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Abstract

Individuals often must learn about a state of the world when both the state and
the credibility of information sources (experts) are uncertain. We argue that learning
in these “rank-deficient” environments may be subject to a bias that leads agents to
over-infer expert quality. Agents who encounter information or experts in different or-
der disagree about substance because they endogenously disagree about the credibility
of each others’ experts, as first impressions about experts have long-lived influences
on beliefs about the state. This arises even though agents share common priors, in-
formation, and biases, providing a theory for the origins of disagreement. Our theory
helps explain why disagreement about substance and expert credibility often go hand-
in-hand and is hard to resolve in a wide-range of issues where agents share common
information, including economics, climate change, and medicine.
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Disagreement appears everywhere. In topics ranging from the effects of climate change

to the consequences of immigration, people square off against each other with very strong

opinions, even though people increasingly share the same information. Instead, the dis-

agreement is often not just about substance (“Do humans affect climate change?”), but also

about the credibility of different sources of information (“How much faith should we put in

the scientists and their data?”). One side typically expresses supreme confidence in their

preferred experts while dismissing the other side’s sources.

A core feature of many of these situations is that individuals must form beliefs both about

the state of the world and the quality of signals. For example, juries in criminal prosecutions

must form opinions based on forensic evidence interpreted by expert witnesses. Voters must

predict the consequences of a referendum using information from economists, legal experts,

and their own experiences. Policymakers must form opinions about human-induced climate

change based on information from scientists. In many of these cases, people are called on

to make a decision (“guilty or not?”) when they must evaluate both a given claim (“did

she commit the crime?”) as well as source quality (“how reliable is the expert and her

information?”). We call this a rank-deficient problem as there are fewer signals than sources

of uncertainty.

Our thesis is that disagreement about substance fundamentally reflects disagreement

about expert quality in rank-deficient environments due to a learning bias. In our framework,

agents overinterpret how much they can learn about two unknowns from one source, leading

to distorted beliefs about quality which feed through to distorted beliefs about substance.

This bias leads to disagreement even when agents share common priors, information, and

biases. While the literature has pointed out that heterogeneity in any of the above may

generate disagreement (e.g., Scheinkman and Xiong, 2003; Acemoglu, Chernozhukov and

Yildiz, 2016), the source of heterogeneity is less clear. We argue that biased learning about

expert quality provides a theory for the origins of disagreement.

Section 1 introduces rank-deficient environments and learning. We first discuss several

reasons why rank-deficient learning is pervasive. First, individuals often do not have the

skills to collect and evaluate primary-source evidence themselves, making experts necessary.

Second, independent signals of expert credibility may often be unavailable, or even if they
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were available, are difficult to evaluate themselves. A jury might know that an expert has a

Ph.D., but might know little about the granting school’s quality or how well a Ph.D. qualifies

someone to make certain statements. Finally, it is often difficult to independently evaluate

expert quality through repeated tests. Jurors may find it hard to evaluate a trial expert’s

track record as they rarely observe whether the expert was truly right in previous cases;

propositions such as voter referendums may be a one-time affair.

Our baseline model of these situations features an agent who learns about a binary state

(A or B) using signals from an expert who is of either high or low quality. A high quality

expert is more likely to report the true state than a low quality expert. To focus on the

effect of learning on disagreement, experts are simply signal sources and are not strategic.

The learning problem departs slightly from standard models in that the weight the agent

should apply to the expert’s signal is itself uncertain.

How should the agent update beliefs? Suppose, after seeing a signal, the agent first

evaluates the expert’s quality using Bayes’ rule. For example, she may form a belief about

whether an expert is competent based on whether the signal is plausible, or “passes the smell

test.” Second, having formed a belief about the expert’s quality, the agent then applies this

weight to the signal from the expert. If the expert has reported any signals in the past, the

agent re-evaluates the informational value of these signals as well.

This process is intuitive in that it generates the same posterior belief as Bayes’ rule in

the canonical case where agents observe one signal and have common neutral priors with

independent states and expert quality. However, Section 2 shows that this process, which

we call pre-screening, violates Bayes’ rule, which updates on the joint distribution of expert

quality and the state using only the ex-ante credibility of the expert. Relative to a Bayesian,

a pre-screener over-infers quality, but in a way which is innocuous in the canonical case.

With more signals, a pre-screener and Bayesian share the same belief about the state in

expectation, but disagree about both states and quality along nearly every ex-post realized

signal path. We use the following terminology: we say that a pre-screener overtrusts (under-

trusts) an expert if his posterior belief that the expert is high quality is higher (lower) than the

Bayesian’s. A pre-screener is optimistic (pessimistic) if his posterior belief in the objectively

more likely state given all observed information is higher (lower) than the Bayesian’s.
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Along these paths, pre-screeners are optimistic if and only if they overtrust the expert,

and are pessimistic if and only if they under-trust. Intuitively, believing too strongly in

the expert’s high (low) quality means that the pre-screener overweights (underweights) his

information content, and vice versa. In other words, disagreement between a Bayesian

and pre-screener about states and expert quality go hand-in-hand. The same is true when

comparing two pre-screeners who have received the same information in different order. The

only exception is if evidence about the state is perfectly mixed, when beliefs about the state

are neutral.

Section 3 develops further predictions about how disagreement about expert quality

(“trust”) and states dynamically evolve along these paths. We focus on disagreement be-

tween a Bayesian and pre-screener as a benchmark. A Bayesian’s beliefs are completely

summarized by the total number of signals received and the fraction of those signaling state

A. Holding this fixed, a Bayesian’s beliefs are invariant to signal order. In contrast, a pre-

screener’s beliefs are highly path-dependent in that first impressions about expert credibility

have an outsized influence influence on beliefs about the state. An early sequence with few

signal reversals generates a positive first impression in that they lead to significant overtrust

and optimism; conversely, an early sequence of many signal reversals generates a negative

first impression, and therefore under-trust and pessimism.

These first impressions create persistent disagreement, particularly if the first impression

is negative. The overtrust and optimism from a positive first impression, while persistent, can

be undone given enough subsequent mixed signals, which suggest low quality. In contrast,

the under-trust and pessimism from a negative first impression can cast a long shadow,

persisting even when subsequent signals are all identical and indicate high quality. This

fundamental asymmetry between the effects of positive and negative first impressions arises

because mixed signals are relatively worse news for expert quality than identical signals are

good news. In general, the model predicts that negative first impressions are very difficult

to overcome.

Pre-screening also implies that the order in which experts report matters for beliefs,

not just the order of signals themselves. There is an asymmetry between “inside” experts

(those who have already reported) and new unknown “outsiders” (those just reporting). If
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a pre-screener has a strong positive first impression of an inside expert, information from

the same expert which contradicts current beliefs will help resolve disagreement. However,

a pre-screener will actively discredit the same information if delivered by an outsider; the

contrary outsider information will actually bolster her optimism and overtrust in the insider.

Crucially, the model suggests a way in which outsiders can mitigate this effect: deliver those

contrary signals together in a “data dump” rather than sequentially.

Our exercise puts the role of rank-deficient learning about expert quality front and cen-

ter in generating endogenously biased trust in experts. Section 4 discusses how this sets

our proposed bias apart from those in the literature. The closest learning bias to ours is

confirmation bias (Griffin and Tversky, 1992; Rabin and Schrag, 1999), which predicts that

individuals interpret information in a way that confirms preconceived beliefs, so that first

impressions about the state matter. With pre-screening, the first impression about the expert

matters, a distinction which has significant economic bite and helps explain when behavior

which looks like confirmation bias (as well as its opposite) endogenously arises. This distinc-

tion also implies that the order in which experts arrive is important for beliefs, not just the

signal order itself as in Rabin and Schrag (1999).

More broadly, the literature has generally recognized that individuals misperceive the

informativeness of their signals, often due to overconfidence (e.g., Scheinkman and Xiong,

2003; Ortoleva and Snowberg, 2015). Phenomena which look like over- and under-confidence

in signals endogenously arise in our framework due to learning about credibility. Our bias

is distinct from inattention (Schwartzstein, 2014; Kominers, Mu and Peysakhovich, 2016),

heterogeneous priors about signal quality (Acemoglu et al., 2016), model uncertainty (Gilboa

and Schmeidler, 1989, 1993), and models of expert or media slant (Mullainathan and Shleifer,

2005; Gentzkow and Shapiro, 2011). The latter focus on the response of strategic news “sup-

ply” to heterogeneous beliefs. We complement this approach by considering the “demand”

perspective, showing how disagreement can arise even without biased information.

Overall, the key distinguishing feature of our framework is that agents disagree about

substance because of the more fundamental disagreement about which experts are believable,

even when agents are paying attention to all experts and information is widely available.

Section 5 argues that this describes the essence of several real-world disagreements over
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several economic questions (“What is the value of stimulus spending?”) as well as other

important debates (“Are vaccinations safe for children?”).

Section 6 concludes with more speculative implications of our model. For concreteness,

the bulk of the paper focuses on the case where signals come from external sources. How-

ever, our theory does not require this. Alternatively, the source can be the individual’s own

experiences, with uncertainty arising because the individual does not know how informative

her experiences are about the true state. This interpretation is broadly related to the idea

that people’s life experiences may be particularly important for how they form beliefs (Mal-

mendier and Nagel, 2011, 2016). Overall, learning in rank-deficient environments and its

implications for trust in experts can shed light on the foundations of disagreement.

1 Model

1.1 Environment

An agent learns about an unknown state θ ∈ {A,B} by observing binary signals st ∈ {a, b}

each period t from an expert. The expert has quality q ∈ {L(ow), H(igh)}, which the agent

also does not know. The high quality expert has a higher probability of correctly reporting

the state than the low quality expert, making his signals more informative: P (st = a|q, A) =

P (st = b|q, B) = pq, where 1 > pH > pL > 1− pH and pH > 1/2. Experts are not strategic,

and nature draws true expert quality independently from the true state. Conditional on

state and expert quality, signals are independent and identically distributed. For clarity, we

assume the agent observes one signal per period, but the model easily generalizes to multiple

signals per period.

In this environment, the agent does not know both the state and the quality of the expert,

yet only observes the signal(s) about the state from the expert. We call this a rank-deficient

environment, as there are fewer signals than sources of uncertainty. This type of situation

departs from the canonical setup by assuming both that 1) the quality of the expert is

uncertain, and 2) there are not enough signals to resolve this uncertainty.

Before proceeding with the model, we discuss why this type of situation is particularly
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relevant for several real-world decision problems. Consider, as one example, economics. Few

individuals have the expertise or training in theory or data analysis to evaluate primary

evidence on issues such as trade policy, suggesting a need for economists. Yet, from the

individual’s perspective, the economist’s ability is uncertain, and the individual must form

beliefs about it.

Recent evidence suggests that American households view economists skeptically. Sapienza

and Zingales (2013) show that average American households have sharply different views than

economists on questions ranging from whether it is hard to predict stock prices to whether

the North American Free Trade Agreement (NAFTA) increased welfare. They find this dif-

ference tends to be large even when there is strong consensus among economists. Of course,

economists may be wrong, as there is substantial uncertainty about theoretical models and

evidence. Assuming that economists are type H, we capture this as pH < 1. If there were

no uncertainty about quality, individuals would also view economists as type H, and form

beliefs about economic issues accordingly. But when told that economists agree that the

stock market is unpredictable, average beliefs among households hardly moved – if anything,

an even larger percentage of households thought that the market was predictable. This

suggests the more troubling possibility that households view economists as type L.

Why don’t independent signals about expert quality, or “credentials,” resolve this gap,

which persists despite doctorates, chaired professorships, and Nobel prizes? We conjecture

at least three reasons. First, in some settings, credentials may not be objectively very

informative about the quality of specific signals or forecasts. DellaVigna and Pope (2016)

run a large experiment estimating how different incentive schemes affect effort, and ask

economists to forecast the effectiveness of each treatment ex-ante. They find that, despite

clear differences in treatment effectiveness, the forecast error of experts is disperse and that

objective measures of expertise are not correlated with forecast accuracy.

Second, the informativeness of a credential may itself be uncertain to households, even if

they are very informative to other experts. Many people have economics Ph.D.’s, from many

different schools whose Ph.D. programs have different strengths, in many different areas in

economics, with very different publication records and impact, and with varying practical

experience in, say, trade. Even if an individual with no expertise knew all of these facts
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about a particular expert, they would have little idea of how to evaluate them together. A

trade economist might, but that is of no help to the lay person, because the economist’s

quality is precisely what is unknown.

Third, perhaps the most useful tool for evaluating expert reliability - the ability to

compare predictions to outcomes through repeated controlled experiments - is unavailable in

many economic settings. Economists may predict that X (free trade) will cause Y (growth,

improved welfare) ex-ante, but evaluating whether any given instance of X (NAFTA) did

actually cause Y ex-post is difficult, even for economists, because of the difficulty of empirical

identification from observational data.

In summary, households face substantial uncertainty about the informativeness of ex-

perts, and credentials which should help resolve this uncertainty are often of uncertain value

themselves. In this case, rank-deficiency may prevail even if one expands the set of experts

an agent observes, because each source carries with it additional uncertainty. We focus on a

particularly stark environment with no signals that explicitly convey expert quality to isolate

how rank-deficient learning might occur.

1.2 Learning

Suppose the agent has the prior that the state and quality are independent with marginal

probabilities (ωθ0, ω
q
0) ∈ (0, 1) × (0, 1), respectively, so that his joint prior over both, ω0, is

given by Table 1. Our thesis is that rank-deficient environments are potentially susceptible

to a learning bias which works as follows.

θ = A θ = B
q = H ωH0 ω

A
0 ωH0 (1− ωA0 )

q = L (1− ωH0 )ωA0 (1− ωH0 )(1− ωA0 )

Table 1: Joint prior beliefs ω0

Suppose the agent observes a sequence of signals of length n, denoted sn = (s1, s2, . . . sn),

where one signal is observed each period. When forming his joint posterior beliefs about

the quality and state, the biased decision-maker follows two steps to make inferences. First,

he applies Bayes Rule to update on his belief about the expert’s quality by combining the

signal’s content with his joint prior on expert quality and state, denoted κq(s
n). We call this
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process pre-screening. Second, he subsequently weights all observed information by using

his updated (i.e., “pre-screened”) belief about the expert’s quality κq(s
n) to form posterior

beliefs on the joint distribution of state and quality.

To illustrate the pre-screener’s updating algorithm, suppose he observes two signals, one

in each period. After observing the first signal (s1), the biased agent’s updated belief about

the expert’s quality, κq(s1), is:

κq(s1) =
ωq0
∑

θ P (s1|q, θ)ωθ0∑
q

∑
θ P (s1|q, θ)ωθ0ω

q
0

.

Using the pre-screened belief κq(s1) to form his joint posterior belief on the state and quality,

P b(q, θ|s1), yields his posterior beliefs after the first signal:

P b(q, θ|s1) =
P (s1|q, θ)κq(s1)ωθ0∑

q

∑
θ P (s1|q, θ)κq(s1)ωθ0

.

After observing the second signal (s2), the biased agent’s updated belief about the expert’s

quality, κq(s1, s2) is

κq(s1, s2) =

∑
θ P (s2|q, θ)P b(q, θ|s1)∑

q

∑
θ P (s2|q, θ)P b(q, θ|s1)

.

The agent then uses pre-screened belief κ(s1, s2) to form his joint posterior belief on the state

and quality by re-weighting all the information from the expert. The updated posterior,

P b(q, θ|s1, s2), equals:

P b(q, θ|s1, s2) =
P (s2|q, θ)P (s1|q, θ)κq(s1, s2)wθ0∑

q

∑
θ P (s2|q, θ)P (s1|q, θ)κq(s1, s2)ωθ0

.

Iterating on the biased agent’s updating process allows us to characterize his posterior beliefs.

Definition 1 (Pre-screener’s beliefs) After observing a sequence of n signals sn from an

expert, the pre-screener’s first-stage updated belief about expert quality, κq(s
n) is given

by:

κq(s
n) =

κq(s
n−1)

∑
θ

(∏n
t=1 P (st|q, θ)ωθ0

)∑
q κq(s

n−1)
∑

θ

(∏n
t=1 P (st|q, θ)ωθ0

) , (1)
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where κq(∅) = ωq0. The pre-screener’s final joint posterior on expert quality and the

state, P b(q, θ|sn), is given by:

P b(q, θ|sn) =
(
∏n

t=1 P (st|q, θ))κq(sn)ωθ0∑
q

∑
θ (
∏n

t=1 P (st|q, θ))κq(sn)ωθ0
. (2)

This definition assumes ex-ante independence of states and quality. We maintain this as-

sumption for the bulk of our analysis both for simplicity and because it isolates the how

pre-screening affects the evolution of correlated beliefs about states and quality without

assuming any correlation ex-ante. We provide a generalized definition in Appendix A.1.

