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We propose a new approach to imposing economic constraints on time-series forecasts
of the equity premium. Economic constraints are used to modify the posterior distribu-
tion of the parameters of the predictive return regression in a way that better allows the
model to learn from the data. We consider two types of constraints: Non-negative equity
premia and bounds on the conditional Sharpe ratio, the latter of which incorporates time-
varying volatility in the predictive regression framework. Empirically, we find that economic
constraints systematically reduce uncertainty about model parameters, reduce the risk of
selecting a poor forecasting model, and improve both statistical and economic measures of
out-of-sample forecast performance. The Sharpe ratio constraint, in particular, results in
considerable economic gains.
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1 Introduction

Equity premium forecasts play a central role in areas as diverse as asset pricing, portfolio al-
location, and performance evaluation of investment managersﬂ Yet, despite more than twenty
five years of research, it is commonly found that models that allow for time-varying return

predictability produce worse out-of-sample forecasts than a simple benchmark that assumes a

constant risk premium. This finding has led authors such as Bossaerts and Hillion| (1999) and

‘Welch and Goyal (2008) to question the economic value of ex-ante return forecasts that allow

for time-varying expected returns.
Economically motivated constraints offer the potential to sharpen forecasts, particularly
when the data is noisy and parameter uncertainty is a concern as in return prediction models.

While economic constraints have previously been found to improve forecasts of asset returns,

there is no broad consensus on how to impose such constraints. For example, |Ang and Piazzesi|

(2003) impose no-arbitrage restrictions to identify the parameters in a term structure model;

\Campbell and Thompson| (2008)) truncate their equity premium forecasts at zero and also con-

strain the sign of the slope coefficients in return prediction models, while [Pastor and Stambaugh|

(2009)) and Pastor and Stambaugh! (2012) use informative priors to ensure that the sign of the

correlation between shocks to unexpected and expected returns is negative.
This paper proposes a new approach for incorporating economic information via inequality
constraints on moments of the predictive distribution of the equity premium. We focus on two

types of economic constraints. The first, which we label the equity premium constraint, follows

the idea of |(Campbell and Thompson| (2008)) and constrains the conditional mean of the equity

premium to be non-negative. It is difficult to imagine an equilibrium setting where risk-averse
investors would hold stocks if their expected compensations were negative, and so this seems
like a mild restriction. The second constraint imposes that the conditional Sharpe ratio has
to lie between zero and a predetermined upper bound. The zero lower bound is identical to
the equity premium (EP) constraint, whereas the upper bound rules out that the price of risk
becomes too high. The Sharpe ratio of the market portfolio is extensively used in finance and,
much like the equity premium, academics and investors can be expected to have strong priors
about its magnitudeEl Yet, Sharpe ratio (SR) constraints cast as inequality constraints on

the predictive moments of the return distribution have not, to our knowledge, previously been

'Papers on time-series predictability of stock returns include Campbelll 1987)), |(Campbell and Shillerl 1988),
[Fama and French| (1988)), [Fama and French| (1989)), [Ferson and Harvey| (1991)), [Keim and Stambaugh| (1986)
and [Pesaran and Timmermann| (1995). Examples of asset allocation studies under return predictability include
Att-Sahalia and Brandt| (2001)), [Barberis| (2000), [Brennan et al.| (1997)), Campbell and Viceira| (1999), [Kandel and|
Stambaugh| (1996) and (2001)). [Avramov and Wermers| (2006) and [Ferson and Schadt| (1996]) consider mutual
fund performance under time-varying investment opportunities.

?See |Lettau and Wachter| (2007) and [Lettau and Wachter| (2011) for recent examples of theoretical asset
pricing models that rely on calibrations using the Sharpe ratio. For a good treatment of the Sharpe ratio and its
theoretical and empirical links to asset pricing models, see (Cochrane| (2001)) and |Lettau and Ludvigson| (2010)).




explicitly explored in the return predictability literatureﬂ

Other studies have considered bounds on the maximum Sharpe ratio in the context of cross-
sectional pricing models, which is quite different from our focus here. MacKinlay| (1995) in-
troduces a bound on the maximum squared Sharpe ratio as a way to distinguish between risk-
and non-risk explanations of deviations from the CAPM. [MacKinlay and Pastor| (2000) provide
estimates of factor pricing models that condition on a given value of the Sharpe ratio. In a
Bayesian setting this corresponds to investors having different degrees of confidence in the asset
pricing model; setting the maximum Sharpe ratio at zero corresponds to dogmatic beliefs, while
a very large Sharpe ratio corresponds to completely skeptical beliefs about the modelﬁ

To incorporate economic information, we develop a Bayesian approach that lets us compute
the predictive density of the equity premium subject to economic constraints. Importantly, the
approach makes efficient use of the entire sequence of observations in computing the predictive
density and also accounts for parameter uncertainty. Our approach builds on the conventional
linear prediction model and so simplifies to the conventional model if the economic constraints
are not binding in a particular sample.

The predictive moments of the return distribution get updated as new data arrive and
so the inequality constraints give rise to dynamic learning effects. To see how this works,
suppose that a new observation arrives that, under the previous parameter estimates, imply a
negative conditional equity premium. Since this is ruled out, the economic constraints can force
the posterior distribution of the parameter estimates to shift significantly — even in situations
where the estimates of the standard linear model do not change at all. This effect turns out to be
empirically important, particularly for “large” values of the predictor variables. Our empirical
analysis finds that the posterior variance of the equity premium distribution—one measure of
parameter estimation uncertainty—can be several times bigger for the unconstrained model
compared with the constrained models, when evaluated at such large values of the predictor
variables.

Our approach of incorporating economic constraints works very differently from that taken
by previous studies such as (Campbell and Thompson| (2008). To highlight such differences,
consider the constraint that the equity premium is non-negative. |Campbell and Thompson

(2008]) impose this constraint by truncating the predicted equity premium at zero if the predicted

3Ross| (2005) and [Zhou| (2010) consider constraints on the R? of the predictive return distribution. In practice,
there will be a close relationship between constraints on the Sharpe ratio and constraints on the R?, see, e.g.,
Campbell and Thompson| (2008) for investors with mean variance utility. |[Wachter and Warusawitharanal (2009)
also consider priors on the slope coefficient in the return equation which translate into priors about the predictive
R? of the return equation. Shanken and Tamayo| (2012) study return predictability by allowing for time-varying
risk and specify a prior on the Sharpe ratio.

YCochrane and Saa-Requejo| (2000) also discuss upper bounds on Sharpe ratios and relate them to so-called
good-deal bounds. [Ross| (1976) introduces asset pricing constraints by assuming that portfolios cannot have
Sharpe ratios greater than twice the Sharpe ratio of the market portfolio.



value is negative. While this truncation approach can be viewed as a first approximation to
imposing moment or parameter constraints, it does not make efficient use of the information in
the theoretical constraints. In particular, this approach never learns from the information that
comes from observing that the model implies negative forecasts of the equity premium and so
the underlying model continues to repeat the same mistakes when faced with new data similar
to previously observed data.

To illustrate the practical importance of these differences, in Figure[I]we plot equity premium
forecasts (top panel) of monthly U.S. stock (excess) returns computed recursively over the period
1947-2010 and based on an intercept and the log dividend yield. The unconstrained forecasts and
simple truncated forecasts are identical in all periods where the unconstrained posterior mean is
non-negative—since the constraint is non-binding in this case—which holds in most periods up to
1990. As a result of the declining dividend yield from 1990 and onwards, the posterior means of
the unconstrained excess return forecasts turn negative and so the constrained posterior density
is shifted upwards, resulting in a higher mean for the remainder of the sample. Nevertheless, for
the majority of periods in the sample, the unconstrained and truncated forecasts are identical.

In contrast, our approach constrains the equity premium forecast to be non-negative at
each point in time. This implies that we have T constraints in a sample of T observations,
rather than just a single constraint. Every time a new pair of observations on the predictor
variable and returns becomes available, the non-negativity constraint on the conditional equity
premium is used to rule out values of the parameter that are infeasible given the constraint. As
shown in Figure [I], this makes a big difference in practice; the EP constraint makes an impact
much earlier in the sample, as can be seen from the cumulative sum of squared forecast errors
(shown in the bottom panel) measured relative to the prevailing mean model. In fact, the equity
premium constrained forecasts steadily outperform the prevailing mean forecasts over the entire
sample while, conversely, the unconstrained or truncated forecasts are subject to periods of large
under-performance such as during the mid-nineties.

In addition to the conditional EP constraint, we also explore whether imposing a lower and
an upper bound on the Sharpe ratio of the market portfolio provide further improvements. An
upper bound on the Sharpe ratio is equivalent to a time-varying upper bound on the equity
premium that is proportional to the market volatility. The implementation of such a constraint
is non-trivial as it involves modeling the conditional volatility of the market portfolio in a
predictive regression framework. We use a parsimonious parameterization that allows us to
explore time-variation in the conditional first and second moments of returns. We find that the
SR constraint increases the statistical and economic gains not only relative to the unconstrained
case, but also relative to the EP constraint.

Attempts at producing improved forecasts of stock returns have spawned a huge literature
that originated from studies by |Campbell| (1987),|Campbell and Shiller (1988)), Fama and French



(1988)), Fama and French| (1989), [Ferson and Harvey (1991), and Keim and Stambaugh| (1986)
who provided convincing economic arguments and in-sample empirical results that some of the
fluctuations in returns are predictable because of persistent time variation in expected returns.
In-sample evidence for predictability is accumulating as various new variables have been sug-
gested as predictors of excess returns (Pontiff and Schall (1998)), Lamont| (1998)), Lettau and
Ludvigson (2001)), [Polk et al. (2006), among others). Out-of-sample predictability evidence,
however, has been much less conclusive. Recent studies by Paye and Timmermann| (2006) and
Lettau and Van Nieuwerburgh| (2008) argue that predictability weakened or disappeared during
the 1990s. Bossaerts and Hillion (1999)), Goyal and Welch! (2003)), and [Welch and Goyal| (2008)
provide an even sharper critique by arguing that predictability was largely an in-sample or ex-
post phenomenon which disappears once the forecasting models are used to guide forecasts on
new, out-of-sample, data. |[Rapach and Zhou| (2012) provide an extensive review of this literature.

To evaluate our approach empirically, we consider the large set of predictor variables used by
Welch and Goyal (2008). When implemented along the lines proposed in our paper, we find that
for nearly all of the predictors and at both the monthly, quarterly and annual frequencies, both
the equity premium (EP) and Sharpe ratio (SR) constraints lead to substantial improvements in
the predictive accuracy of the equity premium forecasts. Across all variables, we find that when
comparing the unconstrained to the equity constrained forecasts, the average out-of-sample
R? improves from -0.53% to 0.19% at the monthly frequency, from -0.23% to 0.47% at the
quarterly frequency and from -5.27% to 3.10% at the annual frequency. Similarly, comparing
the unconstrained to the Sharpe ratio constrained forecasts, the out-of-sample R? improves from
-0.53% to 0.18% at the monthly frequency, from -0.23% to 1.02% at the quarterly frequency and
from -5.27% to 3.86% at the annual frequency. Hence, the improvement in predictive accuracy
tends to get larger as the forecast horizon is extended and the effect of estimation error in a
conventional unconstrained model gets stronger.

