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Abstract

The local linear estimator has become the standard in the regression discontinuity design literature,
but we argue that it should not always dominate other local polynomial estimators in empirical studies.
We show that the local linear estimator in the data generating processes (DGP’s) based on two well-
known empirical examples does not always have the lowest (asymptotic) mean squared error (MSE).
Therefore, we advocate for a more flexible view towards the choice of the polynomial order, p, and
suggest two complementary approaches for picking p: comparing the MSE of alternative estimators
from Monte Carlo simulations based on an approximating DGP, and comparing the estimated asymptotic
MSE using actual data.
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1 Introduction

The seminal work of Hahn et al. (2001) has established local linear nonparametric regression as a standard

approach for estimating the treatment effect in a regression discontinuity (RD) design. Recent influential

studies on nonparametric estimation in RD designs have built upon the local linear framework. Imbens and

Kalyanaraman (2012) propose bandwidth selectors optimal for the local linear RD estimator (henceforth the

“IK bandwidth”), and Calonico et al. (2014b) introduce a procedure to correct the bias in the local linear

estimator and to construct robust confidence intervals.

The prevailing preference for the local linear estimator is based on the order of its asymptotic bias, but

this alone cannot justify the universal dominance of the linear specification over other polynomial orders.

Hahn et al. (2001) choose the local linear estimator over the local constant1 for its smaller order of asymp-

totic bias – specifically, the bias of the local linear estimator is of order O(h2) and the local constant O(h)

(h here refers to the bandwidth that shrinks as the sample size n becomes large). However, the argument

based on asymptotic order comparisons per se does not imply that local linear should always be preferred

to alternative local polynomial estimators. Under standard regularity conditions, the asymptotic bias is of

order O(h3) for the local quadratic RD estimator, O(h4) for local cubic, and O(hp+1) for the p-th order local

polynomial sharp RD estimator, τ̂p (Lemma A1 Calonico et al. (2014b)). Therefore, if the goal is to maxi-

mize the shrinkage rate of the asymptotic bias, researchers should choose a p as large as possible. The fact

that Hahn et al. (2001) do not recommend a very large p for RD designs implies that finite sample properties

of the estimator must be taken into consideration. But if finite sample properties are important, the desired

polynomial choice may depend on the sample size: the local constant estimator τ̂0 may be preferred to τ̂1

when the sample size is small, and higher-order local polynomial estimators may be preferred when the

sample size is large.

In a given finite sample, the derivatives of the conditional expectation function of the outcome variable

are also important for the local polynomial order choice, even though they are omitted under the O(·)

notation of asymptotic rates. If the conditional expectation of the outcome variable Y is close to being a

constant function of the assignment variable X , then the local constant specification will provide adequate

approximation, and consequently τ̂0 will perform well. On the other hand, if the said conditional expectation

function has a large curvature, researchers may consider choosing a higher-order local polynomial estimator

1The local constant estimator is equivalent to a kernel regression estimator, which is the terminology used by Hahn et al. (2001).
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instead.

Because the performance of a local polynomial estimator depends on the sample size and the properties

of the data generating process (DGP), a single choice like p = 1, though convenient, may not be the best for

all empirical RD applications. In this paper, we explore the best local polynomial order choice in the spirit of

Fan and Gijbels (1996) by comparing the mean squared error (MSE) of τ̂p and its asymptotic approximation

(AMSE) across p. Using the (A)MSE of the local estimator as a measuring stick is consistent with the

optimal bandwidth literature and answers to the critique of Gelman and Imbens (2014) that the goodness of

fit measure used in choosing a global polynomial order “is not closely related to the research objective of

causal inference”.

Similar to Imbens and Kalyanaraman (2012) and Calonico et al. (2014b), we use the data generating

processes (DGP’s) based on Lee (2008) and Ludwig and Miller (2007) to illustrate the points above. We

document that local regressions with orders other than p = 1 may perform better than with the local linear

estimator τ̂1. We provide details in the following section.

2 Mean Squared Error and the Local Polynomial Order

In this section, we rank the τ̂p’s based on their (A)MSE for the approximating DGP’s of Lee (2008) and

Ludwig and Miller (2007). In subsection 2.1, we calculate the theoretical asymptotic mean squared error

evaluated at the optimal bandwidth for the Lee and Ludwig-Miller DGP. Based on the calculation, we show

that whether or not the local linear estimator τ̂1 theoretically dominates an alternative τ̂p depends on the

sample size as well as the DGP. In subsection 2.2, we examine the actual mean squared error of the local

polynomial estimators via Monte Carlo simulation and confirm that τ̂1 is not always the best-performing RD

estimator. In subsection 2.3, we show that the estimated AMSE serves as a sensible basis for choosing the

polynomial order. In subsection 2.4, we discuss the properties of the local polynomial estimators in light

of the recent study, Gelman and Imbens (2014). Gelman and Imbens (2014) point out that an undesirable

property of a high-order global polynomial estimator is that it may assign very large weights (henceforth

“GI weights”) to observations far away from the discontinuity threshold. We show in subsection 2.4 that this

does not appear to be the case for high-order local polynomial estimators for the Lee and Ludwig-Miller data

when using the corresponding optimal bandwidth selector. In subsection 2.5, we argue that the MSE-based

methods for choosing the polynomial order can be easily applied to the fuzzy design and the regression kink
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design (RKD).

2.1 Theoretical AMSE

We specify the Lee and Ludwig-Miller DGP following Imbens and Kalyanaraman (2012) and Calonico et

al. (2014b). Let Y denote the outcome of interest, let X denote the normalized running variable, and let D =

1[X>0] denote the treatment. For both DGP’s, the running variable X follows the distribution 2B(2,4)−1,

where B(α,β ) denotes a beta distribution with shape parameters α and β . The outcome variable is given

by Y = E[Y |X = x]+ε , where ε ∼ N(0,σ2
ε ) with σε = 0.1295 and the conditional expectation functions are

specified as

Lee: E[Y |X = x] =


0.48+1.27x+7.18x2 +20.21x3 +21.54x4 +7.33x5 if x < 0

0.52+0.84x−3.00x2 +7.99x3−9.01x4 +3.56x5 if x > 0

Ludwig-Miller: E[Y |X = x] =


3.71+2.30x+3.28x2 +1.45x3 +0.23x4 +0.03x5 if x < 0

0.26+18.49x−54.81x2 +74.30x3−45.02x4 +9.83x5 if x > 0
.

To obtain the conditional expectation functions, Imbens and Kalyanaraman (2012) and Calonico et al.

(2014b) first discard the outliers (i.e. observations for which the absolute value of the running variable

is very large) and then fit a separate quintic function on each side of the threshold to the remaining observa-

tions.

Because the DGP is analytically specified, we can apply Lemma 1 of Calonico et al. (2014b) to compute

the theoretical AMSE-optimal bandwidth for the various local polynomial estimators and the corresponding

AMSE’s. Since the k-th order derivative of the conditional expectation functions is zero on both sides of the

cutoff for k > 5, the highest-order estimator we allow is the local quartic in order to ensure the finiteness

of the optimal bandwidth. Tables 1 and 2 summarize the results for two kernels and two sample sizes. The

kernel choices are uniform and triangular, the most popular in the RD literature. The two sample sizes are

n = 500 and n = nactual . Imbens and Kalyanaraman (2012) and Calonico et al. (2014b) use n = 500 in

their simulations, while nactual = 6558 is the actual sample size of the Lee data and nactual = 3138 for the

Ludwig-Miller data.