The biased individual is quasi-Bayesian in that he otherwise applies Bayes Rule correctly

within each step of his updating process. However, the process is erroneous in that, by

updating on quality first to produce κq(s
n) and re-weighting all information according to

updated beliefs, it uses the same signal content multiple times. Thus, pre-screening causes

the biased agent to overinfer expert quality. In contrast, a Bayesian would use his joint prior

belief on the expert quality to form a joint posterior on the state and quality together in one

step, using only the ex-ante prior quality of the expert.

The information processing mechanism of (erroneously) using updated beliefs to form

posterior beliefs was initially conjectured by Lord, Ross and Lepper (1979) [p.2107] to ex-

plain subjects’ differential interpretation of disconfirming versus confirming evidence: “[Our

subjects’] sin lay in their readiness to use evidence already processed in a biased manner to

bolster the very theory or belief that initially ‘justified’ the processing bias.” Indeed, the

closest related work to ours is confirmation bias (Rabin and Schrag, 1999), although our

learning bias puts the role of the expert front and center.

This learning process is also analogous to the use of “empirical Bayes” methods in statis-

tics (see Carlin and Louis, 2000, for a review), where a researcher first uses the data to

estimate a prior before using the data to estimate a larger model around this prior. Several

critics have noted that “double-dipping” the data this way can lead to erroneous inference

(Gelman et al., 2003); Lindley (1969) famously noted that “there is no one less Bayesian

than an empirical Bayesian.”
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2 Disagreement

A Bayesian’s posterior belief P u(q, θ|sn) equals:

P u(q, θ|sn) =
(
∏n

t=1 P (st|q, θ))ωθ0ω
q
0∑

q

∑
θ (
∏n

t=1 P (st|q, θ))ωθ0ω
q
0

. (3)

An immediate implication of Equations 1, 2, and 3 is that the biased and Bayesian’s posterior

beliefs coincide, P b(q, θ|sn) = P u(q, θ|sn), in the canonical case when the prior on the state

is neutral (ωθ0 = 1/2) and the agent observes only one signal (n = 1), as then κq(s
n) = wq0.

Intuitively, the first step is innocuous here because the ex-ante belief is that both states are

equally likely and independent of quality, so that the pre-screener finds a single signal about

the state uninformative about the expert’s quality. That these two cases coincide in such a

simple case indicates the subtlety of the bias.

However, the pre-screener makes two conceptual errors relative to the Bayesian. First,

she uses the latest signal sn to form a belief about expert quality κq(s
n) in Equation 1 before

forming an updated belief about the state. A Bayesian does this in one step. Having formed

an erroneous opinion of expert quality, the pre-screener makes a second error by re-evaluating

the informativeness of all prior signals, as one can see by comparing Equations 2 and 3. A

Bayesian naturally lets her posterior about expert quality evolve without explicitly re-visiting

the informativeness of previous signals given her opinion about expert quality today. A pre-

screener’s posterior beliefs are also identical to the Bayesian’s for any sequence of signals if

there is no uncertainty about expert quality (i.e., pL = pH), since the pre-screening step has

no bite in this case. The overall result is that whenever there is uncertainty about expert

quality, the pre-screener over-infers expert quality, leading to biased beliefs and disagreement

with a Bayesian outside of the canonical case.1

If agents begin with the prior that both states are equally likely, the ex-ante difference

1One can ask what happens with either error without the other. For example, one can make the first
error only apply the updated belief to the latest signal by re-scaling each period’s prior belief appropriately,
so that beliefs are Markov. One can also potentially apply the second error without the first by re-weighting
all past signals by last period’s posterior belief. Generally, the first error relates to how today’s information
is mistakenly processed, while the second error relates how that mistake feeds back into beliefs. Both relate
to the general concept of over-inferring expert quality: having formed an erroneous opinion using the most
recent signal (the first error), it is intuitively natural to wish to explicitly re-evaluate all previous signals in
light of this belief (the second). Most of our results stem from the combination of the two errors.
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between the pre-screener and Bayesian’s posterior marginal beliefs about the state equals

zero. This is because beliefs about states are ex-ante symmetric around A and B and are

ex-ante independent of quality, as we show in:

Proposition 1 (No average disagreement about θ) Let a Bayesian and pre-screener

share a common prior of (ωθ0, ω
H
0 ) = (1/2, q̂) for any q̂ ∈ (0, 1), and suppose this represents

the true distribution from which nature draws (θ, q). Then E0[P
b(θ = A|sn) − P u(θ =

A|sn)] = 0, where the expectation E0 is taken over this distribution and all signal paths sn.

However, E0

[(
P b(θ = A|sn)− P u(θ = A|sn)

)2]
> 0.

However, disagreement arises along several paths. As a corollary, the expected squared

(or absolute) difference in marginal posteriors about θ is strictly positive. To characterize

disagreement, we define the following terms to simplify exposition.

Definition 2 (Information content) The information content of any sequence of sig-

nals sn is given by the number of “a” signals na and the number of “b” signals, nb.

Definition 3 (Optimism and trust) Fix the information content with na > nb without

loss of generality. Given a signal sequence sn,

1. A pre-screener is optimistic if Prb(θ = A|sn) > Pru(θ = A|sn), and pessimistic if

strictly less than (<).

2. A pre-screener is overtrusting if Prb(q = H|sn) > Pru(q = H|sn), and under-

trusting if strictly less than (<).

An important feature of disagreement is that, for any sequence of signals, whether or

not a pre-screener is optimistic or pessimistic is determined by whether or not they over- or

under-trust the expert.

Proposition 2 (Correlated disagreement) For any sn with na > nb, and for all ωθ0 ∈

(0, 1) and ωq0 ∈ (0, 1), the agent under-trusts the expert if and only if he is pessimistic about

the more likely state: P b(q = H|sn) < P u(q = H|sn) if and only if P b(θ = A|sn) < P u(θ =

A|sn). Likewise, the agent overtrusts the expert if and only if he is optimistic in beliefs about

the more likely state: P b(q = H|sn) > P u(q = H|sn) if and only if P b(θ = A|sn) > P u(θ =

A|sn).
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Intuitively, if the pre-screener under-trusts the expert, he is too skeptical about the

information content of the expert’s signals. If the signals imply that A is objectively likely,

then the pre-screener will believe A is less likely than it actually is. Conversely, if the

pre-screener thinks A is less likely than the Bayesian, it must be because he under-trusts

the expert and therefore underweights his information content. Analogously, overtrust is

positively correlated with optimism. Note that Proposition 2 does not depend on assuming

a neutral prior about the state, as it holds for any ωθ0 ∈ (0, 1).

Proposition 2 shows that disagreement about states and expert quality between a pre-

screener and Bayesian go hand in hand. However, two pre-screeners who experience the

same set of signals in different order also disagree. In Proposition 3, we compare the beliefs

of two pre-screeners who observe sequences with identical information content and have

identical priors, but may observe different orderings. The analog of Proposition 2 applies

- a pre-screener who trusts the expert more (less) must also believe the reported state is

more (less) likely, and vice versa. Disagreement arises on many paths, so that the expected

squared difference in beliefs is positive. Thus, our framework generates disagreement even

when agents share identical information content, learning biases, and priors, providing a

foundations for the origins of disagreement.

Proposition 3 (Origins of disagreement) Suppose two pre-screeners, J and M , have

identical common priors (ωθ0, ω
H
0 ) = (θ̂, q̂) for any θ̂ ∈ (0, 1) and q̂ ∈ (0, 1), and observe

signal sequences snJ and snM that have identical information content, where na + nb = n and

na > nb.

1. (Correlated disagreement) Agent J trusts the expert more than agent M does if and only

if agent L believes state A is more likely than agent M does: P b(q = H|snJ) > P b(q =

H|snM) if and only if P b(θ = A|snJ) > P b(θ = A|snM). Likewise, Agent J trusts the

expert less than agent M if and only if agent J believes state A is less likely than agent

M does: P b(q = H|snJ) < P b(q = H|snM) if and only if P b(θ = A|snJ) < P b(θ = A|snM).

2. (Squared disagreement about θ) E0

[(
P b(θ = A|snJ)− P b(θ = A|snM)

)2]
> 0, where the

expectation E0 is taken over the distribution of all signal paths sni where each path i

has identical fixed information content.
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3 How Do Trust and Disagreement Evolve?

For simplicity, we focus on disagreement between a Bayesian and a pre-screener. Proposi-

tion 1 shows that, even though there is no ex-ante disagreement about θ, ex-post there is

substantial disagreement among realized paths. One important reason this occurs is because

the pre-screener’s beliefs are path-dependent, while the Bayesian’s are not.

To see this, re-arrange Equations 1 and 2 to obtain:

P b(q, θ|sn) =
bq(s

n) (
∏n

t=1 P (st|q, θ))ωθ0ω
q
0∑

q bq(s
n)
∑

θ (
∏n

t=1 P (st|q, θ))ωθ0ω
q
0

, (4)

where bq(s
n) is defined as:

bq(s
n) ≡ (∑

θ P (s1|q, θ)ωθ0
)
×
(∑

θ P (s1|q, θ)P (s2|q, θ)ωθ0
)
× . . .×

(∑
θ P (s1|q, θ)P (s2|q, θ) . . . P (sn|q, θ)ωθ0

)
=

n∏
m=1

(∑
θ

(
m∏
t=1

P (st|q, θ)

)
ωθ0

)
, (5)

and where bq(∅) ≡ 1. In these equations, bq(s
n) reflects the cumulative effect of pre-screening

and re-weighting information by updated beliefs about quality after every signal. Equation 5

makes clear that early signals tend to have a larger influence on bq than later signals, because

each subsequent signal is evaluated relative to the preceding ones.

As an example, consider the signal sequence {a, a, b}. Swapping the order in which the

agent observes s1 and s3 generates different posteriors: P b(q, θ|{a, a, b}) 6= P b(q, θ|{b, a, a}),

because bq({a, a, b}) 6= bq({b, a, a}). Under the sequence {a, a, b}, the pre-screener over-infers

that the expert is type H after the second signal, while under {b, a, a}, he over-infers that

the expert is type L. The difference in this early part of the signal sequence colors how the

pre-screener interprets the final signal and generates path-dependence.

In contrast, a Bayesian’s posterior beliefs are not path dependent, and depend solely

on the information content of the signals. In the previous example, P u(q, θ|{a, a, b}) =

P u(q, θ|{b, a, a}). The signal sequence does not matter, because while the Bayesian also

infers that the expert is more likely to be H after the first two signals in {a, a, b}, he does

not over-infer this likelihood.
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This simple example highlights the important nature of first impressions about the expert.

Holding the information content fixed, changing the order of signals changes the level of

overtrust and under-trust with the expert. To characterize this, we show that there is a

unique sequence of signals which generates the maximal over- and under-trust for any fixed

information content:

Lemma 1 (First impressions about experts) Consider a given combination of na a sig-

nals and nb b signals, where na > nb ≥ 1. The sequence in which na consecutive a signals is

followed by nb consecutive b signals generates the maximal degree of trust in the expert. The

sequence in which nb a signals alternating with nb b signals is followed by na − nb a signals

generates the minimal degree of trust in the expert.

Lemma 1 shows that pre-screeners erroneously value early consistency. While fewer reversals

objectively suggests that the expert is high quality, the pre-screener over-infers this, leading

to overtrust. Likewise, more initial reversals suggest the expert is low quality, which the pre-

screener over-infers, leading to under-trust. Holding information content fixed, re-ordering

the signals so that all of those that favor the objectively more likely state into a consistent

string first generates the most trust in the expert, while alternating the signals early generates

the least trust.

3.1 The origins of disagreement: first impressions

As shown in Proposition 4, first impressions about the expert have a large influence on later

inferences about the state and quality. Start with a positive first impression. Even if sub-

sequent signals are uninformative, and would have by themselves generated a negative first

impression, the pre-screener may still overtrust the expert. Suppose the pre-screener observes

na > 1 consecutive a signals, creating overtrust. Any negative information about quality

conveyed by ensuing mixed signals must be sufficiently strong to unravel this overtrust, which

is stronger for larger na. How much negative information is required depends on how infor-

matively the mixed signals indicate low quality, which itself depends on pL and pH . When

pL and pH are sufficiently low, mixed signals are not as informative about lower quality be-

cause neither expert type is reliable. But if pH is high relative to pL, mixed signals strongly
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indicate low quality. Likewise, if both pL and pH are sufficiently high, mixed signals strongly

indicate lower quality precisely because both types are highly reliable. Thus, mixed signals

can be sufficiently strong evidence to unravel positive first impressions quickly in the latter

two cases.

Negative first impressions are persistent in that the pre-screener may still under-trust

the expert even if subsequent signals all identically favor one state. Positive information

about quality conveyed by ensuing identical signals must be sufficiently strong to unravel

the initial under-trust. In contrast to the case of positive first impressions, the persistence of

negative impressions is not conditional on the distribution of expert types. This is because

there is a fundamental asymmetry in the informativeness of mixed versus identical evidence:

mixed signals are relatively worse news for quality than identical signals are good news.

For example, consider the extreme case of pL = 1/2 and pH ≈ 1. Mixed signals almost

immediately rule out the possibility of a high type. In contrast, identical signals do not

imply high quality so obviously, because it is always possible for a low quality type to draw

identical signals by chance. Thus since the mixed evidence is both more informative and is

overweighted, more ensuing consistency is needed to unravel the negative first impression.

Proposition 4 (Persistent effects of first impressions) First impressions of expert qual-

ity persist in the face of contrary information about quality:

1. Positive first impressions: Suppose the agent observes na ≥ 1 consecutive a signals,

followed by m pairs of (b, a) signals: sn = (a, a, a, . . . , b, a, b, a).

(a) If na ≤ 2, the pre-screener under-trusts and is pessimistic about the most likely

state for all m ≥ 1.

(b) If na ≥ 3, then there exists some m′ > 3 and p′ ∈ (1
2
, 1) such that when m < m′

and pL < pH ≤ p′, the pre-screener overtrusts and is optimistic about the most

likely state, where m′ increases with na.

2. Negative first impressions: Suppose the agent observes nb ≥ 1 pairs of (a, b) signals,

followed by m ≥ 1 consecutive a signals, where m ≥ 1: sn = (a, b, a, b, . . . , a, a, a).

Then there exists some m∗ > 3 such that when m < m∗, the pre-screener under-trusts

and is pessimistic about the most likely state, where m∗ increases with nb.

15



Proposition 5 shows that this asymmetry between mixed and identical evidence affects

the degree to which first impressions persist in the limit. Enough mixed signals can always

unravel a positive first impression, because mixed signals are relatively bad news for quality.

In contrast, arbitrarily high levels of persistence can arise for negative first impressions,

depending on the distribution of expert types. If pL is sufficiently low and pH is sufficiently

high, the under-trust created by even the simple sequence (a, b) is very persistent: given any

m, we can always find such a combination of (pL, pH) such that the under-trust survives m

identical signals of a afterwards. The same is true if pL and pH are both very high. In both

of these cases, mixed signals are strong evidence of lower quality, which is disproportionately

overweighted by the pre-screener when initially observed, while later consistent signals are

inherently weaker evidence.

Proposition 5 (Persistent effects after short sequences) Positive first impressions can

eventually be undone, but negative first impressions may be arbitrarily persistent:

1. Positive first impressions: Suppose the agent observes na ≥ 1 consecutive a signals,

followed by m ≥ 1 pairs of (b, a) signals: sn = (a, a, a, . . . , b, a, b, a). For a given na,

there exists m̂ such that when m > m̂, the pre-screener under-trusts and is pessimistic

about the most likely state for any (pL, pH).

2. Negative first impressions: Suppose the agent observes nb ≥ 1 pairs of (a, b) signals,

followed by m ≥ 1 consecutive a signals: sn = (a, b, a, b, . . . , a, a, a). For a given nb ≥ 1

and m ≥ 1, there exists some p̌ > 1
2

and p̂ < 1 such that the pre-screener under-trusts

and is pessimistic about the most likely state if (pL, pH) satisfies one of the following

sufficient conditions:

(a) p̂ ≤ pL < pH , or

(b) pL ≤ p̌ and pH < p̂.

