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Abstract

We propose a new approach to predictive density modeling that allows for MI-
DAS effects in both the first and second moments of the outcome and develop Gibbs
sampling methods for Bayesian estimation in the presence of stochastic volatility dy-
namics. When applied to quarterly U.S. GDP growth data, we find strong evidence
that models that feature MIDAS terms in the conditional volatility generate more
accurate forecasts than conventional benchmarks. Finally, we find that forecast
combination methods such as the optimal predictive pool of Geweke and Amisano
(2011) produce consistent gains in out-of-sample predictive performance.
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1 Introduction

The notion that financial variables measured at a high frequency (e.g., daily interest rates
and stock returns) can be used to improve forecasts of less frequently observed monthly or

∗We thank Elena Andreou, Eric Ghysels, and Sidney Ludvigson for making her macroeconomic vari-
ables available to us. We also thank Kenneth French for making his daily stock returns data available to
us.
†Brandeis University, Sachar International Center, 415 South St, Waltham MA 02453, Tel: (781)

736-2834. Email: dpettenu@brandeis.edu
‡University of California, San Diego, 9500 Gilman Drive, MC 0553, La Jolla CA 92093. Tel: (858)

534-0894. Email: atimmerm@ucsd.edu.
§University of California, San Diego, 9500 Gilman Drive, MC 0553, La Jolla CA 92093. Tel: (858)

534-0898. Email: rvalkanov@ucsd.edu.

1



quarterly macroeconomic variables is appealing and has generated considerable academic
interest in a rapidly expanding literature on mixed-data sampling (MIDAS) models.1

MIDAS models aggregate data sampled at different frequencies in a manner that has
the potential to improve the predictive accuracy of regression models. By using tightly
parameterized lag polynomials that allow the relative weighting on current and older
values of predictors to be flexibly tailored to the data, the MIDAS approach makes it
feasible to use the entire recent history of variables observed at a higher frequency than
the outcome variable of interest.2

Empirical studies in the MIDAS literature have analyzed the dynamics in variables
as diverse as GDP growth (Andreou et al. (2014), Carriero et al. (2012b), Clements and
Galvao (2008), Clements and Galvao (2009), Kuzin et al. (2011), Kuzin et al. (2013),
Marcellino et al. (2013)), stock market volatility (Ghysels et al. (2007), Ghysels and
Valkanov (2012)) and the relation between stock market volatility and macroeconomic
activity (Engle et al. (2013) and Schorfheide et al. (2014)). Such studies typically use
simple and compelling designs to introduce high frequency variables in the conditional
mean equation and frequently find that the resulting point forecasts produce lower out-
of-sample root mean square forecast errors (RMSFEs) than benchmarks ignoring high
frequency information.
Benefits from using the MIDAS approach to introduce high frequency information in

the conditional volatility specification, in addition to its level, have received much less
attention. However, there are good reasons to expect information in variables observed at
a high frequency to be helpful in predicting the volatility of monthly or quarterly macro-
economic variables. First, studies such as Sims and Zha (2006) and Stock and Watson
(2002) show that the volatility of macroeconomic variables varies over time. Second, ac-
counting for dynamics in the volatility equation can lead to improved forecasts of levels
as shown by Clark (2011), Carriero et al. (2012a), Carriero et al. (2012b), and Clark and
Ravazzolo (2014). Third, an extensive literature summarized in Andersen et al. (2006)
documents that high frequency variables can be used to produce better out-of-sample
volatility forecasts.3

This paper proposes a new approach to forecasting macroeconomic variables such as
GDP growth that uses the MIDAS approach to introduce daily variables in both the con-

1Stock and Watson (2003) also use financial variables to forecast GDP growth, though measured at
the monthly and quarterly frequencies.

2A common alternative is to use an average of recent values, e.g., daily values within a quarter.
However, this overlooks that recent observations carry information deemed more relevant than older
observations. Alternatively one can use only the most recent daily observation. However, this may be
suboptimal, particularly in the presence of measurement errors.

3See also Ghysels and Valkanov (2012) for a review of the volatility MIDAS literature.
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ditional mean and volatility equations while accounting for autoregressive and stochastic
volatility dynamics. In doing so, our paper makes several contributions to the literature
on forecasting with MIDAS models. First, we show how to cast the MIDAS lag polyno-
mial as a linear regression model with transformed daily predictors and take advantage
of this in a Bayesian estimation setting. In the case with constant volatility and normal
innovations, Bayesian estimation can be undertaken using a two-block Gibbs sampler.
Despite their growing popularity as models for forecasting and inference, relatively little
work has been undertaken on Bayesian estimation and forecasting with MIDAS models,
though notable exceptions include Carriero et al. (2012b), Ghysels (2012), Marcellino
et al. (2013), and Rodriguez and Puggioni (2010).
Building on this insight we show, secondly, how to extend the MIDAS model to include

stochastic volatility in the innovations of the outcome, along with autoregressive dynam-
ics and lagged predictive factors. Third, we show how MIDAS effects can be extended
from the first moment to the second moment in a parameterization that permits the log
conditional volatility to depend linearly on a MIDAS term. Conditional on the sequence
of log-volatilities and the parameters determining the stochastic volatility dynamics, our
MIDAS specifications reduce to standard linear regression models and drawing the pa-
rameters of the mean equation from their posterior distributions becomes standard. In
turn, to obtain the sequence of log- volatilities and the stochastic volatility parameters
we rely on the algorithm of Kim et al. (1998), extended by Chib et al. (2002) to allow for
exogenous covariates in the volatility equation.4 Hence a four-block Gibbs sampler can
be used to produce posterior estimates for the model parameters.
Our Bayesian MIDAS approach offers several advantages over standard classical meth-

ods. As the object of the Bayesian analysis is to obtain the full (posterior) predictive
density given the data, as opposed to simply a point forecast, the predictive density fore-
casts account for the effect of parameter uncertainty. This can be important in empirical
applications (including the one we consider here) with macroeconomic variables for which
data samples are short and so parameters tend to be imprecisely estimated. Moreover, we
can use the density forecasts to evaluate a whole range of measures of predictive accuracy
including, as a special case, mean square forecast errors, log scores, and the continuously
ranked probability score of Gneiting and Raftery (2007a). Finally, because we construct
the predictive density for a range of different models, we can compute forecast combina-
tions that optimally weighs the individual models. As new data arrive, the combination
weights get updated and so models that start to perform better receive greater weight in
the combination. Forecast combinations also provide a way to deal with model uncertainty

4Posterior simulation of the whole path of stochastic volatilities under an arbitrary second moment
MIDAS lag polynomial would require the use of a particle filter.
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since they do not depend on identifying a single best model.
We illustrate our approach in an empirical application to quarterly U.S. GDP growth,

a variable that has been extensively studied in the literature. Andreou et al. (2014) use
the MIDAS approach to predict quarterly U.S. GDP growth in the context of a large
cross-section of daily predictors. They find that adding information on daily predictors
improves the predictive accuracy of a model that also includes common factors and com-
bines forecasts from a range of univariate prediction models. Compared with Andreou
et al. (2014), our application uses a longer time series but a much smaller set of daily stock
returns and interest rates. Even so, we find that the MIDAS models are capable of pro-
ducing notable gains in predictive accuracy compared with models that use only quarterly
information. The predictive accuracy of stochastic volatility models with MIDAS terms
is particularly evident in turbulent periods because of effi ciency gains in the parameters
of the conditional mean. We also find that forecast combinations, particularly Bayesian
Model Averaging and the optimal prediction pool of Geweke and Amisano (2011), lead
to significant improvements in forecast accuracy. These gains are observed both for the
point forecasts (through reduced RMSFE values) and for density forecasts (through higher
log-scores). The results are established out-of-sample, using only predictors available in
real time and so do not suffer from look-ahead biases.
The outline of the paper is as follows. Section 2 introduces the MIDAS methodology

and extends the model to include stochastic volatility effects and, as a new contribution,
MIDAS terms in both the conditional mean and the log conditional volatility equation.
Section 3 introduces our Bayesian estimation approach and discusses how to generate
draws from the predictive density using Gibbs sampling methods. Section 4 describes
our empirical application to quarterly U.S. GDP growth, while Section 5 covers different
forecast combinations. Section 6 concludes.

2 MIDAS regression models

This section outlines how we generalize the conventional regression specification to account
for MIDAS effects in the first and second conditional moment equations while allowing
for stochastic volatility.

2.1 MIDAS Setup

Suppose we are interested in forecasting some variable yt+1 which is observed only at
discrete times t − 1, t, t + 1, etc., while data on a predictor variable, x(m)t+1, are observed
m times between t and t + 1. For example, yt+1 could be a quarterly variable and x

(m)
t+1
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could be a daily variable. In this case m = (22× 3), assuming that the number of daily
observations available within a month is constant and equals 22. It is natural to consider
using lagged values of x(m)t to forecast yt+1. We denote such lags of x

(m)
t by x(m)t−j/m, where

the m superscript makes explicit the higher sampling frequency of x(m)t relative to yt+1.
To include such lags we could use a simple MIDAS model

yτ+1 = β0 +B
(
L1/m;θ

)
x(m)τ + ετ+1, τ = 1, ..., t− 1 (1)

where

B
(
L1/m;θ

)
=

K−1∑
k=0

B (k;θ)Lk/m,

and Lk/m is a lag operator such that L1/mx(m)τ = x
(m)
τ−1/m, and ετ+1 is i.i.d. with E (ετ+1) =

0 and V ar (ετ+1) = σ2ε. The distinguishing feature of MIDAS models is that the lag
coeffi cients in B (k;θ) are parametrized as a function of a low dimensional vector of
parameters θ = (θ0, θ1, ..., θp). To use a concrete example, suppose again that yt+1 is a
quarterly series which gets affected by four quarters’worth of daily data, x(m)t . In this
case, we would need K = 264 (22×3×4) lags of daily variables. Without any restrictions
on the parameters in B

(
L1/m;θ

)
there would be 264 + 2 parameters to estimate in 1. By

making B
(
L1/m;θ

)
a function of a small set of parameters p + 1 << K we can greatly

reduce the number of parameters to estimate.
It is sometimes useful to cast the MIDAS model as

yτ+1 = β0 + β1B1
(
L1/m;θ1

)
x(m)τ + ετ+1, τ = 1, ..., t− 1 (2)

where β1B1
(
L1/m;θ1

)
= B

(
L1/m;θ

)
and β1 is a scalar that captures the overall impact

of lagged values of x(m)τ on yτ+1. Since β1 enters multiplicatively in (2), it cannot be
identified without imposing further restrictions on the polynomial B1

(
L1/m;θ1

)
. One way

to identify β1 is to normalize the function B1
(
L1/m;θ1

)
to sum to unity. Normalization

and identification of β1 are not strictly necessary in a MIDAS regression but can be useful
in settings such as those of Ghysels et al. (2005) and Ghysels et al. (2007) where β1 is
important for economic interpretation of the results.
The model in (1) can be generalized to allow for py lags of yt+1 and another pz lags of

r predictor variables zt = (z1t, ..., zrt)
′ available at the same frequency as yt :

yτ+1 = α +

py−1∑
j=0

ρj+1yτ−j +

pz−1∑
j=0

γ ′j+1zτ−j +B
(
L1/m;θ

)
x(m)τ + ετ+1. (3)

This regression requires the estimation of (3 + p+ py + pz × r) coeffi cients. The distrib-
uted lag term

∑py−1
j=0 ρj+1yτ−j captures same-frequency dynamics in yt+1, while the addi-

tion of the zt factors allows for predictors other than own lags. We refer to the model
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in (3) as the Factor-augmented AutoRegressive MIDAS, or FAR-MIDAS, for short. If
the lagged factors are excluded from equation (3), the model has only autoregressive and
MIDAS elements and is called AR-MIDAS. These abbreviations reflect the nested struc-
ture of the models that we consider. The FAR-MIDAS model is called FADL-MIDAS (for
factor augmented distributed lag MIDAS) in Andreou et al. (2014).

