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Abstract

I consider a real-business cycle, DSGE model where consumption is a function of the
present discounted value of wage and capital income. The agent is uncertain if these
income variables are stationary or non-stationary and puts positive probability on both
representations. The agent uses Bayesian learning to update his probability weights
on each model and these weights vary over time according to how well each model
fits the data. The model exhibits an improved fit to the data relative to the rational
expectations benchmark. The model requires half the level of exogenous shocks to
match the volatility of output and still matches the relative volatilities of key business
cycle variables. The model lowers the contemporaneous correlation of consumption
and wages with output and generates positive autocorrelation in model growth rates.
Impulse responses exhibit persistent responses and consistent with survey evidence
forecast errors are positively serially correlated. Finally, in contrast to the existing
literature, the model endogenously generates observed time varying volatility and long

run predictability of business cycle variables, especially for investment.
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1 Introduction

As argued by Eusepi and Preston (2011), once one departs from full information, rational
expectations assumptions, consumption in standard business cycle models depends not just
on one period ahead expectations but on the full present discounted value of all future
wage and capital income. Building on their insight, this paper notes that these key long-run
forecasts are strikingly dependent on the agent’s beliefs. Specifically, these forecasts are quiet
different when the agent believes that wages and capital income will return to steady state
versus when he believes that there is a unit root in the income process. If data convincingly
distinguished between these two possibilities then the sensitivity of long run forecasts to a
unit root would not be a fundamental concern. However, as noted by several authors (e.g.
Cochrane (1988); Stock (1991)) it is very difficult to distinguish between unit root processes
and near unit root processes in samples sizes common in macroeconomic time series.

Motivated by these two observations I construct a real business cycle, dynamic stochastic
general equilibrium model with long run uncertainty about wage and capital income. Specif-
ically the household believes that these variables follow univariate autoregressive processes
but does not know the order of integration. Instead they put positive probability on both a
stationary and a non-stationary model. The agent observes the wage and rental income data
generated by the model and uses Bayesian learning to update her priors on the two models.
Importantly, the agent’s decisions affect the equilibrium values of wages and rental rates cre-
ating important feedback between the agents beliefs and the equilibrium model outcomes.*
Over time, depending on the realizations of income, the agent’s beliefs change putting a time
varying weight on the stationary models. This learning mechanism substantially affects the
model’s business cycle implications.

The emphasis here on a business cycle model with volatile long run expectations has
an eye to address some of the key failings of business cycle models. As noted by Kocher-
lakota (2010) among others, the shocks embedded in business cycles models are often clearly
implausible or only vague reduced form representations of real economic disturbances. Ac-
cordingly, business cycle models often generate little endogenous volatility, simply inheriting
the volatility of the exogenous shocks. Changing beliefs about the long run income path
can serve as an important channel to amplify productivity shocks. This need is real for
business cycle models as substantial work has shown these models lack internal propagation

mechanisms (e.g. Rotemberg and Woodford (1996)) and are unable to explain the positive

!The model is self-referential then in the sense of Evans and Honkapohja (2001).



autocorrelation of business cycle variables (Cogley and Nason (1995)).

I find that allowing learning about the form of the wage and rental income processes
greatly improves the fit of the model over a benchmark rational expectations model. The
model generates twice as much volatility of output as the benchmark model while still main-
taining the model’s ability to match the relative volatility of the business cycle variables.
The learning model, by allowing for an increased role of expectations to determine consump-
tion, generates a lower contemporaneous correlation between consumption and wages with
output consistent with the data. Importantly, the learning model improves the propagation
of shocks. The impulse response functions of the key business cycle variables exhibit persis-
tent responses showing that productivity shocks are propagated through the system. The
model also generates positive autocorrelation in variable growth rates, which is absent from
the rational expectations model but a clear feature of the data. Finally, the model generates
positive autocorrelation in forecast errors consistent with survey expectations data.

The model also fits some less conventional statistics on business cycle variables. First,
there is evidence of negative correlation in the medium run at annual frequencies. For
example, investment growth this year is negatively correlated with investment growth over
the next four years. This correlation is -0.37. This statistic is matched by the learning model
but the rational expectations of the model falls short predicting a correlation of only -0.18.
Secondly, there is clear evidence of time varying volatility in the growth rate of business cycle
variables.? Consider the growth rate of consmption, investment and output and the residual
from an AR(1) regression of these variables. Both these growth rates and these residuals
exhibit positive autocorrelation in their squared values. Simply put, large movements in the
growth rates of these variables are likely to be followed by additional large movements. This
fact is matched by the learning model but not the rational expectations model. Finally, the
learning model generates waves of pessimism and optimism resulting in booms and busts in
output over and above the more mild fluctuations in the rational expectations benchmark.

This paper stands alongside a variety of literatures related to the RBC model. It follows
the spirit of the many papers critiquing and proposing mechanisms for improving the fit of
these models, see for example: Burnside and Eichenbaum (1996); Christiano and Eichenbaum
(1992); Hansen (1985); Schmitt-Grohe (2000). The current paper differs in that it focuses
on the role of expectations in improving the fit of the RBC model and allows for a departure

from strict rational expectations by the inclusion of a learning mechanism. The current

2Time varying volatility in macroeconomic data has been noted by (among others): Stock and Watson
(2003); Engle (1982); Primiceri (2005).



paper also considers a larger range of data moments including the autocorrelation of forecast
errors, autocorrelation of squared growth rates, and the negative correlation of growth rates
at longer horizons.

The model also relates to the literature on news shocks (e.g. Beaudry and Portier (2004);
Jaimovich and Rebelo (2009); Schmitt-Grohe and Uribe (2012)) which seeks to explain busi-
ness cycle fluctuations with news about future productivity. The current paper differs though
in substantial ways. Firstly, these models examine a different channel for business cycle fluc-
tuations. In these models, agents receive news of future productivity and react to it. In
my model, agents are using a learning mechanism to determine how long current levels of
productivity will persists. Secondly, these models are rational expectations models where
in this paper expectations are formed through a learning mechanism. Consequently, long
run expectations are endogenously formed based on the current level of productivity and are
not reliant on exogenous disturbances. This distinction matters because it is still unclear
what events lead agents to anticipate changes in future productivity. Departing from the
rational expectations framework is also important because it allows the model in this paper
to address the positive correlation of forecast errors observed in survey data. Finally, it
is worth noting that even though anticipated shocks appear to contribute substantially to
business cycle fluctuations, research (e.g. Schmitt-Grohe and Uribe (2012)) demonstrates
that unanticipated fluctuations still contribute strongly to the volatility of business cycle
variables and therefore research in how these shocks are propagated is essential.

There is also a large literature on the role which dispersed information can have in
inducing expectations driven business cycles (Woodford (2003); La’O and Angeletos (2013);
Lorenzoni (2009); Nimark (2014)). A key feature of these models are heterogeneous agents
who hold differing beliefs based on limited availability of information. What is different
about the current paper is that fluctuations are driven by a single agent who is learning over
time while fully observing all equilibrium price outcomes in the economy. While not denying
the promise of the limited information approach, given the wide availability of news and
economic statistics the current exercise, trying to generate booms and busts in an economy
where all price information is available, seems to still be an important and relevant challenge.
Additionally, these papers are less focused on matching quantitative statistics while this
paper aims to match conventional business cycle statistics, the autocorrelation of forecasts
errors and growth rates and statistics on time varying volatility and longer horizon mean
reversion. Finally, similar to the news shocks literature, these dispersed information models

rely on shocks and signals to generate variation in agent’s expectations, while the current



paper generates expectations endogenously from the observable model generated data.

A variety of papers have studied models of endogenous time varying volatility in macroe-
conomics ostensibly as a way to model the “Great Moderation”. For example, Branch and
Evans (2007) study a Lucas style monetary model where agents use a time varying set of
predictor variables to forecast inflation. Lansing (2009) and Milani (2014) study variants of
the canonical New-Keynesian model with time variation in the learning gain used to discount
past observations. Both of these mechanisms lead to time varying volatility in inflation and
output. Bullard and Singh (2012) examine a model where learning generates moderation
in economic activity that comes from increased uncertainty. While all these papers connect
learning and time varying volatility there are key difference between the current paper and
these studies. These papers focus on low frequency movements in macroeconomic volatility,
i.e. they are attempts to explain the “Great Moderation.” They employ Euler equation learn-
ing which leads to sub-optimal decisions given agents beliefs and often leads to substantially
different conclusions than when one solves for the true optimal policy (Eusepi and Preston
(2011)). Additionally, this paper, unlike papers focusing on the New-Keynesian model, em-
ploys a RBC style model allowing me to examine time varying volatility in real economic
variables like consumption and investment. Finally this paper aims to be more quantitative
in that I match the autocorrelation of squared growth rates as a key quantitative measure
of time varying volatility.?