As summarized in Tables 1 and 2, p = 4 is the preferred choice based on theoretical AMSE. For the Lee
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DGP, τ̂1 dominates τ̂2 when n = 500, but the AMSE of τ̂p, denoted by AMSEτ̂p monotonically decreases

with p when n = 6558. For the Ludwig-Miller DGP, AMSEτ̂p decreases with p for both n = 500 and

n = 6558. In general, the AMSEτ̂p is smaller under the triangular kernel than under the uniform kernel,

confirming the boundary optimality of the triangular kernel per Cheng et al. (1997).

It can be easily shown that AMSEτ̂p is proportional to n−
2p+2
2p+3 , suggesting that a high-order estimator

should have an asymptotically smaller AMSE. Therefore, when q > p, τ̂q either always has a lower AMSE

than τ̂p or it does when the sample size exceeds a threshold. We compute the sample sizes for which

AMSEτ̂p < AMSEτ̂1 for p = 0,2,3,4, and the results are summarized in Table 3 and 4. Under the Lee

DGP, AMSEτ̂0 < AMSEτ̂1 when the sample size falls below 296 under the uniform kernel and 344 under

the triangular kernel; similarly, a higher-order estimator (p = 2,3,4) has a smaller AMSE than τ̂1 only when

the sample size is large enough. In contrast, τ̂p has a smaller AMSE regardless of the sample size under the

Ludwig-Miller DGP as a result of the large curvature therein.

We also compute the AMSE for the bias-corrected estimator from Calonico et al. (2014b), τ̂bc
p,p+1, hence-

forth “the CCT estimator”. Calonico et al. (2014b) propose to estimate the bias of the local RD estimator

τ̂p by using a local regression of order p+1 and account for the variance in the bias estimation. The CCT

estimator τ̂bc
p,p+1 is equal to the sum of the conventional estimator τ̂p and the bias-correction term. We use

results from Theorem A1 of Calonico et al. (2014b) to compute the AMSE’s of τ̂bc
p,p+1 evaluated at optimal

where p = 0,1,2,3. We omit the p = 4 case to ensure that the optimal bandwidth used in bias estimation is

finite.

The theoretical AMSE results for the CCT estimators are summarized in Table A.1 and A.2 in the

Supplemental Appendix. Similar to the AMSE for the conventional estimators, higher-order estimators

have a lower AMSE than local linear, and τ̂bc
3,4 has the smallest AMSE for both the Lee and Ludwig-Miller

DGP’s. In fact, the relative ranking of AMSE
τ̂bc

p,p+1
in Table A.1 and A.2 for each sample size and kernel

choice is the same as that of AMSEτ̂p+1 in Table 1 and 2.2 It is also worth noting that τ̂bc
1,2, the local linear

CCT estimator, has the largest AMSE among the four estimators when n = 500.

We summarize sample sizes for which AMSE
τ̂bc

p,p+1
< AMSE

τ̂bc
1,2

for p = 0,2,3 in Table 3 and A.2. The

results are similar to those in Table 3 and 4 for the conventional estimator. For the Lee DGP, p = 0 is

preferred to p = 1 when n is small, and p = 2,3 is preferred when n is large. For the Ludwig-Miller DGP,

2This is not surprising in light of Remark 7 in Calonico et al. (2014b): when b, the pilot bandwidth for bias estimation, is equal
to h, the main bandwidth for the conventional estimator, the estimator τ̂bc

p,p+1 is the same as τ̂p+1 and therefore has the same AMSE.

4



τ̂bc
1,2 is preferred to τ̂bc

0,1 regardless of sample size, whereas τ̂bc
2,3 and τ̂bc

3,4 always have a smaller AMSE than

τ̂bc
1,2 .

As its name suggests, the AMSE is an asymptotic approximation of the actual mean squared error, and

the approximation may or may not be good for a given DGP and sample size. Therefore, the ranking of

estimators by theoretical AMSE may not be the same as the ranking by MSE. We present the latter for the

two DGP’s in the following subsection.

2.2 MSE from Simulations

In this subsection, we present results from Monte Carlo simulations, which show that higher-order local

estimators have lower MSE than their local linear counterpart for the actual sample sizes in the Lee and

Ludwig-Miller application. Tables 5 and 6 report the MSE for τ̂p under the theoretical AMSE-optimal

bandwidth for the Lee and Ludwig-Miller DGP respectively, where the MSE is computed over 10,000

repeated samples. For the Lee DGP, we report results for p between 0 and 4; for the Ludwidg-Miller DGP,

we omit τ̂0 because too few observations lie within its theoretical optimal bandwidth.

For the smaller sample size of n = 500, τ̂1 appears to have the lowest MSE for the Lee DGP, which is

in contrast with the AMSE ranking in Table 1. However, τ̂4 does have the lowest MSE when n = 6558,

suggesting that AMSE provides a better approximation under this larger sample size for the Lee DGP. As in

Table 2, τ̂4 has the lowest MSE for both n = 500 and n = 3138 for the Ludwig-Miller DGP as seen in Table

6. Again, the AMSE approximation is generally better for the larger sample size.

We also report the coverage rate of the 95% confidence interval constructed using τ̂p, which is the focus

of Calonico et al. (2014b). The coverage rate is above 91% when p > 1 for both DGP’s, and that of τ̂0 for the

Lee DGP is just under 90%. Therefore, all the estimators in Tables 5 and 6 appear to be sensible candidates

in terms of coverage rates.

The theoretical AMSE optimal bandwidth is never known in any empirical application, and it has to

be estimated. Consequently, we also evaluate the performance of alternative estimators with the estimated

optimal bandwidth in Monte Carlo simulations. We adopt two alternative bandwidth choices, the CCT

bandwidth with and without regularization,3 and the corresponding results are reported in Tables 7-10.

For both the Lee and Ludwig Miller DGP, the MSE-preferred polynomial order is lower under the default

3The regularization Calonico et al. (2014b) implement in their default bandwidth selector follows the spirit of Imbens and
Kalyanaraman (2012). It decreases with the variance of the bias estimator and prevents the bandwidth from becoming large. We do
not adopt the IK bandwidth here because it is only proposed for τ̂1.

5



CCT bandwidth (i.e., with regularization), denoted by ĥCCT , than under the theoretical optimal bandwidth,

hopt . One explanation is that the average ĥCCT is much smaller than hopt for higher order p, and the cor-

responding variance of τ̂p is larger under ĥCCT than under hopt . In comparison, the average value of the

CCT bandwidth without regularization, ĥCCT,noreg, is much closer to hopt for p = 3,4. As a consequence,

the MSE-preferred polynomial orders under ĥCCT,noreg are closer to those under hopt . For the Lee DGP, the

MSE-preferred polynomial orders are the same as those for hopt : p = 1 for n = 500 and p = 4 for n = 6558.

For the Ludwig-Miller DGP, τ̂3 is the MSE-preferred estimator when n = 500, and τ̂3 and τ̂4 have very sim-

ilar MSE’s when n = 3138. In this latter case, MSEτ̂3 > MSEτ̂4 under the uniform kernel, MSEτ̂4 > MSEτ̂3

under the triangular kernel. In summary, a higher order τ̂p has a lower MSE than τ̂1 for the actual sample

sizes in the two empirical applications.