We also consider the economic value of using constrained forecasts in the portfolio allocation
of a representative investor endowed with power utility. In the benchmark case with a coefficient
of relative risk aversion of five, we compare the certainty equivalent return (CER) obtained from
using a given predictor relative to the prevailing mean model. The comparison is conducted
for the unconstrained as well as the EP-constrained and the SR-constrained cases at monthly,
quarterly, and annual horizons, for the entire sample and a few subsamples. Here again, we find
that the economic constraints lead to higher CER-values at all horizons and across practically all
predictors (the one exception being the stock variance). Specifically, the EP constraint results
in a higher CER (relative to the unconstrained case) of about 50 basis points per year, whereas
for the SR-constrained models, the increase is about 100 basis points per year. Consistent with
the predictive accuracy results, we generally find that the SR constraint produces higher CER

improvements than the EP constraint, which suggests that there are economically important



interactions between the estimated mean and volatility. Robustness checks reveal that a higher
(lower) risk aversion coefficient of 10 (2) reduces (increases) the spread in performance across
models, as the investor’s willingness to exploit any predictability is inversely proportional to
the risk aversion. Even in the most conservative (i.e., high risk aversion) case, we observe an
increase in CER of 20 to 30 basis points for the EP-constrained case and 50 to 70 basis points
for the SR constraints across predictors.

The previous results refer to univariate regression models with a single predictor variable.
We also consider two ways to incorporate multivariate information. First, we consider equal-
weighted forecast combinations. Consistent with [Rapach et al. (2010]), we find that simple
forecast combinations improve on the average forecast performance, particularly for the uncon-
strained forecasts which are most adversely affected by parameter estimation error. Second, we
consider a diffusion index approach that extracts common components from the cross-section of
predictor variables followed by unconstrained or constrained equity premium predictions using
these components. Empirically, the diffusion index approach produces better statistical and
economic performance than the equal-weighted combination approach both across subsamples
and in the full sample. Moreover, this approach works best for the economically constrained
models. For example, at the quarterly horizon, the out-of-sample R? of the diffusion index is
0.42%, 3.02%, and 2.95% for the unconstrained, EP constrained, and SR constrained models,
respectively, with associated CER-values of -0.04%, 0.53%, and 0.95% per annum.

The plan of the paper is as follows. Section 2 introduces our new methodology for efficiently
incorporating theoretical constraints on the predictive moments of the equity premium distrib-
ution. Section 3 introduces the data and presents empirical results for both unconstrained and
constrained prediction models using a range of predictor variables. Section 4 evaluates the eco-
nomic value of imposing economic constraints on the forecasts. Section 5 presents an extension
to incorporate multivariate information and conducts a range of robustness tests, and Section 6

concludes.

2 Methodology

This section describes how we estimate and forecast the equity premium subject to constraints
motivated by economic theory. These constraints take the form of inequalities on the conditional

equity premium or bounds on the conditional Sharpe ratio.

2.1 Economic Constraints on the Return Prediction Model

It is common practice in the literature on return predictability to assume that the conditional

mean of stock returns, measured in excess of a risk-free rate, r,11, is a linear function of lagged



predictor variables, x,:

Tr41 = M+ﬁx’r+6T+la T=1.,t—1, (1)

Er41 N(0,0’?)

The linear model is simple to interpret and only requires estimating two mean parameters, u
and (3, which can readily be accomplished by OLS.

Economic theory generally does not restrict the functional form of the mapping linking pre-
dictor variables, x,, to the conditional mean of excess returns, r,41, so the use of the linear
specification in should be viewed as an approximation. However, we argue that economi-
cally motivated constraints can be used to improve on this model. We next consider two such

constraints.

2.1.1 Equity Premium Constraint

Under broad conditions the conditional equity risk premium can be expected to be positiveﬁ
This reasoning implies a constraint on the predictive moments of the distribution of excess
returns. In turn, this has implications for the estimated parameters of the return prediction
model . Specifically, to efficiently exploit the information embedded in the constraint that
the conditional equity premium is non-negative, the parameters u and S should be estimated

subject to the constraint u + Sz, > 0 at all points in time:
W+ pr, >0 forr=1,..¢t (2)

Although this constraint on the predictive moments of the equity premium is not directly a
constraint on the model parameters, § = (u, 3,02), it clearly affects these parameters since they
have to be consistent with . Moreover, because the conditional EP constraint has to hold at
each point in time, the number of constraints grows in proportion with the length of the sample
size. The seemingly simple EP constraint in therefore potentially yields a very powerful way
to pin down the parameters of the return forecasting model and obtain more precise estimates.

To see how the constraint in ([2)) works to restrict the u — 8 parameter space, consider Figure
Panel (a) shows how different values of x, when its values are always negative (log dividend
yield case), constrains the feasible set of 1 and 5. Panel (b) repeats this exercise when x only
takes on positive values (T-bill case), whereas panel (c) illustrates the case with a predictor that
can take on both negative and positive values (log dividend payout ratio case). These graphs
illustrate that whenever a new observation of z arrives, both small and large values of this
predictor can lead to new constraints on the set of feasible parameter values. Moreover, there

will be T' constraints on the parameters in a sample with 1" observations.

>For example, this rules out that stocks hedge against other risk factors affecting the performance of a market
portfolio that comprises a broader set of asset classes.



Campbell and Thompson| (2008)) (CT, henceforth) were the first to argue in favor of imposing
a non-negative EP constraintﬁ They implement this idea by using a truncated forecast which

is simply the largest of the unconstrained OLS forecast and zero:

7/;t+1‘7f - maX(O, ﬂt + tht)7 (3)

where i, and Bt are the OLS estimates from 1j ie.,

R t—1 -1 e
(i B = (Z Z‘rz,r> (Z ZTTTJrl) ) (4)
T=1

=1
and zr = (1 z,;)’. This truncation prevents the predicted equity premium from becoming
negative, but the theoretical constraint is not used by CT to obtain improved estimates of
and § in the manner reflected in Figure [2l Specifically, CT simply overrule the forecast if it is
negative and do not impose on their parameters that 7.1 = fi; + Bt:pT >0forT=1,..,t.
While potentially an improvement over the simple unconstrained model, this approach therefore
does not make efficient use of the theoretical constraints in .

The linear-normal prediction model implies that the z-variables have unbounded support.
We do not take this implication literally, and instead view this model as an approximation. We
assume that investors only impose the EP constraint conditional on the data they have seen up
to a given point in time, 7 = 1, ..., t. This makes the length of the initial data sample important.
Our implementation assumes a long (20-year) warm-up sample, which ensures that investors
will have seen a wide range of values for x, before making their first prediction. It also ensures
that new observations on the predictors within the historically observed range do not tighten the
constraints. Conversely, observations on the predictors outside the historical range will trigger

new learning dynamics, which we think is an attractive feature of our setup.

2.1.2 Sharpe Ratio Constraint

In this section, we explore a novel way of sharpening the forecasts of excess market returns,
namely, by placing constraints on the conditional Sharpe ratio of the market portfolio. Such
constraints might be motivated from an asset pricing perspective, as the Sharpe ratio is fre-
quently used in the calibration and evaluation of structural asset pricing modelsm In US data,
it is well-known that the Sharpe ratio is time-varying and countercyclical (Brandt| (2010)), [Let-

tau and Ludvigson (2010))). More importantly, the empirical Sharpe ratio is quite a bit more

SPrior to this, some papers tested non-negativity of the equity premium. For example, [Ostdiek| (1998) studies
sign restrictions on the ex-ante equity premium and develops tests for whether this premium is non-negative using
a conditional multiple inequality approach.

"See [Cochrane| (2001) for a textbook treatment of the Sharpe ratio’s use in evaluating asset pricing models.
Lettau and Ludvigson| (2010]) review whether some leading asset pricing models can replicate the stylized facts
regarding the Sharpe ratio in the US. |Lettau and Wachter| (2007)) and [Lettau and Wachter| (2011) use the Sharpe
ratio in the calibration of their asset pricing model.



volatile than what the leading asset pricing models would suggest. This empirical fact has been
labeled the “Sharpe ratio variability puzzle” by Lettau and Ludvigson (2010). Naturally, the
Sharpe ratio is most often used for portfolio performance evaluation (see Brandt| (2010]) for a
review article). Given all the theoretical and empirical work on this subject, most academics
and practitioners are likely to have some priors about what constitutes a “reasonable” Sharpe
ratio.

The conditional Sharpe ratio depends on both the conditional mean and volatility of the
return distribution. Since time-variation in volatility is a well documented fact in empirical
finance (see, e.g., Andersen et al.| (2006)), we modify as follows:

Trg1 = W+ Bxr + exp (h7'+1) Ur+1, (5)

where h;y1 denotes the (log of) return volatility at time 7 + 1 and u,11 ~ N (0,1). Following
common stochastic volatility models, log-volatility is assumed to evolve as a driftless random

walk,
hry1=hr + €T+1’ (6)

where ., ~ N (O, 02) and u, and &, are mutually independent for all 7 and s.
Next, define the (annualized) conditional Sharpe ratio at time 7 as

SR,y = VH(u+ far) (7)

exp (hT + 0.50?) ’

where H denotes the number of observations per year (i.e., H = 12, 4, and 1 with monthly,
quarterly, and annual data, respectively). We assume that the conditional Sharpe ratio is

bounded both from below and above at all points in time:
SR' < SRy, < SR" forT=1,..,t. (8)

While does not directly impose restrictions on the model parameters, 6 = (u, 3, ag) and the
sequence of log return volatilities h' = {hy, ha, ..., h; }, it does so indirectly since not all parameter
values are consistent with the SR constraint . Also, from and , it is immediately clear
that the SR constraint in effect imposes a time-varying upper bound on the equity premium
which is proportional to the conditional volatility.

In the empirical implementation below, we set the lower bound at SR! = 0, which is consis-
tent with the EP constraint augmented to account for time-varying volatility. Annualized
values of SRy q; around 0.5 are seen as “normal” in the context of the market portfolio, given
estimates of its mean and volatility (e.g., Cochrane (2001) and Brandt| (2010)). Sharpe ratios

higher than one are highly improbable for a non-leveraged market portfolio, so we accordingly



set SR = 1E| By letting the constraint [0, 1] be relatively wide, we accommodate the fact that
Sharpe ratios are imprecisely estimated (Jobson and Korkie (1981))) and implicitly allow a large
set of asset pricing models—consumption and non-consumption-based—to be consistent with itﬂ

We next explain how we estimate the econometric models and impose the constraints.

2.2 Priors

Theoretical constraints such as and are naturally interpreted as reflecting the forecaster’s
prior beliefs on return predictability. Viewed in this way, they can best be imposed using
Bayesian techniques and this is the approach followed here. Moreover, a major advantage of
our Bayesian approach is that we obtain the full predictive densities of returns in a way that
accounts for parameter estimation error. Such densities are vastly more informative than point
forecasts of excess returns based on conventional plug-in least squares estimates.

We begin by describing the choices of priors, starting from the case where no constraints are
imposed. Next, we show how to incorporate constraints on the predictive moments of the return
distribution.