My paper is closest to two papers in the literature. The first is Eusepi and Preston
(2011) (EP). I use their model and stress the importance of long run expectations. I also
see improvement over the benchmark rational expectations model along many of the same
dimensions as their paper. But there are several important differences. In their model agents
know the true process for wages and rental rates, they only do not know the coefficients
on these variables. They use a recursive least squares algorithm with constant gain to
learn about these coefficients. In this case the extent of long run uncertainty is minimized.
Given the real debate about the long-run effect of disturbances in the macroeconometric
literature it is a natural step to extend their work to incorporate this added uncertainty. This
uncertainty is quantitatively important. The model here generates 100% the output volatility
of the rational expectations benchmark. In the EP model, learning generates only 15%
more volatility than the rational expectations benchmark. Importantly, the learning model

generates this volatility with a relative lower elasticity of labor (3.7) versus the infinitely

3In related work, Tortorice (2014) finds that learning about the permanence of shocks is important for
explaining low frequency movements in consumption volatility.



elastic preferences assumed in EP. The learning model also generates lower contemporaneous
correlations between output and consumption and wages while they are almost perfectly
correlated in the EP model. Finally, I show that the learning mechanism in this paper is
able to capture additional features of the data, e.g. time varying volatility and long run
predictability.

The second closest paper to mine is Kuang and Mitra (2015). They also build off the work
of Eusepi and Preston (2011) but allow learning about the growth rate of the underlying
income variables. The current paper departs from their paper in substantial ways. First,
in my model long run growth rates are well anchored and equal to zero for rental rates and
equal to the growth rate of productivity for wage rates. In their model agents can believe
that rental rates will grow at a positive rate indefinitely and that wages will grow faster
than productivity indefinitely. Put a different way, agents believe there is a unit root in
the growth rate of efficiency wages and the growth rate of rental rates. Since the broader
macroeconomic debate is about if the level of wages is trend or difference stationary and
to the extent that there is a debate, if the level of rental rates are stationary of difference
stationary it seems fruitful to explore the role of these beliefs as a complement to Kuang and
Mitra (2015). Secondly, the current paper tries to explain a larger variety of business cycle
data. The model is successful at explaining both time varying volatility in macroeconomic
data and long run mean reversion of business cycle variables like investment.

In the remaining part of the paper I outline the model and discuss its calibration and
simulation. I then list the key facts the model tries to explain and examine the ability of
the model to explain these facts. Next, robustness to a variety of the parameter choices is

examined. The last section concludes.

2 Model

2.1 Household

The model is a standard real business cycle model with shocks to technology. However, I
use a continuum of firms and households of measure one to allow for the household’s use of
limited information in forming expectations. Households and firms are identical but they
do not know this. Additionaly, the model follows Eusepi and Preston (2011) in solving for

consumption in terms of the expected future discounted value of wage and capital rental



rates. There is a continuum of households indexed by ¢ who maximize:

e Oy = L
Ui = EZZBT t~'T ( T) (1)
T=t

1—0

where C% is consumption at time T, L% is leisure at time T defined as Li. =1 — H% where
Hi. is hours worked. We assume that ¢ > 1 and that o/ and v” > 0. E', represents the
households expectations based on its subjective beliefs described in section 2.6. Preferences
are of the form analyzed in King et al. (1988). With these preferences the marginal utility
of consumption rises when hours worked rises. This assumption helps the model gener-
ate co-movement between consumption, hours and output when fluctuations are driven by
expectations of future income.” The household maximizes utility subject to the following

sequence of budget constraints:
Kppy = (1= 0(up)) Ki + Riwg Ky + Wi(1 — L) — Gy (2)

here K| is capital at time t, RF is the capital rental rate at time t, W, is the wage rate at
time t and wu} is the utilization rate of capital at time t. The first order conditions for this

maximization are:

Cy: C7y(1 — L) = Al (3)
—_O=y (1 — i
Lt . ¢ 1U ( t) = AtWt (4)
— g
K1 o Al = BEL[(1— 6+ RE ul, )AL (5)
Uy : RF = ¢ (u) (6)

note that A! is the Lagrange multiplier on the budget constraint.

2.2 Firms

There is also a continuum of firms of measure one and indexed by j that rents capital from

the household and hires labor. The firms maximizes profits:

Hg = Ytj - Wthj - Rthj

4Similar assumptions are made in the news shocks literature. See for example, Jaimovich and Rebelo
(2009).



subject to the Cobb-Douglas production function:
Y/ = (u] K))*(AH])' (7)

The firm’s first order conditions lead to the standard factor pricing equations:

Yj
uy K
Yj
W, =(1-—a)-L (9)
Hi

2.3 Technology and Resource Constraints

Here technology is assumed to be stationary around a deterministic time trend so we can
write:
InA; =InAg+ (14 g)t + 2 (10)

Zt = PRr—1 + & (11)

where ¢ is the growth rate of technology, ¢; is ~ i.i.d. N(0,02), and p < 1 is the autoregres-
sive parameter.

There are several motivations for assuming that technology is a trend stationary variable
versus the perhaps more common random walk assumption. Firstly, it facilitates interpre-
tation of the model. For example, if technology were a random walk then the model would
be solved in terms of normalized variables like w, = W/ A, where A, is a random walk. If
this variable is stationary there are still permanent shocks to the wage level and there is
no tendency for wages to revert to any long run deterministic trend. And if this variable is
non-stationary then it means that wages are de-linked from the level of productivity in the
long run. It is difficult to imagine what structural change in the economy would generate
this change.® On the other hand if A4, is the productivity trend: In A, = In Ay + (1 + g)t ,
the interpretation is cleaner. If w, is stationary, this means that wages will return to their
level given by the balanced growth path. If tit is non-stationary, in the long run they will
be at a level above or below the long run growth path.

This productivity setup also accords with the intuition for beliefs developed in section

A change in the share of income going to labor might. However, in a model where households own the
capital as well this is not a substantial distinction when forecasting future income.



2.7 and figure 1. Simply put, U.S. GDP data looks like it tends to return to a long-run trend
level thought there are significant departures from trends and significant doubt as to the
economy’s ability to return to trend. In fact, this is a subject of much macroeconomic debate
and chosing technology to be stationary allows the agent’s uncertainty to be aligned with
that of the macroeconometrician. Finally, allowing technology to be stationary generates
the ability of the model to have agents overreact to temporary fluctuations in wages and
rental rate. This type of overreaction is consistent with the “this time is different analysis”
of Reinhart and Rogoff (2009) and the tendency of agents to justify temporary movement
with new-era stories as described in Shiller (2005).

To close the model note that aggregate capital evolves according to:
Kipn = (1—=0(uy)) Ky + 1 (12)
where [, is investment and the economy’s resource constraint is:
Y, =C+ 1, (13)

where the non-indexed, aggregate variables are obtained by summing over the continuum,

2.4 Model Solution

I solve the model by transforming the variables to be stationary. I divide by the balanced
growth path level of technology and then linearize equations: {(3), (4), (6), (7), (8), (9),
(12) and (13)} about the non-stochastic steady state. The appendix contains the linearized
equations. For the Euler equation (5) I follow Eusepi and Preston (2011) and iterate forward
using the linearized budget constraint to solve for consumption as a function of only current
variables and future expectations of rental rates and wages. This calculation leads to the

following expression for aggregate consumption:
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BREY 5" 7. (14)

€ o
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Here the hat notation on the variables denotes log deviation from steady state and the lower
case letters represent the detrended variables. B,E, Ew, Ec, and y are constants defined in the
appendix. E, = [ E;di represents the expectation averaged across consumers.

Given this equation, consumption increases as hours work increases (recall that o > 1)
because of the non-seperability assumption for household preferences. It also increases in the
current level of assets, k, , and income 7F and ;. Consumption responds positively to the
present discounted value of future labor income given by the second to last term. Finally,
consumption responds ambiguously to future rental income (the last term). There is both
an income effect — after an increse in 7 | the consumer is wealthier because he owns capital
which is being paid a higher rental rate — and a substitution effect— he would like to save
more to take advantage of higher future capital income. The overall effect of an increase
in future rental income depends on the relative magnitude of the income and substitution

effects.

2.5 Expectations and Learning

In standard rational expectations, real business cycle models the households know the exact
model implied laws of motion for rental rates 7; and wages w; along with the exact coefficients
in this law of motion. Eusepi and Preston (2011) assume that households know the correct
law of motion for these variables however they do not know the exact coefficients and learn
about them over time.®

I depart even further from their assumption. First the limited information implies that
while the agents do observe prices, i.e. rental rates and wages, they do not necessarily observe
the aggregate supply of labor and capital. As a result they forecast prices using only the past
values of these prices. Additionally, they do not necessarily observe the aggregate level of
technology and do not know its true functional form. Instead, they consider the case where
technology is trend stationary and use this to detrend wages. This leads the household to
consider a stationary process for detrended wages and rental rates (in levels) as reasonable.
However, the households are concerned that this assumption may be faulty and therefore

allow for the possibility that the process for wages and rental rates may be non-stationary.