2.2 MIDAS weighting functions

The functional form of the MIDAS weightsB
(
L1/m;θ

)
depends on the application at hand

and has to be flexible enough to capture the dynamics in how the high frequency data
x
(m)
τ affect the outcome. Since our principal interest lies in forecasting GDP growth, we
adopt a simple unrestricted version of B

(
L1/m;θ

)
, known as the Almon lag polynomial,

which takes the form

B (k;θ) =

p∑
i=0

θik
i, (4)

where θ = (θ0, θ1, ..., θp) is a vector featuring p + 1 parameters to be estimated. Under
this parameterization, (3) takes the form

yτ+1 = α +

py−1∑
j=0

ρj+1yτ−j +

pz−1∑
j=0

γ ′j+1zτ−j +
K−1∑
k=0

p∑
i=0

θik
iLk/mx(m)τ + ετ+1. (5)

Define the (p+ 1×K) matrix Q

Q =


1 1 1 . . . 1
1 2 3 . . . K
1 22 32 . . . K2

...
...

...
. . .

...
1 2p 3p . . . Kp

 , (6)

and the (K × 1) vector of high frequency data lags X
(m)
τ

X(m)
τ =

[
x(m)τ , x

(m)
τ−1/m, x

(m)
τ−2/m, ..., x

(m)
τ−1, ..., x

(m)
τ−(K−1)/m

]′
. (7)

Given the linearity of (4) and (5), we can rewrite (5) as

yτ+1 = α +

py−1∑
j=0

ρj+1yτ−j +

qz−1∑
j=0

γ ′j+1zt−j + θ′X̃(m)
τ + ετ+1, (8)

where X̃
(m)
τ = QX(m)

τ is a (p+ 1× 1) vector of transformed daily regressors. Once esti-
mates for the coeffi cients θ are available, we can compute the MIDAS weights from (4)
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as B̂ (k;θ) =
∑p

i=0 θ̂ik
i. We can also impose the restriction that the weights B̂ (k;θ) sum

to one by normalizing them as

B̃ (k;θ) =
B̂ (k;θ)∑K
i=1 B̂ (i;θ)

. (9)

In forecasting applications, this normalization does not provide any advantages, however.
Hence, we work with the unrestricted expression (8) for which the MIDAS parameters θ
can conveniently be estimated by OLS after transforming the daily regressors X

(m)
τ into

X̃
(m)
τ .
It is useful to briefly contrast the Almond weights in (4) with other parameterizations

in the MIDAS literature. These include the exponential Almon lag

B (k;θ) =
eθ1k+θ2k

2+...+θpkp∑K
i=1 e

θ1i+θ2i2+...+θpip
,

(Ghysels et al. (2005), Andreou et al. (2014)) and the normalized Beta function of Ghysels
et al. (2007)

B (k;θ) =

(
k−1
K−1

)θ1−1 (
1− k−1

K−1
)θ2−1∑K

i=1

(
i−1
K−1

)θ1−1 (1− i−1
K−1

)θ2−1 .
Estimation of MIDAS models with these parameterizations requires non-linear optimiza-
tion.
A third alternative is the stepwise weights proposed in Ghysels et al. (2007) and Corsi

(2009)

B (k;θ) = θ1Ik∈[a0,a1] +

p∑
p=2

θpIk∈[ap−1,ap],

where the p + 1 parameters a0, ..., ap are thresholds for the step function with a0 = 1 <

a1 < ... < ap = K and Ik∈[ap−1,ap] is an indicator function, with

Ik∈[ap−1,ap] =

{
1 if ap−1 ≤ k < ap
0 otherwise

.

Provided that these thresholds are known, estimation of MIDASmodels with these weights
can also be undertaken using OLS. A final alternative is the Unrestricted polynomial, U-
MIDAS approach,proposed by Foroni et al. (2013). In this case, all the high frequency
lag coeffi cients are left unconstrained, and estimation can be undertaken using OLS.

2.3 MIDAS in the second moment

The majority of MIDAS specifications assume constant volatility of the residuals in (8).
Notable exceptions are Carriero et al. (2012b), and Marcellino et al. (2013) who allow for

7



stochastic volatility in ετ+1.We extend this literature by introducing a MIDAS component
not only in the level of yτ+1 but also in its conditional volatility. This generalization is
potentially important because it is well established that the use of high frequency variables
leads to better in-sample fit and out-of-sample forecasting performance for many financial
and macroeconomic variables, see Andersen et al. (2006), Ghysels et al. (2007), Engle
et al. (2013), and Schorfheide et al. (2014).
We generalize the constant volatility model in two steps. First, consider extending the

FAR-MIDAS model (8) to allow for stochastic volatility as

yτ+1 = α +

py−1∑
j=0

ρj+1yτ−j +

pz−1∑
j=0

γ ′j+1zτ−j + θ′X̃(m)
τ + exp (hτ+1)uτ , (10)

where hτ+1 denotes the log-volatility of yτ+1 and uτ+1 ∼ N (0, 1). It is commonly assumed
that the log-volatility evolves as a driftless random walk

hτ+1 = hτ + ξτ+1, (11)

where ξτ+1 ∼ N
(
0, σ2ξ

)
and ut and ξs are mutually independent for all t and s. We refer

to (10) and (11) as the FAR-MIDAS SV model. This type of specification is considered by
Carriero et al. (2012b), and Marcellino et al. (2013), but with a different parameterization
of the MIDAS weights.5

The SVmodel in (11) permits time varying volatility but does not allow high frequency
variables, v(m)τ , to affect the conditional log-volatility. To accomplish this, we generalize
(11) to include second moment MIDAS effects

hτ+1 = λ0 + λ1hτ +
K−1∑
k=0

B (k;θh)L
k/mv(m)τ + ξτ+1. (12)

The daily variables v(m)τ need not be the same as those entering the first moment in (10).
The specification in (10) and (12) is a FAR-MIDAS with MIDAS stochastic volatility or
FAR-MIDAS SV-MIDAS model. In addition to allowing the high frequency lags to enter
the log-volatility equation, (12) relaxes the random walk assumption and introduces au-
toregressive dynamics for the log-volatility.6 The stochastic volatility MIDAS specification
is an analogue to the MIDAS specification in the mean equation (3).

5The link between MIDAS models and time varying volatility has also been explored by Engle et al.
(2013) who use a MIDAS-GARCH approach to link macroeconomic variables to the long-run component
of volatility. Their model uses a mean reverting daily GARCH process and a MIDAS polynomial applied
to monthly, quarterly, and biannual macroeconomic and financial variables.

6We further restrict the AR(1) coeffi cient λ1 to lie within the unit circle, i.e., λ1 ∈ [−1, 1]. The
addition of exogenous covariates in the log-volatility equation has been studied by Chib et al. (2002).
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To complete the model in (12), we need to specify the SV-MIDAS weights, B (k;θh) ,

and the v(m)τ variables. We focus on specifications for which the first moment and second
moment MIDAS variables are the same, x(m)τ = v

(m)
τ , and apply Almon lag polynomials

for both the first and second moments. Under these assumptions, we can rewrite (12) as

hτ+1 = λ0 + λ1hτ + θ′hX̃
(m)
τ + ξτ+1, ξτ+1 ∼ N

(
0, σ2ξ

)
. (13)

We use the parameterization (10) and (13) of the FAR-MIDAS SV-MIDAS model in the
estimation and forecasting sections.

3 Bayesian estimation and forecasting

Most work on estimation of MIDAS regression models has used frequentist methods car-
ried out using either OLS (when the MIDAS polynomials can be reparameterized as a
linear model) or NLS. Relatively less work uses Bayesian methods to estimate the MIDAS
polynomials, though notable exceptions include Carriero et al. (2012b), Ghysels (2012),
Marcellino et al. (2013), and Rodriguez and Puggioni (2010). Carriero et al. (2012b)
develop a Bayesian method for producing current-quarter forecasts of GDP growth that
is closely related to the U-MIDAS approach proposed by Foroni et al. (2013), and al-
low for both time-varing coeffi cients and stochastic volatility in the estimation. Ghysels
(2012) extends the standard Bayesian VAR approach to allow for mixed frequency lags
and MIDAS polynomials. He develops approaches for both general MIDAS polynomial
specifications and for the Almon lag polynomial specification, the step function polyno-
mial specification of Ghysels et al. (2007), and the U-MIDAS approach of Foroni et al.
(2013). Marcellino et al. (2013) develop a mixed frequency dynamic factor model featuring
stochastic shifts in the volatility of both the latent common factor and the idiosyncratic
components. They cast their model in a Bayesian framework and derive a Gibbs sam-
pler to estimate the model parameters. Rodriguez and Puggioni (2010) cast a MIDAS
regression model as a dynamic linear model, leaving unrestricted the coeffi cients on all the
high frequency data lags. To deal with the overparameterization arising from the need
to estimate a potentially very large number of coeffi cients, they introduce a stochastic
search variable selection (SSVS) step that allows the data to determine which of the high
frequency lags should enter the model.

3.1 MIDAS models with constant volatility

Let Φ denote the regression parameters in the constant volatility MIDAS model (3), ex-

cluding the MIDAS coeffi cients θ, i.e., Φ =
(
α, ρ1, ..., ρpy ,γ

′
1, ...,γ

′
qz

)′
. Conditional on θ,
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the MIDAS model reduces to a standard linear regression and one only needs to draw
from the posterior distributions of Φ and the variance of ετ+1, σ2ε. Assuming standard
independent Normal-inverted gamma priors on Φ and σ2ε and normally distributed resid-
uals, ετ+1, drawing from the posterior of these parameters is straightforward and simply
requires using a two-block Gibbs sampler.
The same logic extends to estimation of the MIDAS parameters θ in cases where the

transformed high frequency variables X̃
(m)
t have a linear effect on the mean. Such cases

include the (non-normalized) Almon lag polynomial specification in (8), the step function
polynomial specification of Ghysels et al. (2007), and the U-MIDAS approach of Foroni
et al. (2013). Assuming that ετ+1 is normally distributed along with conjugate priors for
the regression parameters and error variance, for such cases a two-block Gibbs sampler
can be used to obtain posterior estimates for the parameters Φ, θ, and σ2ε.

7

To see how this works, rewrite (8) as

yτ+1 = ZτΨ + ετ+1 (14)

τ = 1, ..., t− 1

whereΨ= (Φ′,θ′)
′ and Zτ =

(
1, yτ , ..., yτ−py+1, z

′
τ , ..., z

′
τ−qz+1, X̃

(m)′
τ

)′
. Following standard

practice, suppose that the priors for the regression parameters Ψ in (14) are normally
distributed and independent of σ2ε

8

Ψ ∼ N (b, V ) . (15)

All elements of b are set to zero except for the value corresponding to ρ1 which is set to
one. Hence, our choice of the prior mean vector b reflects the view that the best model
for predicting real GDP growth is a random walk. We choose a data-based prior for V :9

V = ψ2

s2y,t
(

t−1∑
τ=1

Z′τZτ

)−1 , (16)

with

s2y,t =
1

t− 2

t−1∑
τ=1

(yτ+1 − yτ )2 .