We also examine the MSE of the CCT bias-corrected estimators, τ̂bc
p,p+1, from Monte Carlo simulations,

and the results are presented in Tables A.5-A.10. We find that the bias-corrected linear estimator, the default

estimator in Calonico et al. (2014b), never delivers the smallest MSE. In fact, τ̂bc
0,1 or τ̂bc

2,3 have the lowest

MSE, depending on the sample size and kernel choice for the Lee DGP, whereas τ̂bc
2,3 consistently have the

lowest MSE for the Ludwig-Miller DGP. In the next subsection, we explore the use of the estimated AMSE

for picking the polynomial order.

2.3 Estimated AMSE

When computing the optimal bandwidth for a local polynomial RD estimator, the asymptotic bias and

variance are both estimated. It follows that the AMSE of the estimator, which is the sum of the squared

bias and variance, can be easily estimated as well. As suggested by Fan and Gijbels (1996), comparing the

estimated AMSE for alternative local polynomial estimators, ÂMSEτ̂p , can serve as a basis for choosing

p. We adapt the suggestion by Fan and Gijbels (1996) to the RD design and investigate the choice of

polynomial order p based on the estimated AMSE of τ̂p and τ̂bc
p,p+1.

Tables 11-14 summarize the statistics of ÂMSEτ̂p from Monte Carlo simulations. We report the average

ÂMSEτ̂p over 10,000 repeated samples, the fraction of times each τ̂p has the smallest ÂMSE and the average

computed optimal bandwidth. Comparing these four tables to the MSE Tables 7-10 reveals that the most

likely choice of p based on ÂMSE does not always have the smallest MSE, but it is nevertheless sensible in

most cases. For the Lee DGP under ĥCCT , τ̂0 and τ̂1 are the most likely choice based on ÂMSE for n = 500

and n = 6558, respectively, and they have the second lowest MSE. For the Lee DGP under ĥCCT,noreg, τ̂1
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is the most likely choice based on ÂMSE for both n = 500 and n = 6558; although it performs less well

compared to the higher-order estimators for n = 6558, it does have the lowest MSE for n = 500. For the

Ludwig-Miller DGP, ÂMSE-based order choice does well: in seven out of the eight cases, it has the smallest

MSE; for the remaining case (n = 3138, uniform kernel and ĥCCT,noreg), its MSE comes as a close second.

We also estimate the AMSE of τ̂bc
p,p+1 based on Theorem A1 of Calonico et al. (2014b) and summarize

the simulation results in Tables A.11-A.14. Again, we examine whether the ÂMSE-based choice of τ̂bc
p,p+1

has the lowest MSE by way of comparison to Tables A.7-A.10. As with the conventional estimator τ̂p, the

most likely choice of p for the bias-corrected estimator based on ÂMSE does not always have the lowest

MSE – it does so in ten out of the 16 cases. In the remaining six cases, whenever the most likely p is not

1, the associated MSE is lower than that of τ̂bc
1,2. Therefore, for the Lee and Ludwig DGP, using ÂMSE

improves upon the fixed choice of the bias-corrected linear estimator τ̂bc
1,2.

In summary, using ÂMSE leads to a sensible polynomial order choice in many instances. In the vast

majority of cases in our simulation, the most likely choice of p based on ÂMSE does have the lowest or the

second lowest MSE among alternative estimators. With only two exceptions out of 32 cases, the most likely

choice of p has an MSE that is lower than or equal to that of the default p = 1. Therefore, estimating ÂMSE

can complement Monte Carlo simulations based on approximating DGP’s for choosing the local polynomial

order.

2.4 GI Weights for Local Regressions

As mentioned at the beginning of section 2, Gelman and Imbens (2014) recently raise concerns of using a

global or local high-order polynomial (e.g. cubic or quartic) to estimate the RD treatment effect. One issue

in particular is that estimators based on high-order global regressions sometimes assign too much weight

to observations far away from the RD cutoff. Since we have demonstrated above that high-order local

estimators may be desirable in certain cases for the Lee and Ludwig-Miller DGP’s, we examine whether

noisy weights raise concerns for local regressions in the two applications.

Using the actual Lee and Ludwig-Miller data, Figures 1-8 plot the GI weights for the left and right

intercept estimators that make up τ̂p for p = 0,1, ...,5 . As with the previous subsections, we examine the

weights for two kernel choices (uniform and triangular) and two bandwidth choices (ĥCCT and ĥCCT,noreg).

For high-order local estimators, observations far away from the threshold receive little weight as compared
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to those close to the threshold as desired. In fact, even the GI weights in the global estimators for the Lee

and Ludwig-Miller data are reasonably well-behaved: as seen from Figures A.1 and A.2, observations far

away from the RD cutoff never receive significantly larger weights than those close to the threshold.

The other two concerns regarding high-order global estimators voiced by Gelman and Imbens (2014)

are 1) they are not chosen based on a criterion relevant for the causal parameter of interest and 2) the

corresponding 95% confidence interval has incorrect coverage rates. As argued in section 1, the (A)MSE

of the RD estimator is an important benchmark of the literature and therefore dispels the first concern. As

demonstrated in the simulations, when a higher order p is preferred, the coverage rate of the corresponding

95% confidence interval is quite close to 95%, which helps to alleviate the second concern. Together with

well-behaved GI weights, we believe that high-order local polynomial RD estimators in certain cases are

good alternatives to local linear.

2.5 Extensions: Fuzzy RD and Regression Kink Design

In this subsection, we briefly discuss how (A)MSE-based local polynomial order choice applies to two

popular extensions of the sharp RD design. The first extension is the fuzzy RD design, where the treatment

assignment rule is not strictly followed. In the existing RD literature, p = 1 is still the default choice in

the fuzzy RD. But by the same argument as above, local linear is not necessarily the best estimator in all

applications. In the same way that we can calculate the AMSE and simulate the MSE of sharp RD estimators,

we can rely on Lemma A2 and Theorem A2 of Calonico et al. (2014b) and do it for the fuzzy RD estimators.

Similarly, the same principle can be applied to the regression kink design (RKD) proposed and explored by

Nielsen et al. (2010) and Card et al. (2012). For RKD, Calonico et al. (2014b) recommends using p = 2 as

the default polynomial order following its RD analog, but again the best polynomial choice should depend

on the particular data set. The ideas presented in this paper readily apply to the RKD case and may help

researchers choose the best polynomial order for their study.

3 Conclusion

The local linear estimator has become the standard in the regression discontinuity literature. In this paper, we

argue that p = 1 should not be the universally preferred polynomial order across all empirical applications.

The mean squared error of the p-th order local estimator depends on the sample size and the intrinsic
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properties of the data generating process. In two well-known empirical examples, p = 1 is not necessarily

the polynomial order that delivers the lowest (A)MSE.

We do not oppose the use of local linear estimator in RD studies; it is a convenient choice and performs

quite well in many applications. However, we do oppose the notion that a single polynomial order can be

optimal for all RD analyses. We advocate for a more flexible view that an empiricist should be able to

adopt a different local polynomial estimator if it is better suited for the application. If the empiricist would

like to explore the polynomial order choice, we suggest two complementary options to her: 1) estimate an

approximating DGP to the data at hand and conduct Monte Carlo simulations to gauge the performance of

alternative estimators; 2) estimate the AMSE and compare it across alternative estimators.