In Eusepi and Preston (2011), these variables are solely a function of the capital stock.
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Hence, the household believes that for x; ={7;, W, }:
Ty = py+ P1x-1 + .+ p;:ct,p +&; (15)
with probability p; and that

Azy = a+ p*Ary g + ...+ p)°Axyp + €7 (16)

'

with probability p/® =1 — p}

It is useful to recall that w, is the log deviation from steady state w, and that in steady
state wages grow at the rate g. Therefore, if one believes that w; follows the stationary
process then one believes that wages will return to their steady-state, balanced growth path
level in the long-run. However, if one believes that it follows the non-stationary process then
one believes that in the long run wages will be above or below their steady state, balanced
growth path level value forever. The analog beliefs for 7, is similar, except r; is constant in
steady state. Additionally, I require that the agent believes that pj = 0 for all ¢ and that
a = 0 for all £. This ensures that long run beliefs under the stationary model are given by
the balanced growth path and that long-run growth expectations under the non-stationary
model are also given by the balanced growth path. This is a sensible restriction on beliefs
given basic economic theory and resource constraints. This restriction also improves the
stability of the model.

Here the agent is assumed to use a univariate forecasting equation to forecast future labor
and capital income. In addition to the limited information motivations discussed previously,
there are two more motivations to use this forecasting rule in the benchmark model. The
first is the work of Slobodyan and Wouters (2012) who show than in a medium scale DSGE
model the use for univariate forecasting (in their model an AR(2)) greatly improved the fit
of the model over the full rational expectations forecasting solution. Secondly, as argued by
Fuster et al. (2012) there is much psychological evidence that when faced with complicated
decisions problems individuals use simplifications (i.e. heuristic as in Kahneman and Tversky
(1982) and Gabaix et al. (2006)) to make their decisions. A univariate foreasting rule would
be one such heuristic.

It is worth noting that the non-stationary model (16) is an extrapolation model. A vari-
ety of authors have explored the presence of extrapolative agents in economc models, mostly
in models of finance. See for example, Barberis et al. (2015). In the current model agents

extrapolate, but only when recent data supports extrapolation. There are at least three
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reasons this is preferable to just assuming extrapolation exogenously. The first is that the
model provides a justification as to why extrapolaters do not realize they are wrong: namely
the recent data supports their model. Secondly, in a market we would expect extrapo-
laters to influence outcomes more when extrapolation seems more reasonable, both because
extrapolaters will become wealthier and individuals will switch to becoming extrapolaters.
The current model captures this effect albeit in a reduced form when. Finally, endogenous
extrapolation is what allows this model to explain time varying volatility.

To provide one final motivation for this model of long run uncertainty, I would like to
contrast this approach with a few potential other approaches. The first would be a Markov
switching process where the productivity process switches between (15) and (16). I do not
take this approach because my experience with these models are that they do not generate
significant variation in long-run beliefs. Either the transition probabilities are high, and the
initial conditions do not matter much for where you end up in the long run, or the transition
probabilities are low and you do not observe many transitions in the simulation samples. The
second approach would be a model where productivity has both permanent and transitory
shocks and the agent has uncertainty about this. This model could be solved with the
Kalman filter for example. The shortcoming of this model is that individuals react the same
way to the shock at each point in time, as if it was a linear combination of a permanent
and transitory shocks with the weights being the relative variances of the two shocks. This
model would not generate endogenous time varying volatility.” The third approach would
combine the two previous approaches with a Markov switching model where in one state the
economy is hit by permanent shocks and one state the economy is hit by temporary shocks.
However, the imperfect information version of this model is intractable as one would need
to have the whole history of shocks and time varying probabilities of all past states to make
forecasts. I view my approach as trying to capture the dynamics of this last approach in a

straightforward tractable way.

2.6 Beliefs

[ use the methods of Cogley and Sargent (2005) to calculate the parameters of each model

of rental rates and wages and the probability weights on the stationary and non-stationary

"This approach is taken by Edge et al. (2007) and Boz et al. (2011) in the context of emerging markets.
The current papers differs by considering learning about endogenous variables versus exogenous productivity.
This paper also focuses on explaining other features of the data for example, output volatility, autocorrealtion
of variables and time varying volatiltiy.
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model. Their model uses Bayesian methods to recursively update the parameters on each
model and then uses the likelihood of each model to calculate a probability weight on each
model. For a given model (i.e. the stationary or non-stationary) indexed by i = {s,ns},
and a rental or wage history Z~!, we assume that agents prior beliefs about the model

parameters ©,,_; are distributed normally according to:
P(Oig-1|0?,E71) = N(Oipm1, 07 PY)
and their prior beliefs concerning the model residual variance are given by:
p(Uzt—1|Et_l) = I1G(84-1,v1-1)

Here N represents the normal distribution function and IG represents the inverse-gamma
distribution function. P,_; is the precision matrix that captures the confidence the agent
has in his belief for ©;, 1 , o7 is the estimate of the variance of the model residuals, s, ; is
an analogue to the sum of squared residuals, and v;_; is a measure of the degrees of freedom
to calculate the residual variance such that the point estimate of O-iQ,tfl is given by s;_1/v;_1.

After observing the rental rate or wage the agent’s posterior beliefs are given by:

p(Bilo7, Z") =N (Os4, 07 P
P(Uf\zt) =1G (s, 1)

Cogley and Sargent (2005) gives the following recursion to update the parameters of the
beliefs:
P, =P, + 24}
O, =P, (Pio1bi1 + z4)
S =S1-1+y2 +0, P10, — 0,P.0,
vy =01 + 1

Here z; is the vector of right hand side variables for the model at time ¢ and y; is the left
hand side variable for the model at time £. This recursion gives the parameters of each
model. Now it is necessary to calculate the probability weight on each model.

Given a set of model parameters: {O;,0;} we can calculate the conditional likelihood of

the model as: .

L(®i>ai275t) = Hp<y8‘xs7 61'70-1'2)

s=1
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where y, and xz, are the left and right hand side variables of the model at time s and =¢ is
the rental and wage income history up to time t. Based on this likelihood, one can write the

marginalized likelihood of the model by integrating over all possible parameters:
Mg = /] L(@H 0-1'27 Et)p(Gw Uf)d@zdaf

Then we have the probability of the model given the observed data p(M;|=") o« m; ;p(M;) =
w; . Here we have defined the weight on model i, w;; and p(M;) is the prior probability on
model 7.

Cogley and Sargent (2005) show that Bayes’s rule implies

L(G)la 0127 Et)p(@i7 012)
p(@i’ 01'2|Et)

Mg =

and therefore

Wig+1  Mypy1 2 p(@z‘aUﬂEt)
— (i ©. g2 PN i 1=
Wy ¢ m; ¢ P(yssrilei, Hgl)p<®i70’¢2|5t+1)

We assume that regression residuals are normally distributed allowing us to use the nor-
mal p.d.f to calculate p(y; 11|74, ©;,07). Cogley and Sargent (2005) show that p(©;, 0?|=,)
is given by the normal-inverse gamma distribution and provide the analytical expressions for
this probability distribution. Any choice of ©;,0? will give the same ratio of weights; T use
the posterior mean in my calculations.

This recursion implies the following recursion for model weights.

Wst+1 ms,t+1/ms,t Ws g

Whps,t+1 mns,t—l—l/mns,t Wns,t

To allow for an emphasized role for learning, I adapt the concept of constant gain learning

from the least squares learning literature to the current setup. I introduce a gain parameter

(g) that over-weights current observations.®

Wetrd (g _ g M1/ Mst Wy +g Mes 1/ Mt

Wns,t+1 mns,t—i—l/mns,t Wns ¢ mns,t—f—l/mn&t

81 have explored allowing for constant gain learning in the estimation of the model parameters. I have
found that this dimension for learning does not quantitaively affect the resuls in this paper and therefore I
omit constant gain learning of parameters.
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The gain probability can be interpreted as the probability of a structural break in the econ-
omy, such that the history of the income processes no longer has any bearing on the current
process generating income, hence the previous weight ratio is set to one. Thus the gain serves
to overemphasize more recent observations in calculating the likelihood of each model.

In addition to a desire for agents to guard against the possibility of a structural break in
the economy. There is an additional behavioral interpretation of the gain. Much psychologi-
cal evidence indicates that individual’s probabilistic judgments are overly influenced by more
recent observations. Tversky and Kahneman (1973) refer to this tendency as the availability
bias. For example, after a friend has a heart attack, an individual thinks he himself is more
likely to have heart attack. This bias is also related to Rabin (2002) who calls the tendency
of individuals to incorrectly infer the nature of an underlying statistical process based on a
recent, small sample the “law of small numbers”. In the current model, the gain functions to
overweight recent observations consistent with the psychological evidence that individuals
tend to overweight the most readily accessible information.

Finally, to calculate the model probabilities, the consumer normalizes the weights to one,

and therefore the weight on the stationary model is given by:

1
Psp =7 —F—
’ ]- + wns,t/ws,t
Using the estimated probabilities, he can then calculate the expectational terms in the

consumption equation (14)?

