism toward attractive plaintiffs inasmuch as defendant and plaintiff attractiveness were confounded in this investigation: Subjects were exposed to either an attractive plaintiff and an unattractive defendant or vice versa. A bias in favor of attractive plaintiffs has been reported for civil as well as criminal cases. Simulated jurors were more apt to find in favor of an attractive plaintiff in civil suit resulting from an automobile accident and to award significantly higher financial damages to the attractive plaintiff (Stephan & Tully, 1977).

Whereas most research has postulated a general positivity effect for defendant or plaintiff attractiveness, there is some evidence to indicate that the effects of appearance will vary with the nature of the defendant's alleged actions. For example, criminal case simulations have revealed that attractive defendants are not always favored. In fact, attractive women were given stiffer sentences when their actions produced very serious consequences, such as a fatality in an auto
accident (Piehl, 1977), or when their actions exploited their attractiveness, such as conning a middle-aged bachelor (Sigall & Ostrove, 1975). Since attractive women may be stereotypically associated with "bad driving" and "wile," these findings suggest that attractive defendants may be treated more punitively than the less attractive if the actions in question are consistent with specific negative stereotypes of attractive individuals. Other evidence also indicates that an offense that is consistent with cultural stereotypes of the transgressor is punished more harshly than a nonstereotypic offense (Bodenhausen & Wyer, 1985).

Another appearance characteristic that has been shown to differentially affect judicial decisions for different actions is facial babyishness, which is the extent to which a person's facial features resemble those of a prototypical baby. In addition to being reliably rated, facial babyishness has also been assessed by the measurement of various facial features, revealing that baby-faced adults tend to have larger eyes, thinner, higher eyebrows, a large forehead and a small chin, and a curved rather than an angular face (Berry & McArthur, 1986).

In a simulated civil case, Berry and Zebrowitz-McArthur (1988) found that defendants' baby-facedness influenced judges' decisions and that the direction of the effects varied with the nature of the defendant's alleged actions. More specifically, when defendants denied responsibility for a claim, baby-faced men were more likely than equally attractive mature-faced men to lose cases involving negligent actions, whereas mature-faced men were more likely to lose cases involving intentional actions. These outcomes are consistent with assumptions about the likely behaviors of baby-faced adults: They are perceived as more honest than the mature-faced (and thus less apt to cause harm intentionally), and they are also perceived as more naive (and thus less able to plan intentional harm and more apt to cause harm through negligence) (McArthur & Apatow, 1983–4; Berry & McArthur, 1985; McArthur & Berry, 1987; Zebrowitz & Montepare, 1990). A different pattern of results was obtained for adjudications when defendants had admitted responsibility. Specifically, baby-faced defendants were assessed lower damages for claims involving negligence, presumably because they looked like they "couldn't help it."

Berry and Zebrowitz-McArthur's (1988) results were obtained within the context of a simulated trial in which the baby-facedness of a male defendant was manipulated by a photograph attached to a pretrial intake report. While these findings reveal a bias deriving from a defendant's facial maturity, their generalizability to actual courtroom situations, where perceivers have access to multiple sources of information, is unknown. This limitation is not unique to Berry and Zebrowitz-McArthur's (1988) work. As noted above, the vast majority of attractiveness studies have been conducted using the mock jury context (Stewart, 1980, is a notable exception), and there is a dearth of evidence concerning the effects of the litigants' appearance on actual courtroom proceedings. The present study was designed to fill this gap in the research literature by investigating the outcomes of cases heard in various Massachusetts small claims courts.

Small claims cases are well suited to research on the extralegal determinants of judicial decisions for several reasons. First, because decisions are made by an individual judge, variables that can influence jury deliberations are not a compli-
eating factor in the outcomes. Second, because each plaintiff is suing for a maximum of $1,500 (except in automobile damage suits, where there is no limit on the claim), cases can be rated on a common scale indicating the percentage of the claim that is awarded. Third, since the judgment depends largely on the credibility of litigants who typically have little evidentiary support, the appearance of the defendant and the plaintiff should be a more significant variable than in a criminal trial. Finally, cases in small claims court may involve negligent acts (e.g., damage to a home by a contractor), as well as intentional acts (e.g., failure of a landlord to return a tenant’s security deposit), which make them appropriate for investigating the differential effects of facial maturity on adjudications involving these two types of actions.

Based on the findings of Berry and Zebrowitz-McArthur (1988), it was predicted that as defendants who denied responsibility for a claim increased in baby-facedness they would be less likely to lose cases involving intentional actions and more likely to lose cases involving negligent actions. It was also predicted that when defendants denied responsibility for claims involving either negligent or intentional actions, those who were in litigation with more baby-faced plaintiffs would be more likely to lose the case. This prediction derives from evidence that baby-faced people are perceived as more honest than those with more mature faces, such that baby-faced plaintiffs should be perceived as less likely to bring false charges against the defendant. Finally, paralleling the results of Berry and Zebrowitz-McArthur (1988), it was predicted that when the defendant admitted responsibility for claims involving negligent actions, more baby-faced defendants would have to pay lower damages to the plaintiff.