Following standard practicﬂ, the priors for the parameters p and S5 in are assumed to

be normal and independent of ag,

]~ vew, )
B
where wz ) 0
Tt Syt
b frg s K g —_— Ty y ].0
v= 0] v= 50 e, 1)
with data based moments
= =
_ 2 _\2
T = T ZTTer Srt = 7 o (TTJrl - rt) ’
t—1 o t—2 ot
t—1 t—1
_ 1 1 — 2
o= ;zﬁ sit = t—72721 (xr —T)".

Here 1 is a constant that controls the tightness of the prior, with ¢) — oo corresponding to a
diffuse prior on p and §. Our benchmark analysis sets ¢ = 2.5, but we also consider alternative
specifications with both lower and higher values of ¢. The terms s%t and s%t / 3:25,1: in the diagonal

of the prior variance, V, are scaling factors that are introduced to guarantee comparability of

8Getting the upper bound much higher than one, e.g., at 1.5, means that this bound does not bind very often
and so the SR constraint becomes very similar to the EP constraint.

ILettau and Ludvigson| (2010)) show that many of the leading consumption-based asset pricing models cannot
generate the volatility that is observed in emprically estimated Sharpe ratios. Lettau and Wachter| (2007)) and
Lettau and Wachter| (2011) depart from the consumption-based asset pricing models to accommodate pricing
kernels with higher conditional volatility which better fit the dynamic behavior of the Sharpe ratio.

108ee for example [Koop| (2003)), section 4.2.

10



the priors across different predictors and across different data frequenciesﬂ Our choice of the

“no predictability” view that the best predictor of stock returns

prior mean vector b reflects the
is the average of past returns. We therefore center the prior intercept on the prevailing mean of
historical excess returns, while the prior slope coefficient is centered on zero.

Next, we specify a gamma prior for the error precision of the return innovation, o-2:

022~ G (50700 (t 1)) (11)

where v is a prior hyperparameter that controls the degree of informativeness of this prior, with
vy — 0 corresponding to a diffuse prior on o_ QE Our benchmark sets vy = 0.1, which, loosely
speaking, means that the prior weight is approximately 10% of the weight put on the data.
The SR constraint requires specifying a joint prior for the sequence of log return volatili-
ties, h!, and the error precision, 05_2. Writing p (ht, U£_2> =p (ht‘ 05_2) P <U§_2), it follows from

(6) that

p(hlog?) = I (Prsalhrsog?) (). (12)
=1

with Arqq] hT,O'g2 ~ N (h7,0§> . Thus, to complete the prior elicitation for p (ht,052> , We
only need to specify priors for hy, the initial log volatility, and 05—2. We choose these from the

normal-gamma family as follows:
hi ~N (hl (sr,t) aEh) ) (13)

o¢ %~ G (1/ke, 1) (14)

We set ke = 0.01 and choose the remaining hyperparameters in and to imply uninfor-
mative priors, allowing the data to determine the degree of time variation in the return volatility.
Accordingly, we specify k;, = 10, and set the degrees of freedom for 05_2 to 1.

We next describe how we impose the economic constraints on the model parameters. Starting

with the EP constraint, we modify the priors on y and 8 in @D to

[g:| NN(byK)7 M?ﬁeAta (15)
where A; is a set such that

Ay ={p+ Pz >0, 7=1,...,t}. (16)

"'This aproach is used routinely in macroeconomic Bayesian VAR models. See for example [Kadiyala and
Karlsson| (1997)) and [Banbura et al.| (2010)).

TFollowing [Koop| (2003), we adopt the Gamma distribution parametrization of [Poirier| (1995). Nameley, if the
continuous random variable Y has a Gamma distribution with mean g > 0 and degrees of freedom v > 0, we
write Y ~ G (1, v) . Then, in this case, E(Y) = pu and Var (V) = 2u%/v.

11



Similarly, for the SR constraint, we modify the priors on pu, 8 to ensure

] even. wsed, 1)
where gt is a set satisfying
A, = {SRl <SR, ., <SR 7=1, t} : (18)

and SR, |, is given in .

The Appendix provides details of how we estimate the parameters and compute forecasts for
the unconstrained and constrained models. Section 5 discusses robustness of our results with
respect to changes in the priors.

As a final point about the above analysis, we note that the boundaries of the constraints
and are constants (0, SR', and SR"), motivated by economic considerations. However,
one might view the boundaries themselves as being parameters with associated priors. In that
case, our specification corresponds to having dogmatic priors on these specific parameters. This
generalization might be less meaningful for constraints that are readily imposed by economic
theory (such as the zero lower bound on the equity premium and Sharpe ratio) than for others
(such as the upper bound on the Sharpe ratio). From an econometric perspective, updating priors
about the boundary parameters is non-trivial. Given that the benefits of such a generalization
are not clear, while the tractability and computational costs of imposing it are substantial, we

conduct our empirical analysis by imposing constraints and as discussed above.

3 Empirical Results

This section presents the data and empirical results using the methods for incorporating eco-

nomic constraints described in Section 2 to predict the equity premium.

3.1 Data

Our empirical analysis uses data on stock returns along with a set of seventeen predictor variables
originally analyzed in Welch and Goyal (2008) and subsequently extended up to 2010 by the same
authors. Stock returns are computed from the S&P500 index and include dividends. A short
T-bill rate is subtracted from stock returns in order to capture excess returns. Data samples
vary considerably across the individual predictor variables. To be able to compare results across
the individual predictor variables, we use the longest common sample which is 1927-2010. In
addition, we use the first 20 years of data as a training sample. For example, for the monthly
data we initially estimate our regression models over the period January 1927-December 1946,

and use the estimated coefficients to forecast excess returns for January 1947. We next include

12



January 1947 in the estimation sample, which thus becomes January 1927-January 1947, and
use the corresponding estimates to predict excess returns for February 1947. We proceed in
this recursive fashion until the last observation in the sample, thus producing a time series of
one-step-ahead forecasts spanning the time period from January 1947 to December 2010.

The identity of the predictor variables, along with summary statistics, is provided in Table
Most variables fall into three broad categories, namely (i) valuation ratios capturing some
measure of ‘fundamentals’ to market value such as the dividend price ratio, the dividend yield,
the earnings-price ratio, the 10-year earnings-price ratio or the book-to-market ratio; (ii) mea-
sures of bond yields capturing level effects (the three-month T-bill rate and the yield on long
term government bonds), slope effects (the term spread), and default risk effects (the default
yield spread defined as the yield spread between BAA and AAA rated corporate bonds, and
the default return spread defined as the difference between the yield on long-term corporate
and government bonds); (iii) estimates of equity risk such as the long term return and stock
variance (a volatility estimate based on daily squared returns). Finally, three corporate finance
variables, namely the dividend payout ratio (the log of the dividend-earnings ratio), net equity
expansion (the ratio of 12-month net issues by NYSE-listed stocks over the year-end market
capitalization), percent equity issuing (the ratio of equity issuing activity as a fraction of total
issuing activity) and a macroeconomic variable, inflation (the rate of change in the consumer
price index), are consideredE]

To make our results comparable to studies from the literature on return predictability such as
Campbell and Thompson| (2008) and Welch and Goyal (2008)), we focus on univariate regressions
with a single predictor variable. However, we also discuss in Section 5 how our approach can be
extended to incorporate multivariate information. Finally, since there are too many variables to
cover in detail, we focus our analysis on three predictors, namely the log dividend-price ratio, the
T-bill rate, and the default yield spread, all of which have featured prominently in the literature

on return predictability.

3.2 Coefficient Estimates and Predictive Densities

The economic constraints on the predictive moments of the return distribution affect the pa-
rameter estimates in a way that reflects the entire sequence of data points. This gives rise to
parameter estimates that are very different from the standard, unconstrained ones typically ap-
plied in the literature on return predictability. To better understand the effect of the constraints,
we begin by studying the posterior distribution of the parameter estimates.

Figure |3| plots the posterior density for the slope coefficient, 3, in the equity premium equa-
tion using either the log dividend-price ratio (top panel), the T-bill rate (middle), or the

3We follow Welch and Goyal| (2008) and, for monthly and quarterly data, lag inflation an extra period to
account for the delay in CPI releases.

13



default yield spread (bottom) as predictors. For all predictors, the posterior densities are dis-
played for the unconstrained case (solid line), the EP constraint (dark dash-dotted line), and the
SR constraint (light dark-dotted line). In each case, the unconstrained posterior density for (3
is considerably wider than those of the constrained densities, suggesting that the economic con-
straints reduce parameter uncertainty. Moreover, whereas the unconstrained posterior densities
are symmetric, the constrained ones are asymmetric in a direction that mostly reflects that the
equity premium has to be non-negative. For example, for the log dividend price ratio, which is
always negative, the EP constraint rules out large positive values of 3, which could otherwise
induce a negative equity premium. Conversely, the constrained posterior distributions rule out
large negative values of 8 for variables that take on positive values such as the T-bill rate and
the default yield spread. The upper bound on the Sharpe ratio also matters for the posterior
distribution of 38, however, which helps explain why for positive predictors such as the T-bill
rate the posterior distribution of # under the SR constraint is shifted to the left compared with
its distribution under the EP constraint ]

To evaluate the economic significance of the changes in the parameter estimates caused by
the constraints, we next compare the ex-ante equity premium under the unconstrained and con-
strained models. To this end, Figures [4H6] show the predictive densities for the equity premium,
computed as of the end of the sample (December 2010). To illustrate how expected returns
depend on the value taken by the predictor, we show the predictive densities conditional on
xr = T as well as xp = T £ 2 x SE (x), where £ and SE (z) are the full-sample average and
standard deviation of z, respectively.

First consider the results based on the log dividend-price ratio, log(D/P) (Figure [4). This
predictor is always negative and the associated posterior estimates of 3 are centered on a positive
value. Comparing the plots for the three values of z illustrates how the constraints work. When
log(D/P) is set at its sample mean (top panel), the three posterior densities have comparable
spreads, although the unconstrained model has a lower mean than the EP constrained and SR
constrained models. Reducing the log dividend-price ratio to two standard errors below its
mean (middle panel) results in a very different picture. The unconstrained posterior density for
the equity premium is now much more dispersed and shifted far further to the right, whereas
the two constrained forecasts have more probability mass to the right of zero with a tighter
support. When log(D/P) is very low (middle panel), the lower bounds imposed by the EP
and SR constraints bind, thus preventing the probability mass from shifting to the left which
otherwise happens mechanically in a linear model (as can be seen for the unconstrained forecast).

This case is empirically relevant for the 1960s and 1990 to 2005 periods with abnormally low log

HDifferences between the restricted densities do not always occur in the tail that one would expect. This
happens because the upper constraint can be satisfied by simultaneously reducing large negative slope coefficients
(as in the T-bill rate model) and shifting the density for the intercept, p, to the right.
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dividend price ratios. Conversely, when log(D/P) is very high (bottom panel), the constraints
are less likely to bind, and so the three densities are more similar in shape, although once again
the centers of the distributions clearly differ.