E, Z BT_%TH = Dst + (1 - ps,t)
T=t

By B tar]S
T=t

EtZET‘%THWS] . a0

T=t

To calculate these expectations note that we can write the AR processes in matrix form:
X} = ®°X} | +¢f where X7 = {1, X;_1, ..., X;_,}'and X* = O™ X" + '® where X} =
{Xi—1, L,AX, 4, ..., AX;_,}. Then the first sum is equal to second element of

[Ierl - gq)s] - th

Importantly, I make the standard assumption in the learning literature of anticipated utility Kreps
(1998). This assumption is that even though individuals beliefs change in the future they take these beliefs
as given when forming expectations.
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and the second sum is equal to the first element of
~ -1
[JW - /Bcpﬂ X7,

Therefore the expectations are linear function of r; and w; so we can solve the consump-
tion equation (14) simultaneously with the linearized versions of the first order conditions
and resource constraints: {(3), (4), (6), (7), (8), (9), (12) and (13)}. Finally I assume that
model probabilities pg, and py, and coefficients are updated at the end of the period after

the realization of time ¢ variables.

2.7 Belief Motivation

To understand the specification of beliefs and motivate why there might be uncertainty
concerning the ability of the economy to return to previous trend growth, examine figure 1.
This figure plots annual U.S. GDP (in logs) from 1929 to 2014. In addition, I plot the linear
trend from a regression of log GDP on time. What one sees is that in general U.S. GDP
is fairly close to the trend line and when it is above trend it tends to return to trend and
when its below trend growth tends to accelerate to return to trend. Of course, as noted by
Cochrane (1988); Stock (1991), this tendency does not diminish the possibility of a unit root
in the GDP process. However, it does speak to the uncertainty regarding the long run level
of GDP. Examining the current situation: will GDP return to trend as it has in the past or
will the level of GDP be permanently lower? That is a real question looking at current data

— and the question that agents in this model address.

3 Calibration and Simulation

3.1 Calibration

Time is measured in quarters. I calibrate the model by setting the discount rate 5 = 0.99. I
set the capital depreciation rate 6 = 0.025. Capital’s share in production o = 1/3. The power
utility coefficient o = 1.5 equal to the value in Eusepi and Preston (2011). The appendix
examines the robustness of the results to a value of o = 1.05 near the seperable untility

case of ¢ = 1. The quarterly growth rate of technology equals 0.0033 consistent with the
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growth rate of total factor productivity from Basu et al. (2006).'% I set ¢, = %))—B = 0.41 to
match the volatility of hours worked. This value implies an inverse Frisch elasticity of labor
supply equal to 0.27.1' For comparison, Eusepi and Preston (2011) assume infinitely elastic
labor and Kuang and Mitra (2015) set labor supply elasticity to 0.1. For the productivity
process I set the autoregressive parameter p = 0.975 and the standard deviation of technology
shocks 0. = 0.004 to match the volatility of output. Robustness to various choices for p is
demonstrated in the appendix.

For the learning parameters I begin with a prior on the stationary model pj= 0.75 for

12 1 get

the wage equation and 0.95 for the rental rate equation and consider four AR lags.
P =10000 0] Iset p°=1[0 095 0 0 0] I take the gain parameter to
be 0.03 and demonstrate robustness to this value in the appendix.'® This level of the gain
generates forecast error autocorrealtion that are on the lowerside of the observed autocor-
relation in the data. This fact is notable because in Eusepi and Preston (2011) increasing
their benchmark gain level quickly leads to counterfactually high levels of autocorrelation in
forecast errors.!> I set the initial sum of squared residuals so—0.0056 for the wage models
and sg = 0.0026 for the rental rate model. These are the median value for the standard de-
viation of the regression residuals on the model generated wages and rental rates across the
model simulations. Finally, I set the initial precision matrix, Py = 0.01% [ . This assumption
is one of a fairly diffuse prior which implies a standard deviation for the initial coefficient
estimate equal to 10 times the standard deviation of the regression residuals. However, I
require Py(1,1) = 10'° so the agent dogmatically believes that the intercepts in their ex-
pectations models are equal to zero. This restriction has two important implications for

beliefs. The first is that if the agent believes the stationary model is true then he believes

OTFP data and calculations are available at http://www.frbsf.org/economic-research/indicators-
data/total-factor-productivity-tfp/.

" The inverse Frisch elasticity of labor supply equals &, — 7?@ where 1 is defined in the appendix.

12The agents puts a high initial weight on the rental rate process being stationary for two reasons. One
interest rates appear strongly stationary in the data. So this restriction ensures that agents beliefs are not
unreasonable given the data. Secondly, this restriction helps maintain model stability during the initialization
period. Similarly, there is emphasis towards stationary wages to help with stability. I choose four lags because
it is common in the macroeconomic literature see for example Christiano et al. (1999); Stock and Watson
(2003, 2005) but the choice is unimportant.

13While it may be more natural to assume a prior equal to p. I find that a lower initial value of p increases
the stability of the model during the initialization phase.

4“While the setup in this paper with model learning makes direct comparisons difficult. Least squares
learning and Kalman gains in the literature range from 0.002 to 0.05. See for example: Branch and Evans
(2006); Eusepi and Preston (2011); Kuang and Mitra (2015); Milani (2014)

15See Table 4 in Eusepi and Preston (2011)
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variables will return to their steady state, balanced growth path. Secondly, if he believes in
the non-stationary model he does not believe that the rental rate will grow indefinitely or
that the wage rates long run growth rate will differ from that of productivity. In this sense
agents expectations are tempered by economic theory. Finally, note that assumptions on
priors are not key to generate results since the model is simulated for 1500 periods keeping

only the last 269 data points to match the length of my data.

3.2 Simulation

To deemphasize the importance of the priors, I simulate the model for 500 trials of length
1,500 keeping only the final 269 observations. To calculate impulse responses I again simulate
500 trials of 1,500 observations, then, given the conditions and beliefs after those 1,500
observations I calculate one series assuming technology receives a one standard deviation
shock at time 1501 and no shocks subsequently and one series assuming technology receives
no shocks after time 1500. I calculate the impulse response as the difference between these
two series and plot the median impulse responses.

To improve stability of the model T only use updated beliefs when they lead to a stable
law of motion for the variables. Given the business cycle model, conditional on the agent’s
weights on the stationary models, we can write the evolution of the state variables s;;; =
{2040, 75, 07, ke, 770, 07} as:

St+1 = !pSt.

Here {7}, w7, 7%, ) }are the vectors of right hand side variables in the equations specifing
the agents beliefs (equations (15) and (16)). The condition for stability is that all the
eigenvalues of U are less than one in absolute value. If this condition is not satisfied then
the agent uses the beliefs from the previous period. The appendix details the impact of this
stability adjustment.

4 Results

4.1 Mechanism

To provide intuition for the model results I present a random path of productivity and the
resulting paths for the beliefs and model variables. Here the model is only simlulated once.

In the next subsection I will present median statistics based on 500 simulations.
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Figure 3 plots the implied path of output given a random draw of productivity. The solid
line plots the prediction of the learning model and the dashed line plots the path of output for
the rational expectations model for the same productivity path. We can see several notable
discrepancies between the learning model and the rational expectations model. First note
that there are several gaps between output under the learning model and output under
the rational expectations model. In general, output is substantially more volatile under
the learning model than the rational expectations model. The largest gap between the two
models occurs around time 150 when there is a large increase in output of about 12% followed
by a crash where it falls 8%. In contrast, output under the rational expectations model shows
only a mild increase. To understand why this boom and crash occurs examine figure 4. At
the same time we observe the spike in output, there is a corresponding spike in the rental
rate of capital. This movement results in a substantial change in beliefs as noted in figure 5.
When the real rate of return on capital spikes up agents begin to think that the process for
real interest rates may be non-stationary. Not only do they observe an increase in the rental
rate of capital, they begin to think that this change is more likely to be permanent. This
belief leads to a large spike in investment (figure 6) which is quickly reversed when rental
rates return to their steady state value. Note that these beliefs are somewhat self-fulfilling.
As the rental rate increases, the household wants to save more. They need to work more
hours to increase investment and output. This change leads to an increase in the rental
rate because the marginal product of capital is higher. This mechanism further amplifies
the boom. The boom and bust cycle lasts about 4-5 years which indicates that the model
generates output movement that look more like recessions and expansions than quick quarter
to quarter reversals in output. It is also worth nothing that while the boom at time 150 is the
largest, the simulation also indicates investment booms around time 40 and an investment
bust around time 250 among others.