The effects of plaintiff and defendant attractiveness were also assessed in the present study. Based on past research findings, it was predicted that attractive defendants who denied responsibility would be more likely to win the case and that attractive defendants who admitted responsibility would have to pay lower damages to the plaintiff. It was also predicted that judgments and awards would be more likely to favor attractive than unattractive plaintiffs. Because there is some evidence to indicate that the effects of the defendants’ attractiveness vary with the nature of their actions, the interaction of attractiveness with type of action was also explored. It was anticipated that the bias in favor of attractive defendants might be stronger for claims involving intentional than negligent actions, since intentional harm to another person is contrary to the attractiveness halo effect. On the other hand, since all claims considered in small claims court are relatively minor, strong attractiveness effects may occur regardless of the intentionality of the actions.

METHOD

Sample

A total of 506 cases were observed in six branches of the Commonwealth of Massachusetts small claims courts. Three judges heard 51% of the cases and the
remaining 49% of the cases were presided over by 22 additional judges. Cases were excluded from the sample when one or both of the litigants did not appear in court or when the defendant did not dispute the claim.

The litigants in the observed cases comprised a fairly homogeneous sample. Seventy-two percent of the plaintiffs and 78% of the defendants were male. Ninety-six percent of both plaintiffs and defendants were white, and 81% were between the ages of 21 and 50. The types of cases heard were fairly evenly split: 60% were claims involving intentional actions, and 40% involved negligent actions. Defendants denied responsibility in 83% of the cases, but 69% of those denying responsibility lost the case.

Predictor Variables

Legal Variables

Four legal predictors were coded: the damages claimed (in dollars), whether the claim involved intentional or negligent actions, whether the defendant admitted or denied responsibility, and the litigants’ legal support.

Claims were coded as involving negligent actions if the defendant was accused of accidentally harming the plaintiff and/or depriving the plaintiff of goods or services or payment thereof. They were coded as involving intentional actions if the defendant was accused of purposefully choosing to harm the plaintiff and/or to deprive the plaintiff of goods or services or payment thereof. The coding of intentionality was on the basis of the action itself and not the reasons for the action. For example, if a defendant admitted failure to pay the rent due to neglecting to save sufficient funds or due to dissatisfaction with maintenance of the property, the action would be coded as intentional.

Cases were coded as "denying responsibility" if the defendant denied any fault or financial obligation and they were coded as "admitting responsibility" if the defendant denied only parts of the plaintiff's claim. As noted above, cases in which the defendant did not dispute the claim at all were excluded from the sample.

An example of a negligent action for which the defendant denied responsibility is provided by a case in which the plaintiff's car was hit by the defendant, who claimed it was the plaintiff's fault. An example of a negligent action for which the defendant admitted responsibility is provided by a case in which the plaintiff's motorcycle was hit by the defendant, who acknowledged responsibility but disputed the amount of the claim. An example of an intentional action for which the defendant denied responsibility is provided by a case in which the defendant did not pay for a car battery installed by the plaintiff on the grounds that he had not authorized the installation. An example of an intentional action for which the defendant admitted responsibility is provided by a case in which the defendant admitted not returning the plaintiff's rent security deposit, but disputed the amount that was owed.

The presence or absence of physical evidence, witnesses, or lawyers were summed to create the composite variables of *defendant support* and *plaintiff*
support, which were coded as two continuous variables ranging from no support (0) to full support (3).

Extralegal Variables

Extralegal predictors included judgments of each litigant’s sex, race (White, Black, Oriental, Hispanic), approximate age (under 20, 20s, 30s, 40s, 50s, or over 60), attractiveness, and baby-facedness. The latter two ratings were made on 7-point scales with end points labeled unattractive/attractive and baby-faced/mature-faced.¹ Because there were few litigants in the youngest and oldest of the six age groups, age was collapsed into four categories (under 20–30, 30s, 40s, and over 50). Because there were so few non-white litigants (4% of the sample), race was excluded from the data analyses.

Dependent Measures

Two dependent measures were assessed: judgment (whether the judgment was for or against the defendant) and award (coded as the percentage of the plaintiff’s claim that the defendant was required to pay). The judgment measure was analyzed only for cases where defendants denied responsibility, and the award measure was analyzed only for cases where defendants admitted responsibility. This was done for three reasons: First, past research had revealed opposite effects of facial maturity on recommendations regarding plaintiffs who denied responsibility versus those who admitted responsibility (Berry & Zebrowitz-McArthur, 1988). Second, including cases where defendants admitted responsibility in the judgment measure was inappropriate because judgments in these cases were always against the defendant. Third, including cases where defendants denied responsibility in the award measure would render it highly correlated with the judgment measure. Specifically, if defendants denied responsibility and the resultant judgment was for the defendant, then the award to the plaintiff was always zero. Thus, if cases in which defendants denied responsibility were included in the award measure, then low awards paid by certain types of defendants might simply reflect more judgments in their favor.