In (16), the scalar ψ controls the tightness of the prior. Letting ψ →∞ produces a diffuse
prior on Ψ. Our analysis sets ψ = 25, corresponding to relatively diffuse priors.

7Under the U-MIDAS approach of Foroni et al. (2013), the matrix of transformed regressors, X̃(m)
t , is

the same as the original matrix, X(m)
t .

8See for example Koop (2003), section 4.2.
9Priors for the hyperparameters are often based on sample estimates, see Stock and Watson (2006)

and Efron (2010). Our analysis can be viewed as an empirical Bayes approach.
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For the constant volatility model we assume a standard gamma prior for the error
precision of the return innovation, σ−2ε :

σ−2ε ∼ G
(
s−2y,t , v0 (t− 1)

)
. (17)

v0 is a prior hyperparameter that controls the degree of informativeness of this prior.
v0 → 0 corresponds to a diffuse prior on σ−2ε .

10 Our baseline analysis sets v0 = 0.005,
again representing an uninformative choice as it corresponds to a pre-sample of half of
one percent of the data sample.
Obtaining draws from the joint posterior distribution p (Ψ, σ−2ε | Dt) of the constant

volatility MIDAS regression model, where Dt denotes all information available up to time
t, is now straightforward. Combine the priors in (15)-(17) with the observed data to get
the conditional posteriors:

Ψ|σ−2ε ,Dt ∼ N
(
b, V

)
, (18)

and
σ−2ε
∣∣Ψ,Dt ∼ G

(
s−2, v

)
, (19)

where

V =

[
V −1 + σ−2ε

t−1∑
τ=1

Z′τZτ

]−1
,

b = V

[
V −1b+ σ−2ε

t−1∑
τ=1

Z′τyτ+1

]
, (20)

and

s2 =

∑t−1
τ=1 (yτ+1 − ZτΨ)2 +

(
s2y,t × v0 (t− 1)

)
v

, (21)

where v = v0 + (t− 1) .

For more general MIDAS lag polynomials, obtaining posterior estimates for θ is only
slightly more involved and requires a straightforward modification of the Gibbs sampler
algorithm outlined above. As an example, Ghysels (2012) focuses on the case of normalized
beta weights where θ = (θ1, θ2)

′, and suggests using a Gamma prior for both θ1 and θ2
since under the beta parametrization both of these parameters take on only positive values

θj ∼ G (f0, F0) , j = 1, 2. (22)

10Following Koop (2003), we adopt the Gamma distribution parametrization of Poirier (1995). Name-
ley, if the continuous random variable Y has a Gamma distribution with mean µ > 0 and degrees of
freedom v > 0, we write Y ∼ G (µ, v) . Then, in this case, E (Y ) = µ and V ar (Y ) = 2µ2/v.

11



f0 and F0 are hyperparameters controlling the mean and degrees of freedom of the Gamma
distribution. For example, setting f0 = 1 and F0 = 10 corresponds to a flat weighting
scheme that puts equal weight on all high frequency lags. Next, to draw from the poste-
riors of θ1 and θ2, Ghysels proposes utilizing a Metropolis-in-Gibbs step as in Chib and
Greenberg (1995). The Metropolis step is an accept-reject step that requires a candidate
θ∗ from a proposal density q

(
θ∗|θ[i]

)
, where θ[i] is the last accepted draw for the MIDAS

parameters θ. In the case of beta weights, Ghysels (2012) suggests a Gamma distribution
as a suitable choice for q

(
θ∗|θ[i]

)
. Hence, at iteration i+ 1 of the Gibbs sampler

θ∗j ∼ G
(
θ
[i]
j , c

(
θ
[i]
j

)2)
, j = 1, 2, (23)

where c is a tuning parameter chosen to achieve a reasonable acceptance rate. The
candidate draw gets selected with probability min {a, 1} ,

θ[i+1] =

{
θ∗ with probability min {a, 1}
θ[i] with probability 1−min {a, 1} (24)

where a is computed as

a =
L (Dt|Φ,θ∗)
L
(
Dt|Φ,θ[i]

) G (θ∗| f0, F0)
G
(
θ[i]
∣∣∣ f0, F0)

G
(
θ[i]
∣∣∣θ∗, c (θ∗)2

)
G
(
θ∗|θ[i], c

(
θ[i]
)2) . (25)

L (Dt|Φ,θ∗) and L
(
Dt|Φ,θ[i]

)
are the conditional likelihood functions given the para-

meters Φ,θ∗ and Φ,θ[i], respectively.

3.2 MIDAS models with time varying volatility

Next, consider estimation of the models that allow the volatility of ετ+1 to change over
time, as in either (11) or (13). We focus our discussion on the most general process for
the log-volatility, (13), and note that when working with (11), λ0, λ1, and θh drop out
of the model. For the FAR-MIDAS SV-MIDAS model in equations (10) and (13), we
require posterior estimates for all mean parameters in equation (10), Ψ= (Φ′,θ′)

′, the
sequence of log volatilities, ht = {h1, h2, ..., ht}, the parameter vector (λ0, λ1,θh), and the
log-volatility variance σ2ξ .
For the parameters in the mean equation, Ψ, we follow the earlier choice of priors

Ψ ∼ N (b, V ) . (26)
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Turning to the sequence of log-volatilities, ht = (h1, ..., ht), the error precision, σ−2ξ ,
and the parameters λ0, λ1, and θh we can write

p
(
ht, λ0, λ1,θh, σ

−2
ξ

)
= p

(
ht
∣∣λ0, λ1,θh, σ−2ξ ) p (λ0, λ1,θh) p

(
σ−2ξ
)
.

Using (13), we can express p
(
ht|λ0, λ1,θh, σ−2ξ

)
as

p
(
ht
∣∣λ0, λ1,θh, σ−2ξ ) =

t−1∏
τ=1

p
(
hτ+1|λ0, λ1,θh, hτ , σ−2ξ

)
p (h1) , (27)

with hτ+1|λ0, λ1,θh, hτ , σ−2ξ ∼ N
(
λ0 + λ1hτ + θ′hX̃

(m)
τ , σ2ξ

)
. Thus, to complete the prior

elicitation for p
(
ht, λ0, λ1,θh, σ

−2
ξ

)
, we only need to specify priors for λ0, λ1, θh, the initial

log-volatility, h1, and σ−2ξ . We choose these from the normal-inverted gamma family as
follows

h1 ∼ N (ln (sy,t) , kh) , (28) λ0
λ1
θh

 ∼ N (mh, V h) , λ1 ∈ (−1, 1) , (29)

and
σ−2ξ ∼ G

(
1/kξ, vξ (t− 1)

)
. (30)

We set kξ = 0.01, vξ = 1, and kh = 0.1. Compared to the earlier choices of priors, these
are more informative priors. The choice of kξ = 0.01, in conjunction with vξ = 1, restricts
changes to the log-volatility to be only 0.01 on average. Conversely, kh = 0.1 places a
relatively diffuse prior on the initial log volatility state.
As for the hyperparameters mh and V h in (29), following Clark and Ravazzolo (2014)

we set the prior mean and standard deviation of the intercept and the MIDAS coeffi cients
to 0 and 0.5, respectively, corresponding to uninformative priors on the intercept of the
log volatility specification. Finally, we set the prior mean of the AR(1) coeffi cient, λ1,
to 0.9 with a standard deviation of 0.01. This represents a more informative prior that
matches persistent dynamics in the log volatility process.
To obtain posterior estimates for the mean parameters Ψ, the sequence of log volatili-

ties ht, the stochastic volatility parameters (λ0, λ1,θh) , and the log-volatility variance σ2ξ ,
we use a Gibbs sampler to draw recursively from the following four conditional posterior
distributions:

1. p
(
Ψ|ht, λ0, λ1,θh, σ−2ξ ,Dt

)
.

2. p
(
ht|Ψ, λ0, λ1,θh, σ

−2
ξ ,Dt

)
.
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3. p
(
σ−2ξ
∣∣Ψ, ht, λ0, λ1,θh,Dt

)
4. p

(
λ0, λ1,θh|Ψ, ht, σ−2ξ ,Dt

)
Simulating from the first three of these blocks is straightforward using the algorithms

of Kim et al. (1998), extended by Chib et al. (2002) to allow for exogenous covariates
in the volatility equation. As for the fourth step, note that the conditional posterior
distribution of the SV-MIDAS parameters p

(
λ0, λ1,θh|Ψ, ht, σ−2ξ ,Dt

)
can be expressed

as
λ0, λ1,θh|Ψ, ht, σ−2ξ ,Dt ∼ N

(
mh, V h

)
× λ1 ∈ (−1, 1) ,

where

V h =

V −1h + σ−2ξ

t−1∑
τ=1

 1
hτ

X̃
(m)
τ

[1, hτ , X̃(m)′
τ

]
−1

, (31)

and

mh = V h

V −1h mh + σ−2ξ

t−1∑
τ=1

 1
hτ

X̃
(m)
τ

hτ+1
 . (32)

3.3 Forecasts from MIDAS models

The object of Bayesian estimation of the MIDAS forecasting models is to obtain the
predictive density for yt+1. This density conditions only on the data and so accounts for
parameter uncertainty. For example, working with the constant volatility MIDAS model
(8), the predictive density for yt+1 is given by

p
(
yt+1| Dt

)
=

∫
Ψ,σ−2ε

p
(
yt+1|Ψ,σ−2ε ,Dt

)
p
(
Ψ,σ−2ε

∣∣Dt) dΨdσ−2ε , (33)

where p (Ψ,σ−2ε | Dt) denotes the joint posterior distribution of the MIDAS parameters
conditional on information available at time t, Dt.
Alternatively, when working with the FAR-MIDAS SV-MIDAS model in (10) and (13)

the density forecast for yt+1 is given by

p
(
yt+1| Dt

)
=

∫
Ψ,ht+1,λ0,λ1,θh,σ

−2
ξ

p
(
yt+1|Ψ,ht+1, h

t, λ0, λ1,θh, σ
−2
ξ ,Dt

)
×p
(
ht+1|Ψ, ht, λ0, λ1,θh, σ

−2
ξ ,Dt

)
(34)

×p
(
Ψ, ht, λ0, λ1,θh, σ

−2
ξ

∣∣Dt) dΨdht+1dλ0dλ1dθhdσ
−2
ξ .

We can use the Gibbs sampler to obtain draw from the predictive densities in (33)
and (34). These draws, y(j)t+1|t, j = 1, ..., J can be used to compute objects such as point
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forecasts, ŷt+1|t = J−1
∑J

j=1 y
(j)
t+1|t or the quantile of the realized value of the predicted

variable, J−1
∑J

j=1 I(yt+1 ≤ y
(j)
t+1|t), where I(yt+1 ≤ y

(j)
t+1|t) is an indicator function that

equals one if the outcome, yt+1, falls below the jth draw from the Gibbs sampler.