The agents in the model confuse temporary movements in rental rates with permanent
movements in rental rates. This mechanism is consistent with a large amount of survey
evidence on investors expectations. A large number of studies have concluded that investor
expected returns rise when past stock returns have been high. These beliefs hold despite
the fact the high PE-ratios tend to predict lower returns in the future. See for example:
Fisher and Statman (2002); Shiller (2000); Greenwood and Shleifer (2013); Vissing-Jorgensen
(2004). Similarly, in the housing market, Case and Shiller (2003); Piazzesi and Schneider
(2009); Shiller (2007); Case et al. (2012) all find that expectations about future returns were

increasing during the housing boom of the 2000s not declining. This observation is true even
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for financial industry professionals as show by Foote et al. (2012). The model here seems
then to be consistent with this survey evidence and can provide one explanation as to why
investors may overestimate the persistence of above average returns.

Beliefs about future wage income also drive substantial movements in business cycle
variables. Note in figure 7 the path of wages. At time 210 wage growth is quite negative,
with wages falling to their lowest level in the simulation. Note also the gap between wages
in the rational expectations model and the learning model. This decrease in wages changes
the agents beliefs about the wage process shown in figure 8. They are now more likely to
think the wage process is non-stationary and, in fact, think the non-stationary wage process
is equally likely. This results in a noticeable decrease in consumption under the learning
model relative to the rational expectations model shown in figure 9.

Finally, note that productivity (figure 10) is clearly related to all these movement. It
reaches a high point at time 150 and a low point around time 210 when these large movements
in beliefs occur. The beliefs channel is then able to propagate and magnify these fluctuations

in productivity leading to large changes in business cycle variables.

4.2 Simulated Results

Figure 2 gives the impulse responses to a one standard deviation shock to productivity. The
rational expectations model is the dashed line, the learning model is the solid line. The
learning model improves on the rational expectations model along various dimensions. First
given the same productivity shock (one standard deviation) the responses under learning
are substantially larger. For example the response of output is almost twice as large and
the response of investment is twice as large as well. Second we see that the internal propa-
gation mechanism of the learning model is much stronger than in the rational expectations
model. The rational expectations model sees the largest effect on output, investment and
hours worked immediately and the effect subsequently declines monotonically. In contrast,
the effect on these variables in the learning model is much more persistent than in the ra-
tional expectations model. This results is notable because several authors, (e.g. Cogley and
Nason (1995); Rotemberg and Woodford (1996)) have noted the weak internal propagation
mechanisms of the real business cycle model. It is also worth nothing that for several other
variables, e.g. consumption, wages and the capital stock the peak effect comes seven to eight
years after the initial shock showing a very strong ability of the learning model to propagate

the technology shocks to these variables.
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Table 1 gives a variety of business cycles statistics for the key variables and examines
the ability of the two models to match these statistics. Data are standard. Output is real
gross domestic product, consumption is consumption of services and non-durables deflated
with the services and non-durables deflator respectively. Investment is real gross private
domestic investment. All data come from the Bureau of Economic Analysis National Income
and Product Accounts. Data are transformed into per-capita terms by dividing by the US
population. Hours data are total hours for the total economy calculated from Bureau Labor
Statistics Data by Valerie Ramey.'® Data begin in 1948 and end in 2014. Interest rate
data are given by the 3-month T-bill rate. Wage data are the average hourly earnings of
production and non-supervisory employees: total private, dollars per hour, available from
the Bureau of Labor Statistics and deflated with the consumer price index. These data begin
in 1964.

By calibration the learning model exactly matches the volatility of log HP-filtered output
1.7%; in contrast, given the same volatility of the productivity shock, the rational expecta-
tions benchmark model generates only 0.8% volatility in output. The learning model gener-
ates twice the amount of volatility as the rational expectations model. This is a remarkable
improvement. Additionally, as argued by Burnside (1996), productivity shock volatility is
much smaller than output volatility. They argue that the variance of total factor produc-
tivity shocks is at most 10% the volatility of output growth. In my model, the variance of
total factor productivity shocks, [(1 — a) % 0.004]% is only 7% the variance of output growth,
0.012, addressing the Burnside et. al critique of real business cycle models.

Consumption is half as volatile as output while investment is 4.5 times as volatile. The
learning model predicts a smaller relative volatility of consumption at 0.21 while the rational
expectations model comes closer to matching the volatility of consumption with a value equal
to 0.46. Perhaps making it more difficult for households to smooth income shocks would
improve the fit of the learning model.

The rational expectations model understates the volatility of investment predicting 2.8.
The learning model comes closer to matching the data with a value equal to 4. We find
that hours are 0.95 times as volatile as output which is matched by the learning model by
calibration. However, the rational expectations model with the same labor supply elastic-
ity generates hours volatility equal to only 60% the relative volatility of hours. The fact
that the learning model is able to match the volatility of hours in noteworthy. It does so

with an inverse labor supply of elasticity equal to 0.27 while many papers in the literature

6Data are available at: http://econweb.ucsd.edu/~ vramey /research.html# data
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need infinitely elastic labor supply to match the data. Both models understate the relative
volatility of labor productivity in the data. It is 0.49 in the data. The rational expectations
model predicts 0.44 the learning model predicts 0.2.

Next the table examines contemporaneous correlations between the key variables. In
the data, all variables are positively correlated however the correlation is often much less
than one. The rational expectations model essentially predicts a correlation of one for all
the variables. The learning model does not predict the perfect correlation that the ratio-
nal expectations model does for all variables. The correlation of output and consumption,
p(c,y) = 0.47. While it is much higher in the data — 0.81 — in the model it is no longer per-
fectly correlated with output. The learning model is also able to replicate the low correlation
of wages with output. The rational expectations model predicts it should be 1, the learning
model predicts it should be 0.34 consistent with the value of 0.32 in the data. The learning
model is able to break this extreme correlation because in introduces another channel, beliefs
which drive consumption and labor supply independently from output. Results for growth
rates are consistent with the results for the HP-filtered variables.

Finally, the table examines autocorrealtions of variable growth rates. In the data many
variables are positively autocorrelated, for example the growth rates of output, consumption
hours worked, investment and wages. As Cogley and Nason (1995) pointed out the standard
real business cycle model fails to explain this positive autocorrelation. It generally generates
zero or negative autocorrelation in variables and when it generates some mild positive au-
tocorrelation it is much less than in the data. For example p(Ay)= -0.02 in the RE model
versus 0.37 in the data. In contrast, the learning model generates positive autocorrelation in
all the main variables. While admittedly the autocorrelation is smaller than what we see in
the data we can see that the learning model predicts 20% of the autocorrelation in output
and 50% of the autocorrelation in investment.

To examine the statistical significance of these results I examine the 90th percentile for
the distribution of the model statistics across the simulations. I find that for the rational
expectations model the 90th percentile of the distribution ranges from 0.07 for output to
0.1 for wages. All data statistics are outside the 90th percentile. On the other hand the
90th percentile for the learning model ranges from 0.3 for output to 0.36 for wages. And
the statistics for consumption, investment and the real interest rate are within the 90%
confidence interval.

This is a remarkable result given that the learning model does not contain any frictions

to slow the response of consumption or investment like habit formation or investment adjust-
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ment costs. Instead, the self-fulfilling expectations drive this result. When interest rates rise,
agents think this might be a permanent increase. They want to invest more and they work
more hours. This response leads to an increase in the marginal product of capital further
raising interest rates and propagating the boom. This mechanism can then generate auto-
correlation in output, hours and investment. Of course, adding investment adjustment costs
could improve the autocorrelation properties of the model. However, this channel would
dampen the volatility of investment, worsening the predictions of the model along that di-
mension. What is key about the expectations channel is that it adds both autocorrelation
and amplified volatility.

Table 2 reports forecast errors from the learning model. Because the household uses an
incorrect model to forecast the real interest rate and the wage they will make errors. Using
data from the Survey of Professional forecasters I calculate autocorrelation in the median

forecasts for a variety of variables.!”.

There is substantial autocorrelation in professional
forecasts of growth rates. Omne quarter ahead forecast errors for real GDP growth have
an autocorrelation of 0.19 while they have an autocorrelation of 0.15 for nominal GDP.
For the unemployment rate forecast errors have an autocorrelation of 0.58. Looking at 4q
ahead forecast errors little is done to reduce the serial correlation for real and nominal GDP.
However, the unemployment rate forecast errors have a serial correlation of 0.16 now.!®
The pattern for interest rates is similar with positive autocorrelations of 1-quarter forecast
errors ranging from 0.26 for the three-month Thill to 0.43 for the ex-post real rate.'® Finally
inflation expectations errors are highly autocorrelated. The one-quarter ahead forecast errors
have an autocorrelation of 0.59 for inflation based on the GDP deflator and 0.17 for CPI
inflation. The autocorrelation remains for four quarter ahead inflation expectations from the
GDP deflator but disappears for CPI inflation.

I find no autocorrelation of forecast errors in the rational expectations model at 1 quarter.
However, the learning model generates substantial autocorrelation in wage forecast errors,
the 1q ahead forecast error has an autocorrelation of 0.12, while the autocorrelation in

forecast errors for rental rates is 0.13. At the 4q ahead forecast horizon the models generate

1"Data are available here: https://www.philadelphiafed.org/research-and-data/real-time-center /survey-of-
professional-forecasters/

I8Forecasts errors are calculated as: e% = x; — Fy_1x; for 1-quarter ahead forecast errors and the table
reports p(e},el_;). For 4-quarter ahead forecasts we have €} = z; — F;_4x; for 1-quarter ahead forecast
errors and the table reports p(e}, €;_,).