Because over- and under-trust are intricately linked with optimism and pessimism by

Proposition 2, Propositions 4 and 5 imply that persistent disagreement about quality filters

through to persistent disagreement about states.
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3.2 Resolving disagreement: insiders vs outsiders

First impressions create persistent disagreement. What resolves disagreement? Suppose the

pre-screener begins with a flat prior on the state, and starts with a positive first impression

of k signals, all identically a. After an additional k identical signals of all b, he will have

the correct posterior on the state, though not necessarily on the expert’s quality. Intuitively,

even the pre-screener understands that all signals originate from the same source, so he will

realize that na = nb = k is equivalent to having no new information about the state, even

if he is incorrect about the expert’s quality due to overinference. This intuition holds more

generally: given any prior on the state, ωθ0 ∈ (0, 1), observing na = nb = k signals in any

order will lead the pre-screener back to her prior on the state, which is the objectively correct

marginal posterior.

Proposition 6 (Resolving disagreement from an overtrusted expert) After observ-

ing na = k > 1 consecutive a’s, a successive sequence of nb = k consecutive b’s returns the

disagreement about the state to zero.

A more realistic situation is one in which an agent receives additional signals from another

expert, or a “second opinion.” Intuitively, a second opinion should help resolve disagreement

between two agents. However, this is not necessarily the case with a pre-screener.

Suppose the pre-screener now receives signals from two independently drawn experts,

j = 1, 2, with qualities qj. Let stj be the tth signal sent by expert j ∈ {1, 2}. Each expert

j sends a sequence of nj signals, snj . Denote expert 1 as the “inside” expert who is first

expert to report, and expert 2 as the “outside” expert. Let sn1,n2 be the sequence of observed

signals from both experts, where sn1,n2 = (sn1 , sn2). Let sn1,0 denote the sequence of signals

from expert 1 when expert 2 has not said anything yet.

In this model, the agent now has three sources of uncertainty - the quality of each

expert and the state of the world. Since the expert quality is independent and identically

distributed, ω
qj
0 = ωq0 for all j. Since the reliability of a signal t from expert j is independent

of the other expert k’s quality, note that P (stj|qj, qk, θ) = P (stj|qj, θ) for all t where j 6= k.

The biased agent’s pre-screened updating procedure extends naturally from one source to

multiple sources. First, she updates on the joint belief about the experts’ qualities, denoted
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κq1q2(s
n1,n2), by combining the signal’s content with his joint prior on expert qualities and

state. Second, she subsequently uses her updated belief about the experts’ quality to form

a joint posterior beliefs on the state and qualities. Iterating on the biased agent’s updating

process allows us to characterize his posterior beliefs when he receives any set of signals from

both experts, sn1,n2 . The pre-screener’s beliefs after observing expert 1 (but not expert 2)

are:

κq1q2(s
n1,0) =

κq1q2(s
n1−1,0)

(∑
θ (
∏n1

t=1 P (st1|q1, θ))ωθ0
)∑

q1

∑
q2
κq1q2(s

n1−1,0)
(∑

θ (
∏n1

t=1 P (st1|q1, θ))ωθ0
) , (6)

where κq1q2(∅) = ωq10 ω
q2
0 , and:

P b(q1, θ|sn1,0) =
(
∏n1

t=1 P (st1|q1, θ))κq1q2(sn1,0)ωθ0∑
q

∑
θ (
∏n1

t=1 P (st1|q1, θ))κq1q2(sn1,0)ωθ0
(7)

After observing expert 2, beliefs are:

κq1q2(s
n1,n2) =

(∑
θ

(∏n1+n2

t=n1+1 P (st2|q2, θ)
)

(
∏n1

t=1 P (st1|q1, θ))ωθ0
)
κq1q2(s

n1,n2−1)∑
q2

∑
q1

(∑
θ

(∏n1+n2

t=n1+1 P (st2|q2, θ)
)

(
∏n1

t=1 P (st1|q1, θ))ωθ0
)
κq1q2(s

n1,n2−1)
,

(8)

and:

P b(q1, q2, θ|sn1,n2) =

(∏n1+n2

t=n1+1 P (st2|q2, θ)
)

(
∏n1

t=1 P (st1|q1, θ))κq1q2(sn1,n2)ωθ0∑
q2

∑
q1

∑
θ

(∏n1+n2

t=n1+1 P (st2|q2, θ)
)

(
∏n1

t=1 P (st1|q1, θ))κq1q2(sn1,n2)ωθ0
.

(9)

As before, a Bayesian’s posterior beliefs P u(q1, q2, θ|sn1,n2) depend purely on the information

content delivered by each expert, not on the order in which signals are received from a given

expert.

We now examine the role of the second outside expert in resolving disagreement. Consider

the case where the pre-screener has a positive first impression about expert 1, starting with

k > 1 identical signals of a. Suppose expert 2 delivers k identical signals of b. Again, we

assume that the pre-screener has a neutral prior on the state.

A Bayesian who begins with a neutral prior on the state infers that the experts cannot
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both be high quality: despite both delivering consistent messages, the signals contradict, and

one expert must be wrong. However, he also understands that there is insufficient evidence

to deduce which expert is wrong. As a result, given two groups of k opposing signals, he

concludes that neither state is more likely than the other.

However, the following proposition shows that the pre-screener incorrectly trusts the first

expert more than the outsider, and therefore incorrectly believes A is more likely:

Proposition 7 (Outsider rejection) Let the agent observe k a signals from expert 1, fol-

lowed by k b signals from expert 2: sn1 = (a, . . . , a) and sn2 = (b, . . . , b) where n1 = n2 = k.

Given ωA0 = 1/2 and k > 1, the biased agent believes that state A is more likely than B,

and that the first expert is more likely to be high quality than the second expert: P b(θ =

A|sn1,n2) > 1/2 and P b(H1|sn1,n2) > P b(H2|sn1,n2).

Intuitively, the first impression creates overtrust in the first expert. So the pre-screener’s

interpretation of the second expert’s consistent messages are biased by the fact that they

contradict the overtrusted first expert, leading the pre-screener to believe too strongly in

the possibility that the second expert is low quality and the first expert is high quality.

Thus there is an initial, overly strong drop in trust in the second expert, in contrast to

the initial overtrust in the first expert. This asymmetry means that the second expert

cannot completely unravel the first expert’s messages. The positive impression from the first

expert’s consistency inflates the pre-screener’s trust in the first expert and deflates trust in

the second expert, relative to the Bayesian inference. Thus, the biased agent also realizes that

the experts are most likely to be two different qualities, but incorrectly concludes that the

first expert is more credible than the second and therefore differentially weights information

in favor of the first expert.

Proposition 8 shows that this persists in the limit: information that should lead to more

uncertainty about qualities and no change in beliefs about the state instead leads the biased

agent to be more sure of and more wrong in his beliefs along both dimensions when he

observes information from different experts sequentially.

Proposition 8 (Outsider rejection in the limit) Let the agent observe k a signals from

expert 1, followed by k b signals from expert 2: sn1 = (a, . . . , a) and sn2 = (b, . . . , b)
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where n1 = n2 = k. Given ωA0 = 1/2 and k > 1, limna→∞ P
b(θ = A|sn1,n2) = 1 and

limna→∞ P
b(H1, L2|sn1,n2) = 1.

As the two experts send an increasing equal number of opposing signals, the Bayesian

infers that either state is equally likely, and each expert’s quality is increasingly uncertain.

In contrast, the pre-screener becomes more certain that the first expert is high quality

and becomes increasingly incorrect about the true state. Intuitively, the pre-screener’s first

impression from the first expert’s increasing consistency leads to even greater overtrust in

the first expert and under-trust in the second expert.

How then can signals from outsiders resolve disagreement? The fundamental problem is

that the pre-screener over-infers expert quality at each step. This suggests that the outsider

can better resolve disagreement were she to deliver all k opposing signals in one “blast”. We

show this in Proposition 9 by extending the model to allow multiple signals to be observed

in a given period.

Proposition 9 (Overcoming outsider rejection) Consider a sequence of 2k observed

signals such that expert 1 sends the first k a signals, then expert 2 sends k b signals from

expert 2, where k > 1.

1. The pre-screener overtrusts expert 1 even more when expert 1’s signals are sent se-

quentially rather than simultaneously.

2. Expert 2’s credibility is higher when sending his signals simultaneously rather than

sequentially, but the pre-screener still believes that state A is more likely than B.

Whether or not the first expert’s identical a signals are sent simultaneously or sequentially,

the pre-screener overinfers the good news about his quality and therefore overtrusts him.

But sequential signals imply overinference that compounds upon each signal, leading to

more overtrust than observing simultaneous signals, where overinference occurs one time.

If expert 2 delivers all countervailing signals simultaneously, the pre-screener believes it

is relatively unlikely that expert 2 is low quality because he compares all k b signals against

his beliefs based on expert 1’s k signals. Even though the pre-screener overtrusts expert 1’s

quality and is optimistic about A, this is better for expert 2’s credibility than sending each
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signal sequentially, in which at each step the pre-screener would over-weight the inference

that the first expert is likely to be high quality and the second to be low quality because he

has observed a longer sequence of a’s from expert 1 than b’s from expert 2.

Propositions 7 through 9 suggest that the order in which experts present themselves,

not just information, is highly relevant for persuasion. There is an asymmetry between

“inside” and “outside” experts, with a clear first mover advantage for the inside expert

when sources consistently disagree. However, while overtrust in an expert is difficult to undo

by an outsider, it is more fragile to internal contradictions by the insider.

Moreover, expert order is highly relevant for the timing of information release to bolster

credibility. In our framework, experts are exogenous sources of signals and are not strategic.

We deliberately take this modeling approach to isolate the effect of the bias. But our

analysis suggests that an expert who wants to convince the agent of his quality should release

information slowly in order to “build up trust” if he is the first mover and has consistent

evidence. In contrast, if he is the second mover and knows that that same information is

contrary to some other first mover, he should instead release all of it simultaneously because

he has to “disprove incompetence.” Alternatively, if the second mover has preliminary

evidence against the prevailing theory, he should wait to amass more countervailing evidence

before disclosing all of it.

4 The Central Role of Experts

4.1 Confirmation bias and pre-screening

Our framework assigns a central role to expert quality for biased learning. This distinguishes

it from several other well-known biases, the closest of which is confirmation bias (Lord, Ross

and Lepper, 1979; Griffin and Tversky, 1992; Rabin and Schrag, 1999), or the tendency

for individuals to misinterpret new information as confirming existing beliefs. In Rabin

and Schrag (1999), individuals probabilistically flip signals which oppose current beliefs.

This makes “first impressions matter” because early signals over-influence how individuals

interpret subsequent signals.
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In our framework, the first impression about the expert matters, rather than the state.

This distinction helps clarify when confirmation bias arises, in two ways. First, it helps

explain why confirmation bias may be more likely to arise in more ambiguous settings (Lord,

Ross and Lepper, 1979; Griffin and Tversky, 1992), such as rank-deficient environments.

Second, it makes concrete predictions about when confirmation bias arises within the rank-

deficient framework, and when the opposite behavior occurs.

Proposition 10 considers when confirmation bias arises in response to the marginal signal.

It conducts the following thought experiment: suppose an agent has observed signals sn and

has posterior ωbn. For the sake of contrast with confirmation bias (although not required by

the proposition), assume that nA > nB, so that the weight of the existing evidence suggests

A. Does the agent over- or under-update in response to the marginal signal sn+1, compared to

a Bayesian endowed with ωbn? Broadly speaking, relative to the Bayesian, an agent in Rabin

and Schrag (1999) under-updates on the marginal signal if it contradicts current beliefs, and

correctly updates on the marginal signal if it confirms current beliefs.

For a pre-screener, what matters is not whether the signal confirms or contradicts current

beliefs about the state, but rather how it affects the pre-screener’s beliefs about the expert

quality in conjunction with the existing evidence. Suppose the marginal signal confirms

current beliefs (sn+1 = a). If trust is high (part 1a), she will over-update towards A,

consistent with confirmation bias. However, if trust is low, she will under-update even

though the signal confirms beliefs (part 1b).

Now suppose the marginal signal contradicts current beliefs (sn+1 = b) but that the

combined evidence ({sn, sn+1}) objectively still suggests A. The pre-screener will under-

update towards B if trust is high (part 1a), consistent with confirmation bias, because the

pre-screener over-values the weight of the combined evidence from the expert suggesting A.

In contrast, if trust is low, she will over-update towards B, because she assigns too low of a

weight to the combined evidence. Part 1c of the proposition provides a knife-edge case when

the combined evidence suggests neither A nor B is objectively more likely.

Intuitively, the pre-screener understands that all information comes from the same expert,

and over-infers quality in two ways: she updates her belief about quality based on sn+1 before

re-evaluating the combined evidence based on this belief. A Bayesian endowed with the same
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distorted belief also understands this, but she does not over-infer expert quality, as the effect

of how expert quality changes the value of signals works completely through Bayes’ rule.

Part 2 of the proposition clarifies this. A Bayesian updates identically irrespective of

whether she is endowed with a belief or observe a history of signals consistent with that

belief: P u[θ = A|{sn, sn+1}] = P u[θ = A|prior = ωun, {sn+1}], where ωun equals the Bayesian

posterior generated by sn. However, the effect of a new signal on a pre-screener’s beliefs

cannot be summarized simply by its effect on the prior. It requires knowledge of the entire

history of signals to compute κH(sn). This is the sense in which first impressions about

experts matter, rather than the state.

Proposition 10 (Reaction to subsequent signals) Let sn be a sequence of n observed

signals (with an arbitrary number of a’s and b’s), let sn+1 be the (n + 1)th observed signal,

and let ωbn equal the pre-screener’s joint posterior after the sequence sn. WLOG, let the

number of a’s be greater than or equal to the number of b’s in {sn, sn+1}.

1. Relative to Bayesian:

(a) P b[θ = A|{sn, sn+1}] > P u[θ = A|prior = ωbn, {sn+1}] if {sn, sn+1} has strictly

more a’s than b’s and κH({sn, sn+1}) > κH(sn),

(b) P b[θ = A|{sn, sn+1}] < P u[θ = A|prior = ωbn, {sn+1}] if {sn, sn+1} has strictly

more a’s than b’s and κH({sn, sn+1}) < κH(sn),

(c) P b[θ = A|{sn, sn+1}] = P u[θ = A|prior = ωbn, {sn+1}] if {sn, sn+1} has an equal

number of a’s and b’s or κH({sn, sn+1}) = κH(sn),

where

κH({sn, sn+1}) > κH(sn) if and only if P u(q = H|{sn, sn+1}) > ωH0

κH({sn, sn+1}) = κH(sn) if and only if P u(q = H|{sn, sn+1}) = ωH0

κH({sn, sn+1}) < κH(sn) if and only if P u(q = H|{sn, sn+1}) < ωH0 .

2. History-dependence: P b[q, θ|{sn, sn+1}] = P b[q, θ|prior = ωbn, {sn+1}] if and only if

P b[q|sn] = ωq0.
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Proposition 11 provides conditions under which pre-screeners exhibit confirmation bias

based on the relative proportion of a’s and b’s, regardless of the observed order of the signals.

That is, even if we did not know the order in which pre-screeners experienced signals, we

can still characterize cases in which they exhibit confirmation bias or the opposite.

Proposition 11 (Over- and under-trust without knowing signal order) Whether pre-

screeners exhibit confirmation bias or the opposite depends on the relative proportion of a’s

and b’s and the distribution of beliefs about quality:

1. There exists some n∗a and p̌ > 1
2

such that the agent overtrusts the expert and is

optimistic that the state is A for any sequence with fixed na, nb when nb < n∗a < na and

pL < pH ≤ p̌.

2. There exists some n̂b, p >
1
2

and p < 1 such that the agent under-trusts the expert and is

pessimistic that the state is A for any sequence with fixed na, nb when 0 ≤ n̂b < nb < na

and one of the following sufficient conditions is met:

(a) p ≤ pL < pH , or

(b) pL ≤ p and pH ≥ p.