4 Empirical Results

This section introduces the quarterly data of U.S. real GDP growth, a set of macroeco-
nomic factors, and the daily predictors. We then analyze the full-sample and out-of-sample
predictive accuracy of GDP growth forecasts for the model specifications described in sec-
tions 2 and 3. We apply a range of measures to evaluate the predictive accuracy of our
GDP growth forecasts. As discussed above, one of the advantages of adopting a Bayesian
framework is the ability to compute predictive distributions, rather than simple point
forecasts, and to account for parameter uncertainty. Accordingly, to shed light on the
predictive ability of the different models, we evaluate both point and density forecasts.

4.1 Data

Our empirical analysis uses quarterly data of U.S. real GDP growth along with a set of
monthly macro variables and daily financial series. Real GDP growth (denoted yτ+1) is
measured as the annualized log change in real GDP and is obtained from IHS Global
Insight. The monthly variables are an updated version of the 132 macroeconomic series
used in Ludvigson and Ng (2009), extended by Jurado et al. (2014) to December 2011.
The series are selected to represent broad categories of macroeconomic quantities such
as real output and income, employment and hours, real retail, manufacturing and trade
sales, consumer spending, housing starts, inventories and inventory sales ratios, orders
and unfilled orders, compensation and labor costs, capacity utilization measures, price
indexes, bond and stock market indexes, and foreign exchange measures.11 We follow
Stock and Watson (2012) and Andreou et al. (2014) and extract two common factors (zτ )
from the 132 macroeconomic series using principal components, after first taking quarterly
averages of the monthly series. Hence, the real GDP growth rate and the macro factors
are both observable at quarterly frequency.12

The daily financial series considered in this study, x(m)τ , are (i) the effective Federal
Funds rate (Ffr); (ii) the interest rate spread between the 10-year government bond rate

11We thank Sydney Ludvigson for making this data available on her website, at
http://www.econ.nyu.edu/user/ludvigsons/jlndata.zip
12Entering the macro factors in the MIDAS specification at the monthly frequency would complicate

the estimation as it would involve three different frequencies (quarterly, monthly, and daily) and two
different MIDAS polynomials. We therefore use quarterly macro factors.
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and the federal fund rate (Spr); (iii) value-weighted returns on all US stocks (Ret); (iv)
returns on the portfolio of small minus big stocks considered by Fama and French (1993)
(Smb); (v) returns on the portfolio of high minus low book-to-market ratio stocks studied
by Fama and French (1993) (Hml); and (vi) returns on a winner minus loser momentum
spread portfolio (Mom).13 The interest rate series are from the Federal Reserve of St.
Louis database FRED and are transformed to eliminate trends. Value-weighted stock
return data are obtained from CRSP and include dividends. Returns on the Smb, Hml,
and Mom spread portfolios are downloaded from Kenneth French’s data library.14

All our variables span the period from 1962:I to 2011:IV. This is a considerably longer
time period than the one covered in Andreou et al. (2014), but we have a much smaller
set of daily predictors. To facilitate the comparison of our results with theirs, we also
show the key results for their sample, 2001:I to 2008:IV.
We test whether a better full-sample fit and out-of-sample forecasts can be obtained

by allowing the daily stock market return series and interest rates to impact real GDP
growth forecasts through MIDAS polynomials. To this end, we estimate several versions
of the MIDAS specifications discussed above. These fall into one of three categories: (i)
MIDAS in the mean with constant volatility (8); (ii) MIDAS-in-mean with stochastic
volatility (10 and 11); and (iii) MIDAS in both the mean and the volatility (10 and 13)
of quarterly GDP growth.
For each of these specifications, we consider two versions which allow us to test the

contribution of the MIDAS components. Specifically, we estimate (8) with AR lags and
a MIDAS component (AR-MIDAS) as well as with AR lags, factors, and MIDAS compo-
nents (FAR-MIDAS). We estimate the same two versions for model (10) and (11), labeled
the AR-MIDAS SV and FAR-MIDAS SV, respectively, and for (10) and (13), labeled the
AR-MIDAS SV-MIDAS and FAR-MIDAS SV-MIDAS models, respectively. In total we
consider six MIDAS specifications.
Every MIDAS specification is estimated with one of the six daily variables, Ffr, Spr,

Ret, Smb, Hml, and Mom, as defined above. Therefore, we have a total of 36 MIDAS
forecasting models. In addition, we estimate four non-MIDAS models: a purely autore-
gressive model of quarterly GDP growth (AR); the same model with stochastic volatility
(AR SV); a model that includes AR terms and factors (FAR); and a model with factors
and stochastic volatility (FAR SV).
Our analysis assumes four AR lags of quarterly GDP growth (py = 4), two lags of

13Using an international sample of data on ten countries, Liew and Vassalou (2000) find some evidence
that Hml and Smb are helpful in predicting future GDP growth.
14We thank Kenneth French for making this data available on his website, at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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the macro factors (pz = 2) and uses four quarters of past daily observations. The full
estimation sample covers the period 1962:I to 2011:IV.

4.2 Full sample estimates and model comparisons

We first compare the fit of the different model specifications over the full sample, 1962-
2011. In a Bayesian setting, a natural approach to model selection is to compute the
Bayes factor, B1,0, of the null model M0 versus an alternative model, M1. The higher is
the Bayes factor, the higher are the posterior odds in favor of M1 against M0. We report
two times the natural log of the Bayes factors, 2 ln(B1,0). To interpret the strength of the
evidence, we follow studies such as Kass and Raftery (1995) and note that if 2 ln(B1,0) is
below zero, the evidence in favor ofM1 is not compelling. For values of 2 ln(B1,0) between
0 and 2, there is “weak evidence”that M1 is a more likely characterization of the data
than M0. We view values of 2 ln(B1,0) between 2 and 6, 6 and 10, and higher than 10, as
“some evidence,”“strong evidence,”and “very strong evidence”, respectively, in support
of M1 versus the null, M0.
Table 1 shows pairwise model comparisons based on the transformed Bayes factors,

2 ln(B1,0). Panel A displays results for the AR-MIDAS and FAR-MIDAS models (8) rela-
tive to AR or FAR models, respectively. The MIDAS models are estimated by including
a single daily predictor at a time, each shown in separate columns. In essence, this is the
comparison that Andreou et al. (2014) conduct using a frequentist approach, a different
set of factors and MIDAS predictors, and different MIDAS polynomial parameterization.
In the first row of Panel A, MIDAS models with Ffr and Ret as predictors produce strong
evidence that daily stock returns and interest rates improve the prediction model. The
second row of Panel A provides weak evidence that a MIDAS model that includes quar-
terly information on factors and daily information on Ffr produces a better fit than the
benchmark FAR model. Conversely, Panel B suggests that once SV dynamics is allowed
in both the baseline and alternative models, there is little evidence suggesting that the
MIDAS-in-mean models provide a better fit than models without such MIDAS effects.
Panel C of Table 1 reports Bayes factors for the specifications with MIDAS effects in

the volatility of GDP growth relative to non-MIDAS stochastic volatility models, assuming
that the mean already includes a MIDAS term. In other words, we test different versions
of (10) and (13) versus the model implied by (10) and (11). Both rows in the panel
suggest that adding MIDAS effects to the stochastic volatility equation leads to significant
improvements in the model fit. Indeed, for all daily predictors the values of 2 ln(B1,0)
exceed ten. This is true relative to both the AR-MIDAS SV and the FAR-MIDAS SV
benchmarks. Finally, Panel D shows that adding MIDAS effects to both the conditional
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mean and conditional volatility equations improves the performance relative to models
with no MIDAS effects, but reduces the Bayes factors compared with models that only
include MIDAS effects in the conditional volatility equation (Panel C).
Overall, the time series evidence supports the claim that the fit of the GDP forecasting

models improve when we use MIDAS polynomials to introduce information from daily
financial variables. Moreover, our results suggest two takeaways. First, contrasting the
results in panels A and B, it is clear that the importance of MIDAS-in-mean effects depend
on how dynamics in second moments are modeled. Second, we find strong benefits from
including MIDAS effects in the conditional volatility equation even after accounting for
stochastic volatility dynamics. We next address whether these results carry over to an
out-of-sample setting.

4.3 Out-of-sample forecasts with a single MIDAS predictor

In our 1962:I to 2011:IV sample, we use the first twenty years of data as an initial training
sample, i.e., we estimate our regression models over the period 1962:I-1981:IV and use the
resulting estimates to predict real GDP growth for 1982:I. Next, we include 1982:I in the
estimation sample, which thus becomes 1962:I-1982:I, and use the corresponding estimates
to predict GDP growth for 1982:II. We proceed progressively in this fashion until the last
observation in the sample, producing a time series of one-step-ahead forecasts spanning
the time period from 1982:I to 2011:IV. To allow for direct comparisons with the results
in Andreou et al. (2014), we also consider a shorter forecast evaluation period, 2001:I—
2008:IV.

4.3.1 Point forecasts

First we consider point forecasts. For each of the MIDAS models we obtain point forecasts
by repeatedly drawing from the predictive densities, p (yτ |Mi,Dτ−1), and averaging across
draws. We have added Mi in the conditioning argument of the predictive density to
denote the specific model i, while τ ranges from 1982:I to 2011:IV. Following Stock and
Watson (2003) and Andreou et al. (2014), we measure the predictive performance of the
MIDAS models relative to the random walk (RW) model of GDP growth. Specifically, we
summarize the precision of the point forecasts of model i, relative to that from the RW
model, by means of the ratio of RMSFE values

RMSFEi =

√
1

t−t+1
∑t

τ=t e
2
i,τ√

1
t−t+1

∑t
τ=t e

2
RW,τ

, (35)
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where e2i,τ and e
2
RW,τ are the squared forecast errors at time τ generated by model i and the

RW model, respectively. t and t denote the beginning and end of the forecast evaluation
sample. Values less than one for RMSFEi indicate that model i produces more accurate
point forecasts than the RW model.
In the top panel of Figure 1 we plot the sequence of point forecasts generated by AR-

MIDAS, AR-MIDAS SV, and AR-MIDAS SV-MIDAS models as well as RW forecasts.
The RW forecasts are quite different and notably more volatile from those of the three
other models, which in turn are very similar. The volatility forecasts of the MIDAS
models, in the bottom panel of Figure 1, are quite different, however. Not surprisingly,
the AR-MIDAS SV and AR-MIDAS SV-MIDAS models are better able to capture not
only the highly volatile periods of the early 1980s and the 2007-2009 financial crisis, but
also periods of moderate volatility.
Table 2 displays results for the RMSFE ratio in (35). The smallest RSMFE value across

the financial variables is displayed in bold. Panel A displays the results for the MIDAS
models with constant volatility. The simple AR model produces an RMSFE ratio of 0.868,
thus bettering the RW model’s forecasting performance by 13%. The AR-MIDAS model
with Ret as a daily predictor does slightly better, generating an RMSFE ratio of 0.841.
The other daily variables do not improve on the predictive accuracy, however. Adding
information on the quarterly factors greatly improves the results. Indeed, the FAR and
FAR-MIDAS models obtain RMSFE ratios of 0.775 and 0.766, respectively, the latter
being generated with a model that includes Ffr. For MIDAS-in-mean models without
stochastic volatility, there is only weak evidence that daily stock returns or interest rates
lead to better forecasts.
Panel B of Table 2 features results for the models that allow for stochastic volatility

and MIDAS effects in the conditional volatility. The RMSFE value for the AR-SV model
is 0.875 which is only slightly lower than the corresponding value for the simple AR model.
Somewhat lower RMSFE values of about 0.849 are obtained by the AR-MIDAS SV and
AR-MIDAS SV-MIDAS models when Ret is used as the daily predictor. As in Panel A,
we obtain better results by including factors in the predictive regressions. For example,
the RMSFE is 0.772 for the Mom predictor included in the FAR-MIDAS SV model, as
compared with 0.784 for the FAR-SV model.
To see how the precision of the point forecasts evolves over time, we compute the

Cumulative Sum of Squared prediction Error Differences (CSSED) introduced by Welch
and Goyal (2008)

CSSEDi,t =
t∑

τ=t

(
e2RW,τ − e2i,τ

)
. (36)
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Increases in the value of CSSEDi,t indicate that model i generates more accurate point
forecasts than the RW model, while decreasing values suggest the opposite. If the two
models are equally good, the CSSED measure should hover close to zero.
Figure 2 plots the evolution in the cumulative sum of squared prediction error dif-

ferences for various models and their MIDAS counterparts. The figure suggests a fairly
stable pattern in the gains in predictive accuracy obtained by the MIDAS models and
their simpler counterparts, measured relative to the RW model.