Procedure

Two observers, who were unaware of the experimental hypotheses, independently coded cases during small claims proceedings in the six district courts beginning June, 1987, and ending June, 1988, using a standard rating form. Past research had obtained interrater reliabilities in the .80s and .90s for ratings of the

¹ Observers also recorded the following information about both litigants: height, weight, manner of dress (very casual, casual, or dressy), glasses, facial hair (for males), color of hair, any other noticeable physical characteristics, vocal maturity (childlike/mature), and vocal femininity (masculine/feminine). They also recorded the judge’s sex, race, and approximate age. Because no predictions were made concerning the effects of these variables, which were included for exploratory purposes, they are excluded from the data analyses.
baby-facedness and attractiveness of videotaped faces by 16 untrained judges (Zebrowitz-McArthur & Montepare, 1989). Because there were only two judges in the present study, an effort was made to ensure interrater reliability by having the observer judges code a preliminary set of 20 cases and discuss any disagreements before continuing to code cases for the final study.

With the permission of the presiding judges, observers were always seated on a bench facing the litigants, thus giving them the same vantage point as the judge. The first variables to be recorded for each case were the appearance and demographic characteristics of the plaintiff followed by the same measures for the defendant. These variables were coded when the plaintiff and defendant were called up to the bench so that the ratings would be uninfluenced by other aspects of the case. The next set of variables to be recorded concerned the plaintiff’s testimony followed by defendant’s testimony. This information was entered on a separate coding sheet from the one used to record litigants’ appearance and demographic characteristics. Finally, the judgments and the damages awarded to the plaintiff, if any, were obtained from the Clerk of Court’s records department on a date subsequent to the proceedings, because the judges’ decisions were not announced in court.

RESULTS

Reliability and Descriptive Statistics

To determine interrater reliability, Pearson r correlation coefficients were calculated for continuous variables and percent agreement was calculated for dichotomous variables. Interrater agreement was excellent, averaging .98 across all measures, and the mean of the two observers’ ratings for each measure was used in all subsequent analyses.

Table 1 presents the means and standard deviations for the predictor and dependent variables, revealing an acceptable range of scores for regression analyses utilizing these measures. An inspection of the correlations among the predictor variables also revealed sufficient independence for their simultaneous entry into regression analyses. The highest correlation among the legal predictors was .36 and the highest correlation among the extralegal predictors was .43.

The strongest correlations among legal predictors involved the variables of plaintiff and defendant support. These were positively correlated with one another as well as with damages claimed by the plaintiff and negatively correlated with the occurrence of intentional as opposed to negligent actions. Finally, judgments against the defendant were negatively correlated with defendant support and positively correlated with plaintiff support. Correlations among the extralegal predictors that bear mention include the relationships between litigant age and facial appearance. Consistent with past evidence that there are baby-faced individuals at all age levels (Zebrowitz & Montepare, 1990), the age and baby-facedness of the litigants showed only moderate negative correlations (r’s = −.30 for defendants
Table 1. The Means and Standard Deviations for the Predictor and Dependent Variables

<table>
<thead>
<tr>
<th>Type of case</th>
<th>Responsibility denied</th>
<th>Responsibility admitted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Defendant</td>
<td>Plaintiff</td>
</tr>
<tr>
<td>Judgment</td>
<td>.69 (.46)</td>
<td></td>
</tr>
<tr>
<td>Award</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of action</td>
<td>1.60 (.49)</td>
<td></td>
</tr>
<tr>
<td>Damages</td>
<td>890.47 (785.55)</td>
<td></td>
</tr>
<tr>
<td>Support</td>
<td>0.90 (.75)</td>
<td>1.04 (.62)</td>
</tr>
<tr>
<td>Baby-facedness</td>
<td>3.50 (1.39)</td>
<td>3.69 (1.41)</td>
</tr>
<tr>
<td>Attractiveness</td>
<td>4.57 (.93)</td>
<td>4.44 (.98)</td>
</tr>
<tr>
<td>Age</td>
<td>2.39 (1.01)</td>
<td>2.27 (1.05)</td>
</tr>
<tr>
<td>Sex</td>
<td>1.21 (.41)</td>
<td>1.28 (.45)</td>
</tr>
</tbody>
</table>

Note. Standard deviations are in parentheses; N = 421 for cases in which defendants denied responsibility and N = 85 for cases in which defendants admitted responsibility. Judgment was coded as 1 if against the defendant and 0 if for the defendant. Type of action was coded as 1 if negligent and 2 if intentional. Support ranged from 0 (no support) to 3 (lawyer, witness, and material evidence). Babypaintedness and attractiveness were rated on 7-point scales. Age was coded as 1 if < 30, 2 if 30s, 3 if 40s, and 4 if over 50. Sex was coded as 1 if male and 2 if female.

and −.26 for plaintiffs), indicating that these variables were not redundant. Similarly, although age and attractiveness were negatively correlated (r's = −.34 for defendants and −.33 for plaintiffs), the moderate relationships revealed that these two variables were also not redundant. Finally, an examination of the correlations between ratings of the litigants' attractiveness and the dressiness of their clothing (r's = −.07 for defendants and −.05 for plaintiffs) further suggested that attractiveness ratings did not merely reflect variations in the litigants' socioeconomic status.

Judgments

Hierarchical logistic regressions were utilized to analyze judgments for the 421 cases in which defendants denied responsibility, with the judgment coded as 1 if it was against the defendant and 0 if it was for the defendant. Logistic regressions were employed because they are appropriate alternatives to standard regression analyses for multiple factor designs that feature binary dependent variables (Aldrich & Nelson, 1984). The data for each continuous predictor variable were centered around its mean to reduce the correlation between main effects and interaction effects (Cohen & Cohen, 1983).