Each option has its own advantages and disadvantages. Option 1 reveals the exact MSE’s (and gives the

coverage rates of the 95% confidence interval) with an approximating DGP4, whereas option 2 estimates an

approximate MSE using the actual data. It is ideal if the two options point to the same p; when they do not,

it is perhaps prudent to present the value of both estimators, as is typically done in empirical research.

4In light of Gelman and Imbens (2014), if the approximating DGP is estimated using a high-order global polynomial, it may be
advisable to trim the outliers as Imbens and Kalyanaraman (2012) and Calonico et al. (2014b) have done.

9



References

Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik, “Robust Data-Driven Inference in the
Regression-Discontinuity Design,” Stata Journal, 2014, 14 (4), 909–946.

, , and , “Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs,” Econo-
metrica, November 2014, 82 (6), 2295–2326.

Card, David, David S. Lee, Zhuan Pei, and Andrea Weber, “Nonlinear Policy Rules and the Identification
and Estimation of Causal Effects in a Generalized Regression Kink Design,” NBER Working Paper 18564
November 2012.

Cheng, Ming-Yen, Jianqing Fan, and J. S. Marron, “On automatic boundary corrections,” The Annals of
Statistics, 08 1997, 25 (4), 1691–1708.

Fan, Jianqing and Irene Gijbels, Local Polynomial Modelling and Its Applications, Chapman and Hall,
1996.

Gelman, Andrew and Guido Imbens, “Why High-order Polynomials Should Not Be Used in Regression
Discontinuity Designs,” NBER Working Paper 20405 August 2014.

Hahn, Jinyong, Petra Todd, and Wilbert Van der Klaauw, “Identification and Estimation of Treatment
Effects with a Regression-Discontinuity Design,” Econometrica, 2001, 69 (1), 201–209.

Imbens, Guido W. and Karthik Kalyanaraman, “Optimal Bandwidth Choice for the Regression Discon-
tinuity Estimator.,” Review of Economic Studies, 2012, 79 (3), 933 – 959.

Lee, David S., “Randomized Experiments from Non-random Selection in U.S. House Elections,” Journal
of Econometrics, February 2008, 142 (2), 675–697.

Ludwig, J. and D. Miller, “Does Head Start Improve Children’s Life Chances? Evidence from a Regression
Discontinuity Design,” Quarterly Journal of Economics, 2007, 122(1), 159–208.

Nielsen, Helena Skyt, Torben Sørensen, and Christopher R. Taber, “Estimating the Effect of Student
Aid on College Enrollment: Evidence from a Government Grant Policy Reform,” American Economic
Journal: Economic Policy, 2010, 2 (2), 185–215.

10



Table 1: Theoretical AMSE of the Conventional Estimator: Lee DGP

AMSE and Optimal Bandwidth for the Uniform Kernel
AMSE×1000 hopt

poly. order p n = 500 n = 6558 n = 500 n = 6558
0 4.42 0.795 0.036 0.015
1 4.12 0.526 0.130 0.078
2 4.33 0.477 0.260 0.180
3 4.11 0.417 0.470 0.353
4 3.52 0.339 0.838 0.663

Preferred p p = 4 p = 4

AMSE and Optimal Bandwidth for the Triangular Kernel
AMSE×1000 hopt

poly. order p n = 500 n = 6558 n = 500 n = 6558
0 4.09 0.735 0.052 0.022
1 3.89 0.496 0.166 0.099
2 4.14 0.456 0.311 0.216
3 3.96 0.402 0.542 0.407
4 3.41 0.329 0.943 0.767

Preferred p p = 4 p = 4

Note: The function form of the Lee DGP is

E[Y |X = x] =

{
0.48+1.27x+7.18x2 +20.21x3 +21.54x4 +7.33x5 if x < 0
0.52+0.84x−3.00x2 +7.99x3−9.01x4 +3.56x5 if x > 0
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Table 2: Theoretical AMSE of the Conventional Estimator: Ludwig-Miller DGP

AMSE and Optimal Bandwidth for the Uniform Kernel
AMSE×1000 hopt

poly. order p n = 500 n = 3138 n = 500 n = 3138
0 20.3 5.98 0.008 0.004
1 8.28 1.90 0.065 0.045
2 5.74 1.19 0.196 0.151
3 4.48 0.88 0.431 0.351
4 3.46 0.65 0.854 0.722

Preferred p p = 4 p = 4

AMSE and Optimal Bandwidth for the Triangular Kernel
AMSE×1000 hopt

poly. order p n = 500 n = 3138 n = 500 n = 3138
0 18.8 5.52 0.011 0.006
1 7.81 1.80 0.082 0.057
2 5.49 1.14 0.235 0.181
3 4.32 0.84 0.497 0.405
4 3.35 0.63 0.961 0.813

Preferred p p = 4 p = 4

Note: The function form of the Ludwig-Miller DGP is

E[Y |X = x] =

{
3.71+2.30x+3.28x2 +1.45x3 +0.23x4 +0.03x5 if x < 0
0.26+18.49x−54.81x2 +74.30x3−45.02x4 +9.83x5 if x > 0
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Table 3: Comparison of Polynomial Orders by Theoretical AMSE for the Conventional Estimator: Lee DGP

Polynomial order p
is preferred to p = 1 for the

conventional RD estimator when ...
Uniform Kernel Triangular Kernel

0 n < 296 n < 344
2 n > 1167 n > 1466
3 n > 476 n > 607
4 n > 177 n > 150

Note: The comparison is based on the theoretical AMSE evaluated at the opti-

mal bandwidth.

Table 4: Comparison of Polynomial Orders by Theoretical AMSE for the Conventional Estimator: Ludwig-
Miller DGP

Polynomial order p
is preferred to p = 1 for the

conventional RD estimator when ...
Uniform Kernel Triangular Kernel

0 Never Never
2 Always Always
3 Always Always
4 Always Always

Note: The comparison is based on the theoretical AMSE evaluated at the opti-

mal bandwidth(s).
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Table 5: MSE of the Conventional Estimator and Coverage Rates of 95% CI from Simulations Using the
Infeasible Optimal Bandwidth: Lee DGP

MSE, Coverage Rates and Infeasible Optimal Bandwidth for the Uniform Kernel
MSE×1000 Coverage Rates hopt

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 4.43 0.778 0.878 0.895 0.036 0.015
1 3.96 0.492 0.924 0.930 0.130 0.078
2 4.31 0.449 0.932 0.936 0.260 0.180
3 4.28 0.406 0.931 0.943 0.470 0.353
4 4.24 0.356 0.930 0.939 0.838 0.663

Preferred p p = 1 p = 4

MSE, Coverage Rates and Infeasible Optimal Bandwidth for the Triangular Kernel
MSE×1000 Coverage Rates hopt

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 4.09 0.720 0.871 0.891 0.052 0.022
1 3.67 0.463 0.920 0.929 0.166 0.099
2 4.08 0.431 0.926 0.938 0.311 0.216
3 4.13 0.391 0.929 0.942 0.542 0.407
4 4.18 0.349 0.927 0.938 0.943 0.767

