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1 Introduction

Over the years, the question of whether stock returns are predictable has received considerable

attention, both within academic and practitioner circles.1 However, more than 25 years of

research on this topic shows that models allowing for time-varying return predictability often

produce worse out-of-sample forecasts than a simple benchmark that assumes a constant risk

premium. This finding has led authors such as Bossaerts and Hillion (1999) and Welch and Goyal

(2008) to question the economic value of return predictability, and to suggest that there are

no out-of-sample benefits to investors from exploiting this predictability when making optimal

portfolio decisions.

Forecast combination methods offer a way to improve equity premium forecasts. Since

Bates and Granger (1969) seminal paper on forecast combinations, it has been known that

combining forecasts across models often produces a forecast that performs better than even the

best individual model. Timmermann (2006) offers a compelling explanation for this stylized

fact. In a sense, forecast combinations can be thought of a diversification strategy that improves

forecast performance, much like asset diversification improves portfolio performance. Avramov

(2002), Aiolfi and Favero (2005), Rapach et al. (2010), and Dangl and Halling (2012) confirm

this result in the context of stock return predictability, and find that the empirical evidence of

out-of-sample predictability improves when using model combinations.

Existing forecast combination methods weight together the individual models according to

their statistical performance, without making specific reference to the way the forecasts are

used.2 For example, in Rapach et al. (2010) the individual models are combined according

to their relative mean squared prediction error, while Avramov (2002) and Dangl and Halling

(2012) use Bayesian Model Averaging (BMA), which weights the individual models according to

their marginal likelihoods. In contrast, with stock return forecasts the quality of the individual

model predictions depends ultimately on whether such predictions deliver profitable investment

decisions, which in turns is directly related to the investor’s utility function. This creates an

inconsistency between the criterion used to combine the individual predictions and the final use

to which the forecasts will be put.

1The literature on of stock return predictability became particularly active during the 1970s and 1980s. Earlier
work in this field include Fama and Schwert (1977), Keim and Stambaugh (1986), Campbell (1987), Campbell
and Shiller (1988), Fama and French (1988, 1989), and Ferson and Harvey (1991). More recently, several other
authors have suggested new predictor variables, such as the corporate payout and financing activity (Lamont
(1998), Baker and Wurgler (2000)), the level of consumption in relation to wealth (Lettau and Ludvigson (2001)),
and the relative valuation of low- and high-beta stocks (Polk et al. (2006)).

2This is very closely related to the debate between statistical and decision-based approaches to forecast eval-
uation. The statistical approach focuses on general measures of forecast accuracy intended to be relevant in a
variety of circumstances, while the decision-based approach provides techniques with which to evaluate the eco-
nomic value of forecasts to a particular decision maker or group of decision makers. See Granger and Machina
(2006) and Pesaran and Skouras (2007) for comprehensive reviews on this subject.
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In this paper, we introduce a novel Bayesian model combination technique where the pre-

dictive densities of the individual models are weighted together based on how each model fares

relative to the final objective function of the investor. In the spirit of Pesaran and Skouras

(2007), we label this new method Decision-Based Density Combination (DB-DeCo), and stress

that this new approach combines the entire predictive densities of the individual models, rather

than only their point forecasts. Furthermore, our DB-DeCo method features time-varying com-

bination weights, and explicitly factors into the model combination the inherent uncertainty

surrounding the estimation of the combination weights.

Our paper adds to a rapidly growing literature developing new and more flexible model

combination methods. In particular, our work relates to and extends the contributions of Geweke

and Amisano (2011), Del Negro et al. (2013), Billio et al. (2013), and Fawcett et al. (2014).

Geweke and Amisano (2011) propose combining a set of individual predictive densities with

weights chosen to maximize the predictive log-likelihood of the final model combination, while

Fawcett et al. (2014) and Del Negro et al. (2013) generalize their approach to include time-

varying weights. On the other hand, Billio et al. (2013) propose a model combination scheme

where the individual model weights can change over time, and depend on a learning mechanism

based on a squared prediction error function. The approach we propose in this paper shares with

the previous papers the feature that the combination weights can change over time. However,

differently from these papers, our combination scheme allows for the combination weights to

depend on the individual models’ past performance in a highly flexible way, through a utility-

based objective function.

To test our approach empirically, we evaluate how it fares relative to a host of alternative

model combination methods, and consider as the individual models entering the combinations

a set of linear predictive regressions for stock returns, each including as regressor one of the

predictor variables used by Welch and Goyal (2008). Focusing on linear univariate models and

relying on the same set of variables that have been previously studied in the literature allows us

to make our results comparable to earlier work. When implemented along the lines proposed in

our paper, we find that the DB-DeCo method leads to substantial improvements in the predictive

accuracy of the equity premium forecasts. For example, we find that when comparing the DB-

DeCo method to BMA, the out-of-sample R2 improves from 0.39% to 2.32%. Similar differences

are found when comparing the DB-DeCo method to other model combination schemes. We

also consider the economic value of using the DB-DeCo method. In the benchmark case of an

investor endowed with power utility and a relative risk aversion of five, we compare the certainty

equivalent return (CER) obtained from using a given model combination method relative to the

prevailing mean model. We find that the DB-DeCo method yields an annualized CER of 94

basis points, while BMA delivers a negative annualized CER, −5 basis points, which can be
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taken as evidence that the prevailing mean model generates higher economic predictability than

BMA. We also compare the economic performance of the DB-DeCo method to that of a simple

equal-weighted combination method, proposed in the context of equity premium predictability

by Rapach et al. (2010), and find that the DB-DeCo method generates an annualized CER that

is 92 basis points higher than the equal-weighted combination method.

We next extend our model combination method by relaxing the linearity assumption on the

individual models entering the combination. While it is well known that forecast combination

methods can deal with model instabilities and structural breaks and can generate more stable

forecasts than those from the individual models (see for example Hendry and Clements (2004)

and Stock and Watson (2004)), the joint effect of model instabilities and model uncertainty in

the context of equity return forecasts has so far received limited attention. Dangl and Halling

(2012) and Zhu and Zhu (2013) are two notable exceptions. Dangl and Halling (2012) model

time variation in the conditional mean of stock returns by allowing for gradual changes in the

regression coefficients, and find that model combinations featuring these models lead to both

statistically and economically significant gains over the standard predictive regressions with

constant coefficients. Zhu and Zhu (2013) introduce a regime switching model combination

to predict stock returns, and find that it delivers consistent out-of-sample gains relative to

traditional model combination methods.3

We follow Johannes et al. (2014), and relax the linearity assumption on the individual mod-

els entering the model combinations, introducing both time-varying parameters and stochastic

volatility (TVP-SV), i.e. allowing both the regression coefficients and the return volatility to

change over time. Next, we recompute all model combinations by weighting together the TVP-

SV models. Overall we find that controlling jointly for model instability and model uncertainty

leads to further improvements in both the statistical and economic predictability of stock re-

turns. In terms of economic predictability, we see improvements in CER for both the individual

models and the various model combination methods we entertain. As for the individual models,

we find that allowing for instabilities in return prediction models leads to an average increase in

CER of almost 100 basis points, under the benchmark case of an investor endowed with power

utility and a relative risk aversion of five. This result is in line with the findings of Johannes

et al. (2014), but generalize them to to a much larger set of predictors than those considered in

their study. As for our DB-DeCo method, switching from linear to TVP-SV models produces an

improvement in CER that is unrivaled, with an increase in CER of more than 150 basis points,

and an absolute CER level of 249 basis points. No other model combination scheme comes close

3Johannes et al. (2014) generalize the setting of Dangl and Halling (2012) by forecasting stock returns allowing
both regression parameters and return volatility to adjust gradually over time. However, their emphasis is not on
model combination methods, and focus on a single predictor for stock returns, the dividend yield. Overall, they
find that allowing for time-varying volatility leads to both statistically and economically significant gains over
simpler models with constant coefficients and volatility.
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to this performance.

The remainder of the paper is organized as follows. Section 2 reviews the standard Bayesian

framework for predicting stock returns and choosing portfolio allocations in the presence of

model and parameter uncertainty. Section 3 introduces the Decision-Based Density Combination

method, highlighting the differences from the existing combination methods. Section 4 describes

the data and discusses our prior choices, while Section 5 presents empirical results for a wide

range of predictor variables and model combination strategies. Next, Section 6 evaluates the

economic value of our novel model combination method for a risk averse investor who uses the

predictions of the model to form a portfolio of stocks and a risk-free asset. Section 7 extends

the linear models to allow for time-varying coefficients and stochastic volatility, and evaluates

the joint role of model instabilities and model uncertainty in predicting stock returns. Finally,

Section 8 conducts a range of robustness checks, while Section 9 provides some concluding

remarks.

2 Return predictability in the presence of parameter and model
uncertainty

It is common practice in the literature on return predictability to assume that stock returns,

measured in excess of a risk-free rate, rτ+1, are a linear function of a lagged predictor variable,

xτ :

rτ+1 = µ+ βxτ + ετ+1, τ = 1, ..., t− 1, (1)

ετ+1 ∼ N(0, σ2
ε).

This is the approach followed by, among others, Welch and Goyal (2008) and Bossaerts and

Hillion (1999). See also Rapach and Zhou (2013) for an extensive review of this literature.

The linear model in (1) is simple to interpret and only requires estimating two mean param-

eters, µ and β, which can readily be accomplished by OLS. Despite its simplicity, it has been

shown empirically that the model in (1) fails to provide convincing evidence of out-of-sample

return predictability. Welch and Goyal (2008) provide a comprehensive review on this issue, and

conclude that stock return predictability is mostly an in-sample or ex-post phenomenon, disap-

pearing once the prediction models are used to form forecasts on new, out-of-sample, data. One

possible explanation for the results of Welch and Goyal (2008) is that the true data-generating

process of stock returns is highly uncertain and constantly evolving, and the model in (1) is

too simple for that.4 In this context, the Bayesian methodology offers a valuable alternative.

For one, it allows to incorporate parameter and model uncertainty into the estimation and in-

ference steps and, compared to (1), should be more robust to model misspecifications. More

4See for example Stock and Watson (2006), and Ang and Timmermann (2012).
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specifically, the Bayesian approach assigns posterior probabilities to a wide set of competing

return-generating models. It then uses the probabilities as weights on the individual models to

obtain a composite-weighted model. For example, suppose that at time t the investor wants

to predict stock returns at time t + 1, and for that purpose has available N competing mod-

els (M1, M2,...,MN ). After eliciting prior distributions on the parameters of each model, she

can derive posterior estimates on all such parameters, and ultimately obtain N distinct pre-

dictive distributions, one for each model entertained. We denote with
{
p(rt+1|Mi,Dt)

}N
i=1

the

N predictive densities for rt+1, where Dt stands for the information set available at time t,

i.e. Dt = {rτ+1, xτ}t−1
τ=1 ∪ xt. Next, using Bayesian Model Averaging (BMA, henceforth) the

individual predictive densities are combined into a composite-weighted predictive distribution

p(rt+1|Dt), given by

p(rt+1|Dt) =

N∑
i=1

P
(
Mi| Dt

)
p(rt+1|Mi,Dt) (2)

where P
(
Mi| Dt

)
is the posterior probability of model i, derived by Bayes’ rule,

P
(
Mi| Dt

)
=

P
(
Dt
∣∣Mi

)
P (Mi)∑N

j=1 P (Dt|Mj)P (Mj)
, i = 1, ..., N (3)

and where P (Mi) is the prior probability of model Mi, with P
(
Dt
∣∣Mi

)
denoting the corre-

sponding marginal likelihood.5 Avramov (2002) and Dangl and Halling (2012) apply BMA to

forecast stock returns, and find that it leads to out-of-sample forecast improvements relative

to the average performance of the individual models as well as, occasionally, relative to the

performance of the best individual model.

We note, however, that BMA, as described in equations (2)-(3), suffers some important draw-

backs. Perhaps the most important one is that BMA assumes that the true model is included in

the model set. Indeed, under such an assumption, it can be shown that the combination weights

in (3) converge (in the limit) to select the true model. However, as noted by Diebold (1991), all

models could be false, and as a result the model set could be misspecified. Geweke (2010) labels

this problem model incompleteness. As an alternative to BMA, Geweke and Amisano (2011)

propose replacing the averaging as done in (2)-(3) with a linear prediction pool:

p(rt+1|Dt) =
N∑
i=1

wip(rt+1|Mi,Dt) (4)

where the individual model weights wi are computed by maximizing the log predictive likelihood,

or log score (LS), of the linear prediction pool:6

5See see Hoeting et al. (1999) for a review on BMA.
6Mitchell and Hall (2005) discuss the analogy of the log score in a frequentistic framework to the log predictive

likelihood in a Bayesian framework, and how it relates to the Kullback-Leibler divergence. See also Hall and
Mitchell (2007), Jore et al. (2010), and Geweke and Amisano (2010) for a discussion on the use of the log score
as a ranking device for the forecast ability of different models.
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t−1∑
τ=1

log

[
N∑
i=1

wi × exp (LSi,τ+1)

]
(5)

with LSi,τ+1 denoting the recursively computed log score for model i at time τ + 1. Geweke and

Amisano (2011) and Geweke and Amisano (2012) show that the model weights, computed in

this way, no longer converge to a unique solution, except in the case where there is a dominant

model in terms of Kullback-Leibler divergence.