Forced entry regressions were employed to select predictors within the block of legal variables and within the block of extralegal variables, after which both legal and extralegal predictors were forced into a regression to determine whether the addition of one block to the other yielded a significant increase in the explained variance. Forced entry rather than stepwise regressions were employed in the initial selection of predictors because the goal of investigating the effects of extralegal variables for which there were a priori predictions would not be well
served by a stepwise selection procedure, which satisfied predictive rather than explanatory research goals (Cohen & Cohen, 1983).²

Legal Variables

The block of legal predictors initially included defendant support, plaintiff support, type of action (coded 1 if negligent and 2 if intentional), amount of damages claimed, and the interactions among these variables. A forced entry regression utilizing these predictors yielded a model that provided a moderately good fit to the data, $G^2 = 7.39, p = .49$. It should be noted that the likelihood ratio chi-square, or G^2, is a measure of a model’s lack of fit. A small G^2, accompanied by a large probability level, reflects a nonsignificant lack of fit, or a significantly good fit of the data by the model (Agresti, 1984). Because this model included many nonsignificant predictors, a trimmed model was designated by deleting all predictors with t’s < 1. A forced entry regression utilizing the predictors in the trimmed model provided approximately the same fit to the data as the entire set of legal predictors, $G^2 = 7.74, p = .46$, and accounted for 48% of the variance in judgments.³ As shown in Table 2, this model included three significant predictors: defendant support, the interaction of defendant and plaintiff support, and the interaction of plaintiff support with damages. A more detailed description of these effects is provided below when both legal and extralegal predictors are considered together.

Extralegal Variables

The block of extralegal predictors initially included those variables for which predictions had been made: defendant and plaintiff baby-facedness and their interaction; defendant and plaintiff attractiveness and their interaction; the interaction of defendant baby-facedness with type of action; and the interaction of defendant attractiveness with type of action. Although no predictions had been made for the variable of plaintiff sex, it was also included (coded 1 if male and 2 if female) because it was marginally correlated with judgments.⁴ Finally, defendant and plaintiff age were included as control variables to ensure that any effects of baby-facedness and attractiveness were not confounded with age.

² For the reader who is primarily interested in the additional explanatory power provided by adding extralegal to legal predictors rather than in evaluating the predictive power of specific variables, stepwise regression analyses were performed to select the best model within each block. The results of these analyses yielded the same conclusions as in the analyses reported below. The model including both blocks of predictors accounted for 45% of the variance in judgments, $G^2 = 3.76, p = .88$, and it provided a better fit to the data than the model derived from the legal predictors alone or the extralegal predictors alone, improvement χ^2’s = 12.77 and 14.96, respectively, both p’s < .001.

³ The percentage of variance accounted for by the model is a pseudo-R^2, calculated according to the formula suggested by Aldrich and Nelson (1984, p. 57): $R^2 = c/(N + c)$, where c is the chi-square statistic for overall goodness of fit.

⁴ For the cases included in the analysis of judgments, the proportion of female plaintiffs was approximately 28% both for cases involving negligent actions and for cases involving intentional actions, which seemed a sufficient number to assess the effects of plaintiff sex.
Table 2. Logistic Regressions Predicting Judgments against the Defendant from Legal Variables, Extralegal Variables, and All Variables Combined

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1: Legal variable model $G^2 = 7.74$, $p = .46$, pseudo-$R^2 = .48$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defendant support</td>
<td>-.3937 (.3621)</td>
<td>2.51 (1.54)</td>
<td>.01 (.13)</td>
</tr>
<tr>
<td>Plaintiff support \times Damages</td>
<td>-.0007 (.0005)</td>
<td>2.25 (1.51)</td>
<td>.03 (.14)</td>
</tr>
<tr>
<td>Defendant \times Plaintiff support</td>
<td>.5554 (.4338)</td>
<td>2.14 (1.53)</td>
<td>.04 (.13)</td>
</tr>
<tr>
<td>Defendant support \times Damages</td>
<td>.0003 (.0003)</td>
<td>1.42 (1.23)</td>
<td>.16 (.23)</td>
</tr>
<tr>
<td>Intentional action</td>
<td>.3143 (.4145)</td>
<td>1.38 (1.74)</td>
<td>.17 (.08)</td>
</tr>
<tr>
<td>Block 2: Extralegal variable model $G^2 = 11.14$, $p = .19$, pseudo-$R^2 = .30$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaintiff attractiveness</td>
<td>.2241 (.2554)</td>
<td>1.94 (1.99)</td>
<td>.05 (.05)</td>
</tr>
<tr>
<td>Defendant baby-facedness \times Action</td>
<td>-.3147 (.3049)</td>
<td>1.92 (1.84)</td>
<td>.06 (.07)</td>
</tr>
<tr>
<td>Plaintiff female</td>
<td>.4512 (.4748)</td>
<td>1.77 (1.83)</td>
<td>.08 (.07)</td>
</tr>
<tr>
<td>Defendant baby-facedness</td>
<td>.3433 (.3513)</td>
<td>1.26 (1.27)</td>
<td>.21 (.21)</td>
</tr>
<tr>
<td>Block 3: Combined variable model $G^2 = 4.71$, $p = .79$, pseudo-$R^2 = .53$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defendant support</td>
<td>-.3918</td>
<td>2.47</td>
<td>.01</td>
</tr>
<tr>
<td>Plaintiff support \times Damages</td>
<td>-.0007</td>
<td>2.16</td>
<td>.03</td>
</tr>
<tr>
<td>Defendant \times Plaintiff support</td>
<td>.5951</td>
<td>2.27</td>
<td>.02</td>
</tr>
<tr>
<td>Defendant support \times Damages</td>
<td>.0003</td>
<td>1.37</td>
<td>.17</td>
</tr>
<tr>
<td>Intentional action</td>
<td>.4190</td>
<td>1.77</td>
<td>.08</td>
</tr>
<tr>
<td>Plaintiff attractiveness</td>
<td>.2005</td>
<td>1.68</td>
<td>.10</td>
</tr>
<tr>
<td>Defendant baby-facedness</td>
<td>.3937</td>
<td>1.43</td>
<td>.16</td>
</tr>
<tr>
<td>Defendant baby-facedness \times Action</td>
<td>-.3598</td>
<td>2.14</td>
<td>.03</td>
</tr>
<tr>
<td>Plaintiff female</td>
<td>.5069</td>
<td>1.92</td>
<td>.06</td>
</tr>
</tbody>
</table>