Preferred p p = 1 p = 4

Note: The simulation is based 10,000 repetitions.
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Table 6: MSE of the Conventional Estimator and Coverage Rates of 95% CI from Simulations Using the
Infeasible Optimal Bandwidth: Ludwig-Miller DGP

MSE, Coverage Rates and Infeasible Optimal Bandwidth for the Uniform Kernel
MSE×1000 Coverage Rates hopt

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 9.28 1.862 0.921 0.923 0.065 0.045
2 5.98 1.119 0.935 0.939 0.196 0.151
3 4.65 0.842 0.943 0.942 0.431 0.351
4 3.97 0.643 0.950 0.949 0.854 0.722

Preferred p p = 4 p = 4

MSE, Coverage Rates and Infeasible Optimal Bandwidth for the Triangular Kernel
MSE×1000 Coverage Rates hopt

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.58 1.742 0.911 0.924 0.082 0.057
2 5.68 1.072 0.930 0.936 0.235 0.181
3 4.47 0.808 0.940 0.941 0.497 0.405
4 3.97 0.636 0.948 0.947 0.961 0.813

Preferred p p = 4 p = 4

Note: The simulation is based on 10000 repetitions. The program–available

upon request–is a variant of the Stata package described in Calonico et al.

(2014a). The simulation for the Ludwig-Miller DGP does not include the local

constant (p = 0) estimator, because too few observations lie within its corre-

sponding bandwidth under when n = 500 or 3138.
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Table 7: MSE of the Conventional Estimator and Coverage Rates of 95% CI from Simulations Using the
CCT Bandwidth: Lee DGP

MSE, Coverage Rates and CCT Bandwidth for the Uniform Kernel
MSE×1000 Coverage Rates ĥCCT

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 4.99 0.938 0.728 0.734 0.059 0.023
1 3.89 0.578 0.902 0.819 0.160 0.111
2 5.35 0.493 0.925 0.898 0.225 0.208
3 7.73 0.493 0.926 0.944 0.275 0.298
4 10.9 0.644 0.924 0.944 0.313 0.348

Preferred p p = 1 p = 2

MSE, Coverage Rates and CCT Bandwidth for the Triangular Kernel
MSE×1000 Coverage Rates ĥCCT

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 4.54 0.853 0.722 0.743 0.084 0.032
1 3.77 0.533 0.892 0.822 0.205 0.139
2 5.24 0.472 0.916 0.898 0.271 0.248
3 7.66 0.489 0.920 0.939 0.316 0.344
4 10.8 0.644 0.916 0.940 0.350 0.390

Preferred p p = 1 p = 2

Note: The simulation is based on 10000 repetitions. The program–available
upon request–is a variant of the Stata package described in Calonico et al.
(2014a).
The reported CCT bandwidth, ĥCCT , is the average over repeated simulation
samples.
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Table 8: MSE of the Conventional Estimator and Coverage Rates of 95% CI from Simulations Using the
CCT Bandwidth: Ludwig-Miller DGP

MSE, Coverage Rates and CCT Bandwidth for the Uniform Kernel
MSE×1000 Coverage Rates ĥCCT

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 10.0 1.99 0.878 0.889 0.076 0.050
2 6.45 1.22 0.920 0.908 0.206 0.166
3 7.58 1.04 0.940 0.940 0.280 0.293
4 10.7 1.34 0.936 0.946 0.319 0.343

Preferred p p = 2 p = 3

MSE, Coverage Rates and CCT Bandwidth for the Triangular Kernel
MSE×1000 Coverage Rates ĥCCT

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 9.35 1.87 0.866 0.889 0.097 0.063
2 6.17 1.15 0.916 0.911 0.246 0.198
3 7.52 1.02 0.935 0.938 0.322 0.338
4 10.7 1.33 0.932 0.942 0.356 0.385

Preferred p p = 2 p = 3

Note: The simulation is based on 10000 repetitions. The program–available
upon request–is a variant of the Stata package described in Calonico et al.
(2014a). The simulation for the Ludwig-Miller DGP does not include the local
constant (p = 0) estimator, because too few observations lie within its corre-
sponding bandwidth under when n = 500 or 3138.
The reported CCT bandwidth, ĥCCT , is the average over repeated simulation
samples.
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Table 9: MSE of the Conventional Estimator and Coverage Rates of 95% CI from Simulations Using the
CCT Bandwidth without Regularization: Lee DGP

MSE, Coverage Rates and CCT Bandwidth for the Uniform Kernel
MSE×1000 Coverage Rates ĥCCT,noreg

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 6.24 1.01 0.601 0.678 0.088 0.025
1 3.28 0.769 0.803 0.660 0.383 0.165
2 4.55 0.668 0.860 0.781 0.426 0.274
3 6.17 0.680 0.892 0.841 0.465 0.427
4 8.15 0.536 0.914 0.918 0.490 0.543

Preferred p p = 1 p = 4

MSE, Coverage Rates and CCT Bandwidth for the Triangular Kernel
MSE×1000 Coverage Rates ĥCCT,noreg

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 5.48 0.898 0.620 0.706 0.116 0.035
1 3.19 0.639 0.809 0.715 0.472 0.188
2 4.55 0.566 0.861 0.817 0.482 0.309
3 6.37 0.592 0.886 0.860 0.519 0.475
4 8.47 0.548 0.905 0.917 0.539 0.594

Preferred p p = 1 p = 4

Note: The simulation is based on 10000 repetitions. The program–available
upon request–is a variant of the Stata package described in Calonico et al.
(2014a).
The reported CCT bandwidth, ĥCCT,noreg, is the average over repeated simu-
lation samples.
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Table 10: MSE of the Conventional Estimator and Coverage Rates of 95% CI from Simulations Using the
CCT Bandwidth without Regularization: Ludwig-Miller DGP

MSE, Coverage Rates and CCT Bandwidth for the Uniform Kernel
MSE×1000 Coverage Rates ĥCCT,noreg

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 10.2 2.00 0.866 0.886 0.079 0.051
2 7.16 1.24 0.877 0.902 0.240 0.173
3 6.17 1.07 0.908 0.897 0.446 0.388
4 7.87 1.04 0.931 0.934 0.504 0.539

Preferred p p = 3 p = 4

MSE, Coverage Rates and CCT Bandwidth for the Triangular Kernel
MSE×1000 Coverage Rates ĥCCT,noreg

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 9.51 1.88 0.858 0.885 0.100 0.064
2 6.74 1.16 0.882 0.905 0.283 0.204
3 6.18 1.02 0.908 0.899 0.502 0.440
4 8.15 1.07 0.922 0.930 0.555 0.595

Preferred p p = 3 p = 3

Note: The simulation is based on 10000 repetitions. The program–available
upon request–is a variant of the Stata package described in Calonico et al.
(2014a). The simulation for the Ludwig-Miller DGP does not include the local
constant (p = 0) estimator, because too few observations lie within its corre-
sponding bandwidth under when n = 500 or 3138.
The reported CCT bandwidth, ĥCCT,noreg, is the average over repeated simu-
lation samples.
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Table 11: Estimated AMSE from Simulations Using the CCT Bandwidths: Lee DGP