Part 1 says that, when the proportion of a’s is much greater than the proportion of b’s,

the pre-screener will exhibit confirmation bias in that she may always be optimistic about A

relative to the Bayesian. This is true even for the sequence that generates the lowest possible

trust in the expert (when holding fixed the information content), so long as mixed signals

do not sufficiently distinguish between high and low quality (pL and pH sufficiently low). In

this case, the ensuing consistency countervails the initial under-trust generated by the most

negative first impression, generating optimism and overtrust.

Part 2 says that, when the proportion of a’s is sufficiently similar to the proportion

of b’s, the biased agent may be under-trusting and pessimistic given any observed order,

including the sequence that generates the highest degree of trust in the expert. This is true

when pL is sufficiently low and pH is sufficiently high, or when both pL and pH are high,

as mixed evidence then strongly suggests that the expert is low quality. In this case, fixing
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the information content, mixed signals overcome even the most positive first impression,

resulting in under-trust and pessimism.

Thus, our framework sheds light on when and whether or not behavior that appears to be

confirmation bias can arise in a rank-deficient environment. While existing work has focused

on signal content alone, we show that instead the distribution of content (i.e., the relative

proportions of a’s and b’s) and the distribution of expert quality (i.e., (pL, pH)) are relevant.

Our model also distinguishes how confirmation bias is affected by the source of informa-

tion, a distinction not addressed by Rabin and Schrag (1999), and addressed in Section 3.2.

Our framework predicts that confirmation bias arises when multiple sources contradict one

another, but not when a single source is self-contradictory. Finally, Rabin and Schrag (1999)

assume that the severity of confirmation bias does not depend on the strength of existing

beliefs, while our framework fully endogenizes expert trust. Together, these observations

emphasize the central role of expert trust in determining whether confirmation bias arises.

Similarly to Rabin and Schrag (1999), Fryer, Harms and Jackson (2016) consider a setting

where signals sometimes deliver an ambiguous signal of ab, which agents interpret in favor of

their prior beliefs. As a result, disagreement can arise when signals are observed in different

order, and there are many ambiguous ab signals. However, this bias is less suited to describe

situations in which signals are unambiguous, where disagreement nevertheless is often strong,

and does not address the role of sources and source quality. Several of the examples in Section

5 fit this description.

4.2 Comparison with other frameworks

We compare how our framework distinguishes our predictions from theories of biased learning

and disagreement other than confirmation bias. The unifying theme is that agents disagree

about substance because of the more fundamental disagreement about which experts are

believable, even when agents are paying attention to all experts.

This focus on experts sets us apart from several other frameworks. For example, although

one can understand a rank-deficient environments as one where there is model uncertainty

(Gilboa and Schmeidler, 1989, 1993) about the informativeness of signals, understanding it

in the context of experts delivers several new insights. This focus also distinguishes us from
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environments which require heterogeneous priors (e.g., Acemoglu, Chernozhukov and Yildiz,

2016), private signals, or other distortions such as anticipatory utility (Brunnermeier and

Parker, 2005; Brunnermeier, Gollier and Parker, 2007) to generate disagreement. Our frame-

work generates disagreement even when agents share the same bias, information content, and

priors.

4.2.1 Overconfidence

A large strand of literature studies how agents may misinterpret signals because they mis-

perceive their accuracy, or equivalently how correlated signals are with the underlying state,

often due to overconfidence. Scheinkman and Xiong (2003) provide a review of a portion of

this literature and argue that disagreement arises because agents “agree to disagree” about

how correlated signals are with the state. Ortoleva and Snowberg (2015) and Enke and

Zimmermann (2016) consider correlation neglect, where agents under-estimate correlation

among signals. Disagreement requires heterogeneity in the information agents observe or

in the degree of correlation neglect, whereas agents in our environment can share the same

information content and bias.

Despite the importance of overconfidence, its source is often less clear. In our framework,

the correlation of signals with the underlying state is precisely what agents are trying to

learn. The behavior following positive and negative first impressions resembles over- and

under-confidence endogenously. The most related paper that endogenizes overconfidence

is Gervais and Odean (2001), where successful traders are overconfident in their financial

trading skills due to a form of self-attribution bias. In contrast, our pre-screener is a passive

observer who learns about an exogenous state from experts.

4.2.2 Inattention

A growing literature considers individuals who are boundedly rational and have limited

ability to process information (Sims, 2003, 2006; Gabaix, Laibson, Moloche and Weinberg,

2006). Schwartzstein (2014) considers a setting where agents must learn to selectively pay

attention to variables based on their predictive ability. Agents may fail persistently fail to

incorporate information from signals they mistakenly perceive as inaccurate. As a result,
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they may also over-infer the informativeness of the signals to which they pay attention, a form

of omitted variables bias. Wilson (2014) shows that confirmation bias can arise when agents

have bounded memory and can forget the realized history of signals, and therefore might

also ignore mildly informative signals. Kominers, Mu and Peysakhovich (2016) assume that

agents trade off attention costs and having more accurate beliefs. After observing signals,

agents decide whether or not to pay a cost and internalize them, leading them to screen out

uninformative signals with low decision value.2 Since contrary signals have particularly high

value in this framework, agents do not exhibit confirmation bias.

Fundamentally, inattention biases revolve around agents not paying enough attention

to certain signals. The central feature of our framework is that agents disagree about the

credibility of signals to which they all pay attention. This is an important distinction which

we argue captures the essence of several important real-world disagreements, as we discuss

below in Section 5.

4.2.3 Media

The literature has also focused on the role of information supply in disagreement and po-

larization, by showing that the media will slant news to build reputation (Gentzkow and

Shapiro, 2011) or to cater to consumers’ preferences for beliefs (Mullainathan and Shleifer,

2005). In these frameworks, heterogeneous priors drive why the media endogenously re-

spond with biased information even when covering the same market of consumers. Rather

than take priors these as exogenous, however, we ask how heterogeneous priors arise even

if sources are unbiased. Our model suggests that people may perceive media to be more or

less credible than they actually are, due to the difficulty of simultaneously learning about

source quality and substance. Our focus on biased learning about quality also differentiates

us from the large literature on strategic experts more generally (e.g., Hong, Scheinkman and

Xiong, 2008).

2Kominers et al. (2016) use the term “pre-screen” at one point to describe this. The overlap in terminology
is purely accidental. In our framework, pre-screening refers to evaluation of expert quality based on current
beliefs.
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5 Discussion

We argue that our theme of disagreement about experts describes essence of several real-

world disagreements over several economic questions as well as other important debates. The

literature has in general recognized that disagreement is important for welfare (Brunnermeier,

Simsek and Xiong, 2013).

Consider the example of disagreement about economics from Section 1. The topic of

whether government stimulus promotes growth generates disagreement among both economists

(e.g., Krugman, 2009; Cochrane, 2009; The Economist Magazine, 2013) and the public

(Sapienza and Zingales, 2013). Regardless of who is right, disagreement amongst the public

is likely correlated with which economists they believe are credible. For example, opponents

and proponents of stimulus on the editorial pages of the Wall Street Journal and New York

Times routinely disagree about the credibility of the opposing side’s economists, despite

obviously paying attention to what each others’ experts say (e.g., Moore, 2011; New York

Times, 2014).

Indeed, inattention is unlikely to be a good description of several hot-button economic

issues where two sides disagree strongly. The opposition to free trade is quite plausibly due

to the belief that economists don’t know what they are talking about, rather than simply

not noticing what experts have said. Sapienza and Zingales (2013) report that providing

economists’ opinion that NAFTA increased welfare to the surveyed households changed their

opinions very little about its merits, even though surveyors actively told households what

experts thought, mitigating inattention. The widespread support among economists for free

trade suggests these disagreements are also not well-described by the selective interpretation

of ambiguous signals as in Fryer, Harms and Jackson (2016), as there is little ambiguity about

the signal. Similarly, one-hundred percent of experts surveyed in Sapienza and Zingales

(2013) thought stock prices were hard to predict; yet when told experts’ opinions on the

topic, survey respondents if anything thought prices were easier to predict.

Our interpretation is simply that trust in economists is low. In areas where economists

strongly disagree amongst themselves (stimulus spending), what is legitimate open scientific

debate may nevertheless lead to polarized opinions among different factions of the public due
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to differences in the order in which they were exposed to these experts. Put more simply,

learning about a topic early from one expert (say, a teacher or mentor) tends to overly color

opinions about the credibility of other experts encountered down the line. In other areas

such as free trade where economists agree more, households may “be their own expert” and

trust their own experiences over that of outside experts, an interpretation of the model we

discuss in the conclusion. Moreover, a lay person may be more open to the anti-trade views

of non-economist figures exactly because distrust how much valuable expertise economists

actually provide.

Notably, economics also naturally lends itself to exactly the type of environment where

learning is difficult because of rank-deficiency. Macroeconomics in particular is a technical

subject where repeated experimentation to determine expert credibility is difficult as history

does not repeat in a controlled environment. In finance, investors often rely on advice from

financial analysts whose expertise can be difficult to ascertain. Jia, Wang and Xiong (2016)

find that local investors react more to recommendations of local analysts and foreign investors

react more to those of foreign analysts, consistent with Proposition 2 and 3. These types of

environments are more likely to generate our bias.

The question of whether humans contribute significantly to climate change is another

example where rank-deficient learning may generate disagreement. Disagreement between

so-called climate “deniers” and supporters of the proposition is largely about the credibility

of the consensus among the scientific community, which supports the proposition, versus

a small minority of scientists who do not support the consensus. In this setting, repeated

experimentation to verify which experts are more credible is difficult, almost by definition.

Inattention would suggest that climate deniers have simply not paid attention to the con-

sensus. More plausibly, climate deniers have paid attention to what mainstream scientists

say, yet actively deny their credibility, because they believe an alternative set of “experts,”

or their own intuition, as our model suggests. The fact that the consensus is so strong may

itself contribute to the disagreement (Proposition 7).

A final example of an area prone to bias due to rank-deficient learning is medical advice,

such as the “debate” over childhood vaccination. The unknown true state is whether that

vaccination is safe for a child, but a parent does not know how well her doctor’s advice
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correlates with the true state. There are limited opportunities for repeated experimentation

to learn about the doctor’s quality, and the credentials are difficult to evaluate. Unlike a

medical professional, a lay person is unlikely to understand the difference between medical

training and holistic or alternative medicine, let alone medical degrees from various schools

in various specialties.

In 1998, Andrew Wakefield and co-authors held a press conference describing the results

of a study they would publish later that year linking the measles vaccination with autism

(Wakefield et al., 1998). Although subsequent research (by others) discredited this research,

leading the journal to retract the article, the idea has lingered. The role of expert qual-

ity uncertainty is laid bare by the observation that Jennifer McCarthy Wahlberg (“Jenny

McCarthy”) - an entertainer with no discernible objective expertise in medical science -

became an influential figure in the ensuing anti-vaccination movement. Indeed, our model

is consistent with the evidence that rumors and misinformation are stubbornly resistant to

fact-checking or debunking by outsiders (Berinsky, 2012; Nyhan and Reifler, 2010). Instead,

consistent with our model, notable exceptions in which corrections to initial misinformation

are successful include retractions from the original source (Simonsohn, 2011) or from sources

whose credibility is likely highly correlated with the original source (Berinsky, 2012).

6 Conclusion

We argue that learning in rank-deficient environments learning is important for understand-

ing the origins of disagreement. If individuals tend to over-infer expert quality, they will

disagree with each other about substance because they endogenously disagree about which

signals are credible.

This helps us understand why people strongly disagree across several fields ranging across

economics, climate science, and medicine, often despite sharing common information. We

can also broaden the interpretation of the model to consider how experiences affect beliefs.

Although we interpret experts as external sources of signals, an alternative interpretation

is that individuals have noisy experiences that inform them about the unknown true state.

They learn both about about how accurately their experiences reflect the true state as well
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as the state itself. Here, the “unknown expert quality” is the reliability of the experience-

generating process, which varies by individual.

Malmendier and Nagel (2011) find that experiences affect whether individuals trust the

stock market, potentially through a beliefs channel. For example, individuals born in the

Depression tend to have lower stock market participation than younger generations born

who more recently experienced a boom. Koudijs and Voth (2016) also find that personal

experiences affect risk-taking. Malmendier and Nagel (2016) find that differences in experi-

enced inflation explain disagreement about inflation. Our model suggests that people may

endogenously trust their own experiences more or less based on the consistency of those

experiences, and that this may affect their trust in external sources of information. We leave

a deeper exploration of this speculative link for future research.
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A Appendix

A.1 Generalized Pre-Screening

Let ωqθ0 be the prior belief on quality q and state θ, where
∑

q

∑
θ ω

qθ
0 = 1.

When the prior beliefs about the quality and state can potentially be correlated, we cannot

apply the pre-screened belief κ(sn), which is a marginal belief on quality, directly to the second

stage in place of a prior belief on quality because the joint priors on quality and state are not

independent. Therefore, the generalized pre-screening algorithm requires the second stage to apply

Bayes’ Rule to a belief whose marginal prior about quality sums to κ(sn). Thus, in the second stage,

we assume that the agent applies the weighted pre-screened belief κq(s
n)

(
ωqθ0∑
θ ω

qθ
0

)
in place of the

existing joint prior. If the prior beliefs about quality and state are independent (ωqθ0 = ωq0ω
θ
0 for all

q and θ), then Equations (11), (12), and (13) reduce to Equations (1), (4), and (5), respectively.

To illustrate the pre-screener’s updating algorithm, suppose he observes two signals, one in each

period. After observing the first signal (s1), the biased agent’s updated belief about the expert’s

quality, κq(s1), is:

κq(s1) =

∑
θ P (s1|q, θ)ωqθ0∑

q

∑
θ

∑
θ P (s1|q, θ)ωqθ0

.

Using the weighted pre-screened belief κq(s1)

(
ωqθ0∑
θ ω

qθ
0

)
to form his joint posterior belief on the

state and quality, P b(q, θ|s1), yields his posterior beliefs after the first signal:

P b(q, θ|s1) =

P (s1|q, θ)κq(s1)
(

ωqθ0∑
θ ω

qθ
0

)
∑

q

∑
θ P (s1|q, θ)κq(s1)

(
ωqθ0∑
θ ω

qθ
0

) .
After observing the second signal (s2), the biased agent’s updated belief about the expert’s quality,

κq(s1, s2) is

κq(s1, s2) =

∑
θ P (s2|q, θ)P b(q, θ|s1)∑

q

∑
θ P (s2|q, θ)P b(q, θ|s1)

.

Using the weighted pre-screened belief κ(s1, s2)

(
ωqθ0∑
θ ω

qθ
0

)
to form his joint posterior belief on the

state and quality, P b(q, θ|s1, s2), yields:

P b(q, θ|s1, s2) =

P (s2|q, θ)P (s1|q, θ)κq(s1, s2)
(

ωqθ0∑
θ ω

qθ
0

)
∑

q

∑
θ P (s2|q, θ)P (s1|q, θ)κq(s1, s2)

(
ωqθ0∑
θ ω

qθ
0

) .
Iterating on the biased agent’s updating process allows us to characterize his posterior beliefs:
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Applying the generalized pre-screening procedure described above to prior beliefs ωqθ0 yields:

κq(s
n) =

(
κq(sn−1)∑

θ ω
qθ
0

)∑
θ

(∏n
t=1 P (st|q, θ)ωqθ0

)
∑

q

(
κq(sn−1)∑

θ ω
qθ
0

)∑
θ

(∏n
t=1 P (st|q, θ)ωqθ0

) , (10)

where κq(∅) =
∑

θ ω
qθ
0 .

P b(q, θ|sn) =

(
∏n
t=1 P (st|q, θ))

(
κq(sn)∑
θ ω

qθ
0

)
ωqθ0∑

q

∑
θ (
∏n
t=1 P (st|q, θ))

(
κq(sn)∑
θ ω

qθ
0

)
ωqθ0

(11)

=

bqθ(s
n)

(
1∑
θ ω

qθ
0

)n
(
∏n
t=1 P (st|q, θ))ωqθ0∑

q

(
1∑
θ ω

qθ
0

)n∑
θ bqθ(s

n) (
∏n
t=1 P (st|q, θ))ωqθ0

. (12)

where bqθ(s
n) is given by:

bqθ(s
n) =

(∑
θ P (s1|q, θ)ωqθ0

)
×
(∑

θ P (s1|q, θ)P (s2|q, θ)ωqθ0
)
× . . .×

(∑
θ P (s1|q, θ)P (s2|q, θ) . . . P (sn|q, θ)ωqθ0

)
=

n∏
m=1

(∑
θ

(
m∏
t=1

P (st|q, θ)

)
ωqθ0

)
, (13)

A.2 Proof of Proposition 1

Define D(sn) = P b(θ = A|sn) − P (θ = A|sn) as the ex-post realized disagreement after any

signal path. The proposition is that E0[D(sn)] = 0, where the expectation E0 is taken by the

econometrician over the common prior of states and quality, which we assume reflects the true ex

ante distribution of (θ, q). Note that the common prior on states and quality generate a common

distribution on the probability of any given signal path.