A second issue, common to both BMA and the linear prediction pool of Geweke and Amisano

(2011), is the assumption the the model combination weights are constant over time. However,

given the unstable and uncertain data-generating process for stock returns, it is conceivable

to imagine that the combination weights may change over time. Waggoner and Zha (2012),

Billio et al. (2013), and Del Negro et al. (2013) partly address this issue, proposing alternative

combination methods featuring time-varying weights. Finally, a third and overarching issue with

all the model combination methods described thus far is the presence of a disconnect between

the metric according to which the individual forecasts are combined (i.e., either the marginal

likelihood in (2) or the log score in (5)), and how ultimately the final combination is used.

In particular, all model combination techniques described thus far weight individual models

according to their statistical performance. While statistical performance may be the relevant

metric to use in some settings, in the context of equity premium predictions this is likely not

the case. On the contrary, when forecasting stock returns the quality of the individual model’s

predictions should be assessed in terms of whether ultimately such predictions lead to profitable

investment decisions. This point has been emphasized before by Leitch and Tanner (1991), who

show that good forecasts, as measured in terms of statistical criteria, do not necessarily translate

into profitable portfolio allocations.

3 A novel model combination strategy

To address the limitations of the existing model combination methods discussed above, we

introduce a novel model combination method that allows for model incompleteness and features

time-varying combination weights, whose dynamics is driven by the profitability of the individual

models entering the pool. We label our new approach Decision-Based Density Combination (DB-

DeCo), in the spirit of Pesaran and Skouras (2007). In particular, our approach shares with Billio

et al. (2013) and Del Negro et al. (2013) the feature that the model combination weights can

change gradually over time. However, differently from these papers, we introduce a mechanism

that allows the combination weights to depend on the whole history of the individual models’

past profitability. We now turn to explaining in more details how our model combination method

works.
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We continue to assume that at a generic point in time t, the investor has available N

different models to predict excess returns at time t + 1, each model producing a predictive

distribution p
(
rt+1|Mi,Dt

)
, i = 1, ..., N . For example, the investor may be considering N

alternative predictors for stock returns, leading to N univariate models, each one in the form of

(1) and including as right-hand-side one of the N available predictors. To ease the notation, we

aggregate the N predictive distributions
{
p
(
rt+1|Mi,Dt

)}N
i=1

into the pdf p
(
r̃t+1| Dt

)
. Next,

the composite predictive distribution p(rt+1|Dt) is given by

p
(
rt+1| Dt

)
=

∫
p(rt+1|r̃t+1,wt+1,Dt)p(wt+1|r̃t+1,Dt)p

(
r̃t+1| Dt

)
dr̃t+1dwt+1 (6)

where p(rt+1|r̃t+1,wt+1,Dt) denotes the combination scheme based on the N predictive densities

r̃t+1 and the combination weights wt+1 ≡ (w1,t+1, . . . , wN,t+1)′, and p(wt+1|r̃t+1,Dt) denotes the

posterior distribution of the combination weights wt+1. Equation (6) generalizes equation (2),

taking into account the limitations discussed in the previous section. First, by specifying a

stochastic process for the model combination scheme, p(rt+1|r̃t+1,wt+1,Dt), our approach ex-

plicitly allows for either model misspecification or model incompleteness to play a role. Second,

by introducing a proper distribution for the model combination weights wt+1, p(wt+1|r̃t+1,Dt),
we gain two important advantages. On the one hand, our method can allow for time-varying

combination weights. On the other hand, we have flexibility in how to model the dependence of

the combination weights on the individual models’ performance, and are no longer confined to

have the weights depend on some measure of the individual models’ statistical fit. We note, inter

alia, that in addition to addressing the limitations discussed above, the combination scheme in

(6) allows to factor into the composite predictive distribution the uncertainty over the model

combination weights, a feature that should prove useful in the context of excess return predic-

tions, where there is significant uncertainty over the identity of the best model(s) for predicting

returns. We now turn to describing in more details how the individual terms in (6) are obtained.

3.1 Individual models

We begin by explaining how we specify the last term on the right-hand side of (6), p
(
r̃t+1| Dt

)
,

which we remind is short-hand for the set of individual predictive distributions
{
p
(
rt+1|Mi,Dt

)}N
i=1

entering the model combination. As previously discussed, most of the literature on stock return

predictability focuses on linear models, so we take this class of models as our starting point.

In this way, it will be easier to compare the results of our model combination method with the

findings from the existing studies, such as for example Welch and Goyal (2008), Campbell and

Thompson (2008), and Rapach et al. (2010).

The linear model projects excess returns rτ+1 on a lagged predictor, xτ , where xτ can be a
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scalar or a vector of regressors7

rτ+1 = µ+ βxτ + ετ+1, τ = 1, ..., t− 1, (7)

ετ+1 ∼ N(0, σ2
ε).

To estimate the model in (7), we rely on a Gibbs sampler, which permit us to form a number of

draws from the posterior distributions of µ, β, and σ−2
ε , given the information set available at

time t, Dt. Once draws from the posterior distributions of µ, β, and σ−2
ε are available, we use

them to form a predictive density for rt+1 in the following way:

p
(
rt+1|Mi,Dt

)
=

∫
µ,β,σ−2

ε

p
(
rt+1|µ, β, σ−2

ε ,Mi,Dt
)
p
(
µ, β, σ−2

ε

∣∣Mi,Dt
)
dµdβdσ−2

ε . (8)

Repeating this process for the N individual models entering the model combination yields the set

of N individual predictive distributions
{
p
(
rt+1|Mi,Dt

)}N
i=1

. We refer the reader to Appendix

B for more details on the the Gibbs sampler we implement and on how we compute the integral

in equation (8).

3.2 Combination weights

We now turn to describing how we specify the conditional density for the combination weights,

p(wt+1|r̃t+1,Dt). First, in order to have the weights wt+1 belong to the simplex ∆[0,1]N , we

introduce a vector of latent processes zt+1 = (z1,t+1, . . . , zN,t+1)′, where N is the total number

of models considered in the combination scheme, and we specify the multivariate transform

g = (g1, . . . , gN )′,8

g :

[
RN → ∆[0,1]N

zt+1 7→ wt+1 = (g1(z1,t+1), . . . , gN (zN,t+1))′
(9)

Next, in order to obtain the combination weights we need to make additional assumptions on

how the vector of latent processes zt+1 evolves over time and how it maps into the combination

weights wt+1. One possibility is to specify a Gaussian random walk process for zt+1,9

zt+1 ∼ p(zt+1|zt,Λ) (10)

∝ |Λ|−
1
2 exp

{
−1

2
(zt+1 − zt)

′ Λ−1 (zt+1 − zt)

}
7In our setting we consider only one predictor at the time, thus xt is a scalar. It would be possible to include

multiple predictors, but we follow the bulk of the literature on stock return predictability and focus on a single
predictor.

8Under this convexity constraint, the weights can be interpreted as discrete probabilities over the set of models
entering the combination.

9We assume that the variance-covariance matrix Λ of the process zt+1 governing the combination weights is
diagonal. We leave for further research the possibility of allowing for cross-correlation between model weights.
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with Λ an (N ×N) diagonal matrix, and have the combination weights computed as

wi,t+1 =
exp{zi,t+1}∑N
l=1 exp{zl,t+1}

, i = 1, . . . , N (11)

Effectively, equations (10) and (11) implies time-varying combination weights, where time

t + 1 combination weights depend in a non-linear fashion on time t combination weights. Al-

ternatively, we could allow the combination weights to depend on the past performance of the

N individual prediction models entering the combination. To accomplish this, we modify the

stochastic process for zt+1 in (10) as follows:

zt+1 ∼ p(zt+1|zt,∆ζt,Λ) (12)

∝ |Λ|−
1
2 exp

{
−1

2
(zt+1 − zt −∆ζt)

′ Λ−1 (zt+1 − zt −∆ζt)

}
where ∆ζt = ζt − ζt−1, with ζt = (ζ1,t, . . . , ζN,t)

′ denoting a distance vector, measuring the

accuracy of the N prediction models up to time t. We opt for an exponentially weighted moving

average of the past performance of the N individual models entering the combination,

ζi,t = (1− λ)
t∑

τ=t

λt−τf (rτ , r̃i,τ ) , i = 1, . . . , N (13)

where t denotes the beginning of the evaluation period. In other words, we are proposing to

have the combination weight of model i depend on an exponentially weighted sum of the last

observed (τ = t) and past history (τ < t) of model i, where λ ∈ (0, 1) is a smoothing parameter,

f (rτ , r̃i,τ ) is a measure of the accuracy of model i, and r̃i,τ denotes the one-step ahead density

forecast of rτ made by model i at time τ − 1. r̃i,τ is thus short-hand for the i-th element of

p
(
r̃τ | Dτ−1

)
, p(rτ |Mi,Dτ−1).

As for the specific choice of f (rτ , r̃i,τ ), given our ultimate interest in the profitability of stock

return predictions, we focus on a utility-based measure of predictability, the certainty equivalent

return (CER). In the case of a power utility investor who at time τ − 1 chooses a portfolio by

allocating her wealth Wτ−1 between the riskless asset and one risky asset, and subsequently

holds onto that investment for one period, her CER is given by

f (rτ , r̃i,τ ) =
[
(1−A)U

(
W ∗i,τ

)]1/(1−A)
(14)

where U
(
W ∗i,τ

)
denotes the investor’s realized utility at time τ ,

U
(
W ∗i,τ

)
=

[(
1− ω∗i,τ−1

)
exp

(
rfτ−1

)
+ ω∗i,τ−1 exp

(
rfτ−1 + rτ

)]1−A

1−A
(15)

rfτ−1 denotes the continuously compounded Treasury bill rate at time τ − 1, A stands for the

investor’s relative risk aversion, rτ is the realized excess return at time τ , and ω∗i,τ−1 denotes

the optimal allocation to stocks according to the prediction made for rτ by model Mi,
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ω∗i,τ−1 = arg max
ωτ−1

∫
U (ωτ−1, rτ ) p(rτ |Mi,Dτ−1)drτ (16)

By replacing equation (10) with (12) and (13), we include the exponentially weighted learning

strategy into the weight dynamics and estimate the density of zt+1 accounting for the whole

history of certainty equivalence returns given in Eq. (14). Indeed, note that equation (12) could

be rewritten as

zt+1 = zt + ∆ζt + vt+1, (17)

where vt+1 ∼ iid N (0,Λ). Recursive substitution on (17) all the way to the beginning of the

forecast evaluation period t yields

zi,t+1 = zi,t + (1− λ)
t∑

τ=t

λt−τf (rτ , r̃i,τ ) +
t∑

τ=t

vi,τ+1, i = 1, . . . , N (18)

where zi,t+1, zi,t and vi,τ+1 are the i-th elements of zt+1, zt and vτ+1, respectively. Equation (18)

clearly conveys the point that zi,t+1 depends on an exponentially weighted sum of the entire past

history of model i’s performance, (1 − λ)
∑t

τ=t λ
t−τf (rτ , r̃τ,i), as well as on the whole history

of stochastic shocks,
∑t

τ=t vi,τ+1.

In practice, to estimate p(wt+1|r̃t+1,Dt) from (12) and (11), we first need to specify the

combination scheme p
(
rt+1|r̃t+1,wt+1,Dt

)
, so we postpone the discussion on how we estimate

p(wt+1|r̃t+1,Dt) until the end of the next subsection.

3.3 Combination scheme

We now turn to the first term on the right hand side of (6), p
(
rt+1|r̃t+1,wt+1,Dt

)
, denoting the

combination scheme adopted in our model combination. We note that since both the N original

densities
{
p
(
rt+1|Mi,Dt

)}N
i=1

and the combination weights wt+1 are in the form of densities, the

combination scheme for p(rt+1|r̃t+1,wt+1,Dt) is based on a convolution mechanism. Precisely,

we follow Billio et al. (2013), and apply a Gaussian combination scheme,

p(rt+1|r̃t+1,wt+1, σ
−2
κ ) ∝ exp

{
−1

2
(rt+1 − r̃t+1wt+1)′ σ−2

κ (rt+1 − r̃t+1wt+1)

}
(19)

The combination relationship is assumed to be linear and explicitly allows for model misspeci-

fication, possibly because all models in the combination may be false (incomplete model set or

open model space). The combination residuals are estimated and their distribution follows a

Gaussian process with mean zero and standard deviation σκ, providing a probabilistic measure

of the incompleteness of the model set.10 In other words, equation (19) can be rewritten as:

10We note that our method is thus more general than the approach in Geweke and Amisano (2010) and Geweke
and Amisano (2011), as it provides as an output a measure of model incompleteness.

11



p(rt+1|r̃t+1,wt+1, σ
−2
κ ) = r̃t+1wt+1 + κt+1 (20)

with κt+1 ∼ N (0, σ2
κ). The convolution mechanism previously described guarantees that the

product of the densities r̃t+1 and wt+1 is a proper density. It is also worth pointing out that

when the randomness is canceled out by fixing σ2
κ = 0 and the weights are derived as in equation

(3), the combination in (6) reduces to standard BMA. Hence, one can think of BMA as a special

case of the combination approach we propose here. We refer the reader to Appendix A and

Aastveit et al. (2014) for further discussion on convolution and its properties.

We conclude this section by briefly describing how we estimate the posterior distributions

p(rt+1|r̃t+1,wt+1,Dt) and p(wt+1|r̃t+1,Dt). Equations (6), (11), (12), and (19), as well as the

individual model predictive densities p
(
r̃t+1| Dt

)
are first grouped into a non-linear state space

model.11 Because of the non-linearity, standard Gaussian methods such as the Kalman filter

cannot be applied. We instead apply a Sequential Monte Carlo method, using a particle fil-

ter to approximate the transition equation governing the dynamics of zt+1 in the state space

model, yielding posterior distributions for both p(rt+1|r̃t+1,wt+1,Dt) and p(wt+1|r̃t+1,Dt). For

additional details, see Appendix C.