4.3.2 Density forecasts

One limitation to the RMSFE values reported above is that they fail to capture the rich-
ness of the MIDAS models as they do not convey the full information in the predictive
density p (yt+1|Mi,Dt). Indeed, comparing the plots of the point forecasts and the volatil-
ity forecasts in Figure 1, it is clear that there are much greater differences between the the
volatility forecasts generated by the different models. Figure 3 shows that such differences
produce very different density forecasts, because of the effi ciency gains in the estimation
of the conditional mean parameters. Compared to AR-MIDAS or FAR-MIDAS models,
for the snapshots shown in this figure, SV dynamics tends to compress the predictive
distribution. SV-MIDAS has a similar, but weaker effect, preserving some of the greater
uncertainty associated with the constant volatility forecasts.
To address this issue, we consider two measures of predictive performance. First,

following Amisano and Giacomini (2007), Geweke and Amisano (2010), and Hall and
Mitchell (2007), we consider the average log-score (LS) differential

LSDi =
t∑

τ=t

(LSi,τ − LSRW,τ ) , (37)

where LSi,τ (LSRW,τ ) denotes the log-score of model i (RW), computed at time τ . Positive
values of LSDi indicate that model i produces more accurate density forecasts than the
RW model.
Panels A and B in Table 3 report results for the log-score measure for the constant

and stochastic volatility models, respectively. In Panel A, the AR model obtains an LSD
of 0.164. Adding the MIDAS forecasting variables one by one increases the precision
for the best models. In particular, the LSD for the MIDAS model based on daily stock
returns (Ret) is 0.204. Introducing the macroeconomic factors leads to an even greater
improvement with an LSD of 0.310. The FAR-MIDAS model that uses the daily federal
funds rate (Ffr) generates an LSD value of 0.317.
The results in Panel B are even more encouraging. Using MIDAS polynomials to allow

stock returns (Ret) to affect the first and second moments of the AR SV model increases
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the LSD value from 0.312 to 0.364. Similarly, using daily information on the federal funds
rate (Ffr) increases the LSD value of the FAR SV model from 0.347 to 0.434. Comparing
these numbers to the LSD values for the models that only allow for MIDAS effects in the
conditional mean, we see that the addition of MIDAS terms in the conditional volatility
of GDP growth generates large improvements in predictive accuracy.
To see how the log score differential evolves over time, as in (36) we compute the

cumulative log score differential for model i versus the RW model

CLSDi,t =

t∑
τ=t

(LSi,τ − LSRW,τ ) . (38)

Increasing values in CLSDi,t suggest that model i produces more accurate density fore-
casts than the RW model.
Figure 4 shows these cumulative log score differentials for a variety of models with and

without MIDAS terms. This type of plot can help diagnose patterns in relative predictive
accuracy, i.e., if a single episode is responsible for most of the forecast gains or losses or
if we see more continual improvements in the forecasts. In most cases, and notably for
the FAR-SV model compared to the FAR-MIDAS SV-MIDAS model, it is clear that the
MIDAS density forecasts dominate on a consistent basis.
Finally, we follow Gneiting and Raftery (2007b), Gneiting and Ranjan (2011) and

Groen et al. (2013), and consider the average continuously ranked probability score dif-
ferential (CRPSD) of model i relative to the RW model

CRPSDi =

1
t−t+1

∑t
τ=tCRPSi,τ

1
t−t+1

∑t
τ=tCRPSRW,τ

. (39)

CRPSi,τ (CRPSRW,τ ) measures the average distance between the empirical cumulative
distribution function (CDF) of yτ (which is simply a step function in yτ ), and the empirical
CDF associated with the predictive density of model i (RW). Values less than one for
CRPSDm suggest that model i performs better than the benchmark RWmodel. Gneiting
and Raftery (2007b) explain how the CRPSD measure circumvents some of the problems
of the logarithmic score, most notably the fact that the latter does not reward values from
the predictive density that are close, but not equal, to the realization.
Table 3 shows result for the CRPSD statistic in Panels C (constant volatility models)

and D (time varying volatility models). If a model’s CRPSD is smaller than one, its
empirical CDF is closer to that of the data than is achieved by the RW model. The
CRPSD value of the AR model in Panel C is 0.845, which implies an improvement of 15%
over the RW model. The addition of MIDAS terms in the mean increases the predictive
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accuracy somewhat. The CRPSD value for the AR-MIDAS model with Ret is 0.822.
Greater improvements relative to the RW benchmark are observed for the FAR and FAR-
MIDAS models. The FAR-MIDAS model with Ffr as a predictor lowers the CRPSD to
0.740. Including macroeconomic factors in the constant volatility models greatly increases
the predictive accuracy of the GDP growth models, while including MIDAS effects from
either Ffr or Ret reduce the CRPSD values by an additional 1-2 percent.
Turning to the models with time varying volatility, the CRPSD of the AR-SV model is

21% lower than the RW model (Panel D). The AR-MIDAS SV model produces a CRPSD
value of 0.779 when based on the Ret variable. A larger improvement is observed for
the AR-MIDAS SV-MIDAS model that uses Ret and has a CRPSD value of 0.767. The
FAR models continue to produce better out-of-sample forecasts than the AR models.
The FAR-SV model has a CRPSD value of 0.730. This compares with a CRPSD value
of 0.706 for the FAR-MIDAS SV-MIDAS model that includes daily information on the
federal funds rate.
Figure 5 illustrates how the ranking of models varies across the RMSFE, LSD, and

CRPSD criteria. The left panel plots performance according to the RMSFE ratio on the
horizontal axis against performance according to the log-score criterion on the vertical
axis. The figure shows very clearly that the SV-MIDAS models perform better than the
SV models which in turn outperform the linear models on the log score criterion. In
contrast, there is not much to differentiate the three classes of models according to the
RMSFE criterion. Thus, the benefits from using MIDAS models to incorporate daily
information show up much more strongly in the density forecast measures than in point
forecasts. The right window in Figure 5 shows that there is close relation between the
ranking by the RMSFE and CRPSD criteria within each class of models. Importantly,
however, the CRPSD measure ranks the SV-MIDAS models better than the SV models
which in turn perform better than the linear models, consistent with the ranking by the
LSD criterion.
To test more formally if the MIDAS forecasts are more accurate than various com-

petitors, Table 4 reports Diebold-Mariano p-values under the null that a given model has
the same predictive ability as the benchmark. Panels A-C show p-values for the RMSFE,
LSD, and CRPSD measures, respectively. Each panel reports results for a range of mod-
els against the null of the RW or AR specifications which Stock and Watson (2003) have
shown are hard to beat in the case of GDP growth forecasts. Panel A shows that all
models perform better than the RW model with p-values between 0.085 and 0.000. The
AR model is much harder to beat according to the RMSFE metric. Only the MIDAS
specifications that also include the macroeconomic factors as predictors produce p-values
below 0.10 for most of the daily variables.
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The following picture emerges from Tables 3 and 4. Consistent with Andreou et al.
(2014) we find that information on macroeconomic factors leads to sizable improvements
in the precision of out-of-sample GDP growth forecasts. For some of the daily predic-
tors such as the federal funds rate and stock market returns, MIDAS-in-mean effects can
further improve the out-of-sample forecasts of GDP growth. The addition of stochas-
tic volatility dynamics further increases the out-of-sample predictive performance of the
models, supporting the results of Clark (2011). Finally, the second moment SV-MIDAS
models enhance the forecasting performance improvements relative to both the constant
volatility MIDAS models and to the simple SV models.

4.3.3 Subsample performance

Andreou et al. (2014) use MIDAS-in-mean models to predict quarterly U.S. GDP growth
using a large cross-section of daily financial variables. Due to limitations on data avail-
ability, they use a shorter out-of-sample period, 2001-2008. To make our results directly
comparable to theirs, Table 5 shows results for the same subsample. First consider the
RMSFE results reported in Panels A and B. Like Andreou et al. (2014), we find that
the AR model improves marginally on the performance of the RW model, while the FAR
model provides a notably larger improvement with an RMSFE ratio, measured relative
to the RW model, of 0.83. The best MIDAS model which uses daily stock market returns
(Ret) as a predictor generates reductions of around 6% in the RMSFE ratio relative to
the corresponding models that assume constant volatility.
The best MIDAS models continue to generate more accurate point forecasts for the

models that allow for stochastic volatility (Panel B). For example, relative to an AR-SV
model, the MIDAS model that includes daily stock returns reduce the RMSFE ratio by
6%, while relative to the FAR-SV model we see improvements of about 3%. Interest-
ingly, for the 2001-2008 subsample the first-moment MIDAS effects capture most of the
improvements in forecast accuracy, while the second-moment MIDAS effects account for
much less of the improvements than we found in the longer out-of-sample experiment
which used the sample 1982-2008.
Our finding that first-moment MIDAS effects help improve the predictive accuracy of

(point) forecasts during the sample 2001-2008 is consistent with the findings reported by
Andreou et al. (2014). The reason second-moment MIDAS effects are not so important
during the 2001-2008 period is that the volatility was quite low and stable during this
period, with exception of the last two quarters of 2008 (see Figure 1).
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5 Forecast combinations

So far our analysis covers multiple specifications that differ in terms of the identity of
the daily MIDAS variables, inclusion of macro factors, as well as the assumptions about
volatility dynamics. In practice a forecaster will not know which, if any, model produces
the best forecasts and so is confronted with model uncertainty. An attractive strategy
in this situation is to combine forecasts from multiple models, rather than attempting to
select a single best model or use a large model that nests all other specifications.