Divide the set of all possible signal paths {sn} into two groups: one group {gn} where the first

signal is a and another group {hn} where the first signal is b. Because there are two states, there

are the same number of signal paths in each group, and the union of these two groups equals {sn}.
It is clear that taking any signal path gn and flipping all the a’s to b and b’s to a defines a

one-to-one and onto mapping F of {gn} into {hn}. This mapping has two properties:

1. P (gn|q, θ) = P (F (gn)|q,−θ) ∀(q, θ), and

2. P b(θ = A|F (gn))− P (θ = A|F (gn)) = −
(
P b(θ = A|gn)− P (θ = A|gn)

)
∀gn,

where −θ is the opposite state as θ. The first property says that the probability of the flipped
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signal sequence is the same as the original signal sequence, once the true state is flipped. The

second property can be re-written as D(F (gn)) = −D(gn) and says that disagreement under the

flipped signal path equals the opposite disagreement under the original signal path. Intuitively,

these properties follow because, starting from a neutral prior about the state which is independent

from quality, the model is symmetric in A and B irrespective of the true expert type.

More precisely, the first property follows because:

P (gn|q, A) = pn
g
a
q (1− pq)n

g
b

= p
nhb
q (1− pq)n

h
a

= P (F (gn))|q,B),

where ngθ, n
h
θ represent the number of times a signal indicating state θ appears in signal sequence

gn and F (gn), respectively, and nga = nhb , n
g
b = nha by construction. Similarly, P (gn|q,B) =

P (F (gn)|q, A).

To prove the second property, note that, for the Bayesian, P (θ = A|gn) = P (θ = B|F (gn)) =

1−P (θ = A|F (gn)). The first equality follows from applying the first property and ωA0 = ωB0 = 0.5

to Equation 4, noting that a Bayesian has constant bq(F (gn)).

Now consider the biased individual. Given any sequence gn, let gi and hi be the i-th elements of

gn and F (gn), respectively. Clearly, hi is the flip of gi, and P (gi|q, θ) = P (hi|q,−θ), as both equal pq

if gi = θ and 1−pq if gi = −θ. Therefore,
∑

θ (
∏m
i=1 P (gi|q, θ))ωθ0 =

∑
θ (
∏m
i=1 P (hi|q, θ))ωθ0 for any

m due to the summation over both values of θ. Applying this to Equation 5, bq(g
n) = bq(F (gn)).

From Equation 4, P b(θ = A|gn) = P b(θ = B|F (gn)) = 1 − P b(θ = A|F (gn)), and the second

property follows.

We claim that E0[D(sn)|q = q] = 0 for any q ∈ (0, 1). To be clear, this conditional expecta-

tion is taken over the econometrician’s information set, but the true q remains unknown to the

Bayesian and pre-screener. The proposition then follows due to the tower property of conditional

expectations.

Let q be given. Observe that:

E[D(sn)|q = q] = ωA0

∑
{gn}

P (gn|q,A)D(gn) +
∑
{hn}

P (hn|q, A)D(hn)


+ ωB0

∑
{gn}

P (gn|q,B)D(gn) +
∑
{hn}

P (hn|q,B)D(hn)

 .
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The two properties, along the fact that F is one-to-one and onto, imply:∑
{hn}

P (hn|q, A)D(hn) = −
∑
{gn}

P (gn|q,B)D(gn)

∑
{hn}

P (hn|q,B)D(hn) = −
∑
{gn}

P (gn|q, A)D(gn).

With ωA0 = ωB0 , the claim follows. The corollary V ar0[D(sn)] > 0 follows because D(F (gn))2 =

D(gn)2.

A.3 Proof of Proposition 2

Lemma 2 For all ωθ0 ∈ (0, 1) and ωq0 ∈ (0, 1), κH(sn) < wH0 if and only if bH(sn) < bL(sn).

Likewise, κH(sn) > wH0 if and only if bH(sn) > bL(sn). κH(sn) = wH0 if and only if bH(sn) = bL(sn).

Proof. For any given sequence of signals sn = (s1, s2, . . . , sn), κq(s
n) can be re-written as

κq(s
n) =

bq(s
n−1)ωq0

∑
θ (
∏n
t=1 P (st|q, θ))ωθ0∑

q bq(s
n−1)

∑
θ (
∏n
t=1 P (sn|q, θ))ωθ0ω

q
0

=

(∏n−1
m=1

(∑
θ (
∏m
t=1 P (st|q, θ))ωθ0

))
ωq0
∑

θ (
∏n
t=1 P (st|q, θ))ωθ0∑

q

(∏n−1
m=1

(∑
θ (
∏m
t=1 P (st|q, θ))ωθ0

))∑
θ (
∏n
t=1 P (st|q, θ))ωθ0ω

q
0

=
bq(s

n)ωq0∑
q bq(s

n)ωq0
.

Thus, the statement is shown for sn = (s1, s2, . . . , st).
3

From Equation (4), the biased agent’s posterior that the expert is high quality is lower than

the Bayesian’s if and only if κH(sn) < wH0 . Lemma 2 shows that this is only the case if and only if

bH(sn) < bL(sn). Thus, bH(sn) < bL(sn) if and only if P b(q = H|sn) < P u(q = H|sn).

Consider P b(θ = A|sn) < P u(θ = A|sn):

P b(θ = A|sn) < P u(θ = A|sn)

ωA0
∑

q bq(s
n) (
∏n
t=1 P (st|q,A))ωq0∑

q bq(s
n)
∑

θ (
∏n
t=1 P (st|q, θ))ωθ0ω

q
0

<
ωA0
∑

q (
∏n
t=1 P (st|q, A))ωq0∑

q

∑
θ (
∏n
t=1 P (st|q, θ))ωθ0ω

q
0

,

3If the signals are observed simultaneously (e.g., in period 1), then the above argument applies analogously,
where bq(st−1) = bq(∅) = 1 instead. Thus, κH(sn) < wH

0 implies bH(sn) < bL(sn) and vice versa. Likewise
when the inequality reverses or when the equality holds.
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which is true if and only if

0 < ω
A
0 (1− ωA

0 )ω
H
0 (1− ωH

0 )(bL(s
n
)− bH (s

n
))

((
n∏

t=1

P (st|H,A)

)(
n∏

t=1

P (st|L,B)

)
−
(

n∏
t=1

P (st|H,B)

)(
n∏

t=1

P (st|L,A)

))

0 < ω
A
0 (1− ωA

0 )ω
H
0 (1− ωH

0 )(bL(s
n
)− bH (s

n
))
(
p
na
H

(1− pH )
nbp

nb
L

(1− pL)
na − pnb

H
(1− pH )

nap
na
L

(1− pL)
n
b

)
0 < ω

A
0 (1− ωA

0 )ω
H
0 (1− ωH

0 )(bL(s
n
)− bH (s

n
))
(
p
na
H

(1− pH )
nbp

nb
L

(1− pL)
na − pnb

H
(1− pH )

nap
na
L

(1− pL)
n
b

)
0 < ω

A
0 (1− ωA

0 )ω
H
0 (1− ωH

0 )(bL(s
n
)− bH (s

n
)) (pH (1− pH )pL(1− pL))

nb
(
(pH (1− pL))

na−nb − ((1− pH )pL)
na−nb

)
,

which is true when na > nb since pH > pL. Clearly, P u(A|sn) > 1
2 only if na > nb, so A is

the (objectively) more likely state. Note that if na = nb, then P b(θ = A|sn) = Pru(θ = A|sn)

regardless of the biased agent’s beliefs on the expert’s quality. Thus, for any na > nb set of signals

and for all ωθ0 ∈ (0, 1), under-trust in expert quality implies pessimism in beliefs about the more

likely state: If P b(q = H|sn) < P u(q = H|sn), then P b(θ = A|sn) < P u(θ = A|sn). Likewise,

P b(θ = A|sn) < P u(θ = A|sn) if and only if bH(sn) < bL(sn) when na > nb, which implies that

P b(q = H|sn) < P u(q = H|sn). Reversing the inequalities yields that overtrust in expert quality

implies optimism in beliefs about the more likely state, and vice versa.

A.4 Proof of Proposition 3

Let nsa be the number of a signals and nsb be the number of b signals in sequence s. Consider

any two sequences xn and yn with identical information content (nxa = nya and nxb = nyb ). Let bsq

correspond to sequence s ∈ {xn,yn} and q ∈ {L,H}. Without loss of generality, let na > nb.

1. Correlated disagreement

Proof. Let snJ = xn and snM = yn. By direct comparison of the posteriors on expert quality, a

necessary and sufficient condition for sequence x to generate more trust than sequence y (i.e.,

P b(q = H|xn) > P b(q = H|yn)) is bxHb
y
L − bxLb

y
H > 0. By direct comparison of the posteriors

on the most likely state (which is A because na > nb), a necessary and sufficient condition for

the belief in A to be greater after observing sequence x than after observing sequence y (i.e.,

P b(θ = A|xn) > P b(θ = A|yn)) is bxHb
y
L−bxLb

y
H > 0. Since the same condition bxHb

y
L−bxLb

y
H > 0

is required for both P b(q = H|xn) > P b(q = H|yn) and P b(θ = A|xn) > P b(θ = A|yn), then

disagreement between biased agents is correlated. That is, P b(q = H|xn) > P b(q = H|yn)

if and only if P b(θ = A|xn) > P b(θ = A|yn). Clearly reversing all the inequalities applies as

well.

2. Expected disagreement

Proof. Let snJ = xn and snM = yn. It is sufficient to show that P b(θ = A|xn) 6= P b(θ = A|yn)

for at least two sequences xn and yn with identical information content (nxa = nya = na and

nxb = nyb = nb). Consider two sequences such that na ≥ nb, where the first j = na + nb
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signals are the same and n − 2 ≥ j ≥ 1, the two sequences differ in the j + 1 and j + 2

signals, and then all subsequent signals are identical (i.e., terms j + 3 through n). Let

xj+1 = a, xj+2 = b, yj+1 = b, and yj+2 = a. As already shown in the proof of Lemma 1,

P b(q = H|xn) > P b(q = H|yn) when na > nb. As shown in the preceding proof of correlated

disagreement between two prescreeners, this implies that P b(θ = A|xn) > P b(θ = A|yn).

Thus, P b(θ = A|xn) 6= P b(θ = A|yn) for at least two sequences xn and yn with identical

information content (nxa = nya = na and nxb = nyb = nb).

A.5 Proof of Lemma 1

Let nsa be the number of a signals and nsb be the number of b signals in sequence s. Given any two

sequences xn and yn with identical information content (nxa = nya = na and nxb = nyb = nb), by direct

comparison of the posteriors on expert quality, a necessary and sufficient condition for sequence x

to generate more trust than sequence y (i.e., P b(q = H|xn) > P b(q = H|yn)) is bxHb
y
L − bxLb

y
H > 0,

where bsq corresponds to sequence s ∈ {xn,yn} and q ∈ {L,H}. Consider two sequences such that

na ≥ nb, where the first j = na + nb signals are the same and n − 2 ≥ j ≥ 1, the two sequences

differ in the j + 1 and j + 2 signals, and then all subsequent signals are identical (i.e., terms j + 3

through n). Let xj+1 = a, xj+2 = b, yj+1 = b, and yj+2 = a. (For example, sequence 1 could be

aababaa and sequence 2 could be aabbaaa - here j = 3, na = 2, nb = 1.) Then bxHb
y
L − bxLb

y
H > 0

whenever na > nb and bxHb
y
L−bxLb

y
H = 0 whenever na = nb. To see this, note that, given the general

expression for bsq, all of the terms are identical for bxq and byq except term j + 1. This implies that

when ωθ0 = 0.5, then bxHb
y
L − bxLb

y
H ≥ 0 if

(
pna+1
H (1− pH)nb + (1− pH)na+1pnbH

) (
pnaL (1− pL)nb+1 + (1− pL)napnb+1

L

)
−(

pna+1
L (1− pL)nb + (1− pL)na+1pnbL

) (
pnaH (1− pH)nb+1 + (1− pH)napnb+1

H

)
≥ 0

(pH − pL)
(
pnaH (1− pH)nbpnaL (1− pL)nb − pnbH (1− pH)napnbL (1− pL)na

)
+ (pHpL − (1− pH)(1− pL))

(
pnaH (1− pH)nbpnbL (1− pL)na − pnbH (1− pH)napnaL (1− pL)nb

)
≥ 0.

We can verify that both terms are positive when na > nb and zero when na = nb. (Note that we

can easily verify that this order effect holds for any ωθ0 ≥ 0.5.) Thus, P b(H|xn) > P b(H|yn) when

na > nb.

Using Proposition 1, we can basically iteratively apply this fact to order sequences of fixed

composition in decreasing trust by starting with the sequence with the least reversals (all a’s

followed by all b’s), and iteratively switching the first b and last a to generate sequences where the

first b moves forward. E.g., aaaabb generates more trust than aaabab, which generates more trust

than aabaab which generates more trust than abaaab. Then, aaabba generates more trust than

aababa than abaaba, where aaabab generates more trust than aaabba and abaaab generates more
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trust than abaaba. We can keep doing this (and applying Proposition 1) to establish that aaaabb

generates the most trust and ababaa generates the least trust.

[To be finished]

A.6 Proof of Proposition 4

1. Positive first impressions

Proof. Suppose the agent observes na ≥ 1 consecutive a signals, followed by m pairs of (b, a)

signals: sn = (a, a, a, . . . , b, a, b, a). This sequence generates:

bq(s
n) =

(
1

2

)na+m
[pq(1− pq)]m(m+1)

(
[pna−1q + (1− pq)na−1][pnaq + (1− pq)na ]

)m( na∏
i=1

(piq + (1− pq)i)

)
.

(14)

Further,

∂bq(sn)

∂pq
=

(
1

2

)na+m

[pq(1− pq)]m(m+1)
(
[pna−1
q + (1− pq)na−1][pna

q + (1− pq)na ]
)m−1

(
na∏
i=1

(piq(1− pq)i)
)

(
mpq(1− pq)

(
(na − 1)(pna−2

q − (1− pq)na−2)(pna
q + (1− pq)na ) + na(p

na−1
q + (1− pq)na−1)(pna−1

q − (1− pq)na−1)
)

+(pna−1
q + (1− pq)na−1)(pna

q + (1− pq)na )

(
m(m+ 1)(1− 2pq) + pq(1− pq)

na∑
i=1

i(pi−1
q − (1− pq)i−1)

piq + (1− pq)i

))
.

(15)

Since bq is symmetric about pq = 1/2, we focus on the case of pq ≥ 1/2 but the

conclusion extends to 1/2 > pL > 1 − pH . From Equations (14) and (15), we can see

that

• ∂
∂pq

(bq(s
n)) = 0 when pq ∈ {12 , 1},

• bq(sn)) > 0 when pq = 1
2
,

• bq(sn)) = 0 when pq = 1.

Moreover, using the fact that bq(s
n) = 0 when pq = 1/2, then

∂2bq(s
n)

∂p2q

∣∣∣pq= 1
2

= bq(s
n)[pq(1− pq)(pnaq + (1− pq)na)(pna−1q + (1− pq)na−1)]−1(

1

2

)2na−3(
2m[(na − 1)2 − (m+ 1)] +

1

3
na(na − 1)(na + 1)

)
(16)

Note that the last term of Equation (16) increases in na for all na > 1, and that it is
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positive for all m > m′ where

2m′[(na − 1)2 − (m′ + 1)] +
1

3
na(na − 1)(na + 1) = 0.

By direct computation, we can see that ∂bq
∂pq

< 0 for all m ≥ 1 and pq ∈ (1/2, 1) for

na ∈ {1, 2}. This implies that the agent under-trusts and is pessimistic about the most

likely state for all m ≥ 1 when na ≤ 2.