4 Data and priors

In this section we describe the data used in the empirical analysis and the prior choices we made.

4.1 Data

Our empirical analysis uses data on stock returns along with a set of fifteen predictor variables

originally analyzed in Welch and Goyal (2008) and subsequently extended up to 2010 by the same

authors. Stock returns are computed from the S&P500 index and include dividends. A short

T-bill rate is subtracted from stock returns in order to capture excess returns. Data samples

vary considerably across the individual predictor variables. To be able to compare results across

the individual predictor variables, we use the longest common sample, that is 1927-2010. In

addition, we use the first 20 years of data as a training sample. Specifically, we initially estimate

our regression models over the period January 1927–December 1946, and use the estimated

coefficients to forecast excess returns for January 1947. We next include January 1947 in the

estimation sample, which thus becomes January 1927–January 1947, and use the corresponding

estimates to predict excess returns for February 1947. We proceed in this recursive fashion

11The non-linearity is due to the logistic transformation mapping the latent process zt+1 into the model com-
bination weights wt+1.
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until the last observation in the sample, thus producing a time series of one-step-ahead forecasts

spanning the time period from January 1947 to December 2010.

The identity of the predictor variables, along with summary statistics, is provided in Table 1.

Most variables fall into three broad categories, namely (i) valuation ratios capturing some mea-

sure of ‘fundamentals’ to market value such as the dividend yield, the earnings-price ratio, the

10-year earnings-price ratio or the book-to-market ratio; (ii) measures of bond yields capturing

level effects (the three-month T-bill rate and the yield on long-term government bonds), slope

effects (the term spread), and default risk effects (the default yield spread defined as the yield

spread between BAA and AAA rated corporate bonds, and the default return spread defined as

the difference between the yield on long-term corporate and government bonds); (iii) estimates

of equity risk such as the long-term return and stock variance (a volatility estimate based on

daily squared returns); (iv) three corporate finance variables, namely the dividend payout ratio

(the log of the dividend-earnings ratio), net equity expansion (the ratio of 12-month net issues

by NYSE-listed stocks over the year-end market capitalization), and the percentage of equity

issuance (the ratio of equity issuing activity as a fraction of total issuing activity). Finally, we

consider a macroeconomic variable, inflation, defined as the rate of change in the consumer price

index, and the net payout measure of Boudoukh et al. (2007), which is computed as the ratio

between dividends and net equity repurchases (repurchases minus issuances) over the last twelve

months and the current stock price. Johannes et al. (2014) find that accounting for net equity

repurchases in addition to cash payouts produces a stronger predictor for equity returns.12

4.2 Priors

As described at the outset, we have chosen to adopt a Bayesian approach in this paper, so we

briefly describe how the priors are specified. We start with the priors on the parameters of the

individual models, µ, β, and σ−2
ε . Following standard practice, the priors for the parameters µ

and β in (7) are assumed to be normal and independent of σ2
ε ,

13[
µ
β

]
∼ N (b, V ) , (21)

where

b =

[
rt
0

]
, V = ψ2

s2
r,t

(
t−1∑
τ=1

xτx
′
τ

)−1
 , (22)

12We follow Welch and Goyal (2008) and lag inflation an extra month to account for the delay in CPI releases.
13See for example Koop (2003), Section 4.2.
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and data-based moments:

rt =
1

t− 1

t−1∑
τ=1

rτ+1,

s2
r,t =

1

t− 2

t−1∑
τ=1

(rτ+1 − rt)2 .

Our choice of the prior mean vector b reflects the “no predictability” view that the best predictor

of stock excess returns is the average of past returns. We therefore center the prior intercept on

the prevailing mean of historical excess returns, while the prior slope coefficient is centered on

zero.14

In (22), ψ is a constant that controls the tightness of the prior, with ψ →∞ corresponding

to a diffuse prior on µ and β. Our benchmark analysis sets ψ = 1. We assume a standard gamma

prior for the error precision of the return innovation, σ−2
ε :

σ−2
ε ∼ G

(
s−2
r,t , v0 (t− 1)

)
, (23)

where v0 is a prior hyperparameter that controls the degree of informativeness of this prior, with

v0 → 0 corresponding to a diffuse prior on σ−2
ε .15 Our baseline analysis sets v0 = 1.

Moving on to the processes controlling the combination weights and the combination scheme,

we need to specify priors for σ−2
κ and for the diagonal elements of Λ. The prior for σ−2

κ , the

precision of our measure of incompleteness in the combination scheme, and the diagonal elements

of Λ−1, the precision matrix of the process zt+1 governing the combination weights wt+1, are

assumed to be gamma, G(s−2
σκ , vσκ(t−1)) and G(s−1

Λ , vΛ(t−1)), respectively. We set informative

values on our prior beliefs regarding the incompleteness and the combination weights. Precisely,

we set vσκ = vΛi = 1 and set the hyperparameters controlling the means of the prior distributions

to s−2
σκ = 1000, shrinking the model incompleteness to zero, and to s−1

Λ = 4, allowing zt+1 to

evolve freely over time and differ from the initial value z0, set to equal weights.16

5 Out-of-Sample Predictive Performance

In this section we answer the question of whether the DB-DeCo method produces equity premium

forecasts that are more accurate than those obtained from the existing approaches. We compare

14It is common to base the priors of some of the hyperparameters on sample estimates– see Stock and Watson
(2006) and Efron (2010) – and our analysis can be viewed as an empirical Bayes approach rather than a more
traditional Bayesian approach that fixes the prior distribution before any data are observed.

15Following Koop (2003), we adopt the Gamma distribution parametrization of Poirier (1995). Namely, if the
continuous random variable Y has a Gamma distribution with mean µ > 0 and degrees of freedom v > 0, we
write Y ∼ G (µ, v) . In this case, E (Y ) = µ and V ar (Y ) = 2µ2/v.

16In our empirical application, N is set to 15 therefore z0,i = ln(1/15) = −2.71 resulting in w0,i = 1/15. The
prior choices we made for the diagonal elements of Λ allow the posterior weights on the individual models to differ
substantially from equal weights. See section 8 for alternative prior specifications.
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the performance of DB-DeCo to both the fifteen univariate models entering the combination as

well as a number of alternative model combination methods. As in Welch and Goyal (2008) and

Campbell and Thompson (2008), the predictive performance of each model is measured relative

to the prevailing mean (PM) model. One of the advantages of adopting a Bayesian framework in

this work is the ability to compute predictive distributions, rather than simple point forecasts,

which incorporate parameter uncertainty. Accordingly, to shed light on the predictive ability of

the various models, we consider several evaluation statistics for both point and density forecasts.

As for assessing the accuracy of the point forecasts, the first measure we consider is the

Cumulative Sum of Squared prediction Error Difference (CSSED) introduced by Welch and

Goyal (2008),

CSSEDm,t =

t∑
τ=t

(
e2
PM,τ − e2

m,τ

)
(24)

where m denotes the model under consideration (either univariate or model combination), t

denotes the beginning of the forecast evaluation period, and em,t (ePM,τ ) denotes model m′s

(PM’s) prediction error from time τ forecasts, obtained by synthesizing the predictive density

p
(
rτ |Mi,Dτ−1

)
(or p

(
rτ | Dτ−1

)
in the case of model combinations) into a point forecast. An

increase from CSSEDm,t−1 to CSSEDm,t indicates that relative to the benchmark PM model,

the alternative model m predicts more accurately at observation t. Following Campbell and

Thompson (2008), we also summarize the predictive ability of the various models over the whole

evaluation sample by reporting the out-of-sample R2 measure,

R2
OoS,m = 1−

∑t
τ=t e

2
m,τ∑t

τ=t e
2
PM,τ

. (25)

whereby a positive R2
OOS,m is indicative of some predictability from model m (again, relative to

the benchmark PM model), and where t denotes the end of the forecast evaluation period.

Turning next to the accuracy of the density forecasts, we consider two different metrics of

predictive performance. First, following Amisano and Giacomini (2007), Geweke and Amisano

(2010), and Hall and Mitchell (2007), we consider the average log score differential,

LSDm =

∑t
τ=t (LSm,τ − LSPM,τ )∑t

τ=t LSPM,τ

(26)

where LSm,τ (LSPM,τ ) denotes model m’s (PM’s) log predictive score computed at time τ. If

LSDm is positive, this indicates that on average the alternative model m produces more accurate

density forecasts than the benchmark prevailing mean model (PM). We also consider using the

recursively computed log scores as inputs to the period t difference in the cumulative log score

15



differential between the PM model and the mth model,

CLSDm,t =

t∑
τ=t

(LSm,τ − LSPM,τ ) (27)

An increase from CLSDm,t−1 to CLSDm,t indicates that relative to the benchmark PM model,

the alternative model m predicts more accurately at observation t. Next, we follow Gneiting and

Raftery (2007), Gneiting and Ranjan (2011) and Groen et al. (2013), and consider the average

continuously ranked probability score differential (CRPSD),

CRPSDm =

∑t
τ=t (CRPSPM,τ − CRPSm,τ )∑t

τ=tCRPSPM,τ

(28)

where CRPSm,τ (CRPSPM,τ ) measures the average distance between the empirical cumulative

distribution function (CDF) of rτ (which is simply a step function in rτ ), and the empirical

CDF that is associated with model m’s (PM’s) predictive density. Gneiting and Raftery (2007)

explain how the CRPSD measure circumvents some of the problems of the logarithmic score,

most notably the fact that the latter does not reward values from the predictive density that

are close but not equal to the realization. Finally, we consider using the recursively computed

continuously ranked probability score as inputs to the period t difference in the cumulative

continuously ranked probability score differential between the PM model and the mth model,

CCRPSDm,t =
t∑

τ=t

(CRPSPM,τ − CRPSm,τ ) (29)

An increase from CCRPSDm,t−1 to CCRPSDm,t indicates that relative to the benchmark PM

model, the alternative model m predicts more accurately at observation t.

5.1 Empirical results

Table 2 reports R2
OoS-values for both the fifteen univariate models (top panel) and a variety of

model combination methods, including the DB-DeCo approach introduced in Section 3 (bottom

panel). Positive values suggest that the alternative models perform better than the PM model.

We also report stars to summarize the statistical significance of the R2
OoS-values, where the

underlying p-values are based on the Diebold and Mariano (1995) t-statistics for equality of

the root mean squared forecast errors (RMSFE) of the competing models and are computed

with a serial correlation-robust variance, using the pre-whitened quadratic spectral estimator of

Andrews and Monahan (1992). We begin by focusing on the results under the column header

“Linear”. We will return later to the remaining half of the table. Starting with the top panel, the

results for the individual models are reminiscent of the findings of Welch and Goyal (2008), where

the R2
OoS-values are negative for 13 out of the 15 predictor variables. Moving on to bottom panel
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of the table, we find that with the exception of the optimal prediction pool method of Geweke

and Amisano (2011), accounting for model uncertainty leads to positive R2
OoS-values. We note

in particular that the DB-DeCo method yields the largest improvement in forecast performance

among all model combination methods, with an R2
OoS of 2.32%, statistically significant at the 1%

level. This is almost two percentage points higher than all other model combination methods.

To shed light on the sources of such improvement in predictability, we also compute a version

of DB-DeCo where we suppress the learning mechanism in the weight dynamics (that is, we

replace equation (12) with (10)). We label this combination scheme “Density Combination”.

A quick look at the comparison between DB-DeCo and the Density Combination method in

Table 2 reveals that the learning mechanism introduced via equations (12)-(14) explains a large

fraction of the increase in performance we see for the DB-DeCo method.

We next turn to Table 3, which reports the density forecast performance for the same set of

models listed in Table 2. Focusing on the columns under the header “Linear”, we find that the

DB-DeCo method is the only model combination method that yields positive and statistically

significant results (as in Table 2, the underlying p-values are based on the Diebold and Mariano

(1995) t-statistics). This is true for both measures of density forecast accuracy, the average

log score differential and the average CRPS differential. Finally, Figures 1-3 plot the CSSEDt

(Figure 1), CLSDt (Figure 2), and CCRPSDt (Figure 3) for the various model combination

methods considered in this study. These plots show periods where the various models perform

well relative to the PM model - periods where the lines are increasing and above zero - and

periods where the models underperform against this benchmark - periods with decreasing lines.

All three figures show that the DB-DeCo model consistently outperforms the benchmark model

as well as all the alternative model combination methods over the whole out-of-sample period.

Once again, the effect of learning is quite evident, as shown by the gaps between the two lines

in the fourth panel of each figure.

6 Economic Performance

So far we have focused on the statistical performance of the forecasts from the various models.

We next evaluate the economic significance of these return forecasts by considering the optimal

portfolio choice of an investor who uses the return forecasts to guide her investment decisions.

As mentioned earlier, one advantage of adopting a Bayesian approach is that it yields predictive

densities that account for parameter estimation error.17 Another related point is that having

available the full predictive densities means that we are not reduced to considering only mean-

variance utility but can use utility functions with better properties.