5.1 Forecast combination schemes

To see how model combination works in our setting, let Mi denote a specific model and
suppose we have N different models with predictive densities {p (yt+1|Mi,Dt)}Ni=1. Our
starting point is the equal-weighted pool (EWP) which assigns equal weights to each
model Mi

p
(
yt+1| Dt

)
=

1

N

N∑
i=1

p
(
yt+1|Mi,Dt

)
. (40)

Next, consider the optimal predictive pool proposed by Geweke and Amisano (2011),

p
(
yt+1| Dt

)
=

N∑
i=1

w∗t,i × p
(
yt+1|Mi,Dt

)
. (41)

We use the past predictive performance of the N models to recursively determine the
(N × 1) vector of weights w∗t =

[
w∗t,1, ..., w

∗
t,N

]
. This requires determining w∗t by solving

a maximization problem that relies only on information available up to time t,

w∗t = arg max
w

t−1∑
τ=1

log

[
N∑
i=1

wi × Sτ+1,i

]
, (42)

subject to w∗t ∈ [0, 1]N . Sτ+1,i = exp (LSτ+1,i) is the recursively computed log-score for
model i at time τ + 1. As t → ∞ the weights chosen according to (42) minimize the
Kullback-Leibler distance between the data generating process D and the combined den-
sity. Finally, we consider Bayesian model averaging (BMA) which weighs the individual
models by their posterior probabilities

p
(
yt+1| Dt

)
=

N∑
i=1

Pr
(
Mi| Dt

)
p
(
yt+1|Mi,Dt

)
. (43)

Here Pr (Mi| Dt) denotes the posterior probability of model i, computed using all infor-
mation available at time t,

Pr
(
Mi| Dt

)
=

Pr (Dt|Mi) Pr (Mi)∑N
j=1 Pr (Dt|Mj) Pr (Mj)

. (44)
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Pr (Dt|Mi) and Pr (Mi) are the marginal likelihood and prior probability for model i,
respectively. We assume that all models are equally likely a priori and so set Pr (Mi) =

1/N . We follow Geweke and Amisano (2010) and compute the marginal likelihoods by
cumulating the predictive log scores of each model, after conditioning on the initial warm-
up estimation sample, as

Pr
(
Dt
∣∣Mi

)
= exp

(
t∑

τ=t

LSτ .i

)
. (45)

The idea of using forecast combination methods in MIDAS regressions is also explored
by Andreou et al. (2014) in the context of predicting quarterly GDP growth using a host
of daily financial variables. We note, however, that Andreou et al. (2014) combine point
forecasts from the individual MIDAS whereas our approach combines density forecasts.

5.2 Empirical results for forecast combinations

Table 6 reports out-of-sample values of our three measures of predictive accuracy for the
full sample (1982-2011, Panel A) and the shorter subsample (2001-2008, Panel B). All
combination schemes produce large improvements to the RMSFE results for the bench-
mark RW model, reducing the RMSFE value by 22% or more. The predictive pool of
Geweke and Amisano (2011) produces the best results with an RMSFE ratio of 0.742.
This ratio is lower than that obtained by any of the individual models shown in Table 2.
For the shorter subsample, 2001-2008, the combinations again perform well. The equal-
weighted combination is worst with an RMSFE ratio of 0.867, while the BMA approach
is best, producing an RMSFE ratio of 0.778, comparable to that of the best individual
models shown in Table 5.
The log-score differential values obtained by the combination schemes are also im-

pressively large. In the long sample, the predictive pool obtains an LSD value of 0.512,
considerably higher than that obtained by all of the individual models in Table 3, the
largest of which is 0.434. In the shorter sample, the BMA approach obtains an LSD value
of 0.413, again higher than that of any of the individual models in Table 5.
The results for the CRPSD values are equally good. At 0.664, the CRPSD value

obtained by the predictive pool is lower than that of any of the individual models in Table
3. A similar conclusion holds for the shorter subsample, although the lowest CRPSD value
(0.701) is now obtained for the BMA approach.
Figure 6 plots the recursive performance of the forecast combinations, measured rel-

ative to the RW model. The top figure plots the cumulative sum of squared prediction
error difference, while the bottom plot shows the cumulative sum of log-score differentials.
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Both plots show that the dominance of the forecast combinations over the RW benchmark
is not confined to specific points in time, but occurs throughout the entire sample.
To gain insights into how this improved performance is obtained, Figure 7 provides a

recursive plot of the weights assigned to different classes of models. Between 1984 and 1986
the FAR-MIDAS SV model receives full weight, only to receive no weight subsequently.
The FAR-MIDAS SV-MIDAS model receives by far the greatest weight during most of
the sample, close to 70% for the last 20 years of the sample. The remaining weight goes
mainly to the AR-MIDAS SV-MIDAS model, although the AR-MIDAS SV model also
receives some weight, mainly during the 1990s.
Turning to the probability mass assigned to models containing the six different daily

predictor variables in the MIDAS models, Figure 8 shows that the federal funds rate (Ffr)
models receive all the weight between 1985 and 1992, but that the weight on MIDAS
models with this predictor drifts down to around 35 percent at the end of the sample.
The remaining probability weight is assigned to MIDAS models that include daily stock
returns (10-30%), the momentum variable (up to 30%, with a particularly large weight
at the end of the sample), and the Spr and Smb variables.
In summary, these results show clear advantages, both in the full sample and in the

shorter subsample, from using forecast combinations as a way to deal with model uncer-
tainty. Moreover, our results clearly show time variations in the optimal weights assigned
to different MIDAS predictor variables and different types of model specifications. By
recursively updating the model weights, the forecast combinations manage to adaptively
adjust to such changes and produce better out-of-sample forecasts.

6 Conclusions

We develop a Bayesian approach to estimation of forecasting models that allow for MIDAS
effects in both the first and second moments of the predicted series along with stochastic
volatility dynamics. Our SV-MIDAS approach is easy to implement using conventional
Gibbs sampling and generates predictive densities that only condition on the data available
when the forecasts are made.
In an empirical application to quarterly U.S. GDP growth we find that the approach

produces notably more accurate out-of-sample forecasts than both random walk and au-
toregressive models. The benefits from considering MIDAS effects in the second moment of
GDP growth are, unsurprisingly, larger in the sample that includes periods of particularly
high volatility and become more modest during the Great Moderation. Conversely, MI-
DAS effects in the first moment help improve the forecasting performance during the Great
Moderation. The gains from adding MIDAS effects in volatility are larger for measures
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of predictive accuracy that consider the full predictive density as opposed to conventional
measures, such as mean squared forecast error, that only look at point forecasts. Finally,
when we exploit the posterior probabilities to optimally combine forecasting models and
handle model uncertainty, we find sizeable gains in predictive accuracy.
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Table 1. Bayes factors

M1 vs. M0 Ffr Spr Ret Smb Hml Mom

Panel A: linear models, MIDAS in mean

AR-MIDAS vs. AR 8.227 1.235 9.705 -0.240 -1.128 -0.865
FAR-MIDAS vs. FAR 1.277 -2.640 -2.353 -3.908 -2.005 -2.550

Panel B: SV models, MIDAS in mean

AR-MIDAS SV vs. AR SV -0.837 -15.724 -4.029 -8.064 -13.720 -7.703
FAR-MIDAS SV vs. FAR SV -0.157 -8.117 -14.992 -10.556 -15.788 -7.532

Panel C: SV models, MIDAS in volatility

AR-MIDAS SV-MIDAS vs. AR-MIDAS SV 12.392 17.346 17.638 15.264 23.382 19.265
FAR-MIDAS SV-MIDAS vs. FAR-MIDAS SV 20.762 21.642 25.402 24.252 25.605 26.417

Panel D: SV models, MIDAS in both mean and volatility

AR-MIDAS SV-MIDAS vs. AR SV 11.556 1.622 13.609 7.201 9.662 11.563
FAR-MIDAS SV-MIDAS vs. FAR SV 20.605 13.524 10.409 13.695 9.816 18.885

This table reports pairwise model comparisons using twice the natural logarithm of the Bayes factor, 2 × (lnB1,0),
where B1,0 denotes the Bayes factor obtained from comparing model M1 vs. M0

B1,0 =
Pr
(
Dt
∣∣M1

)
Pr (Dt|M0)

Pairwise model comparisons are listed in the first column, where the notation ‘AR’ refers to an autoregressive model,
‘AR-MIDAS’ refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a factor augmented autoregressive
model, and ‘FAR-MIDAS’ refers to a factor augmented distributed lag MIDAS model. The suffixes ‘SV’ and ‘SV-
MIDAS’ denote models with stochastic volatility and MIDAS stochastic volatility, respectively. Column headers
denote the daily predictor used in the MIDAS models, namely: the effective Federal Funds rate (Ffr), the interest
rate spread between the 10-year government bond rate and the federal funds rate (Spr), value-weighted stock returns
(Ret), the SML portfolio return (Smb), the HML portfolio return (Hml), and the MOM portfolio return (Mom).
Kass and Raftery (1995) sugest interpreting the results as follows: when 2× (lnB1,0) is lower than 0, the evidence in
favor of M1 is not compelling. For 2× (lnB1,0) between 0 and 2, there is “weak evidence” that M1 is a more likely
characterization of the data than M0. For 2× (lnB1,0) between 2 and 6, 6 and 10, and higher than 10, we view that
as “some evidence,” “strong evidence,” and “very strong evidence” in the data supporting M1 relative to M0.
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Table 2. Out-of-sample forecast performance - RMSFE

Model – Ffr Spr Ret Smb Hml Mom

Panel A: linear models

AR 0.868
AR-MIDAS 0.869 0.926 0.841 0.878 0.876 0.877
FAR 0.775
FAR-MIDAS 0.766 0.783 0.778 0.785 0.787 0.768

Panel B: SV models

AR SV 0.875
AR-MIDAS SV 0.878 0.906 0.849 0.887 0.891 0.900
AR-MIDAS SV-MIDAS 0.881 0.911 0.848 0.883 0.887 0.888
FAR SV 0.784
FAR-MIDAS SV 0.784 0.809 0.804 0.803 0.790 0.771
FAR-MIDAS SV-MIDAS 0.780 0.801 0.795 0.797 0.790 0.772

This table reports the ratio between the RMSFE of model i and the RMSFE of the Random Walk (RW) model,
computed as

RMSFEi =

√
1

t−t+1

∑t
τ=t e

2
i,τ√

1
t−t+1

∑t
τ=t e

2
RW,τ

,

where e2i,τ and e2RW,τ are the squared forecast errors at time τ generated by model i and the RW model, respectively,
and i denotes any of the models described in section 3. Values less than one for RMSFEi indicate that model i
produces more accurate point forecasts than the RW model. The notation ‘AR’ refers to an autoregressive model,
‘AR-MIDAS’ refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a factor augmented autoregressive
model, and ‘FAR-MIDAS’ refers to a factor augmented distributed lag MIDAS model. The suffixes ‘SV’ and ‘SV-
MIDAS’ denote models with stochastic volatility and MIDAS stochastic volatility, respectively. For MIDAS models,
the column headers denote the daily predictor used in the regressions, namely: the effective Federal Funds rate (Ffr),
the interest rate spread between the 10-year government bond rate and the federal funds rate (Spr), value-weighted
stock returns (Ret), the SML portfolio return (Smb), the HML portfolio return (Hml), and the MOM portfolio return
(Mom). All forecasts and forecast errors are produced with recursive estimates of the models. The out-of-sample
period starts in 1982:I and ends in 2011:IV.
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Table 3. Out-of-sample forecast performance - Log score differentials (LSD) and CRPS differentials
(CRPSD)

Model – Ffr Spr Ret Smb Hml Mom

Panel A: LSD, linear models

AR 0.164
AR-MIDAS 0.193 0.167 0.204 0.163 0.161 0.159
FAR 0.310
FAR-MIDAS 0.317 0.298 0.302 0.294 0.303 0.302

Panel B: LSD, SV models

AR SV 0.312
AR-MIDAS SV 0.299 0.241 0.293 0.277 0.256 0.276
AR-MIDAS SV-MIDAS 0.348 0.310 0.364 0.339 0.352 0.354
FAR SV 0.347
FAR-MIDAS SV 0.350 0.310 0.279 0.300 0.281 0.318
FAR-MIDAS SV-MIDAS 0.434 0.399 0.384 0.397 0.384 0.423