Note. Values for the untrimmed models are in parentheses.

A forced entry regression utilizing the entire block of extralegal predictors yielded a $G^2 = 14.67, p = .06$. As was done for the block of legal predictors, a trimmed model was designated by deleting all predictors with t's \leq 1. A forced entry regression utilizing the predictors in the trimmed model accounted for 30% of the variance in judgments, and it yielded no significant change in the goodness of fit as compared with the untrimmed model, $G^2 = 11.14, p = .19$, Improvement $\chi^2 = 2.06, p > .10$. As shown in Table 3, the trimmed model included three predictors, all of which had been equally significant in the untrimmed model where litigant age was controlled: plaintiff attractiveness, the interaction of defendant baby-facedness with type of action, and plaintiff sex. A more detailed description of these effects is provided below.

Combined Effects of Legal and Extralegal Variables

A forced entry logistic regression predicting judgments from the legal and extralegal predictors in the trimmed models yielded a model that accounted for 53% of the variance in judgments, $G^2 = 4.71, p = .79$, and which provided a better fit to the data than the trimmed models derived from the legal predictors alone, improvement $\chi^2 = 15.58, p < .001$, or the extralegal predictors alone, improvement $\chi^2 = 18.41, p < .001$. The three predictors that were significant
Table 3. Regressions Predicting Award to the Plaintiff from Legal Variables, Extralegal Variables, and All Variables Combined

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1: Legal variable model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defendant support</td>
<td>34.895</td>
<td>1.88</td>
<td>.06</td>
</tr>
<tr>
<td>Defendant support × Action</td>
<td>-24.069</td>
<td>2.04</td>
<td>.04</td>
</tr>
<tr>
<td>Defendant support × Damages</td>
<td>-0.009</td>
<td>1.58</td>
<td>.12</td>
</tr>
<tr>
<td>Defendant × Plaintiff support</td>
<td>-9.525</td>
<td>1.38</td>
<td>.17</td>
</tr>
<tr>
<td></td>
<td>(30.484)</td>
<td>(1.54)</td>
<td>(.13)</td>
</tr>
<tr>
<td></td>
<td>(22.081)</td>
<td>(1.78)</td>
<td>(.08)</td>
</tr>
<tr>
<td></td>
<td>(-0.008)</td>
<td>(1.31)</td>
<td>(.19)</td>
</tr>
<tr>
<td></td>
<td>(-10.680)</td>
<td>(1.38)</td>
<td>(.17)</td>
</tr>
<tr>
<td>$F(5,71) = 1.24, p = .30, adjusted R^2 = .015$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block 2: Extralegal variable model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defendant × Plaintiff baby-facedness</td>
<td>-3.605</td>
<td>1.93</td>
<td>.06</td>
</tr>
<tr>
<td></td>
<td>(-4.403)</td>
<td>(2.02)</td>
<td>(.05)</td>
</tr>
<tr>
<td>$F(1,83) = 3.72, p = .06, adjusted R^2 = .031$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block 3: Combined variable model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defendant support</td>
<td>28.706</td>
<td>1.54</td>
<td>.13</td>
</tr>
<tr>
<td>Defendant support × Action</td>
<td>-20.355</td>
<td>1.72</td>
<td>.09</td>
</tr>
<tr>
<td>Defendant support × Damages</td>
<td>-0.009</td>
<td>1.63</td>
<td>.11</td>
</tr>
<tr>
<td>Defendant × Plaintiff support</td>
<td>-8.354</td>
<td>1.22</td>
<td>.23</td>
</tr>
<tr>
<td>Defendant × Plaintiff baby-facedness</td>
<td>-3.514</td>
<td>1.73</td>
<td>.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F(6,70) = 1.56, p = .17, adjusted R^2 = .042$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Values for the untrimmed models are in parentheses.

When only legal predictors were entered retained their significance in this analysis as did the three predictors that were at least marginally significant when only extralegal predictors were entered. (See Table 2.)