17The importance of controlling for parameter uncertainty in investment decisions has been emphasized by
Kandel and Stambaugh (1996) and Barberis (2000). Klein and Bawa (1976) were among the first to note that
using estimates for the parameters of the return distribution to construct portfolios induces an estimation risk.
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Having computed the optimal asset allocation weights for both the individual models (M1, ...,MN )

and the various model combinations, we assess the economic predictability of all models by com-

puting their implied (annualized) CER. Under power utility, the investor’s annualized CER is

given by

CERm = 12×

(1−A)
1

t∗

t∑
τ=t

U
(
W ∗m,τ

)1/(1−A)

− 1 (30)

where m denotes the model under consideration (either univariate or model combination), and

t∗ = t− t+ 1. We next define the differential certainty equivalent return of model m, relative to

the benchmark prevailing mean model PM,

∆CERm = CERm − CERPM . (31)

A positive ∆CERm can be interpreted as evidence that model m generates a higher (certainty

equivalent) return than the benchmark model.

6.1 Empirical results

Table 4 shows annualized CER values for the same models listed in Tables 2 and 3, assuming

a coefficient of relative risk aversion of A = 5. Positive values suggest that the alternative

model (either the individual models in the top panels or the model combinations in the bottom

panel) performs better than the PM model. Once again, we focus on the column under the

header “Linear”. An inspection of the bottom panel of Table 4 reveals that the statistical

gains we saw for the DB-DeCo approach in Tables 2 and 3 translate into CER gains of almost

100 basis points, relative to the PM model. No other combination scheme provides gains of

a magnitude comparable to the DB-DeCo scheme. A comparison between the Decision-Based

Density Combination and the Density Combination methods reveals that it is the learning

mechanism introduced via equations (12)-(14) that drives this result. Turning to the top panel

of Table 4, it appears that some of the individual models provide positive CER figures, but in

terms of magnitude these gains are at least 50 basis points smaller than the DB-DeCo method.

Figure 4 plots the cumulative CER values, computed relative to the PM benchmark. These plots

parallel the cumulated differential plots of Figures 1-3, the key difference being that Figure 4

shows the cumulative risk-adjusted return from using a particular model combination method,

relative to the PM model. The figure shows how the economic performance of the DB-DeCo

model is not the result of any specific and short-lived episode, but rather it is built gradually

over the entire out-of-sample period, as indicated by the the constantly increasing red dashed

line in the fourth panel of Table 4. The only exception is during the second part of the 1990s,

where the PM benchmark appears to outperform the DB-DeCo model. Figure 4 also indicates

that the DB-DeCo cumulated CER value at the end of the sample exceeds 40 percent, while it is
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negative for all other model combination methods. In addition, the effect of learning (obtained

by comparing the heights of the CERs lines belonging to the Density Combination method and

the DB-DeCo method at the end of the sample) appears to be around 55 percentage points.

7 Capturing Parameter Instability: A Time-Varying Parameter
Stochastic Volatility Model

Parameter instability is a very important issue in the context of equity premium predictions

and several studies have found a distinctly time-varying and unstable nature of the return pre-

dictability. See for example Henkel et al. (2011), Paye and Timmermann (2006), and Pettenuzzo

and Timmermann (2011). While it is well known that forecast combination methods can deal

with model instabilities and structural breaks and can generate more stable forecasts than those

from the individual models (see for example Hendry and Clements (2004), and Stock and Wat-

son (2004)), the impact of the linearity assumption on the individual models entering the model

combination is an aspect that has not yet been thoroughly investigated.

There are many reasons why one may suspect that the linear model in (7) could be mis-

specified. For one, it is very likely that the regression parameters in (7) may vary over time.

Parameter instability is present in a wide array of macroeconomic and financial time series

(see, e.g., the comprehensive analyses of Stock and Watson (2006), and Ang and Timmermann

(2012)), and there is no reason to believe that this should not represent an issue with inferences

and forecasting in the setting of return predictability where, due to a particularly low signal-

to-noise ratio of the predictive regressions, researchers often prefer to employ data spanning

several decades in order to extract more precise parameter estimates. Similarly, the baseline

model in (7) assumes that return volatility is constant over time, while the empirical literature

agrees that return volatility clusters over time, to the point that time-varying return volatility

is by now widely considered a stylized fact (see, e.g., Andersen et al. (2006)). Indeed, recent

contributions to the literature on stock return predictability have found that it is important to

account for both of these features; see Dangl and Halling (2012), Johannes et al. (2014) and

Pettenuzzo et al. (2013).

In this section, we extend the model in (7) along both of these dimensions, and introduce

a time-varying parameter, stochastic volatility (TVP-SV) model, where both the regression

coefficients and the return volatility are allowed to change gradually over time:

rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, τ = 1, ..., t− 1, (32)

where hτ+1 denotes the (log of) stock return volatility at time τ + 1, and uτ+1 ∼ N (0, 1). As

for the time-varying parameters θτ+1 = (µτ+1, βτ+1)′, we assume that the intercept and slope
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parameters follow a zero-mean stationary and mean-reverting process:[
µτ+1

βτ+1

]
=

[
γµ 0
0 γβ

] [
µτ
βτ

]
+

[
η1,τ+1

η2,τ+1

]
, (33)

where (µ1, β1) = (0, 0)′, |γµ| < 1, |γβ| < 1, and ητ+1 ≡ (η1,t+1, η2,t+1)′ is a bi-variate normal

random variable, independent of us for all t and s, and with ητ+1 ∼ N (0,Q) .18 As for the

log-volatility hτ+1, it is assumed to evolve as a stationary and mean reverting process,

hτ+1 = λ0 + λ1hτ + ξτ+1 (34)

where |λ1r| < 1, ξτ+1 ∼ N
(

0, σ2
ξ

)
and uτ , ηt and ξs are mutually independent for all τ , t, and

s.

We now turn to describing our prior choices for the TVP-SV specification. As for (µ, β)′ we

follow the same prior choices made for the linear model:[
µ
β

]
∼ N (b, V ) , (35)

Next, we note that in addition to specifying prior distributions and hyperparameters for

[µ, β]′, the TVP-SV model in (32)-(34) requires eliciting priors for the sequence of time-varying

parameters, θt = {θ2, ..., θt} and its variance covariance matrix Q, the sequence of log return

volatilities, ht = {h2, ..., ht} and its error precision σ−2
ξ , and finally the parameters γµ, γβ, λ0, and

λ1. Beginning with θt, γµ, γβ, and Q, we first write p
(
θt, γµ, γβ,Q

)
= p

(
θt
∣∣ γµ, γβ,Q) p (γµ, γβ) p (Q),

and note that (33) along with the assumption that θ1 = (0, 0)′ implies

p
(
θt
∣∣ γµ, γβ,Q) =

t−1∏
τ=1

p (θt+1| γµ, γβ, θt,Q) , (36)

with θτ+1| γµ, γβ, θτ ,Q ∼ N (diag {γµ, γβ} × θτ ,Q), for τ = 1, ..., t − 1. To complete the prior

elicitation for p
(
θt, γµ, γβ,Q

)
, we need to specify priors for Q, γµ, and γβ. As for Q, we choose

an Inverted Wishart distribution

Q ∼ IW
(
Q, t− 2

)
, (37)

with

Q = kQ (t− 2)

s2
r,t

(
t−1∑
τ=1

xτx
′
τ

)−1
 . (38)

The constant kQ controls the degree of variation in the time-varying regression coefficients θτ ,

where larger values of kQ imply greater variation in θτ .19 We set kQ = 0.01 to limit the extent

18Note that this is equivalent to writing rτ+1 = µ̃τ+1 + β̃τ+1xτ + exp (hτ+1)uτ+1, where
(
µ̃1, β̃1

)
is left

unrestricted.
19In this way, the scale of the Wishart distribution for Q is specified to be a fraction of the OLS estimates of the

variance covariance matrix s2r,t
(∑t−1

τ=1 xτx
′
τ

)−1
, multiplied by the degrees of freedom, t−2, since for the inverted-

Wishart distribution the scale matrix has the interpretation of the sum of squared residuals. This approach is
consistent with the literature on TVP-VAR models; see, e.g., Cogley et al. (2005) and Primiceri (2005).
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to which the parameters can change over time. As for γµ, γβ, we choose independent normal

distributions,

γµ ∼ N
(
mγ , V γ

)
, γµ ∈ (−1, 1) (39)

γβ ∼ N
(
mγ , V γ

)
, γβ ∈ (−1, 1) .

and we set mγ = 0.95, and V γ = 1.0e − 6, implying a high autocorrelation in both µτ and

βτ .

Turning next to the sequence of log return volatilities, ht, the error precision, σ−2
ξ , and the

parameters λ0 and λ1, we write p
(
ht, λ0, λ1, σ

−2
ξ

)
= p

(
ht
∣∣λ0, λ1, σ

−2
ξ

)
p (λ0, λ1) p

(
σ−2
ξ

)
. As

for p
(
ht
∣∣λ0, λ1, σ

−2
ξ

)
, it follows from (34) that

p
(
ht
∣∣λ0, λ1, σ

−2
ξ

)
=

t−1∏
τ=1

p
(
hτ+1|λ0, λ1, hτ , σ

−2
ξ

)
p (h1) , (40)

with hτ+1|λ0, λ1, hτ , σ
−2
ξ ∼ N

(
hτ , σ

2
ξ

)
. To complete the prior elicitation for p

(
ht, λ0, λ1σ

−2
ξ

)
,

we need to specify priors for λ0, λ1, the initial log volatility h1, and σ−2
ξ . We choose these from

the normal-gamma family as follows:

h1 ∼ N (ln (sr,t) , kh) , (41)[
λ0

λ1

]
∼ N

([
mλ0
mλ1

]
,

[
V λ0 0

0 V λ1

])
, λ1 ∈ (−1, 1) , (42)

and

σ−2
ξ ∼ G

(
1/kξ, 1

)
. (43)

We set kξ = 0.01 and choose the remaining hyperparameters in (41) and (42) to imply uninfor-

mative priors, allowing the data to determine the degree of time variation in the return volatility.

Specifically, we set kh = 0.01, mλ0 = 0, and V λ0 = 10. As for the hyperparameters controlling

the degree of mean reversion in hτ , we set mλ1 = 0.95, and V λ1 = 1.0e−06, which implies a high

autocorrelation in hτ+1.

To estimate the model in (32), we rely on a Gibbs sampler, which allows us to obtain a

sequence of posterior draws for all the parameters of the model: µ, β, θt, ht, Q, σ−2
ξ , γµ, γβ, λ0,

and λ1. Finally, once such draws are available, we use them to form a density forecast for rt+1

in the following way:

p
(
rt+1|M ′i ,Dt

)
=

∫
Θ,θt+1,ht+1

p
(
rt+1| θt+1,Θ, ht+1, θ

t, ht,M ′i ,Dt
)

×p
(
θt+1, ht+1|Θ, θt, ht,M ′i ,Dt

)
(44)

×p
(

Θ, θt, ht
∣∣M ′i ,Dt) dΘdθt+1dht+1.
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where, to ease the notation, we have grouped all the time invariant parameters into the matrix

Θ, with Θ =
(
µ, β,Q,σ−2

ξ , γµ, γβ, λ0, λ1

)
. Repeating this process over the N individual models

entering the model combination yields the set of N individual predictive distributions for the

TVP-SV models,
{
p
(
rt+1|M ′i ,Dt

)}N
i=1

. Appendix B contains additional details on the Gibbs

sampler and on how we compute the integral in (44).

Having produced the set of predictive densities
{
p
(
rt+1|M ′i ,Dt

)}N
i=1

, we next recompute

all model combinations, including the DB-DeCo method described in Section 3, by weighting

together the TVP-SV models as specified in (32).

7.1 Empirical results

R2
OoS-values and density forecast performance for the individual TVP-SV models as well as

a variety of model combinations based on such models are reported in the second halves of

Tables 2 and 3, under the header “TVP-SV”. Starting with the top panel of Table 2, we

note how allowing for instabilities in the individual models’ coefficients and volatilities leads

to improvements in forecasting ability for ten of the fifteen predictors. However, for the most

part, the resulting R2
OoS are still largely negative, thus suggesting that in terms of point-forecast

accuracy it remains very hard to beat the benchmark model. These results are consistent with

the findings of Cenesizoglu and Timmermann (2012). Moving on to the bottom panel of Table

2, we find positive R2
OoS for all model combinations methods, with the exception of the Optimal

prediction pool of Geweke and Amisano (2011). In particular, the R2
OoS of the DB-DeCo method

remains large and significant, though we note a marginal decrease from the results based on the

linear models. We turn next to investigating the results for the density forecast comparisons

in Table 3. Starting with the individual models in the top panel, we find that allowing for

instabilities in the individual models’ coefficients and volatilities leads in all cases to better out-

of-sample density forecasts than the PM model, with all these comparisons being significant at

the 1% critical level. In particular, we find average gains of approximately 8% for the log score

measure and of approximately 10% for the CRPS measure. Moving on to the bottom panel

of the table, we find a similar pattern for all model combinations. Once again, the DB-DeCo

model stands out with the largest gains among all model combination methods considered, both

in terms of CRPS and log score metrics.20 The stark contrast between the results in Table 2

and Table 3 is suggestive of the importance of also looking at metrics summarizing the forecast

performance of the density forecasts, rather than focusing only on the performance based on

point forecasts. This point has been previously emphasized by Cenesizoglu and Timmermann

20Interestingly, we note that for the LSD metric, the individual model based on the Stock variance predictor
yields a log score differential value of 11.86%, higher than the DB-DeCo. In a non-reported set of results, we find
that if the learning mechanism in equations (12)-(14) is modified to produce combination weights for DB-DeCo
that rely on the individual histories of log scores (i.e. f (rτ , r̃i,τ ) = LSi,τ ), the DB-DeCo LSD increases from
11.75% to 12.24% (and from 0.26% to 0.38% in the linear case).
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(2012) in a similar setting.