For the T-bill rate (Figure [5)), we see similar mechanisms at work, although now with the
opposite sign since the T-bill rate is always positive and the posterior estimates of 3 are centered
on a negative value. This means that the lower constraints now bind when the T-bill rate is set
at T+ 2 x SE (z) (bottom panel), once again leading to much tighter distributions under the
EP and SR constraints than for the unconstrained case. Empirically, this occurred in the early
1980s, when the T-bill rate was particularly high. Finally, the model based on the default yield
spread (Figure @, shows less of an asymmetry across the three conditioning scenarios regarding
the shape and spread of the conditional posterior density estimates of the equity premium.

These figures imply that the economic constraints tighten the predictive density for the
equity premium in a manner that depends asymmetrically on whether the predictor variables
take on large negative or positive values. Hence, how “informative” the bounds are, i.e., by how
much they shift and tighten the posterior density, depends on the value taken by the predictor
variable, . We illustrate this effect in Figure|7| for the plots based on the T-bill rateE The top
panel plots the posterior mean of the equity premium distribution as a function of the T-bill
rate. The posterior mean declines linearly for the unconstrained model from a level near 1%
per month for the lowest values of the T-bill range to a level near zero for the highest V&]HGSE
Under the SR and EP constrained models, the posterior mean is also reduced as the T-bill rate
increases, but by far less than under the unconstrained model.

Turning to the uncertainty surrounding the predicted equity premium, the posterior vari-
ance of the equity premium distribution (bottom panel) is large and rises sharply under the
unconstrained model as the T-bill rate moves far away from its sample average. In contrast,
while the posterior variance of the constrained equity premium distributions does rise when the
T-bill rate takes on very small or very large values, it does so at a far slower rate. For example,
for very high values of the T-bill rate, the posterior variance of the equity premium under the

unconstrained model is close to four times higher than under the constrained models.

3.3 Forecasts of Equity Premia

Using these insights into how economic constraints affect forecasts of equity premia, we next
study the sequence of recursively generated out-of-sample equity premium forecasts. To this
end, Figure [§] presents monthly values of the mean of the predictive distribution of the equity

premium over the period 1947-2010. Economic constraints clearly make a substantial difference

5The plots for the log dividend-price ratio and the default yield spread are very similar and so are omitted
here.

' Consistent with Figure the T-bill rate varies between Z —2 x SE () and Z+2 x SE (z), with Z and SE ()
denoting the full-sample average and standard deviation of the T-bill rate, respectively.
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during most periods. For example, the unconstrained model forecasts based on the log-dividend
price ratio (top panel) are lower and far more volatile than their constrained counterparts and
turn negative for most of the period between 1990 and 2005. Interestingly, even though none
of the recursive forecasts from the unconstrained model turn negative prior to 1960, the con-
strained forecasts are quite different prior to this period. This happens due to our requirement
that the entire sequence of model-implied fitted equity premia be non-negative, and so clearly
this condition is violated by the unconstrained model prior to 1960 (see Figure[l)). The economic
constraints lead to predicted equity premia whose differences from the unconstrained counter-
parts can last very long, e.g., from 1955 through to 1975 and again from around 1985 to the end
of the sample.

Large and persistent differences in predicted mean returns are also found for the return model
based on the T-bill rate (middle panel). For this model, negative values of the unconstrained
forecasts occur most of the time between 1970 and 1985, whereas the constrained forecasts
hover around small, but positive values throughout the sample. The SR constrained forecasts
are smaller than the EP constrained forecasts for long periods of time, and both series are
notably more stable than the unconstrained equity premium forecasts.

The unconstrained equity premium forecasts based on the model that uses the default yield
spread as a predictor (bottom panel) only turn negative during the first few months of the sample
and are otherwise quite similar to the mean forecasts from the EP constrained model which in
turn are smaller than the SR constrained forecasts. These results are consistent with our earlier
findings that the constraints tend to bind on fewer occasions for this predictor variable.

Figure |§| plots monthly volatility forecasts based on the stochastic volatility model @ We
only present results for a single predictor (the log dividend-price ratio) since results are very
similar across different predictors. Volatility hovers around 5% per month, but spikes notably
in 1975, after October 1987, and during the global financial crisis at the end of the sample.

Conditional Sharpe ratios are plotted in Figure For the unconstrained model that assumes
constant volatility, these plots essentially mirror the movements in expected returns in Figure
Conversely, the SR constrained forecasts fluctuate both because of variations in expected
returns and in the conditional volatility. Interestingly, the spikes in the posterior mean forecasts
seen around 1975—and again after 1980 under the default yield spread model—are not mirrored
in the conditional Sharpe ratio plot for this variable (bottom panel), showing that there is an
interaction between the estimated mean and volatility.

Figure [7] showed that the posterior volatility of the equity premium forecasts tends to be
smaller under the two constrained models than under the unconstrained model. This has im-
portant consequences for the time-series of forecasts. To illustrate this, Figure shows 95%

posterior probability intervals for ¢ and S for the unconstrained and EP constrained models that
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use the T-bill rate as a predictorﬂ We focus on the period between 1965 and 1985 to better see
the effect of specific events on the parameter estimation uncertainty. It is quite clear from these
plots that the EP constraint reduces the uncertainty about § more than it does for . Moreover,
the high T-bill rates during the Fed’s “Monetarist Experiment” from 1979-82 clearly reduce the

width of the confidence interval for the constrained model, but not for the unconstrained model.

3.4 Out-of-Sample Predictive Performance

We next evaluate the predictive accuracy of the equity premium forecasts. As in [Welch and
Goyal| (2008)) and (Campbell and Thompson| (2008)), the predictive performance of each model
is measured relative to the prevailing mean model. The inputs to the analysis are the time
series of predictive densities of excess returns obtained as described in Section 2. To simplify the

exposition, let {ri +1} ,j=1,...,J, denote draws from the predictive density of excess returns

for the prevailing mean model, conditional on data known at time t. Further, let {rf +17i},
j=1,...,J, be draws from the predictive density of excess returns for the model based on the
1th predictor, again conditional on data known at time ¢. As further explained in the Appendix,
for the unconstrained and EP constrained models, these draws are obtained by applying a Gibbs

sampler to

p(rt+1|Dt) :/B _2p(rt+1|#76705_271)t)p(,ua/B’O-e_Q‘Dt) dﬂd6d06_27 (19)
HyP,0¢

where D! = {111, xT}tT;ll U x; is the information set at time ¢. Likewise, for the SR constrained

model, return draws are based on the predictive density
p(real D) = / p(Tt+1|ht+17M,57ht,Ug2,Dt)
p,Bht+ o2

Xp (ht+1|lu’7ﬂaht’o-g27pt) (20)

xp ( 1, B, B, 052( Df) dpdfdh*™+do?,

where h't1 denotes the sequence of conditional variance states up to time ¢ + 1.

To compare our results with conventional performance measures used in the literature (see,
e.g., Welch and Goyal| (2008]), Campbell and Thompson| (2008), and Rapach and Zhou (2012)),
we compute the posterior mean from the densities in or to obtain point forecasts.

Specifically, define time ¢ forecast errors for the prevailing mean model and the model based on

"These posterior probability intervals (sometimes referred to as credible intervals) represent the probability
that a parameter falls within a given region of the parameter space, given the observed data. So, for example, the
(2.5, 97.5)% posterior probability interval represents the compact region of the parameter space for which there
is a 2.5% probability that the parameter is higher than the region’s upper bound, and a 2.5% probability that it
is lower than the region’s lower bound.
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predictor ¢ as

1 . _

€ = Tt*jzrgat:za'“vtv (21)
j=1
1<~

et = rt—erai,t:z,...,t, (22)
j=1

where t and ¢ denote the beginning and the end of the forecast evaluation period, respectively.
The period-t difference in the cumulative sum of squared errors (SSE) between the prevailing

mean and the ith predictor model is then equal to
t t
ACumSSE; = Z e — Z ezvi, (23)
T=1 T=t

while the out-of-sample R? is

Ry,g;=1—=—"""" (24)

Table [2| presents the out-of-sample R? for the unconstrained, EP constrained and SR con-
strained forecasts estimated on monthly data. Out of the 16 unconstrained forecast models,
12 produce negative R2oos- In contrast, the EP constrained monthly forecasts only generate
a negative R2OOS for three of the 16 variables whereas the SR constrained models generate a
negative R2oos for six variables. Compared with the unconstrained forecasts, the EP and SR
constrained forecasts lead to a higher R?)os for 14 out of 17 variables. This is also reflected
in the average R2O g computed across the univariate prediction models which is -0.53% for the
unconstrained models, 0.19% for the EP constrained model, and 0.18% for the SR constrained
models. Notable improvements are seen for the models based on valuation ratios such as the
dividend yield or earnings-price ratio.

Panels B and C in Table [2]show that the improvement in forecast performance resulting from
imposing the economic constraints carries over to the two subsamples 1947-1978 and 1979-2010,
obtained by splitting the forecast evaluation period in two halves. In the first subsample, the
average improvement in the R% s—values is between 0.60% and 0.70% (from -0.17% for the
unconstrained to 0.44% and 0.55% for the EP and SR constrained models, respectively). It is a
slightly better 0.70%-0.80% in the second subsample (from -0.80% for the average unconstrained
model to 0.01% and -0.10% for the EP and SR constrained models).

For the quarterly models (Table , the benefits from imposing economic constraints on
the equity premium forecasts get even bigger. At this frequency, we find that the EP and SR
constrained forecasts generate a higher R%)os for 14 out of 15 predictors. Moreover, whereas the
average R%)os is -2.33% for the unconstrained model, it is 0.47% and 1.02% for the EP and SR
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constrained models, respectively. Again, notable improvements are seen for the models based on
valuation ratios such as the dividend yield or earnings-price ratio. Improvements in the average
R% s due to imposing economic constraints again carry over to the two subsamples and exceed
2.2% in the first subsample (1947-1978) and 3.2% in the second subsample, although the latter
reflects a clear deterioration in the performance of the unconstrained model during the period
1979-2010.

Turning to the annual results, Table[d shows that 14 of the 16 unconstrained models generate
a negative Rzoos, the average R%)os being -5.27%. In contrast, all of the constrained forecasts
generate a positive R20057 in each case higher than that of the corresponding unconstrained
modelﬁ Moreover, the average RQOOS computed across the 16 prediction models tends to be
quite high: 3.10% for the EP constrained models and 3.86% for the SR constrained models.
Once again, imposing the constraints lowers the probability of very poor forecast performance.
For example, the lowest R?)OS-value of any unconstrained model is -16.2% in the annual data,
versus 0.07% for the EP constrained model and 2.99% for the SR constrained models. Moreover,
the improvements in the average R?) og—Vvalue carries over to the two subsamples and exceeds
6.7% in all cases.

Following Rapach et al. (2010), we use stars in tables to indicate the statistical signifi-
cance of pair-wise differences in the predictive accuracy between a given forecasting model and
the benchmark model based on the |Clark and West| (2007) p—valuesﬁ Economically constrained
models appear to produce significantly better return forecasts than the unconstrained forecasts
for most of the valuation ratios and many of the interest rate variables. Moreover, the results
tend to get stronger at the quarterly and annual forecast horizons.