Panel C: CRPSD, linear models

AR 0.845
AR-MIDAS 0.826 0.871 0.822 0.849 0.849 0.848
FAR 0.751
FAR-MIDAS 0.740 0.759 0.757 0.760 0.758 0.748

Panel D: CRPSD, SV models

AR SV 0.790
AR-MIDAS SV 0.786 0.822 0.779 0.802 0.810 0.801
AR-MIDAS SV-MIDAS 0.775 0.812 0.767 0.787 0.788 0.779
FAR SV 0.730
FAR-MIDAS SV 0.720 0.749 0.754 0.748 0.744 0.722
FAR-MIDAS SV-MIDAS 0.706 0.728 0.736 0.730 0.731 0.709

Panels A and B report the average log-score (LS) differential, LSDi =
∑t
τ=t (LSi,τ − LSRW,τ ), where LSi,τ (LSRW,τ )

denotes the log-score of model i (RW), computed at time τ , and i denotes any of the models described in section 3.
Positive values of LSDi indicate that model i produces more accurate density forecasts than the RW model. Panels
C and D report the average continuously ranked probability score differential (CRPSD) of model i relative to the
RW model,

CRPSDi =

1
t−t+1

∑t
τ=t CRPSi,τ

1
t−t+1

∑t
τ=t CRPSRW,τ

,

where CRPSi,τ (CRPSRW,τ ) measures the average distance between the empirical cumulative distribution function
(CDF) of yτ and the empirical CDF associated with the predictive density of model i (RW). Values less than one
for CRPSDi suggest that model i perform better than the benchmark RW model. The notation ‘AR’ refers to an
autoregressive model, ‘AR-MIDAS’ refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a factor
augmented autoregressive model, and ‘FAR-MIDAS’ refers to a factor augmented distributed lag MIDAS model. The
suffixes ‘SV’ and ‘SV-MIDAS’ denote models with stochastic volatility and MIDAS stochastic volatility, respectively.
For MIDAS models, the column headers denote the daily predictor used in the regressions, namely: the effective
Federal Funds rate (Ffr), the interest rate spread between the 10-year government bond rate and the federal funds
rate (Spr), value-weighted stock returns (Ret), the SML portfolio return (Smb), the HML portfolio return (Hml),
and the MOM portfolio return (Mom). All forecasts and forecast errors are produced with recursive estimates of the
models. The out-of-sample period starts in 1982:I and ends in 2011:IV.
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Table 4. Diebold-Mariano p-values from tests of equal predictive ability

Comparison Ffr Spr Ret Smb Hml Mom

Panel A: RMSFE

AR-MIDAS vs. RW 0.008 0.085 0.000 0.005 0.006 0.001
FAR-MIDAS vs. RW 0.000 0.000 0.001 0.000 0.001 0.000
AR-MIDAS SV vs. RW 0.008 0.025 0.000 0.007 0.009 0.010
AR-MIDAS SV-MIDAS vs. RW 0.009 0.034 0.000 0.006 0.010 0.005
FAR-MIDAS SV vs. RW 0.001 0.000 0.001 0.000 0.001 0.000
FAR-MIDAS SV-MIDAS vs. RW 0.000 0.000 0.001 0.000 0.001 0.000

AR-MIDAS vs. AR 0.294 0.929 0.220 0.726 0.788 0.605
FAR-MIDAS vs. AR 0.043 0.067 0.110 0.078 0.124 0.061
AR-MIDAS SV vs. AR 0.296 0.821 0.133 0.755 0.930 0.642
AR-MIDAS SV-MIDAS vs. AR 0.330 0.844 0.164 0.677 0.868 0.545
FAR-MIDAS SV vs. AR 0.067 0.082 0.136 0.092 0.095 0.065
FAR-MIDAS SV-MIDAS vs. AR 0.057 0.067 0.127 0.081 0.108 0.063

Panel B: LSD

AR-MIDAS vs. RW 0.000 0.000 0.000 0.000 0.000 0.000
FAR-MIDAS vs. RW 0.000 0.000 0.000 0.000 0.000 0.000
AR-MIDAS SV vs. RW 0.000 0.003 0.000 0.000 0.002 0.001
AR-MIDAS SV-MIDAS vs. RW 0.000 0.000 0.000 0.000 0.000 0.000
FAR-MIDAS SV vs. RW 0.000 0.000 0.000 0.000 0.000 0.000
FAR-MIDAS SV-MIDAS vs. RW 0.000 0.000 0.000 0.000 0.000 0.000

AR-MIDAS vs. AR 0.049 0.400 0.010 0.541 0.722 0.713
FAR-MIDAS vs. AR 0.000 0.000 0.000 0.000 0.000 0.000
AR-MIDAS SV vs. AR 0.011 0.120 0.026 0.053 0.120 0.047
AR-MIDAS SV-MIDAS vs. AR 0.001 0.003 0.000 0.000 0.000 0.000
FAR-MIDAS SV vs. AR 0.008 0.013 0.061 0.025 0.054 0.033
FAR-MIDAS SV-MIDAS vs. AR 0.000 0.000 0.000 0.000 0.000 0.000

Panel C: CRPSD

AR-MIDAS vs. RW 0.000 0.001 0.000 0.000 0.000 0.000
FAR-MIDAS vs. RW 0.000 0.000 0.000 0.000 0.000 0.000
AR-MIDAS SV vs. RW 0.000 0.000 0.000 0.000 0.000 0.000
AR-MIDAS SV-MIDAS vs. RW 0.000 0.000 0.000 0.000 0.000 0.000
FAR-MIDAS SV vs. RW 0.000 0.000 0.000 0.000 0.000 0.000
FAR-MIDAS SV-MIDAS vs. RW 0.000 0.000 0.000 0.000 0.000 0.000

AR-MIDAS vs. AR 0.088 0.823 0.124 0.630 0.711 0.510
FAR-MIDAS vs. AR 0.002 0.006 0.019 0.007 0.018 0.004
AR-MIDAS SV vs. AR 0.004 0.133 0.003 0.031 0.092 0.014
AR-MIDAS SV-MIDAS vs. AR 0.001 0.061 0.001 0.003 0.004 0.000
FAR-MIDAS SV vs. AR 0.002 0.004 0.016 0.005 0.009 0.004
FAR-MIDAS SV-MIDAS vs. AR 0.001 0.001 0.007 0.001 0.004 0.001

This table reports the Diebold-Mariano p-values under the null that a given model has the same predictive ability than
the benchmark model. P-values are computed for the RMSFE statistic (panel A), the LSD statistic (panel B), and the
CRPSD statistic (panel C), both against the Random Walk (RW) benchmark and the first-order autoregressive (AR)
benchmark. The notation ‘AR’ refers to an autoregressive model, ‘AR-MIDAS’ refers to an augmented distributed
lag MIDAS model, ‘FAR’ refers to a factor augmented autoregressive model, and ‘FAR-MIDAS’ refers to a factor
augmented distributed lag MIDAS model. The suffixes ‘SV’ and ‘SV-MIDAS’ denote models with stochastic volatility
and MIDAS stochastic volatility, respectively. For MIDAS models, the column headers denote the daily predictor
used in the regressions, namely: the effective Federal Funds rate (Ffr), the interest rate spread between the 10-year
government bond rate and the federal funds rate (Spr), the value-weighted return (Ret), the SML portfolio return
(Smb), the HML portfolio return (Hml), and the MOM portfolio return (Mom). The underlying p-values are based
on one-sided t-test, where the t-statistics computed with a serial correlation robust variance, using the pre-whitened
quadratic spectral estimation of Andrews and Monahan (1992).



Table 5. Out-of-sample forecast performance - subsample (2001-2008)

Model – Ffr Spr Ret Smb Hml Mom

Panel A: RMSFE, linear models

AR 0.987
AR-MIDAS 1.038 1.068 0.918 1.015 0.947 0.941
FAR 0.830
FAR-MIDAS 0.828 0.792 0.779 0.860 0.810 0.799

Panel B: RMSFE, SV models

AR SV 1.003
AR-MIDAS SV 1.045 1.029 0.941 1.029 0.990 0.966
AR-MIDAS SV-MIDAS 1.048 1.038 0.938 1.029 0.983 0.958
FAR SV 0.800
FAR-MIDAS SV 0.827 0.789 0.773 0.829 0.782 0.780
FAR-MIDAS SV-MIDAS 0.821 0.787 0.769 0.836 0.785 0.778

Panel C: LSD, linear models

AR 0.098
AR-MIDAS 0.083 0.060 0.160 0.085 0.122 0.121
FAR 0.272
FAR-MIDAS 0.279 0.296 0.308 0.246 0.286 0.286

Panel D: LSD, SV models

AR SV 0.175
AR-MIDAS SV 0.144 0.119 0.180 0.137 0.174 0.175
AR-MIDAS SV-MIDAS 0.142 0.206 0.238 0.177 0.283 0.267
FAR SV 0.296
FAR-MIDAS SV 0.280 0.289 0.299 0.249 0.277 0.278
FAR-MIDAS SV-MIDAS 0.334 0.369 0.383 0.292 0.372 0.370

Panel E: CRPSD, linear models

AR 0.901
AR-MIDAS 0.914 0.950 0.863 0.917 0.865 0.860
FAR 0.782
FAR-MIDAS 0.771 0.757 0.746 0.808 0.762 0.749

Panel F: CRPSD, SV models

AR SV 0.876
AR-MIDAS SV 0.895 0.903 0.844 0.903 0.857 0.827
AR-MIDAS SV-MIDAS 0.889 0.891 0.839 0.893 0.831 0.806
FAR SV 0.755
FAR-MIDAS SV 0.761 0.752 0.732 0.787 0.739 0.723
FAR-MIDAS SV-MIDAS 0.749 0.736 0.718 0.784 0.725 0.706

Panels A and B report RMSFEi, the ratio between the RMSFE of model i and the RMSFE of the Random Walk
(RW) model, where i denotes any of the models described in section 3. Panels C and D report LSDi, the average log-
score differential between model i and the RW model, while panels E and F report CRPSDi, the average continuously
ranked probability score differential of model i relative to the RW model. Values less than one for RMSFEi indicate
that model i produces more accurate point forecasts than the RW model; positive values of LSDi indicate that model
i produces more accurate density forecasts than the RW model; values less than one for CRPSDi suggest that model
i performs better than the benchmark RW model. The notation ‘AR’ refers to an autoregressive model, ‘AR-MIDAS’
refers to an augmented distributed lag MIDAS model, ‘FAR’ refers to a factor augmented autoregressive model, and
‘FAR-MIDAS’ refers to a factor augmented distributed lag MIDAS model. The suffixes ‘SV’ and ‘SV-MIDAS’ denote
models with stochastic volatility and MIDAS stochastic volatility, respectively. For MIDAS models, the column
headers denote the daily predictor used in the regressions, namely: the effective Federal Funds rate (Ffr), the interest
rate spread between the 10-year government bond rate and the federal funds rate (Spr), value-weighted stock returns
(Ret), the SML portfolio return (Smb), the HML portfolio return (Hml), and the MOM portfolio return (Mom). All
forecasts and forecast errors are produced with recursive estimation of the models. The out-of-sample period starts
in 2001:I and ends in 2008:IV.