Moving on to Table 4, the CER results appear to be largely consistent with the findings

of Table 3. In particular, it appears that in all cases switching from linear to TVP-SV models

produces large improvements in CERs. This is true for the individual models, whose CER values

relative to the linear case increase on average by 96 basis points, and for the model combinations,

whose CER values increase on average by 146 points. As for the individual models, this result

is in line with the findings of Johannes et al. (2014), but generalize them to to a much larger

set of predictors than those considered in their study. As for the model combinations, we note

that the DB-DeCo model produces the largest CER, with a value of 249 basis points. This

CER value is more than twice the average CER generated by the individual TVP-SV models

entering the combination. These results suggests that when controlling for model instabilities

it is particularly useful to allow the combination weights to change over time and adjust to the

past level of profitability of the individual models entering the combination, as our DB-DeCo

method does.

Finally, Figures 5 and 6 offer a graphical illustration of the results summarized in Tables 2

and 4 for the TVP-SV based model combinations, showing over time the statistical and economic

performance of the TVP-SV combination methods, relative to the PM benchmark. In particular,

the cumulated CER value at the end of the sample for the DB-DeCo is approximately equal

to 200%, as evidenced by the fourth panel of Figure 6, This exceeds by approximately 40% all

other model combination methods.

8 Robustness analyses

In this section we consider several robustness checks. First, we investigate the effect on the

profitability analysis presented in section 6 of altering the investor’s relative risk aversion coef-

ficient A. Next, we conduct a subsample analysis to shed light on the robustness of our results

to the choice of the forecasting evaluation period. We also consider altering the benchmark PM

model by introducing time-varying volatility, to investigate the effect of pure volatility timing in

our results, as well as altering the parameter λ controlling the degree of learning in the model

combination weights. Next, we explore the sensitivity of the results to the particular choice we

made with respect to the investor’s preferences, by replacing the investor’s power utility with a

mean variance utility. Finally, we conduct an extensive prior sensitivity to ascertain the role of

our baseline prior choices on the overall results.

8.1 Sensitivity to risk aversion

The economic predictability analysis we reported in sections 6 and 7 assumed a coefficient of

relative risk aversion A = 5. To explore the sensitivity of our results to this value, we also

23



consider lower (A = 2) and higher (A = 10) values of this parameter. Results are shown in

Table 5. First consider the case with A = 2, i.e., lower risk aversion compared to the baseline

case. Under this scenario, the DB-DeCo scheme generates CERs that are above 200 basis points

for both the linear and TVP-SV cases. No other model combination method comes close to

these values, even though, relative to the baseline case of A = 5, we see on average an increase

in all model combinations’ CERs. As for the individual models, an interesting pattern emerges.

Relative to the baseline case of A = 5, we find that when lowering the risk aversion to A = 2,

the average CER of the linear models decreases from -0.17% (A = 5) to -0.40% (A = 2); in

contrast, for the TVP-SV models we see that the average CER increases from 0.79% (A = 5) to

1.13% (A = 2). Thus, lowering the risk aversion coefficient from A = 5 to A = 2 has the effect

of boosting the economic performance of the individual TVP-SV models, while decreasing the

CER of the linear models.

We next consider the case with A = 10. In this case we find an overall decrease in CER

values, both for the individual models and the model combinations. However, the DB-DeCo

combination scheme continues to dominate all the other specifications. This is true for both the

linear and the TVP-SV models. In particular, the CER for the DB-DeCo combination scheme

averaging across the TVP-SV models is still quite large, equal to 125 basis points.

8.2 Subsample analysis

We next consider the robustness of our results to the choice of the forecast evaluation period.

Columns two to five of Table 6 show CER results separately for recession and expansion periods,

as defined by the NBER indicator. This type of analysis has been proposed by authors such as

Rapach et al. (2010) and Henkel et al. (2011). When focusing on the linear models (columns two

and four), we find higher economic predictability in recessions than in expansions. This results

is consistent with the findings in these studies. For the TVP-SV models (column three and

five), the story is however different. There we find the largest economic gains during expansions.

This holds true both for the individual models and the various model combinations. This

finding is somewhat surprising, since we would expect time-varying models to help when entering

recessions; on the other hand, stochastic volatility might reduce the return volatility during

long expansionary periods, having important consequences in the resulting asset allocations.

Clark and Ravazzolo (2014) document a similar pattern in forecasting macroeconomic variables.

Interestingly, the DB-DeCo scheme continue to provide positive and large economic gains in

both expansions and recessions, and for both linear and TVP-SV models.

The last four columns of Table 6 show CER results separately for two out-of-sample periods,

1947-1978 and 1979-2010. Welch and Goyal (2008) argue that the predictive ability of many

predictor variables deteriorates markedly after the 1973-1975 oil shock, so we are particularly

interested in whether the same holds true here. The results of Table 6 are overall consistent with
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this pattern, as we observe smaller gains during the second subsample, both for the individual

models and the various model combinations. However, the DB-DeCo CERs are still fairly large,

as high as 87 basis points in the case of linear models, and as high as 177 basis points in the

TVP-SV case.

8.3 Sensitivity to the benchmark model

Table 7 explores the sensitivity of our main results to the choice of the benchmark model. In

particular, our economic analysis in Sections 6 and 7 relied on the choice of the prevailing mean

(PM) model as our benchmark. Johannes et al. (2014) point out that such choice does not

allow one to isolate the effect of volatility timing from the effect of jointly forecasting expected

returns and volatility. To address this point, we follow Johannes et al. (2014), and modify

our benchmark model to include stochastic volatility. We label this new benchmark Prevailing

Mean with Stochastic Volatility, or PM-SV in short. A quick comparison between Tables 4 and 7

reveals that switching benchmark from the PM to the PM-SV model produces a marked decrease

in economic predictability, both for the individual models and the various model combinations.

This comparison shows the important role of volatility timing, something that can be directly

inferred by comparing the TVP-SV results across the two tables. Most notably, the DB-DeCo

results remain quite strong even after replacing the benchmark model, especially for the case of

TVP-SV models. In particular, when A = 5 the DB-DeCo CER under the TVP-SV models is

as high as 159 basis points. Altering the relative risk aversion coefficient A has some effect on

the results, but the overall CERs remain quite large, ranging from 120 basis points (A = 2) to

79 basis points (A = 10).

8.4 Sensitivity to the learning dynamics

When specifying the learning mechanism for the DB-DeCo in equations (12)-(14), we introduced

the smoothing parameter λ, where λ ∈ (0, 1). Our main analysis of the economic value of

equity premium forecasts in Sections 6 and 7 relied on λ = 0.95, which implies a monotonically

decreasing impact of past forecast performance in the determination of the model combination

weights. Several studies, such as Stock and Watson (1996) and Stock and Watson (2004) support

such value. A larger or smaller discount factor is, however, possible and we investigate the

sensitivity of our results to using λ = 0.9.21 Table 8 reports the results of this sensitivity

analysis where, to ease the comparison with the benchmark results based on λ = 0.95, we

reproduce those as well. We explore the impact of altering the value of the smoothing parameter

λ by investigating the economic impact of such choice across different risk aversion coefficients

21As for the case of a larger discount factor, note that when λ = 1 equation (13) implies that the DB-DeCo
scheme simplifies to the Density Combination scheme we investigated earlier, where the combination weights no
longer depend on the past performance of the individual models entering the combination.
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(A = 2, 5, 10) and across four different subsamples (NBER expansions and recessions, 1947-

1978, and 1979-2010). Overall we find very similar results along all dimensions, with DB-DeCo

models based on λ = 0.95 generating, on average, slightly higher CERs.

8.5 Mean variance utility preferences

As a robustness to the particular choice of the utility function for our investor, we consider

replacing the power utility function with mean variance preferences. Under mean variance

preferences, at time τ − 1 the investor’s utility function takes the form

U (Wi,τ ) = E
[
Wi,τ | Dτ−1

]
− A

2
V ar

[
Wi,τ | Dτ−1

]
(45)

with Wi,τ denoting the investor’s wealth at time τ implied by model Mi,

Wi,τ = (1− ωi,τ−1) exp
(
rfτ−1

)
+ ωi,τ−1 exp

(
rfτ−1 + rτ

)
(46)

Next, it can be shown that the optimal allocation weights ω∗i,τ−1 are given by the solution of

ω∗i,τ−1 =

exp

(
µ̂i,τ +

σ̂2
i,τ

2

)
− 1

A exp
(
rfτ−1

)
exp

(
2µ̂i,τ + σ̂2

i,τ

)(
exp

(
σ̂2
i,τ

)
− 1
) . (47)

where µ̂i,τ and σ̂2
i,τ are shorthands for the mean and variance of p

(
rτ |Mi,Dτ−1

)
, the predictive

density of rτ under model Mi. It is important to note that altering the utility function of the

investor will have repercussions not only on the profitability of the individual models M1, ...,MN ,

but also on the overall statistical and economic predictability of the DB-DeCo combination

scheme. In fact, as we have discussed in Section 3.2, the combination weight conditional density

at time τ , p(wτ |r̃τ ,Dτ−1), depends on the history of profitability of the individual models M1

to MN through equations (13) and (14).

Note next that in the case of a mean variance investor, time τ CER is simply equal to the

investor’s realized utility W ∗i,τ , hence equation (13) is replaced by

f (rτ , r̃i,τ ) = U
(
W ∗i,τ

)
, (48)

where W ∗i,τ denotes time τ realized wealth, and is given by

Wi,τ =
(
1− ω∗i,τ−1

)
exp

(
rfτ−1

)
+ ω∗i,τ−1 exp

(
rfτ−1 + rτ

)
. (49)

Having computed the optimal allocation weights for both the individual models M1 to MN

and the various model combinations, we assess the economic predictability of all such models

26



by computing their implied (annualized) CER, which in the case of mean variance preferences

is computed simply as the average of all realized utilities over the out-of-sample period,

CERm = 12× 1

t∗

t∑
τ=t

U
(
W ∗m,τ

)
(50)

where m denotes the model under consideration (either univariate or model combination), and

t∗ = t− t+ 1. Table 9 presents differential certainty equivalent return estimates, relative to the

benchmark prevailing mean model PM,

∆CERm = CERm − CERPM (51)

whereby a positive entry can be interpreted as evidence that model m generates a higher (cer-

tainty equivalent) return than the benchmark model. A quick comparison between Tables 4

and 9 reveals that the economic gains for power utility and mean variance utility are quite sim-

ilar in magnitude, and the overall takeaways from section 6 remain unchanged. In particular,

the DB-DeCo combination scheme generates sizable CERs, especially when combining TVP-SV

models. For the benchmark case of A = 5, the CER is as high as 227 basis points. Altering the

risk aversion coefficients produces CERs for the DB-DeCo model ranging from 112 basis points

(A = 10) to 446 basis points (A = 2).

8.6 Sensitivity to priors

As a final sensitivity, we test the robustness of our results to alternative prior assumptions

and perform a sensitivity analysis in which we experiment with different values for some of the

key prior hyperparameters. Given the more computational demanding algorithm required to

estimate the TVP-SV models, we focus our attention on the linear models, and investigate the

effectiveness of the DB-DeCo combination scheme as the key prior hyperparameters change.

First, we investigate the impact of changing the prior hyperparameter s−1
Λ in (12) controlling

the degree of time variation in the DB-DeCo combination weights, which was set to s−1
Λ = 4

in our baseline results. As sensitivities, we experiment with s−1
Λ = 0.2 and s−1

Λ = 1000, which

imply more volatile combination weights (in the case of s−1
Λ = 0.2), or smoother combination

weights (in the case of s−1
Λ = 1000). In the former case, the annualized CER of the DB-DeCo

combination scheme decreases to 0.80%, only a marginal reduction from its baseline 0.94%.

Hence, it appears that having more volatile combination weights does not hinder the overall

performance of DB-DeCo. On the other hand, setting s−1
Λ = 1000 yields a much larger reduction

in the DB-DeCo CER, which decreases to 0.27%. It thus appears that too large a value for s−1
Λ

produces combination weights that are far too smooth, affecting the economic performance of

DB-DeCo.22

22We also investigate the sensitivity of our baseline results to the choice of s−2
σκ

, the prior hyperparameter
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Next, we study the impact of changing the prior hyperparameters ψ and v0. As discussed in

Subsection 4.2, the hyperparameter ψ plays the role of a scaling factor controlling the informa-

tiveness of the priors for µ and β, and our baseline results are based on ψ = 1. As sensitivities,

we experiment with ψ = 10 and ψ = 0.01, which imply more dispersed prior distributions (in

the case of ψ = 10) or more concentrated prior distributions (in the case of ψ = 0.01) for µ and

β. Similarly, the prior hyperparameter v0 controls the tightness of the prior on σ−2
ε , and our

baseline results are based on v0 = 1, which correspond to an hypothetical prior sample size as

large as the actual sample size. As sensitivities, we experiment with v0 = 0.1 and v0 = 100,

which imply, respectively, an hypothetical prior sample as large as 10% of the underlying sample

size (in the case of v0 = 0.1) or as large as 100 times the underlying sample size (in the case

of v0 = 100). Table 10 summarizes the relative economic performances of both the individual

linear models and the various combination schemes under these two alternative prior choices,

over the whole forecast evaluation period, 1947-2010. A comparison with Table 4 reveals that

relying on more dispersed prior distributions (the case of ψ = 10, v0 = 0.1) has only minor

consequences on the overall results. In particular, the economic performance of the DB-DeCo

combination scheme remains unaffected by the prior change. As for the more concentrated prior

distributions (the case of ψ = 0.01, v0 = 100), we witness an overall reduction in the economic

performance of both the individual models and the various combination schemes. This should

be expected, as we remind that our priors are centered on the “no predictability” view, and as

a result more concentrated priors will tend to tilt more heavily the individual models in that

direction. Interestingly, the DB-DeCo combination scheme still performs quite adequately, with

an annualized CER of 48 basis points.