Consider the case of na ≥ 3. Since bq(s
n) > 0 when pq = 1/2, bq(s

n) = 0 when pq = 1,
∂bq(sn)

∂pq

∣∣
pq=1/2 = 0, and bq(s

n) ≥ 0 for any pq ∈ [0, 1], then there exists some threshold

1
2
< p′ < 1 such that ∂bq(sn)

∂pq
> 0 for all pq < p′ when ∂2bq(sn)

∂p2q

∣∣∣pq= 1
2
> 0, which holds

when m < m′. This implies that the agent overtrusts and is optimistic about the most

likely state when m < m′ and pL < pH ≤ p′. Since the last term of Equation (16)

increases in na for all na > 1 and ∂2bq(sn)

∂p2q

∣∣∣pq= 1
2
> 0 for m ≤ 3, then m′ > 3 for all

na ≥ 3.

2. Negative first impressions

Proof. Suppose the agent observes nb ≥ 1 pairs of (a, b) signals, followed by m ≥ 1 consec-

utive a signals, where m ≥ 1: sn = (a, b, a, b, . . . , a, a, a). This sequence generates:

bq(s
n) =

(
1

2

)nb
(pq(1− pq))n

2
b

(
m∏
i=1

1

2

(
pi+nbq (1− pq)nb + pnbq (1− pq)i+nb

))
(17)

=

(
1

2

)nb+m
(pq(1− pq))nb(nb+m)

(
m∏
i=1

(piq + (1− pq)i)

)
. (18)

Further,

∂bq(sn)

∂pq
=

(
1

2

)nb+m

(pq(1− pq))nb(nb+m)−1

(
m∏
i=1

(piq + (1− pq)i)
)(

nb(nb +m)(1− 2pq) + pq(1− pq)
m∑
i=1

(
i(pi−1

q − (1− pq)i−1

piq + (1− pq)i

))
(19)

Since bq is symmetric about pq = 1/2, we focus on the case of pq ≥ 1/2 but the

conclusion extends to 1/2 > pL > 1 − pH . Evaluating Equation 20 when m = 1

(i.e., na = nb + 1 where nb ≥ 1), ∂bq(sn)

∂pq
|m=1 < 0. Thus, by Proposition 2, the pre-

screener under-trusts and is pessimistic about the mostly likely state, A, when he

observes a sequence sn = (a, b, a, b, . . . , a, b, a) where na = nb = 1. Further, evaluating

Equation 20 when m = 2 (i.e., na = nb + 2 where nb ≥ 1), ∂bq(sn)

∂pq
|m=1 < 0. Thus, the

pre-screener still under-trusts and is pessimistic about the most likely state, A, when

sn = (a, b, a, b, . . . , a, a) where na = nb + 2 for all nb ≥ 1. Further, evaluating Equation
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20 when m = 3 (i.e., na = nb + 3 where nb ≥ 1), ∂bq(sn)

∂pq
|m=3 ≤ 0 with equality at

pq = 1
2

only if nb = 1. Since the third term of Equation (20) is decreasing in nb for all

pq ∈ (1
2
, 1], then ∂bq(sn)

∂pq
|m=3 < 0 for all nb > 1. Thus, the pre-screener still under-trusts

and is pessimistic about the most likely state, A, when sn = (a, b, a, b, . . . , a, a) where

na = nb + 3 for all nb ≥ 1. Therefore, there exists some m∗ > 3 such that ∂bq(sn)

∂pq
< 0

for all m < m∗, which implies that the pre-screener will under-trust for m < m∗.

Moreover, since the third term of Equation (20) is decreasing in nb for all pq ∈ (1
2
, 1],

then m∗ is increasing in nb.

A.7 Proof of Proposition 5

1. Proof. Since bq is symmetric about pq = 1/2, we focus on the case of pq ≥ 1/2 but the

conclusion extends to 1/2 > pL > 1− pH . Note that Equation (15) can be re-written as

∂bq(s
n)

∂pq
=

(
1

2

)na+m
m[pq(1− pq)]m(m+1)

(
[pna−1q + (1− pq)na−1][pnaq + (1− pq)na ]

)m−1( na∏
i=1

(piq(1− pq)i)

)
(Z),

where ∂bq(sn)

∂pq
is negative whenever Z is negative and pq ∈ (1

2
, 1), and

Z = pq(1− pq)
(
(na − 1)(pna−2

q − (1− pq)na−2)(pna
q + (1− pq)na ) + na(p

na−1
q + (1− pq)na−1)(pna−1

q − (1− pq)na−1)
)

+ (pna−1
q + (1− pq)na−1)(pna

q + (1− pq)na )

(
(m+ 1)(1− 2pq) +

(
1

m

)
pq(1− pq)

na∑
i=1

i(pi−1
q − (1− pq)i−1)

piq + (1− pq)i

)
.

For given na, Z is more than linearly decreasing in m. Thus, there exists m̂, defined

by Z(m̂) = 0, such that ∂bq(sn)

∂pq
< 0 for all pq ∈ (1

2
, 1) when m > m̂. Thus for any

given na, there exists m̂ such that when m > m̂, the pre-screener under-trusts and is

pessimistic about the most likely state for any (pL, pH).

2. Proof. Since bq is symmetric about pq = 1/2, we focus on the case of pq ≥ 1/2 but the

conclusion extends to 1/2 > pL > 1− pH . From Equations (18) and (20), we can see that

• ∂
∂pq

(bq(s
n)) = 0 when pq ∈ {12 , 1},

• bq(sn)) > 0 when pq = 1
2 ,

• bq(sn)) = 0 when pq = 1.

Since bq(s
n) = 0 when pq = 1,

∂bq(sn)
∂pq

∣∣
pq=1 = 0, and bq(s

n) ≥ 0 for any pq ∈ [0, 1], then

there exists some threshold p̂ < 1 such that
∂bq(sn)
∂pq

< 0 and bq(s
n) < bq(s

n)
∣∣∣pq= 1

2
for all

pq > p̂. Therefore, bL(sn) > bH(sn) so the pre-screener under-trusts and is pessimistic about

the most likely state if p̂ ≤ pL < pH .
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Moreover, using the fact that bq(s
n) = 0 when pq = 1/2, then

∂2bq(s
n)

∂p2q

∣∣∣pq= 1
2

= bq(s
n)

(
−8nb(nb +m) +

m∑
i=1

4i(i− 1)

)

= bq(s
n)

(
−8nb(nb +m) +

4

3
m(m− 1)(m+ 1)

)
. (20)

Thus there exists some threshold 1
2 < p̌ < 1 such that

∂bq(sn)
∂pq

> 0 for all pq < p̌ when

∂2bq(sn)
∂p2q

∣∣∣pq= 1
2
> 0. Note that p̌ > 1

2 for any given nb ifm is sufficiently large that
∂2bq(sn)
∂p2q

∣∣∣pq= 1
2
>

0. Thus the pre-screener also under-trusts and is pessimistic about the most likely state if

pL ≤ p̌ and pH > p̂ where p̌ ≥ 1
2 . Note that we have already shown directly (in the preceding

proof) that the pre-screener under-trusts and is pessimistic for m = 1, 2, 3 regardless of pL,

pH , and nb.

A.8 Proof of Proposition 6

Shown in Proof of Proposition 2.

A.9 Proof of Proposition 7

To show the results when agents receive signals from multiple experts, note that Equation (9) can

also be re-written as

P b(q1, q2, θ|sn1,n2) =

(∏n1+n2
t=n1+1 P (st2|q2, θ)

)
(
∏n1
t=1 P (st1|q1, θ))ωq10 ω

q2
0 ω

θ
0bq1(sn1)bq2q1(sn1,n2)∑

q2

∑
q1

∑
θ

(∏n1+n2
t=n1+1 P (st2|q2, θ)

)
(
∏n1
t=1 P (st1|q1, θ))ωq10 ω

q2
0 ω

θ
0bq1(sn1)bq2q1(sn1,n2)

,

(21)

where the functions bq1(s
n1) and bq1q2(s

n1,n2) reflect the path dependency of the biased agent’s

beliefs and bq1(∅) = 1:

bq1(s
n1) =

n1∏
m=1

(∑
θ

(
m∏
t=1

P (st1|q1, θ)

)
ωθ0

)

bq2q1(s
n1,n2) =

n1+n2∏
m=n1+1

(∑
θ

(
m∏

t=n1+1

P (st2|q2, θ)

)(
n1∏
t=1

P (st1|q1, θ)

)
ωθ0

)
.

Consider a sequence of signals such that the agent observes k a signals from expert 1,

followed by k b signals from expert 2: sn1 = (a, . . . , a) and sn2 = (b, . . . , b) where n1 = n2 = k.

To show this, note that the following properties hold when ωθ0 = 1/2 and the two experts

send either (1) an equal number k of opposing signals, or (2) an equal number of completely

mixed signals:
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∏2k
i=k+1 P (si2|H2, A) =

∏k
i=1 P (si1|H1, B)∏2k

i=k+1 P (si2|L2, A) =
∏k

i=1 P (si1|L1, B)∏2k
i=k+1 P (si2|H2, B) =

∏k
i=1 P (si1|H1, A)∏2k

i=k+1 P (si2|L2, B) =
∏k

i=1 P (si1|L1, A)

For all ωθ0 ∈ (0, 1), then P b(θ|sn1,n2) > 1/2 only if

ωH
0 (1− ωH

0 )

((
2k∏

i=k+1

P (si2|H2, A)

)(
2k∏

i=k+1

P (sm2|L2, B)

)
−

(
2k∏

i=k+1

P (si2|L2, A)

)(
2k∏
i=2

P (si2|H2, B)

))
(bL1

(sn)bH2L1
(sn)− bH1

(sn)bL2H1
(sn)) > 0.

(22)

When the two experts send an equal number of opposing signals in sequence (and suppressing

the arguments of bq1(s
n) and bq1q2(s

n) for brevity of exposition), we also know∏2k
i=k+1 P (si2|H2, A) =

∏k
i=1 P (si1|H1, B) = (1− pH)k∏2k

i=k+1 P (si2|L2, A) =
∏k

i=1 P (si1|L1, B) = (1− pL)k∏2k
i=k+1 P (si2|H2, B) =

∏k
i=1 P (si1|H1, A) = pkH∏2k

i=k+1 P (si2|L2, B) =
∏k

i=1 P (si1|L1, A) = pkL

bq1 =
∏k

i=1(
1
2
)(piq1 + (1− pq1)i), where we have previously shown that bH1 > bL1

bq2q1 =
∏k

i=1(
1
2
)
(
(1− pq2)ipkq1 + piq2(1− pq1)

k
)

Substituting all of these into the biased agent’s posterior on the state, P b(θ|sn1,n2) > 1/2

only if

ωH0 (1− ωH0 )
(
(1− pH)kpkL − (1− pL)kpkH

)
(bL1bH2L1 − bH1bL2H1) > 0. (23)

The first term of Equation (23) is positive and the second term is clearly negative, since

pH > pL. Note that bL < bH for na > 1 and bL = bH for na = 1. Comparing a given mth

term of bL2H1 − bH2L1 yields

(
1

2
)
(

(1− pL)mpkH + pmL (1− pH)k − (1− pH)mpkL − pmH(1− pL)k
)

= (
1

2
)
(
pmH(1− pL)m(pk−mH − (1− pL)k−m) + pmL (1− pH)m((1− pH)k−m − pk−mL )

)
,

which is zero if k = m and positive if m < k. Thus, each mth term of bL2H1 is strictly greater

than the mth term of bH2L1 for m < k and is equal when m = k, implying that bL2H1 > bH2L1 if
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k > 1 (and bL2H1 = bH2L1 if k = 1) . This implies that the third term of Equation (23) is strictly

negative when k > 1, so Equation (23) is satisfied. Thus, P b(θ = A|sn1,n2) > 1/2 when ωA0 = 1/2

and k > 1, and P b(θ = A|sn1,n2) = 1/2 when ωA0 = 1/2 and k = 1.

Substituting all of these into the biased agent’s posteriors on expert qualities, we have that

P b(q1|sn1,n2) > P b(q2|sn1,n2) only if

ωH0 (1− ωH0 )
(

(1− pH)kpkL − (1− pL)kpkH

)
(bL1bH2L1 − bH1bL2H1) > 0,

which is exactly Equation (23) again. Thus, the biased agent believes that the first expert is more

likely to be high quality than the second expert: P b(q1|sn1,n2) > P b(q2|sn1,n2).

A.10 Proof of Proposition 8

Consider a sequence of signals such that the agent observes k a signals from expert 1, followed by

k b signals from expert 2: sn1 = (a, . . . , a) and sn2 = (b, . . . , b) where n1 = n2 = k.

Letting k →∞ and factoring, we can re-write the terms a, b, c, and d as

a = 2(ωH
0 )2(1− pH)kp

2k(k+1)
H (

1− pH
pH

)
k(k+1)

2

( ∞∏
m=1

(1 + (
1− pH
pH

)m)

)

= p
3k(k+1)

2

H (1− pL)k+
k(k+1)

2

(
2(ωH

0 )2(
1− pH
1− pL

)k+
k(k+1)

2

( ∞∏
m=1

(1 + (
1− pH
pH

)m)

))

b = ωH
0 (1− ωH

0 )
(
(1− pH)kpkL + pkH(1− pL)k

)
p

k(k+1)
2

L p
k(k+1)

2

H pk
2

L (
1− pH
pH

)
k(k+1)

2

( ∞∏
m=1

(1 + (
1− pL
pL

)m)

)

= p
3k(k+1)

2

H (1− pL)k+
k(k+1)

2

ωH
0 (1− ωH

0 )

(
1 + (

pL(1− pH)

pH(1− pL)
)k
)(

1− pH
1− pL

) k(k+1)
2

(
pL
pH

)k
2+

k(k+1)
2

( ∞∏
m=1

(1 + (
1− pL
pL

)m)

)
c = ωH

0 (1− ωH
0 )
(
(1− pL)kpkH + pkL(1− pH)k

)
p

k(k+1)
2

H p
k(k+1)

2

L pk
2

H (
1− pL
pL

)
k(k+1)

2

( ∞∏
m=1

(1 + (
1− pH
pH

)m)

)

= p
3k(k+1)

2

H (1− pL)k+
k(k+1)

2

(
ωH
0 (1− ωH

0 )

(
1 +

(
pL(1− pH)

pH(1− pL)

)k
)( ∞∏

m=1

(1 + (
1− pH
pH

)m)

))

d = 2(1− ωH
0 )2(1− pL)kp

2k(k+1)
L (

1− pL
pL

)
k(k+1)

2

( ∞∏
m=1

(1 + (
1− pL
pL

)m)

)

= p
3k(k+1)

2

H (1− pL)k+
k(k+1)

2

2(1− ωH
0 )2

(
pL
pH

) 3k(k+1)
2

( ∞∏
m=1

(1 + (
1− pL
pL

)m)

)

Note that the term p
3k(k+1)

2
H (1−pL)k+

k(k+1)
2 drops out since it is in every term when calculating

the joint posteriors. Also, note that a necessary and sufficient condition for
∏∞

m=1(1+(1−pq
pq

)m)

to converge is that
∑∞

m=1(
1−pq
pq

)m is absolutely convergent, which is clearly satisfied when
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pq >
1
2
.

Thus, when 1 > pH > pL >
1
2
,

lim
k→∞

a = 0

lim
k→∞

b = 0

lim
k→∞

c = ωH0 (1− ωH0 )

(
∞∏
m=1

(1 + (
1− pH
pH

)m)

)
lim
k→∞

d = 0.

This implies that when 1 > pH > pL >
1
2
,

lim
k→∞

P b(H1, H2|sn1,n2) = 0

lim
k→∞

P b(L1, H2|sn1,n2) = 0

lim
k→∞

P b(H1, L2|sn1,n2) = 1

lim
k→∞

P b(L1, L2|sn1,n2) = 0.

An extremely similar proof applies to show that limk→∞ P
b(θ = A|k a’s from expert 1, k b’s from expert 2) =

1 when 1 > pH > pL >
1
2
. Note that if 1

2
> pL > 1 − pH , then we can instead factor out

1− pL instead of pL, so all the pL and 1− pL terms are exchanged and the proof applies.