9The ex-post real rate is calculated as i; — m; ywhere i; is the three month Thill rate and 7 ; is inflation

from the GDP deflator. Survey expectations correspond exactly to this definition.
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small mild correlations.?’ I also examine the 90th percentile for the forecast error correlation
under the rational expectations model. For the 1q ahead errors this percentile is 0.09 for
both wages and rental rates. The actual data statistics are outside this confidence interval.
In contrast, for the learning model this percentile is 0.47 for real interest rate forecast errors
and 0.48 for wage rate forecast errors and the data all fall within this range.

Table 3 examines the ability of the model to match the long run predictability of variables
in the data and the autocorrelation of squared variables and residuals. The left hand side
of the first panel of table 3 examines the correlation of the sum of the HP-filtered variables
with sum of the variables over the next four years. That is to say, for consumption, p(c% +
et P+ L+ ). T find that these correlations are negative for consumption,
output and investment. Both models are able to match these negative correlations and there
is little difference between the rational expectations model and the learning model, though
the learning model is a bit better at explaining this statistic for investment.

Next, I look at the correlation of variable growth in one year with growth over the next
four years. That is to say, for consumption, p(In¢; — Ine¢y_y,Inci16 — Ineqq). 1 find that
this statistic is positively correlated for consumption but negatively correlated for output
and investment. For example p(Inc¢; —In ¢4, In ¢ 16 — In i 1)=0.19 and the learning model
predicts 0.09 versus -0.01 in the rational expectations benchmark. For investment this corre-
lation is -0.36. The learning model predicts a correlation of -0.3 versus -0.16 in the rational
expectations model. For output, this statistics equals = -0.09. Both the learning model and
the rational expectations model overshoots this correlation. The rational expectations model
predicts this correlation should equal -0.12 while the learning model predict -0.25. For this
statistic both models emit wide confidence intervals. However, for the rational expectations
model the consumption statistic is outside the 90th percentile with a value of 0.11 versus 0.19
in the data. The 10th percentile for the investment correlation is -0.36 which is the same
as the data value. In contrast, the distribution of learning model predictions is centered
more inline with the data and therefore all these statistics are within the learning model
confidence intervals.

Next I examine the persistence of volatility in the data and the ability of the models
to account for this fact. First I examine the autocorrelation of the squared variables and
the squared residuals from an AR(1) regression of the variables. I examine p( [CHP }2) and
p(e2) where &, is the residual from the AR(1) regression: ¢” = pcl? |+ e.,. I find that the

squares of the HP-filtered variables are positively autocorrelated and both models are able

208mall sample bias with overlapping observations prevents this correlation from being exactly zero.
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to account for this fact. The learning model generates larger autocorrealtions though, more
consistent with the data. For example p( [CHP}2>:0.74 versus (.57 for the learning model.
The rational expectations benchmark predicts this value to be only 0.5.

These discrepancies are much larger turning out attention to the autocorrelation of
squared residuals. These correlations are all positive in the data indicating time varying
volatility. Large (in magnitude) residuals are likely to be followed by on average large resid-
uals. The rational expectations model can not explain this fact. It predicts these correlations
to be essentially zero. However, the learning model consistently predicts these correlation
to be positive. For example, the investment residual correlation equals 0.09, versus 0.3 in
the data. Similarly, the learning model generates an autocorrelation of 0.03 for squared con-
sumption residuals compared to 0.2 in the data; and it generates 0.08 for output residuals
compared to 0.17 in the data.

The last section of table 3 repeats the previous analysis but using variable growth rates.
There is clear evidence that squared growth rates are positively autocorrelated in the data.
The rational expectations model can not match this fact. It predicts squared growth rates
should be uncorrelated over time. However, the learning model predicts a correlation of
0.09 for squared consumption growth, positive like the value of 0.24 in the data. Similarly,
for output and investment we see positive autocorrelation of squared growth rates at values
of 0.23 and 0.24 respectively, a fact matched by the learning model though with smaller
magnitude of 0.11 and 0.14. Similarly, squared AR(1) residuals of consumption, investment
and output growth are all positive. Again, the learning model is able to generate positive
autocorrelation while the rational expectations model cannot. Importantly, it almost exactly
matches the autocorrelation of output growth residuals with a correlation of 0.12 versus 0.13
in the data and investment residuals with an prediction of 0.17 versus 0.16 in the data.
When examining 90th percentiles of the model distributions the highest values at one lag for
the rational expectations model is 0.1 while it is around 0.5 for the learning model. Hence
the magnitude of the autocorrelation in squared residuals is within the distribution for the
learning model but outside the 90th percentile for the rational expectations model.

To investigate if this time varying volatility is only a consequence of the Great Moderation
I recalculate the time varying volatility statistics from table 3 for before and after 1983.2
The results are in Table 5. I find that there is evidence of positive autocorrelation of squared
growth rates both before and after 1983. If anything, the evidence suggests that time varying

volatility is stronger post the Great Moderation.

2IMcConnell and Perez-Quiros (2000) estimate this year as the start of the Great Moderation.
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Now of course the rational expectations model can match time varying volatility by
assuming the exogenous disturbances have time varying volatility. I find this unsatisfying
for a multitude of reasons. First, it is an additional assumption that must be added into the
baseline model to help it match this one fact. While here the expectations channel improves
the model on many dimensions. Secondly, a goal of this paper is to minimize the need to rely
on exogenous disturbances to match the data, in trying to address the Kocherlakota (2010)
critique that many shocks are difficult to match up with economic experience. Making these
shocks not only large, but time varying in their volatility, seems, in this spirit, a step in
the wrong direction. Thirdly, very few shocks are truly exogenous. Even productivity is
presumable the outcome of a research and development process that depends on economic
incentives. Therefore to the extent that we wish to understand time varying volatility it is
important to endogenize it. This model gives one explanation for time varying volatility:
that given their beliefs agents will respond differently to unexpected changes in economic

conditions.

5 Robustness

Table 4 considers robustness of the results to varying some of the calibrated parameters. For
these exercises I keep all the parameters at their benchmark values and vary one parameter.
I then report a sampling of statistics used to evaluate the main model to examine robustness
of the results to different parameter choices. I present only a sampling of statistics for clarity,
however results are quite similar for the omitted statistics.

To consider robustness to the choice of the AR(1) parameter for the productivity process,
I rerun the simulation setting p = 0.95. Results are given in column 2 of table 5. All in all,
the results are quite similar to the benchmark case (whose values are presented for reference
in column 1) . The model generates slightly less volatility, the standard deviation of output
o(y) = 0.016 versus 0.017 in the benchmark case. However the relative standard deviation
of consumption and investment are the same as are the contemporaneous correlations of
consumption and hours worked. The model still generates autocorrelation in forecast errors
and autocorrelation in variable growth rates, though these correlations are slightly smaller,
For example the autocorrelation of investment growth is 0.06 when p = 0.95 versus 0.1 in
the benchmark case. The model still generates long run predictability in growth rates. For
example, p(Ini; —Ini; y — 4, Ini; 16 — Ini;) = —0.3 which exactly matches the benchmark

value. Finally, the model still is able to generate time varying volatility with almost no change
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for the benchmark values. Similarly, when p = 0.99 the model generates the same volatility,
o(y) — 0.017 versus 0.017 in the benchmark case, and maintains the same relative volatilities
and contemporaneous correlations. The model also generates slightly higher autocorrealtions
for growth rates. For example output growth has an autocorrelation p(Ay) = 0.08 versus
0.07 as the benchmark value. The model also generates stronger autocorrelation of forecast
errors. The autocorrelation of the forecast errors for wages now equals 0.15 versus a value of
0.13 for the benchmark case. Values for long run predictability are stronger, p(Ini; —Iné,_; —
4, Iniz6 —Inid;) = —0.32 versus the benchmark value of -0.3. Finally, the model again can
generate time varying volatility, and the statistics almost exactly match the baseline case.
Next I consider varying the gain parameter. In the benchmark case g = 0.03. I consider
increasing g = 0.05. The first effect of increasing the gain variable is to increase the volatil-
ity of output. o(y)= 2.2% versus 1.7% when the gain variable equals 0.03 however it does
not significantly impact the relative volatilities of consumption and investment. Increasing
the gain however, lowers the contemporaneous correlation of consumption with output to
0.07 versus 0.47 but does not affect the contemporaneous correlations of hours with out-
put. The model with a higher gain value exhibits larger autocorrelation of growth rates,
for example investment growth rate autocorrelation equals 0.16 versus 0.1 in the benchmark
case. The correlations representing long run predictability are all more negative. For ex-
ample p(ln¢; — Ine;qy — 4, Inciy6 — Ing) = —0.29 versus 0.09 for the benchmark case
and p(Ini; —Ind,y — 4, Inigge — Ini;) = —0.41 versus -0.3 for the baseline case. Finally
the model generates more time varying volatility that the baseline case does. For example,
the autocorrelation of squared investment growth rate residuals equals 0.24 versus 0.17 in
the benchmark case. Next I consider the model with learning but no gain so that g = 0.
In this case volatility of output falls to 1.4%. The relative volatilities of consumption and
output however show little change. Consumption now is slightly more correlated with out-
put: p(c,y) = 0.9 versus 0.47 in the baseline case. One important distinction is that the
model needs some gain to match the autocorrelation of growth rates. The model generates
no positive autocorrelation of variable growth rates of output and investment when g = 0.
The model still generates autocorrelation of forecast errors for wages, though the model is
unable to generate considerable autocorrelation of forecast errors for rental rates. Forecast
errors for the rental rate have an autocorrelation of 0.02 when g = 0 versus 0.13 in the
benchmark case. The model also generates more positive autocorrelation of long run growth
rates: p(Inc; —In¢1 — 4, Incgi6 — Ine) = 0.15 versus 0.09 for the benchmark case and