Significant Legal Predictors. A significant effect for defendant support revealed that the probability of a judgment against defendants increased as their legal support decreased. A significant interaction between defendant and plaintiff support revealed that this linear effect held true only when plaintiffs had minimal or no support. When plaintiff support was high, the linear relationship between decreases in defendant support and judgments against defendants held true as defendant support decreased from a lot to minimum, but reversed as it decreased from minimum to none.

In addition to interacting with defendant support, plaintiff support interacted significantly with the amount of damages claimed. For most levels of damages ($100 to $1,000), the likelihood of a judgment against the defendant increased with increases in the plaintiff’s support. However, when damages were at the two extremes (<$100 or >$1,000), then plaintiffs with high levels of support were less likely to win their cases than those with lower levels. Finally, a marginally significant effect for type of action reflected a greater likelihood of judgments against the defendant in cases involving intentional ($p = .71$) than negligent ($p = .67$) actions.

Significant Extralegal Predictors. The main effect for type of action was qualified by the predicted interaction with the extralegal variable of defendant baby-facedness. The probabilities of judgments against defendants as a function of their baby-facedness and the type of action that are predicted from the regression
model are plotted in Figure 1, and the actual interaction data points are shown in Figure 2. Both of these figures support the conclusion that defendants who were above the mean in baby-facedness were more likely to lose cases involving negligent than intentional actions, whereas the reverse was true for defendants below the mean in baby-facedness.

A closer look at the interaction between defendant baby-facedness and type of action reveals that the observed likelihood of a judgment against the defendant when claims involved intentional actions decreased from a high of .92 for the most mature-faced defendants to a low of .45 for the most baby-faced defendants, and the predicted probabilities were almost as extreme. The predicted probabilities for negligent actions showed a weaker effect of baby-facedness, reflecting the fact that the observed trend was not as strongly linear. The likelihood of a judgment against the defendant when claims involved negligent acts increased from .58 for the most mature-faced defendants to .85 for those who were slightly above the mean in baby-facedness. However, those who were very high in baby-facedness were no more likely to be found at fault for negligent actions than those who were

![Graph showing estimated probabilities of judgments against the defendant as a function of defendant baby-facedness and type of action.](image)

Fig. 1. The estimated probabilities of judgments against the defendant as a function of defendant baby-facedness and type of action. Note: Baby-facedness is scaled as deviations from the mean. The second row reflects the approximate rating scale values.
very mature-faced. To explore the possibility of a curvilinear effect of baby-facedness, the final forced entry regression analysis on judgments was repeated for claims involving negligent acts with the quadratic term for defendant baby-facedness included as an additional predictor. Neither the linear nor the curvilinear effect of baby-facedness was significant for negligent acts, both p's > .30.

As predicted, another marginally significant extralegal predictor of judgments was plaintiff attractiveness. The probabilities of judging the defendant at fault as a function of plaintiff attractiveness predicted from the regression model and the actual data points are plotted in Figure 3. This figure excludes attractiveness ratings of 1, since none of the plaintiffs were given this low rating. The figure reveals that as plaintiffs increased in attractiveness, the likelihood of a judgment against the defendant also increased, although there was a suggestion in the actual data points that this linear effect may show a downturn at the highest levels of plaintiff attractiveness. Whereas 50% of defendants lost the case when in litigation with the least attractive plaintiffs, the likelihood of defendants losing the case increased steadily to a high of 79% when plaintiffs were in the second highest category of attractiveness and then dipped to 60% for the most attractive plaintiffs. To explore the possibility of a curvilinear effect of attractiveness, the final
forced entry regression analysis on judgments was repeated with the quadratic term for defendant attractiveness included as an additional predictor. Whereas the linear effect of plaintiff attractiveness remained marginally significant in this analysis, the curvilinear effect was not significant, $p = .17$.

A final extralegal factor to emerge as a marginally significant predictor of judgments was plaintiff sex, which revealed that the probability of a judgment against the defendant was higher when plaintiffs were female ($p = .76$) than when they were male ($p = .66$).

Award

The percentage of the plaintiff’s claim that the defendant was required to pay was analyzed for the 85 cases in which the defendants admitted responsibility. As for judgments, the effects on awards of legal and extralegal factors were assessed in a hierarchical regression analysis and the data for each continuous predictor variable were centered around its mean. The legal and extralegal predictors in

Fig. 3. The estimated probabilities and obtained proportions of judgments against the defendant as a function of plaintiff attractiveness. Note: The first row of numbers on the abscissa reflects attractiveness scaled as deviations from the mean. The second row reflects the rating scale values.
these analyses were identical to those employed in the analysis of judgments with
the exception of plaintiff sex, which had been included in that analysis only
because it was correlated with judgments.

Legal Variables

A forced entry regression utilizing the entire block of legal predictors yielded
no significant solution, $F < 1$. A forced entry regression predicting award from a
trimmed block of legal predictors, which excluded all predictors with $t < 1$, also
failed to yield a significant solution, $F(5, 71) = 1.24, p = .31$, adjusted $R^2 = .015$
(see Table 3).