Estimated AMSE, Preferred p and CCT Bandwidths for the Uniform Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 2.59 0.527 0.719 0.001 0.059 0.023
1 3.14 0.346 0.277 0.777 0.160 0.111
2 4.92 0.391 0.004 0.183 0.225 0.208
3 7.28 0.466 0.000 0.039 0.275 0.298
4 10.4 0.619 0.000 0.001 0.313 0.348

Most Likely Choice of p p = 0 p = 1

Estimated AMSE, preferred p and CCT Bandwidths for the Triangular Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 2.41 0.505 0.729 0.000 0.084 0.032
1 2.91 0.334 0.270 0.861 0.205 0.139
2 4.64 0.377 0.001 0.109 0.271 0.248
3 6.97 0.450 0.000 0.030 0.316 0.344
4 10.0 0.602 0.000 0.000 0.350 0.390

Most Likely Choice of p p = 0 p = 1

Note: The simulation is based 10,000 repetitions. The program–available upon
request–is a variant of the Stata package described in Calonico et al. (2014a).
The reported AMSE measure and CCT bandwidth, ÂMSE× 1000 and ĥCCT
are the averages over repeated simulation samples.
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Table 12: Estimated AMSE from Simulations Using the CCT Bandwidths: Ludwig-Miller DGP

Estimated AMSE, Preferred p and CCT Bandwidths for the Uniform Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.97 1.73 0.022 0.000 0.076 0.050
2 6.33 1.06 0.874 0.284 0.206 0.166
3 8.43 1.00 0.103 0.705 0.280 0.293
4 12.6 1.33 0.001 0.011 0.319 0.343

Most Likely Choice of p p = 2 p = 3

Estimated AMSE, Preferred p and CCT Bandwidths for the Triangular Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.60 1.63 0.015 0.000 0.097 0.063
2 6.17 1.02 0.915 0.271 0.246 0.198
3 8.30 0.96 0.069 0.725 0.322 0.338
4 12.5 1.29 0.001 0.005 0.356 0.385

Most Likely Choice of p p = 2 p = 3

Note: The simulation is based on 10000 repetitions. The program–available
upon request–is a variant of the Stata package described in Calonico et al.
(2014a). Unlike in Tables 6, 8 and 10, results are reported for the local constant
estimator. This is because only the optimal bandwidth for the local estimator
is calculated and not the value of local estimator itself.
The reported AMSE measure and CCT bandwidths, ÂMSE×1000 and ĥCCT ,
are the averages over repeated simulation samples.
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Table 13: Estimated AMSE from Simulations Using the CCT Bandwidths without Regularization: Lee DGP

Estimated AMSE, Preferred p and CCT Bandwidths w/o Regularization for the Uniform Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT,noreg

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 2.31 0.500 0.383 0.004 0.087 0.025
1 2.38 0.320 0.575 0.644 0.383 0.165
2 4.97 0.408 0.041 0.175 0.426 0.274
3 10.5 0.585 0.001 0.121 0.465 0.427
4 13.4 0.776 0.000 0.056 0.490 0.543

Most Likely Choice of p p = 1 p = 1

Estimated AMSE, Preferred p and CCT Bandwidths w/o Regularization for the Triangular Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT,noreg

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 2.19 0.488 0.405 0.001 0.116 0.035
1 2.19 0.310 0.567 0.753 0.472 0.188
2 3.84 0.363 0.027 0.086 0.482 0.309
3 6.27 0.472 0.001 0.097 0.518 0.475
4 10.6 0.556 0.000 0.064 0.539 0.594

Most Likely Choice of p p = 1 p = 1

Note: The simulation is based 10,000 repetitions. The program–available upon
request–is a variant of the Stata package described in Calonico et al. (2014a).
The reported AMSE measure and CCT bandwidths, ÂMSE × 1000 and
ĥCCT,noreg, are the averages over repeated simulation samples.
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Table 14: Estimated AMSE from Simulations Using the CCT Bandwidths: Ludwig-Miller DGP

Estimated AMSE, Preferred p and CCT Bandwidths w/o Regularization for the Uniform Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT,noreg

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.77 1.72 0.006 0.000 0.079 0.051
2 5.89 1.08 0.448 0.058 0.240 0.173
3 8.11 1.13 0.495 0.680 0.446 0.388
4 18.8 1.76 0.051 0.263 0.504 0.539

Most Likely Choice of p p = 3 p = 3

Estimated AMSE, Preferred p and CCT Bandwidths w/o Regularization for the Triangular Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT,noreg

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.44 1.63 0.007 0.000 0.100 0.064
2 5.96 1.01 0.438 0.069 0.283 0.204
3 7.17 0.921 0.511 0.665 0.502 0.440
4 14.0 1.19 0.044 0.266 0.555 0.595

Most Likely Choice of p p = 3 p = 3

Note: The simulation is based on 10000 repetitions. The program–available
upon request–is a variant of the Stata package described in Calonico et al.
(2014a). Unlike in Tables 6, 8 and 10, results are reported for the local constant
estimator. This is because only the optimal bandwidth for the local estimator
is calculated and not the value of local estimator itself.
The reported AMSE measure and CCT bandwidths, ÂMSE × 1000 and
b̂CCT,noreg, are the averages over repeated simulation samples.
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Figure 1: Weights for Local Polynomial Estimators: Lee Data, above the RD Cutoff, CCT Bandwidth
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Note: The graphs plot the GI weights for the local estimator τ̂p with the default

CCT bandwidth, for p = 0,1, ...,5.
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Figure 2: Weights for Local Polynomial Estimators: Lee Data, below the RD Cutoff, CCT Bandwidth
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Note: The graphs plot the GI weights for the local estimator τ̂p with the default

CCT bandwidth, for p = 0,1, ...,5.
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Figure 3: Weights for Local Polynomial Estimators: Ludwig-Miller Data, above the RD Cutoff, CCT Band-
width
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Note:The graphs plot the GI weights for the local estimator τ̂p with the default

CCT bandwidth, for p = 0,1, ...,5.
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Figure 4: Weights for Local Polynomial Estimators: Ludwig-Miller Data, below the RD Cutoff, CCT Band-
width
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Note: The graphs plot the GI weights for the local estimator τ̂p with the default

CCT bandwidth, for p = 0,1, ...,5.
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Figure 5: Weights for Local Polynomial Estimators: Lee Data, above the RD Cutoff, CCT Bandwidth
without Regularization
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Note: The graphs plot the GI weights for the local estimator τ̂p with the no-

regularization CCT bandwidth, for p = 0,1, ...,5.
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Figure 6: Weights for Local Polynomial Estimators: Lee Data, below the RD Cutoff, CCT Bandwidth
without Regularization
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Note: The graphs plot the GI weights for the local estimator τ̂p with the no-

regularization CCT bandwidth, for p = 0,1, ...,5.
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Figure 7: Weights for Local Polynomial Estimators: Ludwig-Miller Data, above the RD Cutoff, CCT Band-
width without Regularization
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Note:The graphs plot the GI weights for the local estimator τ̂p with the no-

regularization CCT bandwidth, for p = 0,1, ...,5.
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Figure 8: Weights for Local Polynomial Estimators: Ludwig-Miller Data, below the RD Cutoff, CCT Band-
width without Regularization
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Note: The graphs plot the GI weights for the local estimator τ̂p with the no-

regularization CCT bandwidth, for p = 0,1, ...,5.
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Supplemental Appendix