The results in tables 2}4] indicate that the superior performance of the constrained forecasts
relative to the prevailing mean tends to strengthen as the forecast horizon grows from monthly via
quarterly to annual, whereas the opposite happens for the unconstrained forecasts. Two effects
are at play here. On the one hand, the power of the predictive signal tends to increase, the
longer the forecast horizon. On the other hand, forecasts become more uncertain at the longer
horizons as a result of the fewer data points available for estimation. For the unconstrained
models, the second effect clearly dominates and so forecast performance tends to deteriorate as
the horizon is extended. Conversely, the economic constraints provide an effective way to deal
with parameter estimation error and so the performance of the constrained models improves as

we move from the monthly to the annual horizon.

18 The stochastic volatility model @ is used to capture time-varying volatility at the monthly and quarterly
horizons. At the annual horizon we found that there were too few observations to reliably identify the parameters
of this model and ensure convergence of the parameter estimates. Instead we use a simple AR(1) specification for
the realized variance to model the variance at the annual horizon.

9Such p-values should be interpreted with caution. In the spirit of [Diebold| (2012) they can be interpreted as
a measure of the relative accuracy of the sequence of forecasts.
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To help identify how the prediction models performed in specific periods, Figure [12] presents
the time-series of ACumSSE for three of our models. For the model based on log(D/P) (top
panel), the forecast performance of the unconstrained model deteriorates notably between 1995
and 2000 — a period during which this model generated large negative equity premium forecasts
although average stock returns were positive. For the model based on the T-bill rate (middle
panel), the unconstrained forecasts again tend to be less precise than their constrained coun-
terparts, the main exception being an episode around 1974-75 during which the unconstrained
model correctly predicted negative excess returns. Note also the consistently better forecast
performance of the SR constrained forecasts compared with the EP constrained forecasts based
on the T-bill rate. Finally, for the default yield premium model (bottom panel), the cumula-
tive squared errors of the unconstrained forecasts are almost uniformly worse than those of the
constrained forecasts.

In summary, economically motivated constraints on the equity premium predictions lead to
substantially better forecast performance at the monthly, quarterly, and annual horizons. They
also reduce the risk of selecting a bad forecast model which is important in situations, such as

here, characterized by considerable model uncertainty.

4 Economic Performance and Portfolio Choice

So far we have compared the statistical performance of return forecasts generated by econom-
ically constrained prediction models to the performance of unconstrained models. We next
evaluate the economic significance of these return forecasts by considering the optimal portfolio
choice of an investor who uses the return forecasts. An advantage of our approach is that it
accounts for parameter estimation error—a point whose importance has been emphasized by
Barberis (2000)). Moreover, our approach provides the full predictive density which means that
we are not reduced to considering only mean-variance utility but can use utility functions such

as power utility with better properties.

4.1 Framework

Consider the optimal asset allocations of a representative investor with utility function U. At

time ¢, the investor solves the optimal asset allocation problem
wj = arg U(}J&}XE [U(Wt,Tt+1)| Dt] ) (25)

with D! denoting all information available up to time ¢, and t = ¢ — 1, ..., — 1. The investor is

assumed to have power utility

(1 exp () e o )]
1-A .

U (Wt, Tt+1) =
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Here rtf is the continuously compounded T-bill rate at time ¢, while A is the investor’s coefficient

of relative risk aversion. The t subscript on the portfolio weight reflects that the investor solves
the portfolio optimization problem using only information available at time ¢.
Taking expectations in with respect to the predictive density of r;, we can rewrite (|25

as
wy = arg HL%X/ U (we,Te41)p (Tt+1\ Dt) drysq. (27)

The integral in can thus be approximated using the draws from the predictive densities
as described in Section 2 and in the Appendix. Specifically, under the prevailing mean model,

for suitably large values of J the solution to can be approximated by

A 1-A

R 1 {(1 — wt) exp <r{> + wyexp (TZ + r§+1>}

Ly = argmax — z; - . (28)
J:

Similarly, the solution to the models with time-varying expected returns, , can be approxi-
mated by

7' = we J ¢ 1 _A Y (29)

where ¢ indexes the predictor variable.

The sequence of portfolio weights {C\ut}i;}_l and {@m}itl_l are used to compute the investor’s
realized utilities under the prevailing mez;n model and the model based on predictor 7. In
particular, let /W?H_l and /Wtﬂ,i be the realized wealths at time ¢ + 1. Wt+1 and Wt+1,i are

functions of time ¢ + 1 realized excess return, .11, as well as the optimal allocations to stocks

computed in and :

/Wt—f—l = (1—0W)exp (r{) + Wy exp (7{ + rt+1) ,
Witii = (1 — ;) exp (r{) + Wy ; €xp (rtf + Tt+1) . (30)

The certainty equivalent return for the model based on predictor i, CER;, is defined as the value
that equates the average realized utility of the prevailing mean model to the average realized

utility of the model based on the i—th predictor, over the forecast evaluation sample:

1
i 5 -4
— UTZ
CER; = Zz—t = ~1, (31)
T=t U’T

where U, and ﬁm‘ denote time 7 realized utilities, i.c., U, = W}‘A/(I—A),ﬁm = WT{;A/(I—A).
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In addition to evaluating the economic values of the various models over the full forecast
evaluation sample, we also study how the different models perform in real time. Specifically, we

first calculate the single-period CER; ; as

_1
1-A

Ut ~1. (32)

=~

U

CER;; =

To parallel the cumulative SSE measures in , we also inspect the economic performance of
the individual models by plotting the cumulative sum of CERs over time@
t
CumCERy; = log (1 + CERy;). (33)

T=t

4.2 Empirical Results

Turning to the empirical asset allocation results, Table [5| reports annualized CER, values for
the monthly return regressions computed for an investor with power utility and a coefficient
of relative risk aversion, A = 5. At the monthly horizon (Panel A), the average CER value,
measured relative to the prevailing mean model, is -.12% for the unconstrained models, 0.28%
for the EP-constrained models and 0.81% for the SR-constrained models. All but one of the
EP-constrained models deliver higher CER values than their unconstrained counterparts, the
exception being the stock variance. For the SR-constrained models, the CER values are higher
than the corresponding benchmarks across all predictors.

At the quarterly horizon (Panel B), the constrained models retain their higher CER values
relative to the unconstrained counterparts for all but one case. The average CER values, com-
puted across all variables, is -0.14% for the unconstrained models, 0.29% for the EP constrained
models and 0.32% for the SR constrained models. Finally, at the annual horizon (Panel C),
the average CER value is -0.24% for the unconstrained models, 0.33% for the EP constrained
models and 0.67% for the SR constrained models and the constrained models produce higher
CER values than the unconstrained counterparts for every single predictor.

In Table [0 we show that the observed improvements in economic utility carry over to our
two subsamples. There again, the constrained models do better than the unconstrained ones
for the vast majority of cases. Interestingly, there is no evidence that the economic benefits
from using economically constrained forecasts deteriorates over time. For example, over the
subsample 1979-2010 the mean CER value for the annual model is -0.62% for the unconstrained
model and 0.08% and 0.76% for the EP and SR constrained models — a bigger differential than
in the earlier subsample 1947-78.

20Gince the CER is already defined relative to the prevailing mean model, we do not need to compute differential
values here.
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Using the log dividend-price ratio as a predictor, Figure [13| plots the sequence of stock port-
folio weights along with the cumulative (continuously compounded) CER estimates computed
according to Equation . Under the unconstrained model that uses the log dividend-price
ratio the allocations to stocks are generally lower than those under the constrained models. The
portfolio weights vary considerably over time under both the unconstrained and SR constrained
models, but are much smoother under the EP constraint. Moreover, the cumulative CER values
of the constrained models consistently lie above the CER estimates of the unconstrained model.
At the end of the sample, the cumulative CER value of the unconstrained model is around -30%,
whereas it exceeds 20% and 80% for the EP and SR constrained models, respectively. These
numbers capture the cumulative risk-adjusted economic value of the economically constrained
forecasts relative to the prevailing mean forecasts.

We conclude that there are economically large benefits from imposing economic constraints
on the equity premium prediction models. The benefits appear to be present at monthly, quar-
terly, and annual horizons and are largest for the SR constraint which allows for time-varying

volatility. Moreover, the benefits do not appear to be deteriorating over time.

5 Extensions and Robustness Analysis

This section extends our analysis to incorporate multivariate information. Moreover, we present

a range of sensitivity analyses that shed light on the robustness of our findings.

5.1 Multivariate Results

So far, we have followed much of the finance literature on return predictability and focused
on univariate prediction models. We next extend the analysis to a multivariate setting. With
N predictor variables available, there are N different predictive densities. Using ¢ to index
the predictors as we have done above, we denote these predictive densities by p (rt+1| D!, MZ-),
i = 1,..., N, where M; refers to model i. Instead of conditioning only on a single predictor,
investors may want to take advantage of the information contained in all of the N predictors.
We consider two different ways to combine the information contained in N different predictors.

The first approach relies on forecast combination methods. Specifically, we construct a

combined predictive density as an equal-weighted average of the N predictive densities

N
p (1| DY) = sz‘,t x p (re1| DY, M), (34)
i—1

where w;; = 1/N for alliand t = t—1,...,t—1. We compute the equal weighted predictive density
in across all predictor variables applying this approach separately to the unconstrained,
EP constrained, and SR constrained models. For point forecasts this approach was previously
adopted by Rapach et al. (2010).
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Our second approach relies on diffusion indexes. As shown by Stock and Watson! (2006),
diffusion indexes provide a convenient framework for extracting the key common drivers from
a large number of potential predictors. [Ludvigson and Ng| (2007)) and Neely et al.| (2012) show
that diffusion indexes can be used to improve equity premium forecasting.

The diffusion index approach assumes a common factor structure for the N potential pre-
dictors,

Tir =Nifr+eir, T=1,.,t—1 (35)

where ¢ indexes the predictor, A is a (¢ x 1) vector of factor loadings (¢ << N), frisa (¢ x 1)
vector of latent factors containing the common components extracted from the N predictors,
and e; - is a zero-mean disturbance term. Following|Rapach et al.|(2010), we restrict our analysis
to considering a single factor; the results do not appear to improve if we include two or more
factors in the model.

We estimate the common factors using principal components, and use them as predictors for

stock returns in the following equation:

Tr41 = ppr + Bprfr &1, T=1,,t =1, (36)

where S is a (g x 1) vector of slope coefficients and ;41 ~ N (O, Ji D I). As for the univariate
models in Section 2, we specify an independent normal-gamma prior for the parameters in (36|),
and use a Gibbs sampler for estimation. Next, draws from the corresponding predictive density

are obtained as

p(re1|D') = / P (Tt+1| tpr Bpr, U;/%vat> (37)
bp1Bpro. pr
Xp (MDL Bpr; U;?)I‘ Dt) dMDldﬁDIdUE_,/QjI

where p ( UprsBprs 0;123 I‘ Dt> is the joint posterior density of all parameters in . We estimate
the diffusion index model in and derive the predictive density in for the unconstrained,

EP constrained, and SR constrained models.