Extralegal Variables

A forced entry regression utilizing the entire block of extralegal predictors
yielded no significant solution, $F < 1$. A forced entry regression predicting award
from a trimmed block of extralegal predictors, which included only the interaction
between defendant and plaintiff baby-facedness, did yield a marginally significant
solution, $F(1, 83) = 3.72, p = .06$, adjusted $R^2 = .031$ (see Table 3).

The award levels as a function of defendant and plaintiff baby-facedness
predicted from the regression model are plotted in Figure 4 and the actual inter-
action data points are shown in Figure 5. In the latter figure, the seven levels of
baby-facedness have been collapsed to three (below the mean, near the mean,
above the mean) because, with only 85 data points, there were many empty cells
in the complete 7×7 matrix. Both Figures 4 and 5 support the conclusion that
when plaintiffs were above the mean in baby-facedness, mature-faced defendants
paid substantially higher awards than those who were more baby-faced. On the
other hand, when plaintiffs were average or mature-faced, baby-faced defendants
paid slightly larger awards.

Combined Effects of Legal and Extralegal Variables

A forced entry regression predicting award from the legal and extralegal
predictors in the trimmed models yielded no significant solution, $F(6, 70) = 1.56,$
$p = .17$, adjusted $R^2 = .042$. The combined model yielded a marginally significant
improvement in R^2 as compared with the model including only legal variables, F
$(1, 69) = 2.98, p = .09$, but no significant improvement in R^2 as compared with
the model including only extralegal variables, $F(5, 69) = 1.10, p = .37$.

DISCUSSION

The results of the present investigation have revealed that extralegal vari-
ables significantly add to the explanatory power of legal variables in the prediction
of adjudications in small claims courts. Although a model that included the intention-
ality of the alleged actions together with the damages claimed by the plaintiff
and the legal support (i.e., witnesses, lawyers, evidence) provided by the litigants
Fig. 4. The estimated percentage of the plaintiff's claim awarded as a function of defendant and plaintiff baby-facedness. Note: Baby-facedness is scaled as deviations from the mean. The second row reflects the approximate rating scale values. Each regression line corresponds to a different level of plaintiff baby-facedness.

provided a moderately good fit to judgments, the inclusion of litigant baby-facedness, attractiveness, and sex significantly improved the model. Furthermore, whereas a model containing only legal variables was not successful in predicting awards to the plaintiff, the extralegal variable of defendant baby-facedness in interaction with plaintiff baby-facedness did account for a small, but marginally significant, proportion of the variance in awards. Moreover, adding the legal predictors to this extralegal predictor did not yield a significant improvement in the model.

The interaction between defendant baby-facedness and type of action showed the same pattern as that obtained by Berry and Zebrowitz-McArthur (1988) in their investigation of simulated judicial decisions. As defendants increased in baby-facedness, they were more likely to win cases involving intentional actions
and less likely to win cases involving negligent actions. Moreover, this predicted interaction was independent of defendants’ age and attractiveness, which were statistically controlled. However, in contrast to the simulation study, the simple linear effect of defendant baby-facedness was not significant for cases involving negligent actions, whereas it was significant for those involving intentional actions. The impact of defendant baby-facedness on judgments in the latter cases was not only statistically significant, but also practically important. Whereas less than half of the most baby-faced defendants lost these cases, almost all of the most mature-faced defendants did. This pattern of judicial decisions is consistent with assumptions about the likely behaviors of baby-faced adults, who are perceived as more naive and more honest than the mature-faced (McArthur & Apatow, 1983–4; Berry & McArthur, 1985; McArthur & Berry, 1987; Zebrowitz & Montepare, 1990).

Contrary to prediction, defendants who were in litigation with more baby-faced plaintiffs were not more likely to lose their cases. Thus, the more honest
appearance of baby-faced plaintiffs did not seem to result in the perception that they are less likely to bring false charges against the defendant. On the other hand, the facial maturity of plaintiffs did interact with defendant facial maturity in determining the size of award paid by defendants who had admitted responsibility. As defendants decreased in baby-facedness, they had to pay larger awards to plaintiffs but only when the plaintiffs were relatively baby-faced. Although this interaction effect should be interpreted with caution because it was marginally significant and not explicitly predicted, it is consistent with the perception that baby-faced individuals are more vulnerable and in more need of protection. Baby-faced plaintiffs seem to be "protected" from guilty, mature-faced defendants by giving them large awards, whereas average or mature-faced plaintiffs do not receive this protective treatment.

The prediction that baby-faced defendants would also receive preferential treatment by being assessed lower damages when they admitted responsibility for claims involving negligent acts was not supported. This failure to replicate the experimental findings of Berry and Zebrowitz-McArthur (1988) may reflect the influence on awards of plaintiff facial maturity, which was not a variable in the laboratory study.

As predicted, litigant attractiveness also influenced adjudications in small claims courts, and this effect was independent of litigants' age and baby-facedness. Consistent with the results of simulated judicial decisions, (Kerr, 1978; Thornton, 1977; Stephan & Tully, 1977; Vilmur & Hyde, 1983), judgments favored more attractive plaintiffs. However, this effect was only marginally significant when legal variables were controlled. Moreover, the linear trend shown in the predicted probabilities was attenuated by an unexpected downturn in judgments against the defendant for the most attractive plaintiffs. Although the curvilinear effect for plaintiff attractiveness was not significant, this trend warrants further exploration in experimental studies.