Table A.1: Theoretical AMSE of the Bias-corrected Estimator: Lee DGP

AMSE and Optimal Bandwidths for the Uniform Kernel
AMSE×1000 hopt bopt

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 4.52 0.671 0.036 0.015 0.130 0.078
1 4.55 0.523 0.130 0.078 0.260 0.180
2 4.38 0.461 0.260 0.180 0.470 0.353
3 3.87 0.388 0.470 0.353 0.838 0.663

Preferred p p = 3 p = 3

AMSE and Optimal Bandwidths for the Triangular Kernel
AMSE×1000 hopt bopt

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 4.26 0.682 0.052 0.022 0.166 0.099
1 4.28 0.525 0.166 0.099 0.311 0.216
2 4.18 0.460 0.311 0.216 0.542 0.407
3 3.41 0.329 0.542 0.407 0.943 0.767

Preferred p p = 3 p = 3

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-

rection term estimated from a (p+1)-th order local regression.
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Table A.2: Theoretical AMSE of the Bias-corrected Estimator: Ludwig-Miller DGP

AMSE and Optimal Bandwidths for the Uniform Kernel
AMSE×1000 hopt bopt

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
0 14.9 4.22 0.008 0.004 0.065 0.045
1 7.32 1.64 0.065 0.045 0.196 0.151
2 5.32 1.08 0.196 0.151 0.431 0.351
3 4.16 0.806 0.431 0.351 0.854 0.722

Preferred p p = 3 p = 3

AMSE and Optimal Bandwidths for the Triangular Kernel
AMSE×1000 hopt bopt

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
0 13.9 4.06 0.011 0.006 0.082 0.057
1 6.95 1.61 0.082 0.057 0.235 0.181
2 5.10 1.07 0.235 0.181 0.497 0.405
3 4.01 0.794 0.497 0.405 0.961 0.813

Preferred p p = 3 p = 3

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-

rection term estimated from a (p+1)-th order local regression.
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Table A.3: Comparison of Polynomial Orders by Theoretical AMSE for the Bias-Corrected Estimator: Lee
DGP

Polynomial order p
is preferred to p = 1 for the

bias-corrected RD estimator when ...
Uniform Kernel Triangular Kernel

0 n < 531 n < 530
2 n > 137 n > 253
3 n > 10 n > 30

Note: The comparison is based on the theoretical AMSE evaluated at the opti-

mal bandwidths.

Table A.4: Comparison of Polynomial Orders by Theoretical AMSE for the Bias-Corrected Estimator:
Ludwig-Miller DGP

Polynomial order p
is preferred to p = 1 for the

bias-corrected RD estimator when ...
Uniform Kernel Triangular Kernel

0 Never Never
2 Always Always
3 Always Always

Note: The comparison is based on the theoretical AMSE evaluated at the opti-

mal bandwidths.
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Table A.5: MSE of the Bias-Corrected Estimator and Coverage Rates of 95% Robust CI from Simulations
Using the Infeasible Optimal Bandwidths: Lee DGP

MSE, Coverage Rates and Infeasible Optimal Bandwidths for the Uniform Kernel
MSE×1000 Coverage Rates hopt bopt

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 4.73 0.668 0.925 0.943 0.036 0.015 0.130 0.078
1 4.80 0.523 0.933 0.943 0.130 0.078 0.260 0.180
2 4.77 0.465 0.934 0.946 0.260 0.180 0.470 0.353
3 4.59 0.405 0.937 0.950 0.470 0.353 0.838 0.663

Preferred p p = 3 p = 3

MSE, Coverage Rates and Infeasible Optimal Bandwidths for the Triangular Kernel
MSE×1000 Coverage Rates hopt bopt

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 4.41 0.633 0.923 0.941 0.052 0.022 0.166 0.099
1 4.44 0.495 0.929 0.945 0.166 0.099 0.311 0.216
2 4.53 0.447 0.932 0.944 0.311 0.216 0.542 0.407
3 4.46 0.392 0.934 0.948 0.542 0.407 0.943 0.767

Preferred p p = 0 p = 3

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based 10,000 repetitions. The program–available upon re-
quest–is a variant of the Stata package described in Calonico et al. (2014a).
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Table A.6: MSE of the Bias-Corrected Estimator and Coverage Rates of 95% Robust CI from Simulations
Using the CCT Bandwidth: Ludwig-Miller DGP

MSE, Coverage Rates and Infeasible Optimal Bandwidths for the Uniform Kernel
MSE×1000 Coverage Rates hopt bopt

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.57 1.65 0.942 0.947 0.065 0.045 0.196 0.151
2 5.90 1.07 0.946 0.950 0.196 0.151 0.431 0.351
3 4.77 0.828 0.948 0.950 0.431 0.351 0.854 0.722

Preferred p p = 3 p = 3

MSE, Coverage Rates and Infeasible Optimal Bandwidths for the Triangular Kernel
MSE×1000 Coverage Rates hopt bopt

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 7.91 1.56 0.933 0.944 0.082 0.057 0.235 0.181
2 5.62 1.04 0.941 0.946 0.235 0.181 0.497 0.405
3 4.64 0.804 0.945 0.948 0.497 0.405 0.961 0.813

Preferred p p = 3 p = 3

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based on 10000 repetitions. The program–available upon
request–is a variant of the Stata package described in Calonico et al. (2014a).
The simulation for the Ludwig-Miller DGP does not include the local constant
(p = 0) estimator, because too few observations lie within its corresponding
bandwidth under when n = 500 or 3138.
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Table A.7: MSE of the Bias-Corrected Estimator and Coverage Rates of 95% Robust CI from Simulations
Using the CCT Bandwidths: Lee DGP

MSE, Coverage Rates and CCT Bandwidths for the Uniform Kernel
MSE×1000 Coverage Rates ĥCCT b̂CCT

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 3.74 0.550 0.896 0.899 0.059 0.023 0.225 0.138
1 4.70 0.529 0.920 0.893 0.160 0.111 0.296 0.219
2 6.36 0.492 0.933 0.934 0.225 0.208 0.350 0.333
3 9.13 0.552 0.931 0.951 0.275 0.298 0.386 0.424

Preferred p p = 0 p = 2

MSE, Coverage Rates and CCT Bandwidths for the Triangular Kernel
MSE×1000 Coverage Rates ĥCCT b̂CCT

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 3.46 0.521 0.900 0.905 0.084 0.032 0.271 0.161
1 4.63 0.495 0.914 0.905 0.205 0.139 0.333 0.245
2 6.33 0.479 0.926 0.933 0.271 0.248 0.382 0.364
3 9.15 0.555 0.925 0.945 0.316 0.344 0.413 0.453

Preferred p p = 0 p = 2

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based 10,000 repetitions. The program–available upon re-
quest–is a variant of the Stata package described in Calonico et al. (2014a).
The reported CCT bandwidths, ĥCCT and b̂CCT , are the averages over repeated
simulation samples.
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Table A.8: MSE of the Bias-Corrected Estimator and Coverage Rates of 95% Robust CI from Simulations
Using the CCT Bandwidth: Ludwig-Miller DGP

MSE, Coverage Rates and CCT Bandwidths for the Uniform Kernel
MSE×1000 Coverage Rates ĥCCT b̂CCT

