Why Physics at Brandeis?

Brandeis offers students the unique opportunity to prepare for graduate school or employment in a variety of technical fields. Our undergraduate program is strongly based on a first-rate research program by our faculty, which gives students the opportunity to participate in cutting-edge research in areas including astrophysics and cosmology, biological physics, condensed matter physics, high-energy particle physics, and theoretical physics, and topics such as string theory, liquid crystals, DNA, polymers, elementary particles, distant quasars, and the early universe.

Curriculum Overview

Students majoring in physics can work toward a bachelor of arts or bachelor of science degree. One can also minor in physics. The Brandeis University Bulletin describes the requirements for these options in detail. The core curriculum in physics for a bachelor’s degree includes a sequence of six semester courses plus laboratories, starting with Classical Mechanics, and ending with Quantum Mechanics. Normally, students take one or more years of mathematics beyond the required courses in calculus. For the bachelor of science degree, more courses in physics, math, and other sciences are required, encouraging students to broaden their preparation for interdisciplinary studies, or to strengthen their preparation in physics. Most students preparing for graduate studies pursue the BS degree, while the BA allows ample time for joint majors in a broad range of fields including mathematics, computer science, chemistry, biology, biological physics, or neuroscience, but also with economics, music, philosophy, and creative writing, among others.

Electives for the physics major cover a range of topics, fundamental and of special interest for different career objectives.

The physics major requires three laboratory courses. Our advanced labs cover electronics, microprocessors, and modern experimental methods. These courses are popular, since they relate to technology and applications of physics to practical problems. Some basic electives offered by the department are Statistical Physics, Classical Physics, and Mathematical Physics. More specialized electives include Astrophysics, Condensed Matter Physics, Particle Physics, and Biological Physics. Besides establishing a sound basis for continuing work in physics, these courses are valuable for preparing students to do research with our faculty, perhaps the most important part of an undergraduate career in science, and one of the strongest points of the program at Brandeis.
Undergraduate Research Opportunities

All physics students are strongly encouraged to get involved in research projects. Our condensed matter research laboratories are equipped with some of the latest technology for basic research in the physics of fascinating systems, including liquid crystals and biological materials. Our new microfluidics laboratory offers the chance to fabricate novel experimental devices. Our high-energy experimental physics group has opportunities for work on new particle detectors for the new accelerator at CERN in Switzerland, and for studies of experimental design and data analysis. Our radio astronomy group uses a combination of telescopes worldwide to make high-resolution images of active galactic nuclei, involving massive black holes and relativistic jets of matter. The theory group studies the fundamentals of quantum theory and string theory, the properties of DNA, proteins, and other biological materials, the structure and dynamics of glasses, the flow of granular material, and the regulation of genetic systems in living cells.

Career and Education Opportunities

Most of our graduates go on to graduate school, while some go into high-tech employment, medical school, or other professional studies. Our students have a record of entering the best graduate programs.

Faculty

Following is a list of department faculty members and their areas of specialization:

• Bulbul Chakraborty, chair
 Theoretical condensed matter physics

• James Bensinger
 Experimental high-energy physics

• Craig Blocker
 Experimental high-energy physics

• Karl Canter
 Experimental biophysics

• Stanley Deser
 Quantum theory of fields, gravitation, supergravity, strings

• Zvonimir Dogic
 Soft condensed matter physics, biological physics

• Richard Fell
 Theoretical quantum electrodynamics

• Seth Fraden
 Physics of liquid crystals, colloids, macromolecules, microfluidics

• Lawrence Kirsch
 Experimental high-energy physics

• Jané Kondev, graduate advising head
 Theoretical condensed matter physics

• Robert Lange
 K-12 science and environmental education, teacher training, and curriculum research

• Albion Lawrence
 String theory and its applications to particle physics and cosmology

• Robert Meyer
 Physics of liquid crystals, colloids, and polymer gels

• David Roberts, Undergraduate Advising Head
 Theoretical astrophysics, radio astronomy

• Azadeh Samadani
 Experimental biological physics, soft condensed matter physics

• Howard Schnitzer
 Quantum theory of fields, string theory

• John Wardle
 Radio astronomy, cosmology

• Hermann Wellenstein
 Experimental high-energy physics