p(lni; —Ini;_y —4, Iniz 6 —1Ini;) = —0.21 versus -0.3 for the benchmark case. Finally, the
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gain is also important in generating time varying volatility. When g = 0 the model generates
no time varying volatility. For example, the autocorrelation of squared residuals from the
AR(1) regression on investment growth %, = 0.01 when the gain variable equals zero versus
0.12 in the baseline case.

Next the robustness table considers the importance of model learning. 1 re-simulate
the learning model but set pg, and py, =1 for all £. Output volatility increases though
the relative volatilities of investment and consumption show little change. Consumption
becomes more correlated with output, similar to the case where the gain equals zero. As in
that case the model no longer generates autocorrelation in output growth and investment
growth, nor does it generates any endogenous time varying volatility. This robustness check
highlights the importance of model learning, as opposed to parameter learning, in generating
autocorrelation of growth rates and time varying volatility.

I also consider a version of the model close to the separable utility case (0 = 1) with a
value of o = 1.05. Volatility falls slightly to 1.4% and the relative volatility of consumption
and investment rise. Consumption is now negatively correlated with output as the substi-
tution effect of increased rental rates become stronger. For investment and output variables
there is very little difference in the statistics. We still see autocorrelation of growth rates,
long run predictability, and time varying volatility of quite similar magnitude. However, for
consumption these statistics are amplified. For example, the autocorrelation in consump-
tion growth rates is 0.32 versus 0.08 in the benchmark case. Time varying volatility for
consumption growth rate residuals equals 0.33 versus 0.08 in the benchmark case.

Finally, T consider including information about the capital stock in the forecasting of
wages and returns. Specifically, T include the variable k; in the stationary factor price
equations (15) and Ak, in the non-stationary factor price equations (16). For comparison,
Eusepi and Preston (2011) use the functional form r, = a + Gk, + &, 1 allow this as a
candidate model for the rental rate while also including lags of r;. Additionally, since the
agent must now forecast the future capital stock I assume that the agent believes that the
capital stock is stationary, i.e. k; = p§ + piki_1 + & with probability pf* and that it is
non-stationary as, i.e. Ak = pi* + p"* Ak, + & with probability 1 — pFs. Agents learn
in the same manner as they do about the wage and rental rate equations as described in
section 2.6.

Results are in the column labeled VAR in table 4. There is a fall in the volatility of
output to 1% and the relative volatility of consumption rises more in line with the data.

The model generates quite similar contemporaneous correlations of consumption and hours
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with output. The model no longer generates autocorrelation in growth rates for output but
continues to generate positive autocorrelation in consumption and investment. The model
continues to generate autocorrelation in forecast errors for rental rates however there is only
a small autocorrelation in wage forecast errors. The model generates slightly more negative
correlation of growth rates with long-run growth rates and the model’s predictions for the

autocorrelation for rental rate forecasts and time varying volatility are unchanged.

6 Conclusion

In this paper I considered a real business cycle model where consumption depends on the
present discounted value of all future capital and wage income. To this model, I added
long run uncertainty. The household is unsure about the stationarity of wage and capital
income and puts some probability on the possibility that these variables are non-stationary.
The household learns about the true model using Bayesian learning and therefore has time
varying beliefs about the nature of the income processes.

I found that relative to a rational expectations benchmark, the model amplified the
volatility of output and improved upon the model’s prediction for the contemporaneous corre-
lation of variables. The model exhibited persistent impulse responses and generated positive
autocorrelation of variable growth rates. The model also generated positively autocorrelated
forecast errors, consistent with evidence from the Survey of Professional Forecasters. Finally,
the model also better fit some less conventional business cycle statistics. The model matched
the medium frequency reversals in key variables like the growth rate in investment and the

model generated time varying volatility consistent with the data.
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Figure 1: U.S GDP Relative to Trend

Log GDP vs. Trend -- 1929 to 2014
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Figure 2: Impulse Responses to One Standard Deviation Productivity Shock
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Figure 5: Weight on Stationary Rental Rate Model
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Figure 7: Simulated Path of Wages
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Figure 9: Simulated Consumption
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Appendices

A Linearized Model

For this section T use the hat notation where #; = Inx, — In2®®. T also use the lower case
letter notation z, = X;/Z; where Z,=Ao(1 + g)* for C,Y;, I, W, and K;, \, = N/ Z;°,
Tt = Rf and ht = Ht~

The consumption first order condition linearizes as:

—0¢, — (1 — 0)hy = Ny (18)

where ¢ = ”;((Z))Eﬁ and the bar denotes the steady state value.

The labor supply first order condition linearizes as:

(1 — O')ét + g'uiLt = ;\t + wt (19)

v (h)h
v/ (h)
linearized condition for the optimal choice of capital utilization

0

where ¢, = We assume the depreciation function 6(u;) = %ut. which gives the

The production function linearizes as
g = aky + aty, + (1 — a)(hy + ) (22)
The capital evolution equation linearizes as
(14 ¢)kpsr = (1= 0)ky + %%t — 054, (23)

here % is the steady state investment capital ratio.
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Finally the resource constraint linearizes as

A C, [
Yt = —C + —1t (24)
Yy Yy

where 5 and é are the steady state ratios.

B Steady State
To get the steady state return on capital I use the Euler equation (5) which gives:

(1+9)

="

—(1-9)

The factor price equation (8) yields:

DS
o

And the capital evolution equation (12) gives:

?

5
p 0T

from the resource constraint

E NS
|
>~

o

which can be used to calculate 5 and 5

Finally combining the consumption (3) and labor supply (4) first order conditions gives:

p=— =l (1-a)

c Yy c c

To determine 6 we set steady state utilization to 1, i.e. w = 1. The implication then is

N
rfu = uf
b= 66
k
0 = —
)
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C Consumption Equation

The derivation of the consumption equation follows Eusepi and Preston (2011) allowing for

stationary technology shocks. We have the following constants:

B=p1+g)
~ R
R—
(1+9)
c o—1 17" ~1-«a
T k<1+g>+[h_ 0 14 =
2
ehzav—(a_l)w
o
[ o—1 ]1 ~1—«
Ew= |14+ |en— ¢ R
o Q
(1= o)
oep+ (1 —o)y

D Stability Statistics

In this section I provide some statistics on the stability adjustments made in the model as
described in section 3.2. When the beliefs in the model would create an unstable law of
motion, it is assumed that agents use the previous period’s beliefs. Figure 11 shows the date
of the last stability adjustment across the 500 simulations used to calculate median statistics.
The bar represents the date of the last adjustment and the dashed line represents the first
date used in the sample for calculating statistics. Simulations are sorted by the last date
there is an adjustment. What this figure shows is that in more than half the simulations
there is no stability adjustments in the sample period suggesting that median statistics are
not influenced much by this adjustment.??

Next I look at the percent of time there is a stability adjustment in each of the 500

simulations of the model. Simulations are sorted as above. We can see that a simulation

2254% to be exact.
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Figure 11: Date of Last Stability Adjustment

Date of Last Stability Adjustment
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where adjustments happen more than 5% of the time is rare, occurring in about 2% of the
sample. In only a handful of the simulations is a stability adjustment a common occurrence.