The result still holds if pL = 1
2
. Letting k →∞ and pL = 1

2
and factoring, we can re-write
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the terms a, b, c, and d as

a = 2(ωH0 )2(1− pH)kp
2k(k+1)
H (

1− pH
pH

)
k(k+1)

2

(
∞∏
m=1

(1 + (
1− pH
pH

)m)

)

= 2(ωH0 )2(1− pH)k+
k(k+1)

2 p
3k(k+1)

2
H

(
∞∏
m=1

(1 + (
1− pH
pH

)m)

)

= p
3k(k+1)

2
H (1− pL)k+

k(k+1)
2

(
2(ωH0 )2(

1− pH
1− pL

)k+
k(k+1)

2

(
∞∏
m=1

(1 + (
1− pH
pH

)m)

))

b = ωH0 (1− ωH0 )(
1

2
)k
(
(1− pH)k + pkH

)
(
1

2
)k

2+
k(k+1)

2 p
k(k+1)

2
H (2)k

(
∞∏
m=1

(1 + (
1− pH
pH

)m)

)

= ωH0 (1− ωH0 )(
1

2
)k

2+
k(k+1)

2

(
(1− pH)k + pkH

)
p
k(k+1)

2
H

(
∞∏
m=1

(1 + (
1− pH
pH

)m)

)

= p
3k(k+1)

2
H (1− pL)k+

k(k+1)
2

(
ωH0 (1− ωH0 )

(
2

(2pH)k

)k
(1 + (

1− pH
pH

)k)

(
∞∏
m=1

(1 + (
1− pH
pH

)m)

))

c = ωH0 (1− ωH0 )(
1

2
)k+

k(k+1)
2 p

k2+
k(k+1)

2
H (pkH + (1− pH)k)

(
1 + (

1− pH
pH

)k
)k( ∞∏

m=1

(1 + (
1− pH
pH

)m)

)

= p
3k(k+1)

2
H (1− pL)k+

k(k+1)
2

(
ωH0 (1− ωH0 )(1 + (

1− pH
pH

)k)(1 + (
1− pH
pH

)k)k

(
∞∏
m=1

(1 + (
1− pH
pH

)m)

))
d = 2(1− ωH0 )2(

1

2
)2k

2+3k(2)2k

= 2(1− ωH0 )2(
1

2
)2k

2+k

= p
3k(k+1)

2
H (1− pL)k+

k(k+1)
2

(
2(1− ωH0 )2(

1

2pH
)
3k(k+1)

2 (
1

2
)
k(k−1)

2

)

Note that the term p
3k(k+1)

2
H (1−pL)k+

k(k+1)
2 drops out since it is in every term when calculating

the joint posteriors. Also, note that a necessary and sufficient condition for
∏∞

m=1(1+(1−pq
pq

)m)

to converge is that
∑∞

m=1(
1−pH
pH

)m is absolutely convergent, which is clearly satisfied when

pH > 1
2
.

Terms a, b, and d converge to 0. Term c converges to ωH0 (1−ωH0 )
(∏∞

m=1(1 + (1−pH
pH

)m)
)

,

which is a finite number, because limk→∞(1+(1−pH
pH

)k)k = 1 (re-arranging and using L’Hopital’s
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rule a couple of times):

lim
k→∞

(1 + (
1− pH
pH

)k)k = lim
k→∞

(
exp

(
ln(1 + (

1− pH
pH

)k)

)k)

= lim
k→∞

exp

(
k ln(1 + (

1− pH
pH

)k)

)
= exp lim

k→∞

(
k ln(1 + (

1− pH
pH

)k)

)
= exp lim

k→∞

ln(1 + (1−pH
pH

)k)
1
k

= exp lim
k→∞

(
1−pH
pH

)k ln(
1−pH
pH

)

1+(
1−pH
pH

)k

−( 1
k
)2

= exp lim
k→∞

(ln(
1− pH
pH

))
−k2

1+(
1−pH
pH

)k

(
1−pH
pH

)k

= exp lim
k→∞

(ln(
1− pH
pH

))
−2k

−
ln(

1−pH
pH

)

(
1−pH
pH

)k

= exp lim
k→∞

2

 k
1

(
1−pH
pH

)k



= exp lim
k→∞

2

 1

−
ln(

1−pH
pH

)

(
1−pH
pH

)k


= exp lim

k→∞
2

(
(1−pH

pH
)k

− ln(1−pH
pH

)

)
lim
k→∞

(1 + (
1− pH
pH

)k)k = exp(0) = 1.

This implies that when 1 > pH > pL = 1
2
,

lim
k→∞

P b(H1, H2|sn1,n2) = 0

lim
k→∞

P b(L1, H2|sn1,n2) = 0

lim
k→∞

P b(H1, L2|sn1,n2) = 1

lim
k→∞

P b(L1, L2|sn1,n2) = 0.
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An extremely similar proof applies to show that limk→∞ P
b(θ = A|sn1,n2) = 1 where n1 =

n2 = k when 1 > pH > pL = 1
2
.

A.11 Proof of Proposition 9

Let sitj be the ith signal, observed in period t, sent by expert j ∈ {1, 2}. As before,

expert 1 reports first, and expert j sends nj signals in total. In this notation, if the agent

observes one signal per period from expert 1, followed by one signal per period from expert

2, then sn1 = (s111, s221, . . . sn1,n1,1 and sn2 = (sn1+1,n1+1,2, sn2+1,n2+1,2, . . . sn1+n2,n1+n2,2). If

expert 2 sends all of his n2 signals in the first period m = k + 1 after expert 1 reports, then

sn2 = (s1m2, s2m2, . . . sn2,m,2). Since the reliability of a signal i from expert j is independent of

the period in which it is observed and the other expert’s quality, note that P (sitj|qj, qk, θ) =

P (sij|qj, θ) for all t where j 6= k.

Then the biased agent’s updating after observing generalize to Equations (8) and (9),

where the functions bq1(s
n1) and bq1q2(s

n1,n2) reflect the path dependency of the biased agent’s

beliefs and will differ depending on both timing and order of signals. For example, if the agent

observes one signal per period from expert 1, followed by one signal per period from expert

2, then sn1 = (s111, s221, . . . sn1,n1,1) and sn2 = (sn1+1,n1+1,2, sn2+1,n2+1,2, . . . sn1+n2,n1+n2,2). If

expert 1 sends all of his n1 signals in period 1, then sn1 = (s111, s211, . . . sn1,1,1).

1. If the biased agent receives n signals simultaneously (say, from expert 1 in period

1), then his posterior after observing sn1 = (s111, s211, . . . sn1,1,1) all together is still

described by Equation 4, but his bq1(sn) is instead given by

bq1(sn) =

(∑
θ

P (s1|q, θ)P (s2|q, θ) . . . P (sn|q, θ)ωθ0

)
(24)

=
∑
θ

(
n∏
t=1

P (st|q, θ)

)
ωθ0. (25)

Let x be the event in which expert 1 sends k a’s simultaneously: sn1
x = (s111, s211, . . . sn1,1,1).

Let y be the event in which expert 1 sends k a’s sequentially sn1
y = (s111, s221, . . . sn1,n1,1).

Then

(a) bxq1 = (1
2
)(pkq1 + (1− pq1)k)

(b) byq1 =
∏k

i=1(
1
2
)(piq1 + (1− pq1)i)
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By direct comparison of the posteriors, P b(q1 = H|sn1
x ) < P b(q1 = H|sn1

y ) only if

bxHb
y
L − b

y
Hb

x
L < 0, which is satisfied:

bxHb
y
L − b

y
Hb

x
L = (1

2
)(pkH + (1− pH)k)

(∏k
i=1(

1
2
)(piL + (1− pL)i)

)
− (1

2
)(pkL + (1− pL)k)

(∏k
i=1(

1
2
)(piH + (1− pH)i)

)
= (1

2
)k+1(pkL + (1− pL)k)(pkH + (1− pH)k)

((∏k−1
i=1 (piL + (1− pL)i)

)
−
(∏k−1

i=1 (piH + (1− pH)i)
))

< 0,

since ∂
∂pq

(pkq + (1 − pq)k) < 0 for k > 1 and the relevant parameter restrictions on pL

and pH . Thus, if expert 1 sends k identical signals, the pre-screener with a flat prior on

the state trusts him more when they are sent sequentially than simultaneously (though

there is still overtrust in both cases, which is straightforward to show given bxq1 and

byq1).

2. First, we show that the pre-screener still believes that state A is more likely than

B. Note that Equation (22) must be satisfied for this to be true, whether either

expert sends signals simultaneously or sequentially. What differs based on simultaneous

versus sequential signals is the terms bq1 and bq2q1 . Let W be the event in which

expert 1 sends k a’s simultaneously and expert 2 sends k b’s simultaneously: sn1 =

(s111, s211, . . . sn1,1,1), sn2 = (sn1+1,2,2, sn1+2,2,2, . . . sn1+n2,2,2). Let X be the event in

which expert 1 sends k a’s simultaneously and expert 2 sends k b’s sequentially: sn1 =

(s111, s211, . . . sn1,1,1), sn2 = (sn1+1,n1+1,2, sn1+2,n1+2,2, . . . sn1+n2,n1+n2,2). Let Y be the

event in which expert 1 sends k a’s sequentially and expert 2 sends k b’s simultaneously:

sn1 = (s111, s221, . . . sn1,n1,1), sn2 = (sn1+1,n1+1,2, sn1+2,n1+1,2, . . . sn1+n2,n1+1,2). Let Z be

the event in which expert 1 sends k a’s sequentially and expert 2 sends k b’s sequentially:

sn1 = (s111, s221, . . . sn1,n1,1) and sn2 = (sn1+1,n1+1,2, sn2+1,n2+1,2, . . . sn1+n2,n1+n2,2). Note

that in each of these events, expert 1’s signals are sent strictly before expert 2’s signals.

When n1 = n2 = k where expert 1’s signals are all a’s and expert 2’s signals are all b’s,

bWq1 = bq1X = (1
2
)(pkq1 + (1− pq1)k)

bYq1 = bq1Z =
∏k

i=1(
1
2
)(piq1 + (1− pq1)i)

bWq2q1 = bYq2q1 = (1
2
)
(
(1− pq2)kpkq1 + pkq2(1− pq1)

k
)

bXq2q1 = bZq2q1 =
∏k

i=1(
1
2
)
(
(1− pq2)ipkq1 + piq2(1− pq1)

k
)

Also, note that bEH > bEL for all k > 1 and E ∈ {W,X, Y, Z}. We have already shown

previously that bXL2H1
> bXH2L1

for k > 1, and obviously bWL2H1
= bWH2L1

.

Using these properties in Equation (22), we can verify that P b
E(θ = A|sn1,n2) > 1

2
when

ωθ0 = 1
2
, k > 1, and E ∈ {W,X, Y, Z}.
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To show that sending the k b signals simultaneously rather than sequentially gives more

credibility to expert 2, it is sufficient to show that P b
X(θ = A|sn1,n2) > P b

Y (θ = A|sn1,n2)

and P b
W (θ = A|sn1,n2) > P b

X(θ = A|sn1,n2).

P b
Y (θ = A|sn1,n2) > P b

Z(θ = A|sn1,n2) is satisfied only if

ωH
0 (1− ωH

0 )[pkH(1− pL)k − pkL(1− pH)k]
(
(ωH

0 )2pkH(1− pH)k(bYH)2
(
bYH2H1

(bZL2H1
− bZH2L1

)− bZH2H1
(bYL2H1

− bYH2L1
)
)

+(1− ωH
0 )2pkL(1− pL)k(bYL )2

(
bYL2L1

(bZL2H1
− bZH2L1

)− bZL2L1
(bYL2H1

− bYH2L1
)
))

+ (ωH
0 )2(1− ωH

0 )2[p2kH (1− pL)2k − p2kL (1− pH)2k]bYHb
Y
L

(
bZL2H1

bYH2L1
− bYL2H1

bZH2L1

)
.

Note that bYL2H1
= bYH2L1

and bXL2H1
> bXH2L1

for k > 1, so the third term is positive. For

the first and second terms, bXL2H1
> bXH2L1

, and bYL2H1
> bYH2L1

, so it is sufficient to show

that bYqq − bXqq for them to each be positive:

bYqq − bXqq = pkq(1− pq)k −
k∏
i=1

1

2

(
(1− pq)ipkq + piq(1− pq)k

)
= pkq(1− pq)k

(
1−

k−1∏
i=1

1

2

(
(1− pq)ipkq + piq(1− pq)k

))
,

where each term of (1 − pq)ipkq + piq(1 − pq)k is bounded above by 1
2

for k > 1. Thus,

bYqq − bXqq > 0 for k > 1 which implies that the first and second terms are positive when

k > 1.

The same argument applies for P b
W (θ = A|sn1,n2) > P b

X(θ = A|sn1,n2). Thus, sending

the k b signals simultaneously rather than sequentially gives more credibility to expert

2, given expert 1’s signals.

A.12 Proof of Proposition 10

1. Proof. Let sn be a sequence of n observed signals with na a’s and nb b’s, let sn+1 be

the (n + 1)th observed signal, and let ωbn equal the pre-screener’s joint posterior after

the sequence sn.

First, note that each joint belief on the state and quality for the prior ωbn, denoted ωqθn ,

is given by

ωqθn ≡ P b(q, θ|{sn}) =
(
∏n

t=1 P (st|q, θ))ωθ0ω
q
0bq(s

n)∑
θ

∑
q (
∏n

t=1 P (st|q, θ))ωθ0ω
q
0bq(s

n)
, (26)
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where

bq(s
n) =

n∏
m=1

(∑
θ

(
m∏
t=1

P (st|q, θ)

)
ωθ0

)
. (27)

Thus, the Bayesian’s posterior belief given the biased prior is

P u(θ = A|prior = ωbn, {sn+1}) =
ωA0
∑

q

(∏n+1
t=1 P (st|q, A)

)
ωq0bq(s

n)∑
ω ω

θ
0

∑
q P (sn+1|q, θ) (

∏n
t=1 P (st|q, θ))ωq0bq(sn)

.

In contrast, the pre-screener’s posterior belief after observing {sn, sn+1} is

P b(θ = A|{sn, sn+1}) =
ωA0
∑

q

(∏n+1
t=1 P (st|q, A)

)
ωq0bq({sn, sn+1})∑

θ ω
θ
0

∑
q

(∏n+1
t=1 P (st|q, θ)

)
ωq0bq({sn, sn+1})

,

where

bq({sn, sn+1}) =
n+1∏
m=1

(∑
θ

(
m∏
t=1

P (st|q, θ)

)
ωθ0

)
(28)

= bq(s
n)

(∑
θ

(
n+1∏
t=1

P (st|q, θ)

)
ωθ0

)
(29)

Substituting all of the preceding information into P b(ω = A|{sn, sn+1}) > P u(ω =
A|prior = ωbn, {sn+1}), the inequality is only satisfied if

ωA0 (1− ωA0 )ωH0 (1− ωH0 )bL(s
n)bH(sn)

((∑
θ

(
n+1∏
t=1

P (st|H, θ)
)
ωθ0

)
−
(∑

θ

(
n+1∏
t=1

P (st|L, θ)
)
ωθ0

))
︸ ︷︷ ︸

X((
n+1∏
t=1

P (st|H,A)
)(

n+1∏
t=1

P (st|L,B)

)
−
(
n+1∏
t=1

P (st|H,B)

)(
n+1∏
t=1

P (st|L,A)
))

︸ ︷︷ ︸
Y

> 0,

(30)

Without loss of generality, suppose that na ≥ nb.

If sn+1 = a, then {sn, sn+1} has na + 1 a’s and nb b’s. Then the term Y is given by

pna+1
H (1− pH)nb(1− pL)na+1(pL)nb − (1− pH)na+1(pH)nb(pL)na+1(1− pL)nb

= [pHpL(1− pH)(1− pL)]nb [(pH(1− pL))na−nb+1 − (pL(1− pH))na−nb+1]
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Thus if sn+1 = a, then

Y (sn+1 = a)


> 0 if na + 1 > nb

= 0 if na + 1 = nb

< 0 if na + 1 < nb.

If sn+1 = b, then {sn, sn+1} has na a’s and nb + 1 b’s. Then the term Y is given by

pnaH (1− pH)nb+1(1− pL)na(pL)nb+1 − (1− pH)na(pH)nb+1(pL)na(1− pL)nb+1

= [pHpL(1− pH)(1− pL)]nb [(pH(1− pL))na−nbpL(1− pH)− ((1− pH)pL)na−nbpH(1− pL)]

Thus if sn+1 = b, then

Y (sn+1 = b)


> 0 if na > nb + 1

= 0 if na = nb + 1

< 0 if na < nb + 1.