5.1.1 Empirical Findings

Table [7] presents empirical results for the equal-weighted combination as well as for the diffu-
sion index. First consider the statistical measures of forecast performance. In all cases these
improve when compared to the average forecast performance computed across the individual
models. At all three horizons, the equal weighted combination yields the largest improvement
in R%2—performance for the unconstrained models. For example, at the monthly horizon the
equal-weighted combination of unconstrained forecasts generates a R? of 0.62% versus -0.53%

as the average value of the individual models. We also see improvements for the constrained
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models, but these tend to be smaller. Which equal-weighted combination is best depends on the
frequency: At the monthly horizon, combining unconstrained forecasts seem to work best; at
the quarterly horizon, combining the SR constrained forecasts produces the best performance,
while at the annual horizon the three approaches perform comparably.

The performance improves even more in the case of the diffusion index which works partic-
ularly well under the economic constraints. In fact, the EP-constrained forecasts deliver higher
R?—values than the equal-weighted unconstrained forecasts at all three horizons, and across
both subsamples. The SR-constrained forecasts based on the diffusion index also perform very
well.

Turning to the economic performance measures, again, these generally lead to higher CER
values when compared against the average values produced by the individual univariate models.
While the beneficial effect of using equal-weighted forecasts remains largest for the unconstrained
forecasts, the resulting CER values are always smaller than those produced by the corresponding
equal-weighted constrained forecasts with differences ranging from 0.13% to 0.31% for the EP-
constrained forecasts, and from 0.39% to 0.72% for the SR-constrained forecasts. Moreover,
the best results from using the diffusion index is obtained for the constrained forecasts with
differences ranging from 0.51% to 0.71% for the EP-constrained forecasts and from 0.99% to
1.27% for the SR-constrained forecasts. In fact, the diffusion index approach works better than
the equal-weighted combination for the EP-constrained and the SR-constrained cases at all

horizons.

5.2 Performance in Recessions and Expansions

Table [8] shows results separately for recession and expansion periods as defined by the NBER
indicator and applied to the monthly and quarterly data. This type of analysis has been proposed
by authors such as Rapach et al.| (2010) and Henkel et al.| (2011)). Consistent with the findings in
these studies, the unconstrained return prediction models do better during recessions than during
expansions. Interestingly, the converse holds for the constrained monthly forecasts which far
outperform the unconstrained forecasts during expansions, but perform worse during recessions.

While this may seem surprising, this finding can be explained by the fact that the state vari-
able being sorted on (recessions) is correlated with returns. Returns tend to be negative during
recessions and positive during expansions and so models that impose non-negative predictions
will almost by construction do relatively better during expansions and worse during recessions.

Despite this effect, at the quarterly horizon the EP constrained forecasts do almost as well
as the unconstrained forecasts during recessions (and much better during expansions), while the
SR constrained forecasts do significantly better than the unconstrained forecasts both during

expansions and recessions.
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5.3 Sensitivity to Risk Aversion

Our main analysis of the economic value of equity premium forecasts in Section 4 assumed a
coefficient of relative risk aversion of A = 5. To explore the sensitivity of our results to this
value, we also considered lower (A = 2) and higher (A = 10) values of this parameter. Results
are shown in Table [0

First consider the case with A = 2, i.e., lower risk aversion compared with the baseline case
that has A = 5. At the monthly horizon, the average CER performance of the unconstrained
performance models is reduced from -0.12% to -0.27%, while conversely the average CER values
of the EP constrained models increases from 0.28% to 0.68% and the SR constrained models’
average performance is essentially unchanged at 0.79%. At the quarterly horizon, the mean CER
value of the unconstrained forecasts remains unchanged, while the mean CER values under the
EP and SR constraints increase from around 0.3% to 0.8% and 1.0%, respectively. Similarly,
the constrained models’ mean CER values increase to 0.83% and 1.03%, respectively (previously
0.33% and 0.67%) at the annual horizon, whereas the unconstrained model’s mean CER value,
at -0.07%, remains negative (previously -0.14%). Lowering the coefficient of risk aversion from
A =5 to A = 2 thus has the effect of boosting the economic performance of the constrained
models whose mean CER value exceeds that of the unconstrained model by more than 0.90%
(EP constraints) and 1.06% (SR constraints).

Conversely, increasing the risk aversion from A = 5 to A = 10 reduces the spread in the
performance of the different models, as an investor with such a high level of risk aversion re-
frains from taking large positions in equity even in the presence of strong evidence of return
predictability. At this higher level of risk aversion, the constrained models continue to out-
perform the unconstrained ones, although the difference in average CER values is reduced to
between 0.2% and 0.35% for the EP constrained models and to between 0.3% and 0.5% for the

SR constrained models.

5.4 Sensitivity to Priors

We also test the robustness of our results to alternative prior assumptions, and perform a
sensitivity analysis where we experiment with different values for some of the key prior hyperpa-
rameters. Given the similarities in the results obtained under the models based on the EP and
SR constraints, as well as the more computationally demanding estimation algorithm required
by models imposing the SR constraint, we focus our attention on the effectiveness of the equity
premium constraint as the priors change, and explore the effect of altering the hyperparameter
1 and v, in and . As discussed in section the hyperparameter ¥ plays the role of
a scaling factor controlling the tightness of the priors for p and 8, and our benchmark models

set ¢ = 2.5. As sensitivities, we experiment with ¢ = 1.25 and ¢ = 5, which imply more
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concentrated prior distributions (in the case of ¢ = 1.25) or more dispersed prior distributions
(in the case of ¢ = 5) for p and B. Similarly, the prior parameter v, controls the tightness of
the prior for 022, and our benchmark models set v, = 0.1, which corresponds to a hypothetical
prior sample size as large as 10% of the actual sample@ As a sensitivity, we experiment with
vy = 0.5 and v, = 0.05, which imply, respectively, an hypothetical prior sample as large as 50%
of the underlying estimation sample (in the case of v, = 0.5), or as large as 5% of the underlying
estimation sample (in the case of vy = 0.05).

Table summarize the (relative) statistical and economic performances of both uncon-
strained and equity premium constrained models under two alternative prior choices, over the
period 1947-2010. A comparison with tables [, and 5] reveal that the key results derived
under the benchmark priors remain largely unaffected when the priors change, with perhaps the
only noticeable difference being related to the |Clark and West, (2007)) p-values in table for
the more dispersed prior choice, which is a direct consequence of the slightly wider predictive

densities resulting from this prior.

5.5 Other predictor variables

So far we focused our empirical analysis exclusively on the predictor variables considered by
Welch and Goyal| (2008). One additional predictor variable that has recently garnered consid-
erable interest is the single factor extracted from the cross-section of book-to-market ratios by
Kelly and Pruitt| (2012). For comparison, we compute the out-of-sample R? obtained from this
predictor for the same sample period as that used here, 1947—2012@ For the unconstrained, EP
and SR constrained models, we obtain R?—values of 0.16, -0.16, and 0.01, respectively. This
suggests, first, that the economic constraints do not improve the forecasts from a linear regres-
sion model based on this particular predictor variable. Second, however, it is interesting to note
that many of our models produce higher out-of-sample R2-values than those obtained for this

new predictor variable.

6 Conclusion

Fconomic arguments can be used to constrain the predictive moments of the equity premium
distribution. We develop a new methodology for imposing constraints that rule out negative
equity premia and bound the conditional Sharpe ratio from above and below. Our approach

efficiently exploits the information in such constraints in a way that incorporates the entire

2! Under conjugate priors, the information contained in the priors can be viewed as “fictitious sample informa-
tion” in that it is combined with the sample in exactly the same way that additional sample information would
be combined. The only difference is that the prior information is observed in the mind of the researcher, not in
the real world (see [Koopl| (2003])).

?2We are gratefull to Seth Pruitt for making the data available to us.
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sequence of data points, while accounting for parameter uncertainty.

When evaluated empirically, we find that a key effect of the economic constraints is to reduce
the impact of “large” values of the predictor variables on the expected equity premium. Conven-
tional linear models tend to generate noisy forecasts following large variations in the predictor
variables. In contrast, economic constraints effectively shrink the predicted equity premium and
reduce the effect of outliers since they are more likely to bind for “large” values of the predictor
variables. This gives rise to dynamic learning effects which can shift the entire predictive dis-
tribution for the equity premium even in situations where no such change is observed under a
conventional unconstrained model.

Imposing economic constraints on the equity premium forecast improves the predictive ac-
curacy for nearly all of the prediction models we consider. Moreover, the benefits from the
economic constraints seem to improve, the longer the forecast horizon. In turn, when used to
select portfolio weights, the constrained forecasts are found to yield higher certainty equivalent

returns than their unconstrained counterparts.
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A Appendix

This appendix explains how we obtain parameter estimates for the models described in Section 2,
and how we use these to generate predictive densities for excess returns. We begin by discussing

the unconstrained model in , and next turn to the models that incorporate the constraints in

and .

A.1 No constraints

In the unconstrained case, the goal is to obtain draws from the joint posterior distribution
p(u,B,0-2| D) with D' denoting all information available up to time ¢. Combining the priors
in @D— with the likelihood function yields the following conditional posteriors:

[ g HUEQ,Dt ~N (5,V), (A-1)
and
o, B, D" ~ G (57%0), (A-2)
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where

t—1 -1
v o= v +a;2zzfz;] ,
T=1
B t—1
b =V V_1b+0'5_2zz7-7“7-+1], (A-3)
T=1
Vo= Yy + (t - 1) ’
and o ) )
(P == Bzr)" F (S5 Xy (T —1
2= ZTA (rrg1— /695) (5 't vy ( )) (A-4)
v

A Gibbs sampler algorithm can be used to iterate back and forth between (A-1)) and (A-2]),
yielding a series of draws for the parameter vector (,u,ﬁ,a;Z). Draws from the predictive

density p (TtH] Dt) can then be obtained by noting that

p(rt-l—l’Dt) :/5 7217(Tt+1|/%570;2:’Dt)p(%570;2‘7))&) dﬂdﬁdagz (A_5)
H,P,0e

A.2 Equity premium constraints

The approach used for the unconstrained model also works when EP constraints are imposed
subject to simply introducing an accept-reject step in (A-1)):

5]

o | w B, D" ~ G(572%0), (A-6)

06_2,Dt ~ N(E,V) X u, B € Ay,

with A; defined in Equation , and, once again, using Equation (A-5]).

A.3 Conditional Sharpe Ratio Constraints

To obtain draws from the joint posterior distribution p < 1, 5,ht,a§_2) Dt) under the SR con-
straints, we use the Gibbs sampler to draw recursively from the following three conditional

distributions:
Lp (ht{u,ﬁ,ag2,1?t) :
2. p (. Blh,05% D).