Table 6. Out-of-sample forecast performance - model combinations

Model
Panel A: Forecast accuracy, Panel B: Forecast accuracy,

1982 - 2011 2001 - 2008

RMSFE LSD CRPSD RMSFE LSD CRPSD

Equal-weighted combination 0.782 0.402 0.714 0.867 0.328 0.763
Bayesian model averaging 0.758 0.477 0.682 0.778 0.413 0.701
Optimal prediction pool 0.742 0.519 0.664 0.793 0.393 0.710

Comparison
Panel C: DM p-values, Panel D: DM p-values,

1982 - 2011 2001 - 2008

RMSFE LSD CRPSD RMSFE LSD CRPSD

Equal-weighted combination vs. RW 0.000 0.000 0.000 0.097 0.021 0.005
Bayesian model averaging vs. RW 0.000 0.000 0.000 0.082 0.014 0.008
Optimal prediction pool vs. RW 0.000 0.000 0.000 0.052 0.020 0.004

Equal-weighted combination vs. AR 0.006 0.000 0.000 0.070 0.003 0.006
Bayesian model averaging vs. AR 0.028 0.000 0.000 0.084 0.003 0.016
Optimal prediction pool vs. AR 0.011 0.000 0.000 0.072 0.004 0.009

This table reports out-of-sample results for the optimal predictive pool of Geweke and Amisano (2011), an equal-
weighted model combination scheme, and Bayesian Model Averaging applied to 36 MIDAS forecasting models that
use different daily predictors and make different choices regarding the inclusion or exclusion of additional macro
factors and the volatility dynamics of US quarterly GDP growth. In each case the models and combination weights
are estimated recursively using only data up to the point of the forecast. Panels A and B report various measures
of point and density forecast performance over two out-of-sample periods, namely 1982:I to 2011:IV (panel A),
and 2001:I to 2008:IV (panel B). The statistics reported are: RMSFEi, the ratio between the RMSFE of model
combination i and the RMSFE of the Random Walk (RW) model; LSDi, the average log-score differential between
model combination i and the RW model; CRPSDi, the average continuously ranked probability score differential of
model combination i relative to the RW model. Values less than one for RMSFEi indicate that model combination i
produces more accurate point forecasts than the RW model; positive values of LSDi indicate that model combination
i produces more accurate density forecasts than the RW model; values less than one for CRPSDi suggest that
model combination i performs better than the benchmark RW model. Panels C and D report the Diebold-Mariano
p-values under the null that a given model combination has the same predictive ability than the benchmark model,
over the same two out-of-sample periods, 1982:I to 2011:IV (panel C), and 2001:I to 2008:IV (panel D). P-values are
computed for the RMSFE, LSD, and the CRPSD statistics, both against the Random Walk (RW) benchmark and
the autoregressive (AR) benchmark, and are based on one-sided t-tests, where the t-statistics are computed with a
serial correlation robust variance, using the pre-whitened quadratic spectral estimation of Andrews and Monahan
(1992).
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Figure 1. Mean and volatility forecasts of MIDAS models
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This figure shows the recursive conditional mean forecasts (top panel) and volatility forecasts (bottom panel) com-
puted using the Random Walk model (dashed back line) as well as the predictive distributions of the AR-MIDAS
(solid blue line), the AR-MIDAS SV (dashed red line), and the AR-MIDAS SV-MIDAS (green dashed-dotted line)
models. All MIDAS models displayed in the two panels use the Ffr daily series as predictor. All models are estimated
recursively over the out-of-sample period, which starts in 1982:I and ends in 2011:IV.
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Figure 2. Cumulative Sum of Squared prediction Error Difference (CSSED)
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This figure shows the sum of squared forecast errors of the Random Walk model (RW) model minus the sum of
squared forecast errors of alternative MIDAS models. Each month we estimate the parameters of the forecasting
models recursively and generate one-step-ahead forecasts of real GDP growth rate which are in turn used to compute
out-of-sample forecast errors. This procedure is applied to the RW model, which is our benchmark, as well as to
all the alternative forecasting models. We then plot the cumulative sum of squared forecast errors (SSEt) of the
RW forecasts (SSERWt ) relative to the alternative forecasts, SSERWt − SSEt. Values above zero indicate that a
forecasting model generates better performance than the RW benchmark, while negative values suggest the opposite.
The top two panels compare the forecasting performance of different autoregressive models with constant volatility
(first panel) or time-varying volatility (second panel), while the bottom two panels display the forecasting performance
of different factor-augmented autoregressive models with constant volatility (third panel) or time-varying volatility
(fourth panel).
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Figure 3. Predictive density of real GDP growth under different MIDAS models
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This figure shows the predictive density of the real GDP growth under alternative MIDAS models, produced in pseudo
real-time for 1990:1 (left panels) and 2008:4 (right panels). The top panels display the real GDP growth predictive
density under three alternative MIDAS models, where the blue solid line corresponds to the AR-MIDAS model,
the red dashed line refers to the AR-MIDAS SV model, and the green dashed-dotted line refers to the AR-MIDAS
SV-MIDAS model. The bottom panels display the real GDP growth predictive density under three alternative factor
augmented MIDAS models, where the blue solid line corresponds to the FAR-MIDAS model, the red dashed line
refers to the FAR-MIDAS SV model, and the green dashed-dotted line refers to the FAR-MIDAS SV-MIDAS model.
All MIDAS models displayed use the Ffr daily series as predictor. All predictive densities are produced with recursive
estimation of the models.
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Figure 4. Cumulative sum of log-score differentials (CLSD)
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This figure shows the sum of log predictive scores from a variety of alternative forecasting models, computed relative
the sum of log predictive scores of the Random Walk (RW) model. Each quarter we estimate the parameters of
the forecast models recursively and generate one-step-ahead density forecasts of real GDP growth which are in turn
used to compute log-predictive scores. This procedure is applied to the benchmark RW model as well as to all the
alternative forecasting models. We then plot the cumulative sum of log-predictive scores (LSt) for the alternative
models computed relative to the cumulative sum of log-predictive scores of the RW model, LSt − LSRWt . Values
above zero indicate that a forecast model generates better performance than the RW benchmark, while negative values
suggest the opposite. The top two panels compare the forecasting performance of different autoregressive models with
constant volatility (top left panel) or time-varying volatility (top right panel), while the bottom two panels display
the forecasting performance of different factor-augmented autoregressive models with constant volatility (bottom left
panel) or time-varying volatility (bottom right panel).
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Figure 5. Relation between RMSFE and other measures of predictive performance
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This figure presents scatter plots of out-of-sample predictive performance measures against the RMSFE (root mean
squared forecast error) measure. All estimates of predictive performance are measured relative to the Random Walk
(RW) model, so that the origin in each figure, shown as the intersection of the solid black lines, corresponds to the
RW model. In addition, the intersection of the black dashed lines displays the relative out-of-sample performance of
the AR model. The left panel displays the relation between RMSFE and the average log-score differential (LSD),
while the right panel shows the relation between RMSFE and the continuously ranked probability score differential
(CRPSD). Blue squares correspond to linear models (including AR, AR-MIDAS, FAR, and FAR-MIDAS models), red
diamonds represent the stochastic volatility models (including AR SV, AR-MIDAS SV, FAR SV, and FAR-MIDAS
SV), and the green triangles depict the MIDAS in volatility models (including AR-MIDAS SV-MIDAS and FAR-
MIDAS SV-MIDAS). All measures of predictive performance are produced with recursive estimates of the models.
The out-of-sample period starts in 1982:I and ends in 2011:IV.
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Figure 6. Out-of-sample forecast performance of model combinations
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The top panel of this figure shows the sum of squared forecast errors of the Random Walk model (RW) model minus
the sum of squared forecast errors for three alternative forecasting models using model combinations. Three forecast
combination schemes are considered, namely a simple equal-weighted combination, the optimal prediction pool of
Geweke and Amisano (2011) and Bayesian Model Averaging (BMA). Each quarter we estimate the parameters of
the forecasting models recursively and generate one-step-ahead forecasts of real GDP growth which are in turn used
to compute out-of-sample forecast errors. This procedure is applied to the RW model, which is our benchmark, as
well as to all forecasting models enetering the model combinations. We then plot the cumulative sum of squared
forecast errors of the RW forecasts (SSERWt ) relative to the alternative forecasts, SSERWt − SSECOMB

t . Values
above zero indicate that a model combination generates better performance than the RW benchmark, while negative
values suggest the opposite. The bottom panel of this figure shows the sum of log predictive scores for the same three
alternative forecasting models using model combinations, relative to the sum of log predictive scores of the Random
Walk (RW) model. Each quarter we estimate the parameters of the forecasting models recursively and generate one-
step-ahead density forecasts of real GDP growth which are used to compute log-predictive scores. This procedure is
applied to the benchmark RW model as well as to all forecasting models entering the model combinations. We then
plot the cumulative sum of log-predictive scores for the model combinations (LSCOMB

t ) minus the cumulative sum
of log-predictive scores of the RW model, LSCOMB

t − LSRWt . Values above zero indicate that a model combination
generates better performance than the RW benchmark, while negative values suggest the opposite. The blue solid
line represents the equal-weighted model combination, the red dotted line tracks the optimal prediction pool, and the
green dashed-dotted line depicts results for the BMA combination.
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Figure 7. Weights on different model classes in the optimal prediction pool
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This figure plots the optimal weights on different models in the predictive pool, computed in real time by solving the
minimization problem

w∗
t = arg max

w

t−1∑
τ=1

log

[
N∑
i=1

wi × Sτ+1,i

]
where N = 36 is the number of models considered, and the solution is found subject to w∗

t belonging to the
N−dimensional unit simplex. Sτ+1,i denotes the time τ + 1 recursively computed log score for model i, i.e. Sτ+1,i =
exp (LSτ+1,i). Dark blue bars show the weights on the AR-MIDAS models in the optimal prediction pool, blue
bars show the weights assigned to the AR-MIDAS SV models, and light blue bars show the weights assigned to the
AR-MIDAS SV-MIDAS models; yellow bars show the weights on the FAR-MIDAS models in the optimal prediction
pool, orange bars show the weights assigned to the FAR-MIDAS SV models, and maroon bars show the weights
assigned to the FAR-MIDAS SV-MIDAS models.

44



Figure 8. Weights on individual daily predictors in the optimal prediction pool
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This figure plots the optimal weights on different daily predictors in the predictive pool, computed in real time by
solving the minimization problem

w∗
t = arg max

w

t−1∑
τ=1

log

[
N∑
i=1

wi × Sτ+1,i

]
where N = 36 is the number of models considered, and the solution is found subject to w∗

t belonging to the
N−dimensional unit simplex. Sτ+1,i denotes the time τ + 1 recursively computed log score for model i, i.e. Sτ+1,i =
exp (LSτ+1,i). Dark blue bars show the weights associated with the effective Federal Funds rate (Ffr) predictor in
the optimal prediction pool, blue bars show the weights associated with the the HML portfolio return (Hml), and
light blue bars show the weights assigned to the the MOM portfolio return (Mom); yellow bars show the weights
associated with the value-weighted stock returns, orange bars show the weights assigned to the SML portfolio return
(Smb), and maroon bars show the weights assigned to the interest rate spread between the 10-year government bond
rate and the federal fund rate (Spr).
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