9 Conclusions

In this paper we develop a novel Bayesian model combination technique that features time-

varying combination weights, model incompleteness, and allows the combination weights to

depend on the individual models’ past profitability in a highly flexible way. We label our new

method “Decision-Based Density Combination”, in the spirit of Pesaran and Skouras (2007). Our

approach is related to the recent advances on Bayesian model combination, such as the work

of Geweke and Amisano (2011), Waggoner and Zha (2012), Billio et al. (2013), and Del Negro

et al. (2013), but generalize them in several ways.

We apply our model combination method to the problem of stock return predictability and

optimal asset allocation, and show how to estimate model combination weights that depends

on the past profitability of the individual models entering the combination. When evaluated

controlling the degree of model incompleteness, and find that the performance of DB-DeCo deteriorates when its
value is too small, with combination weights shrinking to equal weights. On the other hand, we find that when
the value of s−2

σκ
is too large the estimation algorithm seems to converge very slowly.
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empirically, we find that our Decision-Based Density Combination method improves both sta-

tistical and economic measures of out-of-sample predictability, relative to the best individual

models entering the combination as well as a variety of existing model combination techniques,

including equal-weighted combination, BMA, and the optimal prediction pool of Geweke and

Amisano (2011).

We next employ our new methodology to look at the incremental role of model instability in

the context of stock return predictability. We apply our Decision-Based Density Combination

method to a set of models featuring time-varying coefficients and stochastic volatility. In this

way, we are able to jointly assess the importance of model uncertainty, model instabilities, and

parameter uncertainty on the statistical and economic predictability of stock returns. Overall

we find that explicitly accounting for model instabilities in the model combination leads to

sizable improvements in predictability. In terms of economic gains, the Decision-Based Density

Combination delivers an improvement in certainty equivalent returns of 145 basis points, relative

to the existing model combination methods. These gains appears to be robust to a large number

of robustness checks.
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Figure 1. Cumulative sum of squared forecast error differentials
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Notes: This figure shows the sum of squared forecast errors of the prevailing mean model (PM) model minus the
sum of squared forecast errors of five alternative model combinations based on linear univariate models. We plot
the cumulative sum of squared forecast errors of the PM forecasts relative to the model combination forecasts,
CSSEDm,t =

∑t
τ=t

(
e2PM,τ − e2m,τ

)
. Values above zero indicate that a model combination generates better

performance than the PM benchmark, while negative values suggest the opposite. Each panel displays a different
model combination method, with the equal weighted combination in the 1st panel, the optimal prediction pool in
the 2nd panel, the BMA in the 3rd panel, and the density combination methods (with and without learning) in
the 4th panel. Shaded areas indicate NBER-dated recessions.
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Figure 2. Cumulative sum of log-score differentials

∆ 
cu

m
ul

at
iv

e 
lo

g 
sc

or
e

Equal weighted combination

1940 1950 1960 1970 1980 1990 2000

−1

0

1

2

3

∆ 
cu

m
ul

at
iv

e 
lo

g 
sc

or
e

Optimal prediction pool

1940 1950 1960 1970 1980 1990 2000

−1

0

1

2

3

∆ 
cu

m
ul

at
iv

e 
lo

g 
sc

or
e

BMA

1940 1950 1960 1970 1980 1990 2000

−1

0

1

2

3

∆ 
cu

m
ul

at
iv

e 
lo

g 
sc

or
e

Density combinations

 

 

1940 1950 1960 1970 1980 1990 2000

−1

0

1

2

3
Density combination
DB−DeCo

Notes: This figure shows the sum of log predictive scores of five alternative model combination methods minus
the sum of log predictive scores of the PM model. We plot the cumulative sum of log-predictive scores for the
model combinations based on linear models relative to the cumulative sum of log-predictive scores of the PM
model, CLSDm,t =

∑t
τ=t (LSm,τ − LSPM,τ ). Values above zero indicate that a model combination method

generates better performance than the PM benchmark, while negative values suggest the opposite. Each panel
displays a different model combination method, with the equal weighted combination in the 1st panel, the optimal
prediction pool in the 2nd panel, the BMA in the 3rd panel, and the density combination methods (with and
without learning) in the 4th panel. Shaded areas indicate NBER-dated recessions.
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Figure 3. Cumulative sum of probability score differentials
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Notes: This figure shows the sum of probability scores of five alternative model combination methods minus
the sum of probability scores of the PM model. We plot the cumulative sum of probability scores of the PM
model relative to the cumulative sum of probability scores of the model combinations based on linear models,
CCRPSDm,t =

∑t
τ=t (CRPSPM,τ − CRPSm,τ ). Values above zero indicate that a model combination method

generates better performance than the PM benchmark, while negative values suggest the opposite. Each panel
displays a different model combination method, with the equal weighted combination in the 1st panel, the optimal
prediction pool in the 2nd panel, the BMA in the 3rd panel, and the density combination methods (with and
without learning) in the 4th panel. Shaded areas indicate NBER-dated recessions.
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Figure 4. Economic value of out-of-sample forecasts
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Notes: This figure plots the cumulative certainty equivalent returns of five alternative model combination methods
based on linear models, measured relative to the PM model. Each month we compute the optimal allocation to
bonds and T-bills based on the predictive density of excess returns for both models. The investor is assumed to
have power utility with a coefficient of relative risk aversion of five and the weight on stocks is constrained to
lie in the interval [0, 0.99]. Each panel displays a different model combination method, with the equal weighted
combination in the 1st panel, the optimal prediction pool in the 2nd panel, the BMA in the 3rd panel, and the
density combination methods (with and without learning) in the 4th panel. Shaded areas indicate NBER-dated
recessions.
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Figure 5. Cumulative sum of squared forecast error differentials, TVP-SV models
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Notes: This figure shows the sum of squared forecast errors of the prevailing mean model (PM) model minus
the sum of squared forecast errors of five alternative model combinations, based on TVP-SV models. We plot
the cumulative sum of squared forecast errors of the PM forecasts relative to the model combination forecasts,
CSSEDm,t =

∑t
τ=t

(
e2PM,τ − e2m,τ

)
. Values above zero indicate that a model combination generates better

performance than the PM benchmark, while negative values suggest the opposite. Each panel displays a different
model combination method, with the equal weighted combination in the 1st panel, the optimal prediction pool in
the 2nd panel, the BMA in the 3rd panel, and the density combination methods (with and without learning) in
the 4th panel. Shaded areas indicate NBER-dated recessions.
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Figure 6. Economic value of out-of-sample forecasts, TVP-SV models
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Notes: This figure plots the cumulative certainty equivalent returns of five alternative model combination methods
based on TVP-SV models, measured relative to the PM model. Each month we compute the optimal allocation
to bonds and T-bills based on the predictive density of excess returns for both models. The investor is assumed
to have power utility with a coefficient of relative risk aversion of five and the weight on stocks is constrained to
lie in the interval [0, 0.99]. Each panel displays a different model combination method, with the equal weighted
combination in the 1st panel, the optimal prediction pool in the 2nd panel, the BMA in the 3rd panel, and the
density combination methods (with and without learning) in the 4th panel. Shaded areas indicate NBER-dated
recessions.
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Table 1. Summary Statistics

Variables Mean Std. dev. Skewness Kurthosis

Excess returns 0.005 0.056 -0.405 10.603
Log dividend yield -3.324 0.450 -0.435 3.030
Log earning price ratio -2.720 0.426 -0.708 5.659
Log smooth earning price ratio -2.912 0.376 -0.002 3.559
Log dividend-payout ratio -0.609 0.325 1.616 9.452
Book-to-market ratio 0.589 0.267 0.671 4.456
T-Bill rate 0.037 0.031 1.025 4.246
Long-term yield 0.053 0.028 0.991 3.407
Long-term return 0.005 0.024 0.618 8.259
Term spread 0.016 0.013 -0.218 3.128
Default yield spread 0.011 0.007 2.382 11.049
Default return spread 0.000 0.013 -0.302 11.490
Stock variance 0.003 0.005 5.875 48.302
Net equity expansion 0.019 0.024 1.468 10.638
Inflation 0.002 0.005 -0.069 6.535
Log total net payout yield -2.137 0.224 -1.268 6.213

Notes: This table reports summary statistics for monthly excess returns, computed as returns on the S&P500

portfolio minus the T-bill rate, and for the predictor variables used in this study. The sample period is January

1927 - December 2010.

41



Table 2. Out-of-sample point forecast performance

Linear TVP-SV

Individual models

Log dividend yield -0.44% 0.99% ∗

Log earning price ratio -2.27% -0.07%
Log smooth earning price ratio -1.51% 0.68%
Log dividend-payout ratio -1.91% -1.84%
Book-to-market ratio -1.79% -0.20%
T-Bill rate -0.12% 0.18%
Long-term yield -0.95% -1.05%
Long-term return -1.55% -0.70%
Term spread 0.09% 0.04%
Default yield spread -0.24% -0.22%
Default return spread -0.23% -0.47%
Stock variance 0.09% -0.99%
Net equity expansion -0.93 % -0.88%
Inflation -0.19% -0.20%
Log total net payout yield -0.79% 0.09%

Combinations

Equal weighted combination 0.49% 0.62% ∗∗

BMA 0.39% 0.41%
Optimal prediction pool -1.93% -0.86%
Density combination 0.43% 1.33% ∗∗∗

Decision-based density combination 2.32% ∗∗∗ 2.13% ∗∗∗

Notes: This table reports the out-of-sample R2 of the combination schemes and individual prediction models for
monthly excess returns. The model “Decision-based density combination” refers to the case with A = 5 and
λ = 0.95. The out-of-sample R2 are measured relative to the prevailing mean model as:

R2
OoS,m = 1−

∑t
τ=t e

2
m,τ∑t

τ=t e
2
PM,τ

,

where m denotes the model under consideration, τ ∈
{
t, ..., t

}
, and em,τ (ePM,τ ) denotes model m′s (PM ’s)

prediction error from the forecasts made at time τ, obtained by synthesizing the predictive density into a point

forecast. The column “Linear” refers to predictive return distributions based on a linear regression of monthly

excess returns on an intercept and a lagged predictor variable, xτ : rτ+1 = µ + βxτ + ετ+1, and combination

of these N linear individual models; the column “TVP-SV” refers to predictive return distributions based on

a time-varying parameter and stochastic volatility regression of monthly excess returns on an intercept and a

lagged predictor variable, xτ : rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, and combination of these N

time-varying parameter and stochastic volatility individual models. We measure statistical significance relative

to the prevailing mean model using the Diebold and Mariano (1995) t-tests for equality of the average loss. The

underlying p-values are based on t-statistics computed with a serial correlation-robust variance, using the pre-

whitened quadratic spectral estimator of Andrews and Monahan (1992). One star * indicates significance at 10%

level; two stars ** significance at 5% level; and three stars *** significance at 1% level. Bold figures indicate all

instances in which the out-of-sample R2 is greater than zero. All results are based on the whole forecast evaluation

period, January 1947 - December 2010.
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Table 3. Out-of-sample density forecast performance

CRPSD LSD

Linear TVP-SV Linear TVP-SV

Individual models

Log dividend yield -0.37% 8.21% ∗∗∗ -0.15% 11.18% ∗∗∗

Log earning price ratio -0.79% 8.05% ∗∗∗ -0.17% 11.24% ∗∗∗

Log smooth earning price ratio -0.59% 8.40% ∗∗∗ 0.02% 11.49% ∗∗∗

Log dividend-payout ratio -0.45% 6.64% ∗∗∗ -0.19% 9.38% ∗∗∗

Book-to-market ratio -0.61% 8.25% ∗∗∗ -0.12% 11.38% ∗∗∗

T-Bill rate -0.07% 7.17% ∗∗∗ -0.10% 9.17% ∗∗∗

Long-term yield -0.38% 6.91% ∗∗∗ -0.22% 9.48% ∗∗∗

Long-term return -0.46% 6.70% ∗∗∗ -0.14% 9.06% ∗∗∗

Term spread 0.08% 6.98% ∗∗∗ -0.03% 8.87% ∗∗∗

Default yield spread -0.07% 7.17% ∗∗∗ -0.08% 9.43% ∗∗∗

Default return spread -0.11% 7.03% ∗∗∗ -0.03% 9.37% ∗∗∗

Stock variance 0.02% 8.38% ∗∗∗ -0.02% 11.86% ∗∗∗

Net equity expansion 0.00% 7.22% ∗∗∗ 0.04% 9.36% ∗∗∗

Inflation -0.05% 7.56% ∗∗∗ -0.15% 10.01% ∗∗∗

Log total net payout yield -0.33% 7.16% ∗∗∗ 0.06% 9.74% ∗∗∗

Combinations

Equal weighted combination 0.08% 7.88% ∗∗∗ -0.11% 10.49% ∗∗∗

BMA 0.10% 6.22% ∗∗∗ 0.03% 10.40% ∗∗∗

Optimal prediction pool -0.43% 8.36% ∗∗∗ -0.11% 11.81% ∗∗∗

Density combination 0.07% 8.53% ∗∗∗ 0.00% 11.17% ∗∗∗

Decision-based density combination 0.73% ∗∗∗ 9.26% ∗∗∗ 0.26% ∗∗∗ 11.75% ∗∗∗

Notes: This table reports the average cumulative rank probability score differentials (columns under the heading
“CRPSD”) and log predictive score differentials (columns under the heading “LSD”) of the combination schemes
and individual prediction models for monthly excess returns. The model “Decision-based density combination”
refers to the case with A = 5 and λ = 0.95. The average CRPS differentials are expressed in percentage point
differences relative to the prevailing mean model as:

CRPSDm =

∑t
τ=t (CRPSPM,τ − CRPSm,τ )∑t

τ=t CRPSPM,τ
,

where m denotes the model under consideration, t ∈
{
t, ..., t

}
, and CRPSm,τ (CRPSPM,τ ) denotes model m′s

(PM ’s) CRPS from the density forecasts made at time τ . The average log predictive scores are expressed in
percentage point differences relative to the prevailing mean model as:

LSDm =

∑t−1
τ=t (LSm,τ − LSPM,τ )∑t

τ=t LSPM,τ
,

where LSm,τ (LSPM,τ ) denotes model m′s (PM ’s) log predictive score from the density forecasts made at time

τ . The columns “Linear” refer to predictive return distributions based on a linear regression of monthly excess

returns on an intercept and a lagged predictor variable, xτ : rτ+1 = µ + βxτ + ετ+1, and combination of these

N linear individual models; the columns “TVP-SV” refer to predictive return distributions based on a time-

varying parameter and stochastic volatility regression of monthly excess returns on an intercept and a lagged

predictor variable, xτ : rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, and combination of these N time-

varying parameter and stochastic volatility individual models. We measure statistical significance relative to

the prevailing mean model using the Diebold and Mariano (1995) t-tests for equality of the average loss. The

underlying p-values are based on t-statistics computed with a serial correlation-robust variance, using the pre-

whitened quadratic spectral estimator of Andrews and Monahan (1992). One star * indicates significance at

10% level; two stars ** significance at 5% level; three stars *** significance at 1% level. Bold figures indicate

all instances in which CRPSDm and LSDm are greater than zero. All results are based on the whole forecast

evaluation period, January 1947 - December 2010.



Table 4. Economic performance of portfolios based on out-of-sample return forecasts

Linear TVP-SV

Individual models

Log dividend yield -0.33% 0.90%
Log earning price ratio 0.25% 0.91%
Log smooth earning price ratio -0.38% 0.92%
Log dividend-payout ratio 0.41% 0.96%
Book-to-market ratio -0.58% 0.71%
T-Bill rate -0.26% 0.79%
Long-term yield -0.34% 0.50%
Long-term return -0.42% 0.77%
Term spread 0.15% 0.89%
Default yield spread -0.20% 0.90%
Default return spread -0.14% 0.64%
Stock variance 0.00% 0.98%
Net equity expansion -0.14% 0.76%
Inflation -0.17% 0.76%
Log total net payout yield -0.37% 0.47%

Combinations

Equal weighted combination 0.02% 1.17%
BMA -0.05% 1.03%
Optimal prediction pool -0.82% 0.96%
Density combination -0.01% 1.74%
Decision-based density combination 0.94% 2.49%

Notes: This table reports the certainty equivalent values for portfolio decisions based on recursive out-of-sample

forecasts of monthly excess returns. Each period an investor with power utility and coefficient of relative risk

aversion A = 5 selects stocks and T-bills based on different predictive densities, precisely the combination schemes

and individual prediction models for monthly excess returns. The model “Decision-based density combination”

refers to the case withA = 5 and λ = 0.95. The column “Linear” refers to predictive return distributions based on a

linear regression of monthly excess returns on an intercept and a lagged predictor variable, xτ : rτ+1 = µ+ βxτ +

ετ+1, and combination of these N linear individual models; the column “TVP-SV” refers to predictive return

distributions based on a time-varying parameter and stochastic volatility regression of monthly excess returns

on an intercept and a lagged predictor variable, xτ : rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, and

combination of these N time-varying parameter and stochastic volatility individual models. Certainty equivalent

values are annualized and are measured relative to the prevailing mean model which assumes a constant equity

premium. Bold figures indicate all instances in which the CER is greater than zero. All results are based on the

whole forecast evaluation period, January 1947 - December 2010.
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Table 5. Effect of risk aversion on economic performance measures

A=2 A=10

Linear TVP-SV Linear TVP-SV

Individual models

Log dividend yield -0.98% 1.12% -0.16% 0.46%
Log earning price ratio 0.12% 1.52% 0.13% 0.51%
Log smooth earning price ratio -1.36% 1.22% -0.19% 0.48%
Log dividend-payout ratio 0.99% 1.14% 0.21% 0.43%
Book-to-market ratio -1.37% 1.41% -0.28% 0.34%
T-Bill rate -0.66% 1.23% -0.13% 0.41%
Long-term yield -0.86% 0.83% -0.17% 0.27%
Long-term return -0.81% 0.94% -0.19% 0.40%
Term spread 0.47% 1.64% 0.06% 0.45%
Default yield spread -0.49% 1.09% -0.10% 0.46%
Default return spread -0.06% 1.07% -0.09% 0.34%
Stock variance 0.02% 1.31% 0.02% 0.52%
Net equity expansion 0.54% 1.19% -0.08% 0.39%
Inflation -0.41% 0.90% -0.07% 0.40%
Log total net payout yield -1.07% 0.40% -0.18% 0.24%

Combinations

Equal weighted combination 0.06% 1.34% 0.02% 0.59%
BMA -0.09% 1.25% -0.02% 0.51%
Optimal prediction pool -1.02% 1.30% -0.41% 0.48%
Density combination 0.00% 1.73% 0.01% 0.88%
Decision-based density combination 2.63% 2.35% 0.50% 1.25%

Notes: This table reports the certainty equivalent values for portfolio decisions based on recursive out-of-sample

forecasts of monthly excess returns. Each period an investor with power utility and coefficient of relative risk

aversion of two (columns two and three) or ten (columns four and five) selects stocks and T-bills based on

different predictive densities, precisely the combination schemes and individual prediction models for monthly

excess returns. The model “Decision-based density combination” refers to the case with A matching the values in

the headings (A = 2, 10) and λ = 0.95. The columns “Linear” refer to predictive return distributions based on a

linear regression of monthly excess returns on an intercept and a lagged predictor variable, xτ : rτ+1 = µ+ βxτ +

ετ+1, and combination of these N linear individual models; the columns “TVP-SV” refer to predictive return

distributions based on a time-varying parameter and stochastic volatility regression of monthly excess returns

on an intercept and a lagged predictor variable, xτ : rτ+1 = (µ+ µτ+1) + (β+βτ+1)xτ + exp (hτ+1)uτ+1, and

combination of these N time-varying parameter and stochastic volatility individual models. Certainty equivalent

values are annualized and are measured relative to the prevailing mean model which assumes a constant equity

premium. Bold figures indicate all instances in which the CER is greater than zero. All results are based on the

whole forecast evaluation period, January 1947 - December 2010.
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Table 10. Prior sensitivity analysis: economic performance

ψ = 10, v0 = 0.1 ψ = 0.01, v0 = 100

Individual models

Log dividend yield -0.25% -0.19%
Log earning price ratio 0.27% 0.08%
Log smooth earning price ratio -0.29% -0.16%
Log dividend-payout ratio 0.30% 0.06%
Book-to-market ratio -0.70% -0.26%
T-Bill rate -0.16% -0.19%
Long-term yield -0.24% -0.15%
Long-term return -0.06% -0.31%
Term spread 0.33% -0.23%
Default yield spread 0.00% -0.11%
Default return spread 0.01% -0.03%
Stock variance 0.27% 0.00%
Net equity expansion -0.02% -0.03%
Inflation -0.01% -0.12%
Log total net payout yield -0.23% -0.23%

Combinations

Equal weighted combination 0.16% -0.08%
BMA 0.17% -0.06%
Optimal prediction pool -0.56% -0.07%
Density combination -0.06% 0.00%
Decision-based density combination 0.94% 0.48%

Notes: This table reports the certainty equivalent values for portfolio decisions based on recursive out-of-sample

forecasts of monthly excess returns. Each period an investor with power utility and coefficient of relative risk

aversion A = 5 selects stocks and T-bills based on different predictive densities, precisely the combination schemes

and individual prediction models for monthly excess returns. The model “Decision-based density combination”

refers to the case with A = 5 and λ = 0.95. Predictive return distributions are based on a linear regression

of monthly excess returns on an intercept and a lagged predictor variable, xτ : rτ+1 = µ + βxτ + ετ+1, and

combination of these N linear individual models for two different set of priors. The prior set with ψ = 10 and

v0 = 0.1 refers to a diffuse prior assumption and ψ = 10 and v0 = 0.1 to an informative prior assumption.

Certainty equivalent values are annualized and are measured relative to the prevailing mean model which assumes

a constant equity premium. Bold figures indicate all instances in which the CER is greater than zero. All results

are based on the whole forecast evaluation period, January 1947 - December 2010.
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Appendices (not for publication)

Appendix A Convolution

As noted in Section 3.3, the pdf p(rt+1|r̃t+1,wt+1, σ
−2
κ ) is obtained using a convolution mecha-

nism that combines the N original densities
{
p
(
rt+1|Mi,Dt

)}N
i=1

using as weights wt+1. That

is,

p(rt+1|r̃t+1,wt+1, σ
−2
κ ) ∝ exp

{
−1

2
(rt+1 − r̃t+1wt+1)′ σ−2

κ (rt+1 − r̃t+1wt+1)

}
(A-1)

The convolution applies in equation (20) and it precisely creates the following combined

density:

(r̃t+1 ∗wt+1) =

∫ + inf

− inf
(r̃t+1,1(ξ) ∗ . . . ∗ r̃t+1,N (ξ)) ∗ (wt+1,1(d− ξ) ∗ . . . ∗wt+1,N (d− ξ))dξ (A-2)

where r̃t+1 = (r̃t+1,1 ∗ . . . ∗ r̃t+1,N ), wt+1 = (wt+1,1 ∗ . . . ∗ wt+1,N )
′
. For each value of ξ, the

convolution formula can be described as a weighted average of the function r̃t+1(ξ) with weight

wt+1(d − ξ). As d changes, the weighting function emphasizes different parts of the input

function. We follow Billio et al. (2013) and use different draws from the N individual predictive

densities as values for ξ.

Convolution has several important mathematical properties that we exploit to derive equa-

tion (A-2):

• Property 1: (ỹ ∗ w)tq+h = (w ∗ ỹ)tq+1.

• Property 2: ỹ ∗ (w ∗ γ)tq+1 = ((w ∗ ỹ) ∗ γ)tq+1.

• Property 3: ỹ ∗ (w + γ)tq+1 = (ỹ ∗ w)tq+1 + (ỹ ∗ γ)tq+1.

• Property 4: α(ỹ ∗ w)tq+1 = α(ỹ)tq+1 ∗ wtq+1, for any real or complex α.

Property 1 implies that the operation is invariant to the order of the operands (commutative

property). Property 2 implies that the order in which the operations are performed does not

matter as long as the sequence of the operands is not changed (associative property). Property

3 implies that multiplying a density by a group of added densities yields the same outcome

as multiplying each density separately and then adding them together (distributive property).

Property 4 implies that associativity holds for any scalar multiplication.
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Appendix B Posterior simulations

Appendix B.1 Linear models

For the linear models the goal is to obtain draws from the joint posterior distribution p
(
µ, β, σ−2

ε

∣∣Mi,Dt
)
,

where Dt denotes all information available up to time t, and Mi denotes model i, with i = 1, .., N .

Combining the priors in (21)-(23) with the likelihood function yields the following conditional

posteriors: [
µ
β

]∣∣∣∣σ−2
ε ,Mi,Dt ∼ N

(
b, V

)
, (B-1)

and

σ−2
ε

∣∣µ, β,Mi,Dt ∼ G
(
s−2, v

)
, (B-2)

where

V =

[
V −1 + σ−2

ε

t−1∑
τ=1

xτx
′
τ

]−1

,

b = V

[
V −1b+ σ−2

ε

t−1∑
τ=1

xτrτ+1

]
, (B-3)

v = v0 + (t− 1) .

and

s2 =

∑t−1
τ=1 (rτ+1 − µ− βxτ )2 +

(
s2
r,t × v0 (t− 1)

)
v

. (B-4)

A Gibbs sampler algorithm can be used to iterate back and forth between (B-1) and (B-2),

yielding a series of draws for the parameter vector
(
µ, β, σ−2

ε

)
. Draws from the predictive

density p
(
rt+1| Dt

)
can then be obtained by noting that

p
(
rt+1|Mi,Dt

)
=

∫
µ,β,σ−2

ε

p
(
rt+1|µ, β, σ−2

ε ,Mi,Dt
)
p
(
µ, β, σ−2

ε

∣∣Mi,Dt
)
dµdβdσ−2

ε . (B-5)

Appendix B.2 Time-varying Parameter, Stochastic Volatility Models

Let denote with θt the time varying parameters, θt = (µt, βt) and with θt the sequence of time

varying parameters µt, βt up to time t, θt = {θ1, ..., θt}. Similarly, define with ht the sequence

of excess return log volatilities up to time t, ht = {h1, ..., ht}. Finally, to simplify the notation,

let’s group all the time invariant parameters of the TVP-SV model into the matrix Θ, where

Θ =
(
µ, β,Q,σ−2

ξ , γµ, γβ, λ0, λ1

)
.