3. p (05_2’ ,u,,@,ht,Dt) .
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We simulate from each of these blocks as follows. Starting with p (ht’ L, 5,052,95) , We
employ the algorithm of Kim et al. (1998). Define r7,; = r; 11 — u — Bz, and note that 77, is
observable conditional on pu, 5. Next, rewrite as

741 = exp (hry1) Ury1. (A-7)

Squaring and taking logs on both sides of ({A-7)) yields a new state space system that replaces
—@ with

7 = 2hrp +uy, (A-8)

]’L7—+1 = hq—+§7-+1, (A—9)

where 7%, =1In (r2 ), and u¥* | = In (u2,,), with u** independent of £, for all 7 and s. Since
uj*y ~ In(x}), we cannot resort to standard Kalman recursions and simulation algorithms
such as those in |Carter and Kohn| (1994) or [Durbin and Koopman (2002). To obviate this
problem, Kim et al.| (1998) employ a data augmentation approach and introduce a new state

variable s;41, 7 = 1,..,t— 1, turning their focus on drawing from p <ht| 1, 3, 05_2, st Dt> instead

of p (ht} 1, ﬂ,0g2,Dt) The introduction of the state variable s;y; allows us to rewrite the
linear non-Gaussian state space representation in (A-8)-(A-9) as a linear Gaussian state space

model, making use of the following approximation,
7
et~ > gifn (mj —1.2704,0%) (A-10)
j=1

where m, UJQ-, and gj, j = 1,2,...,7, are constants specified in Kim et al.| (1998) and thus need
not be estimated. In turn, (A-10) implies

e ] sr41 =4 ~ N (m; — 1.2704,07) , (A-11)

where each state has probability
Pr(sr41 = ) = g5 (A-12)

t

Conditional on s*, we can rewrite the nonlinear state space system as follows:

Kok
Tri1 = 2hry1 + €741,

hri1 = h7'+§7'+17 (A_13)

where e;41 ~ N <mj —1.2704, vf) with probability ¢;. For this linear Gaussian state space
system, we can use the algorithm of (Carter and Kohn| (1994) to draw the whole sequence of

stochastic volatilities, hl.

3 Here st = {s1, 82, ..., 8¢} denotes the history of the state variable s up to time ¢.
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Finally, conditional on the whole sequence h’, draws for the sequence of states s’ can easily

be obtained, noting that

fx (r;t*;l\ hrp1 —my + 1.2704, vg)
217:1 In (7":11‘ 2hr 41 —my 4 1.2704, Ul2) .

Pr (57+1 = Jl T;‘-ila h7'+1) = (A-14)

Moving on to p ( w, B ht,agQ,Dt> , conditional on h! it is straightforward to draw u, [, and
apply standard results. Specifically,

[ g } ‘ Wog? D~ N (5, T) x o € A (A-15)

where A, is defined in , with

t—1 1 -1
i -1

=1 eXp (Nr41
t—1 1
b = VIV ib+ 27T
{ B Tz—lexp(hmf H}

In turn, the posterior distribution for p (UQQ‘ i, B, ht, Dt> is readily available as,

-1
ke + S50 (hey1 — hy)?
052’ B, h D~ G |2 Zth ( I“ r) =1 (A-16)
Finally, draws from the predictive density p (rt+1] Dt) can be obtained by noting than
p(T‘t+1|Dt) = / p(T‘t+1|ht+1,%5,ht,052apt)
Bkttt o ?
Xp (ht+1’/j’7/87ht70-5_27pt) (A_]'7)

Xp ( 1, B, I, aﬂ Dt) dpdBdht+ do ;2.

The first term in the integral above, p (rt+1| his1, i, 3, ht, 05_2, Dt>, represents the period ¢ + 1
predictive density of excess returns, treating model parameters as if they were known with cer-
tainty, and so is straightforward to calculate. The second term in the integral, p (ht+1\ w, 3, ht, O'g2, Dt) ,
reflects how period ¢ + 1 volatility may drift away from h; over time. Finally, the last term in

the integral, p (,u, B, ht, 052‘ Dt), measures parameter uncertainty in the sample.

To obtain draws for p (rt+1] Dt), we proceed in three steps:

1. Simulating from p (,u, B, ht, 052‘ Dt): draws from p (,u, B, ht, agZ‘ Dt) are obtained from
the Gibbs sampling algorithm described above;
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2. Simulating from p (ht—i-l’ w, B, ht,agQ,Dt): having processed data up to time ¢, the next

step is to simulate the future volatility, h;y1. For a given h; and 05_2, note that p and

and the history of volatilities up to ¢t become redundant, i.e., p (ht+1| w, 3, ht, O'gQ, Dt) =

P (ht+1| ht,JQQ,Dt). Note also that (@) along with the distributional assumptions made
with regards to §,,, imply that

ht—‘rl‘ ht,O'g_Q,Dt ~ N (ht,Ug) . (A-18)

3. Simulating from p <rt+1] hit1, p, 3, ht, 05_2, Dt>: For a given hy 1, it, and 3, note that htand

05_2 become redundant, i.e., p (rt+1\ hii1, i, 3, ht, ng, Dt) =p (rt+1\ hiy1, p, 3, Dt) . Then
use the fact that

Tt—i—l’ ht+17 My ﬁ7 Dt ~ N (/"L + /thu exp (ht+1)) . (A_]'g)
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Figure 1: Out-of-sample equity premium forecasts and forecast performance under constrained
and unconstrained models
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Each month we regress stock returns measured in excess of the T-bill rate (r:4+1) on an intercept and the log
dividend-price ratio, r¢41 = p + Blog(D:/P:) + €¢41. Recursive estimates from this model are then used to
generate one-step-ahead out-of-sample forecasts of excess returns, and the process is repeated up to the end of the
sample. Unconstrained forecasts, #;11)¢, are based on recursive estimates using uninformative priors. Truncated
forecasts use Max (0, #,y1¢), while the equity premium constrained forecasts use our Bayesian methodology. The
top window plots the sequence of recursive out-of-sample forecasts, using 20 years of data as a warm-up period.
The bottom window plots the cumulative sum of squared forecast errors (SSE;) of the prevailing mean forecasts
(SSEFM) relative to the forecasts based on the log dividend-price ratio, SSEf™ — SSE™.
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Figure 2: Equity premium constraint
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(c) Log dividend-payout ratio, —1.22 < z; <1.38

This figure shows the effect on the parameters p and S from imposing the equity premium constraint p+ Sz > 0,
as indicated by the shaded area.
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Figure 3: Slope coefficient of predictors under constrained and unconstrained models
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This figure shows the posterior density of the slope coefficient, 8, from a regression of monthly excess returns
(r++1) on an intercept and a lagged predictor variable, z;: 7441 = p+ Bzt +er41. The equity premium constrained
model imposes that fy11e = [ (1 + Bze)p(p, 8| D")dpdB > 0, for t = 1,...,T — 1 and information set D*, while
the Sharpe ratio constraint imposes that 0 < 71 q1¢/Gy11p < 1, for t = 1,...,T — 1, where 6441 is the posterior
volatility estimate obtained from a stochastic volatility model. The posterior density estimates shown here are
based on the full sample at the end of 2010. Panels A, B, and C use the log dividend-price ratio, T-bill rate, and
the default yield spread as predictors, respectively.
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Figure 4: Posterior density of the equity premium under constrained and unconstrained models
(Dividend-price ratio)
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This figure shows the posterior density of the equity premium as a function of the log dividend-price ratio,
u + Bxr, where xr is set at the sample mean of the log dividend-price ratio Z (top window),  — 2st.dev ()
(middle window), and Z + 2st.dev (z) (bottom window). The equity premium constrained model imposes that
Ferrpe = (1 + Bx)p(w, B DdudB > 0, for t = 1,...,T — 1 and information set D*, while the Sharpe ratio
constraint imposes that 0 < 7y, /F¢qp1p <1, fort =1,...,T — 1, where G411}, is the posterior volatility estimate
obtained from a stochastic volatility model. All posterior density estimates are based on the full data sample as
of end-2010.
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Figure 5: Posterior density of the equity premium under constrained and unconstrained models

(T-bill rate)
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This figure shows the posterior density of the equity premium as a function of the T-bill rate, u + Bz,

where zr is set at the sample mean of the T-bill rate Z (top window), T — 2st.dev (z) (middle window),
and T + 2st.dev (z) (bottom window). The equity premium constrained model imposes that 7410 = [(p +
Bx)p(p, B DdudB > 0, for t = 1,...,T — 1 and information set D, while the Sharpe ratio constraint imposes
that 0 < 74 4q)./6p41e < 1, for t = 1,...,T — 1, where 6,41}, is the posterior volatility estimate obtained from a
stochastic volatility model. All posterior density estimates are based on the full data sample as of end-2010.
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Figure 6: Posterior density of the equity premium under constrained and unconstrained models
(default spread)
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This figure shows the posterior density of the equity premium as a function of the default yield spread, u + Sz,
where z7 is set at the sample mean of the default yield spread Z (top window), T — 2st.dev () (middle window),
and T + 2st.dev (z) (bottom window). The equity premium constrained model imposes that 7410 = [(p +
Bx)p(p, B DdudB > 0, for t = 1,...,T — 1 and information set D, while the Sharpe ratio constraint imposes
that 0 < 74 4q)./6p41e < 1, for t = 1,...,T — 1, where 6,41}, is the posterior volatility estimate obtained from a
stochastic volatility model. All posterior density estimates are based on the full data sample as of end-2010.
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Figure 7: Posterior mean and variance of the equity premium as a function of the value of the

predictor variable
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This figure plots the posterior mean (top window) and posterior variance (bottom window) of the equity premium
as a function of the T-bill rate under unconstrained, equity premium constrained and Sharpe ratio constrained
models, respectively. The equity premium constrained model imposes that #;41¢ = [(u+8z:)p( u, 8| D")dudB > 0,
for t =1,...,7 — 1 and information set D*, while the Sharpe ratio constraint imposes that 0 < Fepa)e/Fegpe < 1,
fort = 1,...,T — 1, where 6,41}, is the posterior volatility estimate obtained from a stochastic volatility model.
All posterior density estimates are based on the full data sample as of end-2010.
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Figure 8: Out-of-sample equity premium forecasts under unconstrained and constrained models
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Each month we regress excess returns (r;4+1) on an intercept and a lagged predictor, @;: Ti41 = p+ Bz + £441.
Estimates from this model are then used to generate recursive one-step out-of-sample forecasts of excess returns
and the process is repeated up to the end of the sample in 2010. Unconstrained forecasts, 711}, are based on
recursive least-squares estimates and uninformative priors. The equity premium constrained model imposes that
Ferre = [ (1 + Bxe)p(p, B D)dudB > 0, for t = 1,...,T — 1 and information set D*, while the Sharpe ratio
constraint imposes that 0 < #q4/6¢qp1p < 1, = 1,...,T — 1, where 6,4, is the posterior volatility estimate
obtained from a stochastic volatility model. The three windows use different predictor variables, namely, the log
dividend-price ratio (top window), the T-bill rate (middle), and the default yield spread (bottom).
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Figure 9: Volatility forecasts
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This figure shows the one-step-ahead recursive conditional volatility forecasts computed from the predictive return