In contrast to the results for plaintiff attractiveness, the attractiveness of defendants had no significant effect on judgments in small claims courts. Although this result stands in contrast to many studies of simulated criminal trials (e.g., Efran, 1974; Kulka & Kessler, 1978; Leventhal & Krane, 1977), it is consistent with the results of a study that examined verdicts in actual criminal trials (Stewart, 1980). There are several possible explanations for the failure to replicate the effects of defendant attractiveness which have been obtained in simulation studies.

One possibility is that the influence of attractiveness is not sufficiently strong to override other influencing factors in an actual trial. However, this explanation cannot account for the observed effect of plaintiff attractiveness. Another possibility is that the effects of defendant attractiveness were offset by effects of plaintiff attractiveness. Simulation studies have typically varied the attractiveness of only one of the litigants, whereas both are free to vary in an actual trial. However, this does not seem to be a viable explanation for the failure of defendant attractiveness to predict judgments in the present study, since additional analyses revealed that a measure of each defendant's attractiveness relative to the plaintiff also failed to emerge as a significant predictor of judgments or awards.
Another possible explanation for the failure to find effects of defendant attractiveness is that the large majority of defendants in the present study were males, whereas laboratory simulation studies have typically employed female defendants. Thus, it may be that the effects of attractiveness are stronger for female than male defendants.

The weak effects of defendant attractiveness on judgments may also reflect the judges’ efforts to be impartial; research has demonstrated that instructions to be impartial can reduce or even reverse the effects of defendant attractiveness (Friend & Vinson, 1974). Because the primary focus of past research has been on the defendants’ appearance, it is possible that judges are more aware of the potential biasing effects of defendant than plaintiff attractiveness. They may consequently make a conscious effort to disregard defendant attractiveness, but still be vulnerable to the biasing effects of plaintiff attractiveness. On the other hand, it is unlikely that judges are aware of the potential biasing effects of defendant baby-facedness both because this variable has only recently been investigated and also because it is a less obvious stigma than unattractiveness. This lack of awareness may be one factor contributing to the stronger impact of defendant baby-facedness than attractiveness on judgments in the present study.

The results of the present study coupled with the findings of Stewart (1980) suggest that the appearance of litigants has more impact on judgments than on damages awarded in small claims court and more impact on sentences than verdicts in criminal court. Although Stewart (1980) found no effects of defendant attractiveness on verdicts in actual criminal trials, he did find an effect on sentencing. The present study, on the other hand, revealed no effect of defendant attractiveness on awards and much weaker effects of litigant baby-facedness on award levels than on judgments. This pattern of results may reflect the nature of the decisions rendered in the two courts.

Verdicts rendered in criminal court are probably more strongly influenced by the weight of the evidence and thus less vulnerable to the impact of the litigants’ appearance than are judgments in small claims court, which depend largely on which of the litigants is more credible. On the other hand, because the awards assessed in small claims court are restitutive rather than punitive they may be strongly influenced by the nature of the damages claimed and less vulnerable to the impact of the litigants’ appearance than sentences in criminal court. The latter have a punitive function and have varied widely for the same crime (Frankel, 1973; Gaylin, 1974), although this disparity may have been somewhat ameliorated in recent years by congressional sentencing guidelines (Saks, 1989). Another, less interesting explanation for the weak effects of litigant appearance on awards is inadequacies in the award measure. Whereas the measure used in the present study was adjusted for the amount requested by the plaintiff, Vidmar (1984) recommends a measure that also adjusts for the amount that the defendant admits is owed. Unfortunately, Vidmar’s measure could not be used because the precise amount that defendants admitted as owed was mentioned in only 25 of the 85 cases included in the award analyses.

There are various safeguards to ensure that adjudications in criminal court are not influenced by extralegal factors such as pretrial publicity, jurors’ pecuni-
ary interests, or their associations with key witnesses. However, it is more difficult to control the extralegal factor of stereotyping based on physical appearance, which can influence adjudications in both criminal and civil proceedings. As noted by Lown (1977), ""The defendant is not able to refute the impression through testimony or by cross-examination, for this bias is a hidden influence and not evidence introduced at trial"" (p. 92).

A possible solution to this problem is to inform judges and jurors of the potential biasing effects of litigant baby-facedness and attractiveness; awareness of these biases might enable well-intentioned individuals to overcome them. However, several caveats should be considered in implementing this solution. First, people have difficulty overcoming unconscious biases such as these when they are engaged in the processing of information that makes heavy demands on cognitive capacity, as would typically be the case in a trial (cf. Gilbert, 1989). Second, even if individuals can overcome the tendency to respond differentially to those at the extremes of the attractiveness or facial maturity dimensions, it will be more difficult to overcome the differential responses to smaller variations in appearance that had an effect on decisions in the present study. Third, judges and jurors must be warned about the possibility of an overcompensation effect such that the normal bias is reversed rather than neutralized (Friend & Vinson, 1974). Finally, the fact that the biasing effects of appearance vary with the nature of the action makes it difficult to give simple caveats to jurors and judges. Thus, considerable vigilance will be required if courts are to serve the ideal of "'blind justice.'"

REFERENCES