To obtain draws from the joint posterior distribution p
(

Θ, θt, ht
∣∣M ′i ,Dt) under the TVP-

SV model, we use the Gibbs sampler to draw recursively from the following seven conditional

distributions:23

23Using standard set notation, we define A−b as the complementary set of b in A, i.e. A−b = {x ∈ A : x 6= b}.
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1. p
(
θt
∣∣Θ, ht,M ′i ,Dt) .

2. p
(
µ, β|Θ−µ,β, θt, ht,M ′i ,Dt

)
.

3. p
(
Q|Θ−Q, θt, ht,M ′i ,Dt

)
4. p

(
ht
∣∣Θ, θt,M ′i ,Dt) .

5. p
(
σ−2
ξ

∣∣∣Θ−σ−2
ξ
, θt, ht,M ′i ,Dt

)
6. p

(
γµ, γβ|Θ−γµ,γβ , θt, ht,M ′i ,Dt

)
7. p

(
λ0, λ1|Θ−λ0,λ1 , θt, ht,M ′i ,Dt

)
We simulate from each of these blocks as follows. Starting with θt, we focus on p

(
θt
∣∣Θ,ht,M ′i ,Dt).

Define r̃τ+1 = rτ+1 − µ− βxτ and rewrite (32) as follows:

r̃τ+1 = µτ − βτxτ + exp (hτ+1)uτ+1 (B-6)

Note that knowledge of µ and β makes r̃τ+1 observable, and reduces (32) to the measurement

equation of a standard linear Gaussian state space model with heteroskedastic errors. Thus

the sequence of time varying parameters θt can be drawn from (B-6) using, for example, the

algorithm of Carter and Kohn (1994).

Moving on to p
(
µ, β|Θ−µ,β, θt, ht,M ′i ,Dt

)
, conditional on θt it is straightforward to draw

µ, β, by applying standard results. Specifically,[
µ
β

]∣∣∣∣Θ−µ,β, θt, ht,M ′i ,Dt ∼ N (b, V ) , (B-7)

where

V =

[
V −1 +

t−1∑
τ=1

1

exp (hτ+1)2xτx
′
τ

]−1

,

b = V

[
V −1b+

t−1∑
τ=1

1

exp (hτ+1)2xτ (rτ+1 − µτ − βτxτ )

]
, (B-8)

As for p
(
Q|Θ−Q, θt, ht,M ′i ,Dt

)
, we have that

Q|Θ−Q, θt, ht,M ′i ,Dt ∼ IW
(
Q, 2t− 3

)
, (B-9)

where

Q = Q +
t−1∑
τ=1

(θτ+1 − diag {γµ, γβ} × θτ ) (θτ+1 − diag {γµ, γβ} × θτ )′ . (B-10)
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Moving on to p
(
ht
∣∣Θ, θt,M ′i ,Dt) , we employ the algorithm of Kim et al. (1998). Define

r∗τ+1 = rτ+1 − (µ+ µτ+1)− (β + βτ+1)xτ and note that r∗τ+1 is observable conditional on µ, β,

and θt. Next, rewrite (32) as

r∗τ+1 = exp (hτ+1)uτ+1. (B-11)

Squaring and taking logs on both sides of (B-11) yields a new state space system that replaces

(32)-(34) with

r∗∗τ+1 = 2hτ+1 + u∗∗τ+1, (B-12)

hτ+1 = λ0 + λ1hτ + ξτ+1, (B-13)

where r∗∗τ+1 = ln
[(
r∗τ+1

)2]
, and u∗∗τ+1 = ln

(
u2
τ+1

)
, with u∗∗τ independent of ξs for all τ and s.

Since u∗∗t+1 ∼ ln
(
χ2

1

)
, we cannot resort to standard Kalman recursions and simulation algorithms

such as those in Carter and Kohn (1994) or Durbin and Koopman (2002). To obviate this

problem, Kim et al. (1998) employ a data augmentation approach and introduce a new state

variable sτ+1, τ = 1, .., t−1, turning their focus on drawing from p
(
ht
∣∣Θ, θt, st,M ′i ,Dt) instead

of p
(
ht
∣∣Θ, θt,M ′i ,Dt) .24 The introduction of the state variable sτ+1 allows us to rewrite the

linear non-Gaussian state space representation in (B-12)-(B-13) as a linear Gaussian state space

model, making use of the following approximation,

u∗∗τ+1 ≈
7∑
j=1

qjN
(
mj − 1.2704, v2

j

)
, (B-14)

where mj , v
2
j , and qj , j = 1, 2, ..., 7, are constants specified in Kim et al. (1998) and thus need

not be estimated. In turn, (B-14) implies

u∗∗τ+1

∣∣ sτ+1 = j ∼ N
(
mj − 1.2704, v2

j

)
, (B-15)

where each state has probability

Pr (sτ+1 = j) = qj . (B-16)

Conditional on st, we can rewrite the nonlinear state space system as follows:

r∗∗τ+1 = 2hτ+1 + eτ+1,

hτ+1 = λ0 + λ1hτ + ξτ+1, (B-17)

where eτ+1 ∼ N
(
mj − 1.2704, v2

j

)
with probability qj . For this linear Gaussian state space

system, we can use the algorithm of Carter and Kohn (1994) to draw the whole sequence of

stochastic volatilities, ht.

24Here st = {s2, s3, ..., st} denotes the history up to time t of the new state variable s.
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Finally, conditional on the whole sequence ht, draws for the sequence of states st can easily

be obtained, noting that

Pr
(
sτ+1 = j| r∗∗τ+1, hτ+1

)
=

fh

(
rτ+1| 2hτ+1 −mj + 1.2704, v2

j

)
∑7

l=1 fh
(
rτ+1| 2hτ+1 −ml + 1.2704, v2

l

) . (B-18)

Next, the posterior distribution for p
(
σ−2
ξ

∣∣∣µ, β, θt,Q,ht, λ0, λ1, γµ, γβ,M
′
i ,Dt

)
is readily avail-

able as,

σ−2
ξ

∣∣∣Θ−σ−2
ξ
, θt, ht,M ′i ,Dt ∼ G

[kξ +
∑t−1

τ=2 (hτ+1 − λ0 − λ1hτ )2

t− 1

]−1

, t− 1

 . (B-19)

Finally, obtaining draws from p
(
γµ, γβ|Θ−γµ,γβ , θt, ht,M ′i ,Dt

)
and p

(
λ0, λ1|Θ−λ0,λ1 , θt, ht,M ′i ,Dt

)
is straightforward. As for p

(
γµ, γβ|Θ−γµ,γβ , θt, ht,M ′i ,Dt

)
,

γµ|Θ−γβ , θ
t, ht,M ′i ,Dt ∼ N

(
mγµ , V γµ

)
× γµ ∈ (−1, 1) (B-20)

and

γβ|Θ−γµ , θt, ht,M ′i ,Dt ∼ N
(
mγβ , V γβ

)
× γβ ∈ (−1, 1) (B-21)

where

V γµ =

[
V −1
γ + Q11

t−1∑
τ=1

µ2
τ

]−1

,

mγµ = V γµ

[
V −1
γ mγ + Q11

t−1∑
τ=1

µτµτ+1

]
, (B-22)

and

V γβ =

[
V −1
γ + Q22

t−1∑
τ=1

β2
τ

]−1

,

mγβ = V γβ

[
V −1
γ mγ + Q22

t−1∑
τ=1

βτβτ+1

]
, (B-23)

and where Q11 and Q22 and the diagonal elements of Q−1. As for p
(
λ0, λ1|Θ−λ0,λ1 , θt, ht,M ′i ,Dt

)
,

we have that

λ0, λ1|Θ−λ0,λ1 , θt, ht,M ′i ,Dt ∼ N
([

mλ0

mλ1

]
, V λ

)
× λ1 ∈ (−1, 1)

where

V λ =

{[
V −1
λ0

0

0 V −1
λ1

]
+ σ−2

ξ

t−1∑
τ=1

[
1
hτ

]
[1, hτ ]

}−1

(B-24)
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and [
mλ0

mλ1

]
= V λ

{[
V −1
λ0

0

0 V −1
λ1

] [
mλ0
mλ1

]
+ σ−2

ξ

t−1∑
τ=1

[
1
hτ

]
hτ+1

}
. (B-25)

Finally, draws from the predictive density p
(
rt+1|M ′i ,Dt

)
can be obtained by noting than

p
(
rt+1|M ′i ,Dt

)
=

∫
Θ,θt+1,ht+1

p
(
rt+1| θt+1, ht+1,Θ, θ

t, ht,M ′i ,Dt
)

×p
(
θt+1, ht+1|Θ, θt, ht,M ′i ,Dt

)
(B-26)

×p
(

Θ, θt, ht
∣∣M ′i ,Dt) dΘdθt+1dht+1.

To obtain draws for p
(
rt+1|M ′i ,Dt

)
, we proceed in three steps:

1. Draws from p
(

Θ, θt, ht
∣∣M ′i ,Dt) are obtained from the Gibbs sampling algorithm described

above;

2. Draws from p
(
θt+1, ht+1|Θ, θt, ht,M ′i ,Dt

)
: having processed data up to time t, the next

step is to simulate the future volatility, ht+1, and the future parameters, θt+1. We have

that

ht+1|Θ, θt, ht,M ′i ,Dt ∼ N
(
ht, σ

2
ξ

)
. (B-27)

and

θt+1|Θ, θt, ht,M ′i ,Dt ∼ N (θt,Q) . (B-28)

3. Draws from p
(
rt+1| θt+1, ht+1,Θ, θ

t, ht,M ′i ,Dt
)
: we have that

rt+1| θt+1, ht+1,Θ, θ
t, ht,M ′i ,Dt ∼ N ((µ+ µt+1) + (β + βt+1)xt, exp (ht+1)) . (B-29)

Appendix C Sequential combination

We conclude by briefly summarizing the estimation density combination algorithm proposed in

Billio et al. (2013), which we extend with a learning mechanism based on the past economic

performance of the individual models entering the combination to obtain posterior distributions

for both p(rt+1|r̃t+1,wt+1,Dt) and p(wt+1|r̃t+1,Dt).
Let θ be the parameter vector of the combination model, that is θ = (σ2

κ,Λ). Assume that r̃s,

s = 1, . . . , t+ 1 is computed using formulas in the previous section and given; define the vector

of observable r1:t = (r1, . . . , rt)
′ ∈ Dt, the augmented state vector Zt+1 = (wt+1, zt+1,θt+1),

where θt+1 = θ, ∀t. Notice that xt+1 can be modelled as a stochastic latent process depending

on the past forecasting performance of the N individual prediction models, see equation (12),
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or just on its lagged value, see equation (10). Our combination model writes in the state space

form as

rt ∼ p(rt|r̃t,Zt) (measurement density) (B-30)

Zt ∼ p(Zt|Zt−1, r1:t, r̃t) (transition density) (B-31)

Z0 ∼ p(Z0) (initial density) (B-32)

The state predictive and filtering densities, which provide the posterior densities of the

combination weights, see equation (B-35) are

p(Zt+1|r1:t, r̃1:t) =

∫
Zt

p(Zt+1|Zt, r1:t, r̃1:t)p(Zt|r1:t, r̃1:t)dZt (B-33)

p(Zt+1|r1:t+1, r̃1:t+1) =
p(rt+1|Zt+1, r̃t+1)p(Zt+1|r1:t, r̃1:t)

p(rt+1|r1:t, r̃1:t)
(B-34)

and the marginal predictive density of the observable variables is then

p(rt+1|r1:t) =

∫
r̃t+1

p(rt+1|r1:t, r̃t+1)p(r̃t+1|r1:t)dr̃t+1

where p(rt+1|r1:t, r̃t+1) is defined as∫
Zt+1

p(rt+1|Zt+1, r̃t+1)p(Zt+1|r1:t, r̃1:t)dZt+1

and represents the conditional predictive density of the observable given the predictors and the

past values of the observable.

The analytical solution of the optimal combination problem is generally not known. We

use M parallel conditional SMC filters, where each filter, is conditioned on the predictor vector

sequence r̃s, s = 1, . . . , t.

We initialize independently the M particle sets: Ξj0 = {Zi,j0 , ωi,j0 }Ni=1, j = 1, . . . ,M . Each

particle set Ξj0 contains N iid random variables Zi,j0 with random weights ωi,j0 . We initialize

the set of predictors, by generating iid samples r̃j1, j = 1, . . . ,M , from p(r̃1|r0) where r0 is

an initial set of observations for the variable of interest. Then, at the iteration t + 1 of the

combination algorithm, we approximate the predictive density p(r̃t+1|r1:t) with M iid samples

from the predictive densities, and δx(y) denotes the Dirac mass at x.

Precisely, we assume an independent sequence of particle sets Ξjt = {Zi,j1:t, ω
i,j
t }Ni=1, j =

1, . . . ,M , is available at time t and that each particle set provides the approximation

pN,j(zt|r1:t, r̃
j
1:t) =

N∑
i=1

ωi,jt δzi,jt
(zt) (B-35)

of the filtering density, p(Zt|y1:t, r̃
j
1:t), conditional on the j-th predictor realization, r̃j1:t. The

prediction (including the weights wt+1) are computed using the state predictive p(Zt+1|r1:t, r̃1:t).
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After collecting the results from the different particle sets, it is possible to obtain the following

empirical predictive density for the stock returns

pM,N (rt+1|r1:t) =
1

MN

M∑
j=1

N∑
i=1

ωi,jt δri,jt+1
(rt+1) (B-36)

At the next observation, M independent conditional SMC algorithms are used to find a new

sequence of M particle sets, which include the information available from the new observation

and the new predictors.
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