Finally, I look at the percent of times there is a stability adjustment in the sample that
is used for calculating the simulation statistics for each of the 500 simulations. Here the
influence of the stability adjustment is small, only about 3% of the sample has a stability

adjustment more than 5% of the time in the sample used to calculate statistics.
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Figure 12: Percent of Times Simulation Has Adjustment
Percent of Times Simulation has an Adjustment
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Figure 13: Percent of Times Simulation Has Adjustment in Sample
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Table 1: Business Cycle Statistics

Data RE Learning

Standard deviation of HP-filtered output

o(y) 0.017 0.008 0.017
Relative volatility of HP-filtered variables

o(c)/o(y) 0.5 0.46 0.21

o(i)/o(y) 4.5 2.8 4

o(h)/o(y) 0.95 0.56 0.95

o(y/h)/o(y) 0.49 0.44 0.2

Contemporaneous correlations of HP-filtered variables

Data

Standard deviation of output growth

o(Ay) 0.01
Relative volatility of variable growth rates

o(Ac)/c(Ay) 0.52

o(A1)/o(Ay) 5

o(Ah)/o(Ay) 0.81

o(Ay/h)/c(Ay) 0.72

RE

0.006

0.45
2.8
0.56
0.44

Learning

0.012

0.21

0.94
0.2

Contemporaneous correlations of variable erowth rates

p(cy) 0.81 0.99 0.47
p(h,y) 0.87 0.99 0.99
p(Ly) 0.87 0.99 0.99
p(1,y) 0.4 0.98 0.96
p(w,y) 0.32 0.99 0.34
Autocorrelations of variable growth rates
Data RE Learning
Ay
lag 1 0.37 -0.02 0.07
lag 2 0.21 -0.02 -0.04
lag 3 0.02 -0.02 -0.04
Al
lag 1 0.21 -0.03 0.1
lag 2 0.14 -0.02 -0.05
lag 3 -0.03 -0.02 -0.06

p(Ac,Ay) 0.51
p(Ah,Ay) 0.71
p(AL,Ay) 0.79
p(Ar,Ay) 0.32
p(Aw,Ay) 0.04
Data RE Learning
Ac
0.3 0 0.08
0.3 0 0.02
0.22 0 0.03
Ar

024  -0.02  0.08
017 002  -0.04
0.13 002  -0.05

0.99
0.99
0.99
0.99
0.99

Data

0.5
0.31
0.12

0.8
0.79
0.78

0.55
0.99
0.99
0.99
0.45

Ah
-0.03
-0.03
-0.02

Aw
0
0.01
0

Learning

0.11
-0.05
-0.06

0.1
0.02
0.02

Note: This table gives the standard deviation of log HP-filtered output, the relative volatilities of log HP-filtered consumption, investment, hours

worked, and labor productivity, and their contemporaneous correlation. The sames statistics are reported for the growth rates of these variables along

with four lags of their autocorrealtions.



Table 2: Autocorrelation of Forecast Errors

Data
Real GDP Nominal GDP  Unemployment Rate
1Q 0.19 0.15 0.58
4Q 0.1 0.12 0.16
Thill 10-year Treasury Corporate Bond Real Rate
1Q 0.26 0.29 0.38 0.43
4Q 0.13 -0.31 -0.2
Inflation (GDP Deflator) Inflation (CPI
1Q 0.59 0.17
4Q 0.59 0.01
Model
RE Learning
r w r w
1Q -0.01 -0.01 0.13 0.12
4Q 0.06 -0.01 0.05 -0.03

Note: This table reports the autocorrelation of forecast errors for the return on capital and wage variables in the learning
model.



Table 3: Long Run Predictability and Time Varying Volatility

Long Run Predictability
P(Cst .. €y Ciyp ot Cippp)
P(Yest -+ Yo Yerr T oo Yero)
Pzt . + i, g + .. dgsge)

Squared Autocorrelations
lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

Data
-0.34
-0.36
-0.5

0.75
0.45
0.18

0.67
0.35
0.1

0.58
0.32
0.08

0.24
0.26
0.17

0.23
0.14
0.06

0.24
0.18
0.31

RE
-0.33
-0.34

-0.35
2
c
0.49
0.2

0.05

2
y

0.48
0.18

0.04

2
1

0.48
0.18
0.04

(Acy
-0.01

-0.01
-0.01

(Ay)’
-0.01
-0.01
-0.01
(AQ)’
-0.01

-0.01
-0.01

Learning

-0.28
-0.38
-0.4

0.53
0.27
0.13

0.54
0.2
0.04

0.54
0.2
0.06

0.09
0.06
0.01

0.11
0.1
0.04

0.14
0.11
0.04

p(In ¢~ In ¢y, In ci16 -In ¢y)

p(In y.- Iny.4, In yy 6 -In'y)
p(In i;- In iy, In iy e -In i)

lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

lag 1
lag 2
lag 3

Data
0.19
-0.09
-0.36

0.24
0.11
0.08

0.17
0.08
0.2

0.3
0.12
0.32

0.4
0.21
0.13

0.13
0.13
0.03

0.16
0.22
0.22

RE
-0.01
-0.12
-0.16

(e)’
-0.01
-0.01
-0.01

(&)
-0.01
-0.01
-0.02
8
-0.01
-0.01
-0.02

(er0)’
-0.01
-0.01
-0.01

(eny)’
-0.01
-0.01
-0.01
(exi)’
-0.01

-0.01
-0.01

Learning
0.09

-0.25
-0.3

0.03
0.06
0.02

0.08
0.12
0.04

0.09
0.14
0.05

0.08
0.05
0.01

0.12
0.1
0.03

0.17
0.12
0.05

Note: This table contains the correlation of the sum four lags of the HP-filtered log variables with the next 16 HP-filtered log variables, and the correlation of the
four quarter growth rate of the variables with growth over the next 16 quarters. It also containes the autocorrelation of the squared HP-filtered variables and

growth rates and the autocorrelations of the squared residuals from an AR(1) regression on the HP-filtered variables and the growth rates.



Table 4: Robustness

Benchmark prod. ar(1) gain PS=1 c=1.05 VAR
0.95 0.99 0.05 0

Volatility

o(y) 0.017 0.016 0.017 0.022 0.014 0.016 0.014 0.01

o(c)/o(y) 0.21 0.21 0.21 0.18 0.22 0.18 0.35 0.4

o(i)/o(y) 4 39 4 4.2 3.7 3.8 4.7 3.8
Correlations

p(c,y) 0.47 0.55 0.47 0.07 0.9 0.88 -0.52 0.48

p(h,y) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.93
Autocorrelations of growth rates

Ay 0.07 0.04 0.08 0.13 -0.02 -0.02 0.07 -0.01

Ac 0.08 0.04 0.1 0.1 0.08 0.13 0.32 0.03

Al 0.1 0.06 0.12 0.16 -0.03 -0.03 0.11 0.04
Autocorrelation of forecast errors

r 0.13 0.1 0.15 0.16 0.02 0.01 0.16 0.11

w 0.12 0.09 0.14 0.13 0.12 0.19 0.07 0.02
Long Run Predictability

p(In ¢,- In ¢cpy, In ¢y 16 -In ;) 0.09 0 0.14 -0.29 0.15 0.23 -0.1 -0.07

p(Iny- Inyiy, Inyu6-Inyy) -0.25 -0.26 -0.26 -0.4 -0.18 -0.18 -0.26 0.3

p(In i;- In 1.4, In 16 -In 1) -0.3 -0.3 -0.32 -0.41 -0.21 -0.21 -0.33 -0.41
Time Varying Volatility

(ac)2 0.03 0.04 0.03 0.07 0 -0.01 0.12 0.04

(ay)2 0.08 0.08 0.08 0.1 0 -0.01 0.08 0.08

(ai)2 0.09 0.09 0.08 0.1 0.01 -0.01 0.09 0.09

(aAC)2 0.08 0.08 0.06 0.19 0 -0.02 0.33 0.04

(?,Ay)2 0.12 0.12 0.1 0.19 0 -0.01 0.12 0.11

(ea)” 0.17 0.15 0.14 0.24 0.01 -0.01 0.19 0.15

Note: This table reports robustness of the main results to varying the model parameters.



Table 5: Autocorrelation of Squared Changes Before and After Great Moderation

Before After
¢ (e ¢ (&)
lag 1 0.72 0.18 lag 1 0.81 0.27
lag 2 0.37 0.04 lag 2 0.57 0.13
lag 3 0.1 0.02 lag 3 0.3 0.07
Y (&) Y (&)
lag 1 0.62 0.07 lag 1 0.76 0.34
lag 2 0.26 -0.02 lag 2 0.53 0.02
lag 3 -0.02 0.12 lag 3 0.31 0
2 (s’ e (5"
lag 1 0.51 0.23 lag 1 0.78 0.48
lag 2 0.27 0.05 lag 2 0.41 0.09
lag 3 0.02 0.3 lag 3 0.12 0
(Acy’ (eae)’ (Ac)’ (eae)”
lag 1 0.18 04 lag 1 0.22 0.17
lag 2 0.18 0.17 lag 2 0.34 0.17
lag 3 0.07 0.07 lag 3 0.28 0.21
(ayY (s, (ay? (ea)
lag 1 0.15 0.03 lag 1 0.18 0.22
lag 2 0.06 0.05 lag 2 0 0.01
lag 3 -0.04 -0.08 lag 3 -0.06 0.1
lag 1 0.17 0.08 lag 1 0.36 0.33
lag 2 0.12 0.18 lag 2 0.04 -0.02

lag 3 0.27 0.17 lag 3 0.13 0.11