Thus, Y is positive if {sn, sn+1} has more a’s than b’s, Y is negative if {sn, sn+1} has

more b’s than a’s, and Y is zero if {sn, sn+1} has an equal number of a’s and b’s.

Moreover, note that κsn ≡ bq(sn)ω
q
0∑

q bq(s
n)ωq0

. Then Equation (29) implies that κH({sn, sn+1}) >
κH(sn) if and only if

ωH0 (1 − ωH0 )bH(sn)bL(sn)
((∑

θ

(∏n+1
t=1 P (st|H, θ)

)
ωθ0
)
−
(∑

θ

(∏n+1
t=1 P (st|L, θ)

)
ωθ0
))
>

0, which is the requirement that X > 0.

In other words,

X


> 0 if and only if κH({sn, sn+1}) > κH(sn)

= 0 if and only if κH({sn, sn+1}) = κH(sn)

< 0 if and only if κH({sn, sn+1}) < κH(sn).

From above, we can see that the sign of Equation (30) depends on the sign of XY .

Putting everything together, then

P b(θ = A|{sn, sn+1}) = P u(θ = A|prior = ωbn, {sn+1}) if either (1) {sn, sn+1} has an

equal number of a’s and b’s or (2) κH({sn, sn+1}) = κH(sn)

P b(θ = A|{sn, sn+1}) > P u(θ = A|prior = ωbn, {sn+1}) if (3) {sn, sn+1} has more a’s

than b’s and κH({sn, sn+1}) > κH(sn) or (4) {sn, sn+1} has more b’s than a’s and
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κH({sn, sn+1}) < κH(sn)

P b(θ = A|{sn, sn+1}) < P u(θ = A|prior = ωbn, {sn+1}) if (5) {sn, sn+1} has more a’s

than b’s and κH({sn, sn+1}) < κH(sn) or (6) {sn, sn+1} has more b’s than a’s and

κH({sn, sn+1}) > κH(sn)

Note that the statement P b(θ = A|{sn, sn+1}) > P u(θ = A|prior = ωbn, {sn+1}) if

{sn, sn+1} has more a’s than b’s and κH({sn, sn+1}) > κH(sn) is equivalent to the

statement P b(θ = A|{sn, sn+1}) < P u(θ = A|prior = ωbn, {sn+1}) if {sn, sn+1} has

more b’s than a’s and κH({sn, sn+1}) > κH(sn). They both say that if the pre-screened

belief in the expert’s high quality after {sn, sn+1} is that the agent is higher than the

pre-screened belief in the expert’s high quality after sn, then the pre-screener over-

updates toward the most likely state on the last signal.

Likewise, the statement P b(θ = A|{sn, sn+1}) > P u(θ = A|prior = ωbn, {sn+1}) if

{sn, sn+1} has more b’s than a’s and κH({sn, sn+1}) < κH(sn) is equivalent to the

statement P b(θ = A|{sn, sn+1}) < P u(θ = A|prior = ωbn, {sn+1}) if {sn, sn+1} has

more a’s than b’s and κH({sn, sn+1}) < κH(sn). They both say that if the pre-screened

belief in the expert’s high quality after {sn, sn+1} is that the agent is lower than the

pre-screened belief in the expert’s high quality after sn, then the pre-screener under-

updates toward the most likely state on the last signal.

Therefore, we can state the proposition assuming that the number of a’s be greater

than or equal to the number of b’s in {sn, sn+1} without loss of generality.

Moreover, note that Pru(q = H|{sn, sn+1}) =
ωH0

∑
θ(
∏n+1
t=1 P (st|q,θ))ωθ0∑

q ω
q
0

∑
θ(
∏n+1
t=1 P (st|q,θ))ωθ0

. From this defi-

nition, we know that Pru(q = H|{sn, sn+1}) > ωH0 if and only if((∑
θ

(∏n+1
t=1 P (st|H, θ)

)
ωθ0
)
−
(∑

θ

(∏n+1
t=1 P (st|L, θ)

)
ωθ0
))

> 0, which is the require-

ment that X > 0. Thus,

κH({sn, sn+1}) > κH(sn) if and only if Pru(q = H|{sn, sn+1}) > ωH0

κH({sn, sn+1}) = κH(sn) if and only if Pru(q = H|{sn, sn+1}) = ωH0

κH({sn, sn+1}) < κH(sn) if and only if Pru(q = H|{sn, sn+1}) < ωH0 .
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2. Proof. First, note that P b[q, θ|{sn, sn+1}] is equal to

P b[q, θ|{sn, sn+1}] =
bq({sn, sn+1})

(∏n+1
t=1 P (st|q, θ)

)
ωθ0ω

q
0∑

q bq({sn, sn+1})
∑

θ

(∏n+1
t=1 P (st|q, θ)

)
ωθ0ω

q
0

(31)

where bq({sn, sn+1}) is described by Equations (28) or (29).

Second, applying the generalized pre-screening described in A.1, P b[q, θ|prior = ωbn, {sn+1}]
is equal to

P b[q, θ|prior = ωbn, {sn+1}] =
bqθ(sn+1)

(
1∑
θ ω

qθ
n

)
P (st+1|q, θ)ωqθn∑

q

∑
θ bqθ(sn+1)

(
1∑
θ ω

qθ
n

)
P (st+1|q, θ)ωqθn

, (32)

where

bqθ(sn+1) =
∑
θ

P (sn+1|q, θ)ωqθn ,

and ωqθn is described by Equation (26) and bq(s
n) is described by Equation (27). Sub-

stituting this into P b[q, θ|prior = ωbn, {sn+1}] yields:

P b[q, θ|prior = ωbn, {sn+1}] =
bqθ(sn+1)

(
1∑
θ ω

qθ
n

)
P (st+1|q,θ)bq(sn)(

∏n
t=1 P (st|q,θ))ωθ0ω

q
0∑

q

∑
θ bqθ(sn+1)

(
1∑
θ ω

qθ
n

)
P (st+1|q,θ)bq(sn)(

∏n
t=1 P (st|q,θ))ωθ0ω

q
0

=
bqθ(sn+1)

(
1∑
θ ω

qθ
n

)
bq(s

n)
(∏n+1

t=1 P (st|q, θ)
)
ωθ0ω

q
0∑

q

∑
θ bqθ(sn+1)

(
1∑
θ ω

qθ
n

)
bq(sn)

(∏n+1
t=1 P (st|q, θ)

)
ωθ0ω

q
0

,

(33)

where

bqθ(sn+1)

(
1∑
θ ω

qθ
n

)
=
∑
θ

(
n+1∏
i=1

P (st|q, θ)

)
bq(s

n)ωθ0

(
ωq0∑
θ ω

qθ
n

)

= bq(s
n)

(∑
θ

(
n+1∏
t=1

P (st|q, θ)

)
ωθ0

)(
ωq0∑
θ ω

qθ
n

)
.

Equation (29) implies that Equation (33) equals Equation (31) if and only if ωq0 =∑
θ ω

qθ
n . Since ωqθn ≡ P b(q, θ|{sn}), then P b[q, θ|{sn, sn+1}] 6= P b[q, θ|prior = ωbn, {sn+1}]

if P b[q|sn] 6= ωq0 and P b[q, θ|{sn, sn+1}] = P b[q, θ|prior = ωbn, {sn+1}] if P b[q|sn] = ωq0.
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A.13 Proof of Proposition 11

1. Lemma 3 Suppose the agent observes na = nb signals of a’s and b’s in alternat-

ing order: sn = (a, b, . . . a, b) where na = nb = k. Then the biased agent is always

underconfident that the agent is high quality.

Proof. An alternating sequence of na = nb = k signals of a’s and b’s generates:

bq(s
n) =

(
1

2

)k(k−1∏
i=1

(pq(1− pq))2i
)

(pq(1− pq))k =

(
1

2

)k
(pq(1− pq))k

2

.

This implies that ∂
∂pq

(bq(s
n)) < 0 for all pq:

∂

∂pq
(bq(s

n)) =

(
1

2

)k
k2 (pq(1− pq))k

2−1 (1− 2pq),

Since (pH(1 − pH))k
2
< (pL(1 − pL))k

2
whenever pH > pL ≥ 1

2
or 1

2
≥ pL > 1 − pH ,

then bH(sn) < bL(sn) for all pH > pL ≥ 1
2
, which implies that the biased agent’s belief

that the expert is high quality is underconfident relative to the Bayesian: Prb(H|sn) <

Pru(H|sn).

Suppose the agent observes na > nb signals, where nb a’s and nb b’s alternate followed

by the remaining m ≡ na − nb a’s where m ≥ 1: sn = (a, b, a, b, . . . , a, a, a). Since

bq is symmetric about pq = 1/2, we focus on the case of pq ≥ 1/2 but the conclusion

extends to 1/2 > pL > 1− pH . From Equations (18) and (20), we can see that

• ∂
∂pq

(bq(s
n)) = 0 when pq ∈ {12 , 1},

• bq(sn)) > 0 when pq = 1
2
,

• bq(sn)) = 0 when pq = 1.

Moreover, using the fact that bq(s
n) = 0 when pq = 1/2, then

∂2bq(s
n)

∂p2q

∣∣∣pq= 1
2

= bq(s
n)

(
−8nb(nb +m) +

m∑
i=1

4i(i− 1)

)

= bq(s
n)

(
−8nb(nb +m) +

4

3
m(m− 1)(m+ 1)

)
.

Thus for any given nb, there exists some threshold 1
2
< p̌ < 1 whenever m > m′, where

−8nb(nb + m′) + 4
3
m′(m′ − 1)(m′ + 1) = 0. Let n∗a = nb + m∗. Then for na, nb where

0 ≥ nb < n∗a < na and pL < pH ≤ p̌, the agent overtrusts and is optimistic that
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the state is A. Since this is the sequence that generates the least trust by Proposition

1, then if it results in overtrust then all other sequences of such a combination must

generate overtrust and optimism as well.

2. Lemma 4 After observing na > 1 and nb = 0 signals in sequence or simultaneously,

the pre-screener overtrusts and is overoptimistic about the reported state.

Proof. Without loss of generality, suppose the sequence is na a’s: sn = (a, a, . . . , a)

where na = n and nb = 0. Then

bq(s
n) =

na∏
i=1

(
1

2
)(piq + (1− pq)i).

Considering each ith component of bq(s
n), piH +(1−pH)i > piL+(1−pL)i is positive for

i > 0 when pH > pL ≥ 1
2

or when 1
2
≥ pL > 1−pH , which implies that bH(s11 = a, s22 =

a, . . . sna,na = a) > bL(s11 = a, s22 = a, . . . sna,na = a). Thus, applying Proposition 2,

the pre-screener overtrusts and is overoptimistic about the reported state when he

observes na > 1 and nb = 0 signals in sequence. Since the simultaneous case implies

bq(s
n) = pnaq + (1 − pq)na , then this argument also shows the result when the biased

agent observes na > 1 signals simultaneously.

Lemma 5 Consider a sequence of signals such that the first k observed signals are a,

followed by k b signals: sn = (a, a, . . . , a, b, b, . . . , b) where na = nb = k. There exists

some p > 1
2

and p < 1 such that the pre-screener under-trusts if (1) k ∈ {1, 2, 3}, (2)

if p ≤ pL < pH , or (3) if pL ≤ p and pH ≥ p.

Proof. WLOG, suppose the sequence is na a’s, then nb b’s:. Then

bq(s
n) =

(
na∏
i=1

(
1

2
)(piq + (1− pq)i)

)(
nb∏
i=1

(
1

2
)(pnaq (1− pq)i + piq(1− pq)na)

)

= (
1

2
)na+nb

(
na∏
i=1

(piq + (1− pq)i)

)(
nb∏
i=1

(pnaq (1− pq)i + piq(1− pq)na)

)
.

In particular, if the sequence is na = nb = k, then:

bq(s
n) = (

1

2
)2k

k∏
i=1

(
piq + (1− pq)i

) (
pkq(1− pq)i + piq(1− pq)k

)
(34)
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Characterizing ∂
∂pq

(bq(s
n)) when na = nb = k, we can use the property that a product

of multiple factors is given by:

d

dx

(
k∏
i=1

fi(x)

)
=

(
k∏
i=1

fi(x)

)(
k∑
i=1

f ′i(x)

fi(x)

)
.

Applying this to Equation (34) yields

∂

∂pq
(bq(s

n)) = (
1

2
)2k

(
k∏
i=1

(
piq + (1− pq)i

) (
pkq(1− pq)i + piq(1− pq)k

))
(∑k

i=1

i(pi−1
q −(1−pq)i−1)(pkq (1−pq)i+piq(1−pq)k)+(piq+(1−pq)i)(k(pk−1

q (1−pq)i−piq(1−pq)k−1)+i(pi−1
q (1−pq)k−pkq (1−pq)i−1))

(piq+(1−pq)i)(pkq (1−pq)i+piq(1−pq)k)

)
(35)

Since bq is symmetric about pq = 1/2, we focus on the case of pq ≥ 1/2 but the conclusion

extends to 1/2 > pL > 1− pH . From Equation (34) we can see that

• ∂
∂pq

(bq(s
n)) = 0 when pq ∈ {12 , 1},

• bq(sn)) > 0 when pq = 1
2 ,

• bq(sn)) = 0 when pq = 1.

Moreover, using the fact that bq(s
n) = 0 when pq = 1/2, then

∂2bq(s
n)

∂p2q

∣∣∣pq= 1
2

= bq(s
n)

(
k∑
i=1

4(2i(i− 1) + k(k − 1)− 2ki)

)

= bq(s
n)

(
8

3
k(−3k + k2 − 1)

)
,

so
∂2bq(sn)
∂p2q

∣∣∣pq= 1
2

is negative when k < 3+
√
13

2 ≈ 3.3028 and positive when k > 3+
√
13

2 .

Since bq(s
n) = 0 when pq = 1,

∂bq(sn)
∂pq

∣∣
pq=1 = 0, and bq(s

n) ≥ 0 for any pq ∈ [0, 1], then there

exists some threshold p < 1 such that
∂bq(sn)
∂pq

< 0 and bq(s
n) < bq(s

n)
∣∣∣pq= 1

2
for all pq > p.

Since bq(s
n) > 0 when pq = 1

2 ,
∂bq(sn)
∂pq

∣∣∣pq= 1
2

= 0, and
∂2bq(sn)
∂p2q

∣∣∣pq= 1
2
> 0 when k > 3+

√
13

2 ,

then there exists some threshold p > 1
2 such that

∂bq(sn)
∂pq

> 0 and bq(s
n) > bq(s

n)
∣∣∣pq= 1

2
for

all pq < p when k > 3+
√
13

2 .

When k ≤ 3+
√
13

2 , we can show by direct computation of bq(s
n) that

∂bq(sn)
∂pq

< 0 for all

pq ∈ (12 , 1) when k ∈ {1, 2, 3}.

This implies that the pre-screener under-trusts for all values of pL < pH whenever k ≤ 3,

since bH(sn) < bL(sn). When k > 3, there are two other sufficient conditions for the pre-
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screener to under-trust: (1) if p ≤ pL < pH , or (2) if pL ≤ p and pH ≥ p where p > 1
2 and

p < 1. If either of these sufficient conditions is met, then bH(sn) < bL(sn) for k > 3.

Lemma 4 shows that the agent overtrusts and is overoptimistic about the reported

state for a given na > 1 and nb = 0. Clearly, the agent’s degree of overtrust is

monotonically decreasing as nb increases. Lemma 5 shows that there exists some

p > 1
2

and p < 1 such that the pre-screener under-trusts if (1) k ∈ {1, 2, 3}, (2) if

p ≤ pL < pH , or (3) if pL ≤ p and pH ≥ p. By the intermediate value theorem,

there exists some n̂b such that the agent under-trusts when sn = (a, a, . . . , a, b, b, . . . , b)

where 0 ≤ n̂b ≤ nb < na. By Proposition 1, this is the sequence most likely to generate

overtrust, so all other sequences of such a fixed combination (na, nb) will also result in

under-trust and pessimism about the mostly likely state. Thus, if one of the last two

sufficient conditions for Lemma 5 is satisfied, then there exists some n̂b such that the

agent under-trusts when sn = (a, a, . . . , a, b, b, . . . , b) where 0 ≤ n̂b ≤ nb < na.
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