distribution based on the stochastic volatility model that uses the log dividend-price ratio as predictor, ri+1 =
p+ Blog(De/Pr) 4 exp(hit1)uer1, her1r = he + &4 1.
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Figure 10: Conditional Sharpe ratios
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This figure shows the time series of conditional Sharpe ratios computed from the predictive density of excess
returns based on the unconstrained, equity premium constrained, and Sharpe ratio constrained models. The
three windows use different predictor variables, namely, the log dividend-price ratio (top window), the T-bill rate
(middle), and the default yield spread (bottom).
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Figure 11: Posterior probability intervals for the parameters of the return prediction model
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Each month we update the posterior density of the parameters u, 5 of the return prediction model 7141 =
u+ Bzt + €441, where x; is the T-bill rate and 7441 is the return on the S&P 500 index, measured in excess
of the T-bill rate. We then compute posterior probability intervals for these parameter estimates. Windows to
the left report the (2.5,97.5) percentile posterior probability intervals for the parameters of the unconstrained
model, while windows to the right show results for the equity-premium constrained model. The equity premium
constrained model imposes that #41;; = [ (1 + Bxe)p(p, 8| D')dudB > 0 for all t = 1,...,T — 1 and information
set D'. All density estimates are updated recursively through time.
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Figure 12: Forecast performance: cumulative sum of squared forecast error differentials
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This figure shows the sum of squared forecast errors of the prevailing mean model minus the sum of squared
forecast errors of a forecast model with time-varying predictors. Each month we estimate the parameters of the
forecast models recursively and generate one-step-ahead forecasts of excess returns which are in turn used to
compute out-of-sample forecast errors. This procedure uses univariate forecast models based on the log dividend-
price ratio (top window), the T-bill rate (middle window), or the default yield spread (bottom window) or a
simple prevailing mean model which is our benchmark. We then plot the cumulative sum of squared forecast
errors (SSE;) of the prevailing mean forecasts (SSEf ™) relative to the univariate forecasts, SSE{™ — SSE;.
Values above zero indicate that a univariate forecast model generates better performance than the prevailing
mean benchmark, while negative values suggest the opposite. The equity premium constrained model imposes
that Aey1e = (1 + Bze)p(p, B DH)dpdB > 0, for t = 1,...,T — 1 and information set D, while the Sharpe ratio
constraint imposes that 0 < 7,4 /F¢p1p <1, fort =1,...,T — 1, where G411}, is the posterior volatility estimate
from a stochastic volatility model.
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Figure 13: Portfolio allocation and economic value of forecasts
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This figure plots the percentage allocation to stocks and the resulting cumulative certainty equivalent returns
measured relative to the prevailing mean model. Each month we compute the optimal allocation to stocks and
T-bills based on the predictive density of excess returns. The investor is assumed to have power utility with a
coefficient of relative risk aversion of five and the weight on stocks is constrained to lie in the interval [0, 0.99].
The top window shows the recursively computed optimal weight on stocks, while the bottom window shows the
cumulative certainty equivalent return measured relative to the prevailing mean model. The equity premium
constrained model imposes the constraint that 7,y1: = [ (1 + Bze)p(p, B DYdudp > 0, for t = 1,...,T — 1 and
information set D, while the Sharpe ratio constraint imposes that 0 < Pepr)e/Oepre < 1, for t = 1,17 — 1,
where 6,11}, is the posterior volatility estimate obtained from a stochastic volatility model. The predictor used
is the log dividend-price ratio.
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Table 1: Summary statistics

Monthly

Variables Mean Std. deviation Skewness Kurthosis
Excess returns 0.005 0.056 -0.405 10.603
Log dividend price ratio -3.329 0.452 -0.403 3.044
Log dividend yield -3.324 0.450 -0.435 3.030
Log earning price ratio -2.720 0.426 -0.708 5.659
Log smooth earning price ratio -2.912 0.376 -0.002 3.559
Log dividend-payout ratio -0.609 0.325 1.616 9.452
Book-to-market ratio 0.589 0.267 0.671 4.456
T-Bill rate 0.037 0.031 1.025 4.246
Long-term yield 0.053 0.028 0.991 3.407
Long-term return 0.005 0.024 0.618 8.259
Term spread 0.016 0.013 -0.218 3.128
Default yield spread 0.011 0.007 2.382 11.049
Default return spread 0.000 0.013 -0.302 11.490
Stock variance 0.003 0.005 5.875 48.302
Net equity expansion 0.019 0.024 1.468 10.638
Inflation 0.002 0.005 -0.069 6.535
Log total net payout yield -2.137 0.224 -1.268 6.213

Quarterly

Variables Mean Std. deviation Skewness Kurthosis
Excess returns 0.014 0.108 0.201 11.087
Log dividend price ratio -3.328 0.456 -0.372 3.077
Log dividend yield -3.314 0.450 -0.471 3.037
Log earning price ratio -2.719 0.432 -0.777 5.932
Log smooth earning price ratio -2.906 0.378 0.028 3.654
Log dividend-payout ratio -0.609 0.332 1.702 9.919
Book-to-market ratio 0.594 0.268 0.745 4.905
T-Bill rate 0.037 0.031 1.040 4.313
Long-term yield 0.053 0.028 1.008 3.484
Long-term return 0.014 0.045 1.067 7.369
Term spread 0.016 0.013 -0.260 3.285
Default yield spread 0.011 0.007 2.390 11.007
Default return spread 0.001 0.021 0.355 16.437
Stock variance 0.008 0.013 4.523 28.492
Net equity expansion 0.019 0.025 1.416 10.179
Inflation 0.007 0.013 -0.383 5.341

Annual

Variables Mean Std. deviation Skewness Kurthosis
Excess returns 0.053 0.202 -0.904 4.104
Log dividend price ratio -3.337 0.464 -0.415 2.873
Log dividend yield -3.286 0.444 -0.732 3.115
Log earning price ratio -2.722 0.420 -0.339 3.672
Log smooth earning price ratio -2.895 0.377 -0.097 3.078
Log dividend-payout ratio -0.615 0.319 1.068 5.664
Book-to-market ratio 0.585 0.263 0.506 3.285
T-Bill rate 0.037 0.031 1.028 4.388
Long-term yield 0.053 0.028 0.914 3.168
Long-term return 0.058 0.096 1.035 4.591
Term spread 0.016 0.014 -0.453 3.925
Default yield spread 0.012 0.008 2.278 9.532
Default return spread 0.004 0.043 -0.134 7.845
Stock variance 0.030 0.040 2.906 12.014
Net equity expansion 0.019 0.026 2.498 15.603
Inflation 0.030 0.038 -0.343 5.876
Percent equity issuing 0.194 0.110 1.733 8.368

This table reports summary statistics for excess returns, computed as returns on the S&P500 portfolio minus the
T-bill rate, and for the predictor variables used in the study. The sample period is 1927-2010.
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Table 8: Out-of-sample forecast performance: Recessions and expansions

Monthly
Panel A: Expansions Panel B: Recessions

. No Equity premium SR No Equity premium SR

Variables . . . . . .
constraint constraint constraint constraint constraint constraint
Log dividend price ratio -0.93% 0.72% *** 0.70% *** | 239% *** 0.47% 0.02%
Log dividend yield -1.77% 0.77% *** 0.67% *** | 3.44% *** 0.75%  F 0.27%
Log earning price ratio -0.96% ** 0.85% *¥* 0.75% | -2.32% -1.07% -0.72%
Log smooth earning price ratio | -2.25% 0.79% *** 0.88% *** | 245% **  -0.21% -0.43%
Log dividend-payout ratio -0.50% 0.34% * 0.41% ** | -3.95% -1.13% -0.83%
Book-to-market ratio -2.08% 0.38% * 0.46% ** 0.12% -0.79% -0.91%
T-Bill rate -0.77% 0.30% * 0.78% *** | 1.75% * -0.36% -0.01%
Long-term yield -1.81% 0.50% ** 0.79% *** | 0.98% -0.09% 0.04%
Long-term return -1.35% 0.40% ** -0.17% 0.61% -0.29% 2.07% **
Term spread -0.37% 0.28% * 0.49% ** 1.01% * -0.48% -0.31%
Default yield spread -0.28% 0.30% ** 0.41% * 0.02% -0.07% -1.18%
Default return spread -0.16% 0.46% ** 0.42% ** | -0.41% -0.52% -1.90%
Stock variance -0.08% 0.03% 0.24% 0.95% -0.62% -1.47%
Net equity expansion 0.49% ** 037T% ** 0.48%  ** | -3.66% -0.86% -1.32%
Inflation -0.10% 0.39% ** 0.59% ** -0.20% -0.63% -1.70%
Log total net payout yield -1.21% 0.52% ** 0.48% ** 1.12% -0.55% -1.13%
Quarterly
Panel A: Expansions Panel B: Recessions

. No Equity premium SR No Equity premium SR

Variables . . . . . .
constraint constraint constraint constraint constraint constraint

Log dividend price ratio -4.35% 2.81% *** 1.81% **F [ 6.42% **  1.00% 1.46% *
Log dividend yield -2.54% 2.66% *** 1.91% *** | 5.94% M 1.08% 1.82%  **
Log earning price ratio -5.82%  * 2.76% *** 1.63% *** | -7.13% -2.53% -0.20%
Log smooth earning price ratio | -9.43% 2.93% *** 2.29% *** | 563% **  -0.5T% 0.50%
Log dividend-payout ratio -1.24% 1.21% ** 1.35% ** | -7.56% -1.80% -0.02%
Book-to-market ratio -10.20% 1.25% ** 1.46% ** | -0.02% -2.36% 0.17%
T-Bill rate -1.61% 1.04% ** 2.31% *** | 1.17% -1.61% 1.19%
Long-term yield -4.711% 1.36% ** 1.87% **t | 047% -0.56% 1.05%
Long-term return 0.70% 1.73% ** 1.83% ** | -2.74% -1.59% -1.17%
Term spread -0.51% 0.96% * 1.40% * 1.09% -1.41% 0.90%
Default yield spread -1.25% 1.14% ** 1.43% ** | -0.16% -0.50% -1.18%
Default return spread -4.07% 1.00% ** 1.33% ** | -9.40% -4.70% -0.11%
Stock variance -0.09% 1.31% *** 1.59% ** | -0.21% -1.76% -3.16%
Net equity expansion -0.30%  ** 1.28% ** 1.43% ** | -12.17% -2.50% -1.49%
Inflation -0.41% 1.36% ** 1.27%  ** 0.68% -1.11% 0.44%

This table reports the out-of-sample R? of unconstrained and constrained univariate prediction models for the
monthly excess return, r++1, measured relative to the prevailing mean model:

Zi_;lz_l(’l’t+1 - ft+1|t)2
T _ )
S (rer1 = Tepape)?

RZODS =1-

where 7,41, is the posterior mean of the predictive return distribution based on a regression of monthly excess
returns on an intercept and a lagged predictor variable, x:: rey1 = p+ Bxt + €t41- Teq1e 18 the forecast from
the prevailing mean model which assumes that 8 = 0. The equity premium constrained model imposes that
Perpe = f (1 + Bae)p(p, B D)dudB > 0, for t = 1,...,T — 1 and information set D*, while the Sharpe ratio (SR)
constraint imposes that 0 < 74 /6¢p1p <1, fort =1,...,T — 1, where G411}, is the posterior volatility estimate
obtained from a stochastic volatility model. Panels A and B show monthly results for expansions and recessions,
while panels C and D show quarterly results for expansions and recessions. Bold figures highlight instances where
the constrained R%,g is higher than its unconstrained counterpart. * significance at 10% level; ** significance at
5% level; *** significance at 1% level.
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