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 7.87 1.57 0.935 0.945 0.076 0.050 0.197 0.145
2 6.56 1.08 0.944 0.942 0.206 0.166 0.343 0.316
3 9.06 1.17 0.945 0.948 0.280 0.293 0.389 0.418

Preferred p p = 2 p = 2

MSE, Coverage Rates and CCT Bandwidths for the Triangular Kernel
MSE×1000 Coverage Rates ĥCCT b̂CCT

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 7.41 1.51 0.931 0.941 0.097 0.063 0.223 0.164
2 6.44 1.05 0.939 0.943 0.246 0.198 0.376 0.346
3 9.03 1.17 0.939 0.944 0.322 0.338 0.418 0.448

Preferred p p = 2 p = 2

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based on 10000 repetitions. The program–available upon
request–is a variant of the Stata package described in Calonico et al. (2014a).
The simulation for the Ludwig-Miller DGP does not include the local constant
(p = 0) estimator, because too few observations lie within its corresponding
bandwidth under when n = 500 or 3138.
The reported CCT bandwidths, ĥCCT and b̂CCT , are the averages over repeated
simulation samples.
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Table A.9: MSE of the Bias-Corrected Estimator and Coverage Rates of 95% Robust CI from Simulations
Using the CCT Bandwidths without Regularization: Lee DGP

MSE, Coverage Rates and CCT Bandwidths w/o Regularization for the Uniform Kernel
MSE×1000 Coverage Rates ĥCCT,noreg b̂CCT,noreg

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 4.00 0.573 0.842 0.866 0.088 0.025 0.440 0.177
1 4.84 0.626 0.869 0.843 0.383 0.165 0.433 0.248
2 7.08 0.595 0.915 0.903 0.426 0.274 0.473 0.380
3 12.9 0.640 0.934 0.940 0.465 0.427 0.502 0.537

Preferred p p = 0 p = 0

MSE, Coverage Rates and CCT Bandwidths for the Triangular Kernel
MSE×1000 Coverage Rates ĥCCT,noreg b̂CCT,noreg

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 3.52 0.530 0.848 0.880 0.116 0.035 0.548 0.191
1 4.57 0.517 0.867 0.873 0.472 0.188 0.487 0.271
2 6.05 0.489 0.906 0.910 0.482 0.309 0.518 0.414
3 9.04 0.545 0.914 0.936 0.519 0.475 0.539 0.581

Preferred p p = 0 p = 2

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based 10,000 repetitions. The program–available upon re-
quest–is a variant of the Stata package described in Calonico et al. (2014a).
The reported CCT bandwidths, ĥCCT,noreg and b̂CCT,noreg, are the averages over
repeated simulation samples.
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Table A.10: MSE of the Bias-Corrected Estimator and Coverage Rates of 95% Robust CI from Simulations
Using the CCT Bandwidth without regularization: Ludwig-Miller DGP

MSE, Coverage Rates and CCT Bandwidths for the Uniform Kernel
MSE×1000 Coverage Rates ĥCCT,noreg b̂CCT,noreg

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 7.87 1.57 0.935 0.945 0.076 0.050 0.197 0.145
2 6.56 1.08 0.944 0.942 0.206 0.166 0.343 0.316
3 9.06 1.17 0.945 0.948 0.280 0.293 0.389 0.418

Preferred p p = 2 p = 2

MSE, Coverage Rates and CCT Bandwidths for the Triangular Kernel
MSE×1000 Coverage Rates ĥCCT,noreg b̂CCT,noreg

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 7.41 1.51 0.931 0.941 0.097 0.063 0.223 0.164
2 6.44 1.05 0.939 0.943 0.246 0.198 0.376 0.346
3 9.03 1.17 0.939 0.944 0.322 0.338 0.418 0.448

Preferred p p = 2 p = 2

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based on 10000 repetitions. The program–available upon
request–is a variant of the Stata package described in Calonico et al. (2014a).
The simulation for the Ludwig-Miller DGP does not include the local constant
(p = 0) estimator, because too few observations lie within its corresponding
bandwidth under when n = 500 or 3138.
The reported CCT bandwidths, ĥCCT,noreg and b̂CCT,noreg, are the averages over
repeated simulation samples.
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Table A.11: Estimated AMSE of the Bias-corrected Estimator from Simulations Using the CCT Bandwidths:
Lee DGP

Estimated AMSE, Preferred p and CCT Bandwidths for the Uniform Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT b̂CCT

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 2.77 0.422 0.929 0.299 0.059 0.023 0.225 0.138
1 4.06 0.400 0.070 0.566 0.160 0.111 0.296 0.219
2 6.05 0.448 0.000 0.120 0.225 0.208 0.350 0.333
3 8.73 0.537 0.001 0.015 0.275 0.298 0.386 0.424

Most Likely Choice of p p = 0 p = 1

Estimated AMSE, Preferred p and CCT Bandwidths for the Triangular Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT b̂CCT

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 2.62 0.415 0.977 0.212 0.084 0.032 0.271 0.161
1 3.87 0.391 0.023 0.674 0.205 0.139 0.333 0.245
2 5.82 0.436 0.000 0.102 0.271 0.248 0.382 0.364
3 8.49 0.525 0.000 0.012 0.316 0.344 0.413 0.453

Most Likely Choice of p p = 0 p = 1

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based 10,000 repetitions. The program–available upon re-
quest–is a variant of the Stata package described in Calonico et al. (2014a).
The reported CCT bandwidths, ĥCCT and b̂CCT , are the averages over repeated
simulation samples.
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Table A.12: Estimated AMSE of the Bias-corrected Estimator from Simulations Using the CCT Bandwidths:
Ludwig-Miller DGP

Estimated AMSE, Preferred p and CCT Bandwidths for the Uniform Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT b̂CCT

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.70 1.56 0.178 0.000 0.076 0.050 0.197 0.145
2 7.23 1.07 0.789 0.683 0.206 0.166 0.343 0.316
3 10.4 1.15 0.034 0.317 0.280 0.293 0.389 0.418

Most Likely Choice of p p = 2 p = 2

Estimated AMSE, Preferred p and CCT Bandwidths for the Triangular Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT b̂CCT

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.48 1.50 0.193 0.000 0.097 0.063 0.223 0.164
2 7.20 1.04 0.788 0.692 0.246 0.198 0.376 0.346
3 10.4 1.12 0.019 0.308 0.322 0.338 0.418 0.448

Most Likely Choice of p p = 2 p = 2

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based on 10000 repetitions. The program–available upon
request–is a variant of the Stata package described in Calonico et al. (2014a).
The simulation for the Ludwig-Miller DGP does not include the local constant
(p = 0) estimator, because too few observations lie within its corresponding
bandwidth under when n = 500 or 3138.
The reported CCT bandwidths, ĥCCT and b̂CCT , are the averages over repeated
simulation samples.
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Table A.13: Estimated AMSE of the Bias-corrected Estimator from Simulations Using the CCT Bandwidths
without Regularization: Lee DGP

Estimated AMSE, Preferred p and CCT Bandwidths w/o Regularization for the Uniform Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT,noreg b̂CCT,noreg

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 2.44 0.383 0.884 0.324 0.087 0.025 0.439 0.177
1 8.78 0.946 0.111 0.423 0.383 0.165 0.433 0.248
2 23.5 1.156 0.006 0.135 0.426 0.274 0.472 0.380
3 73.0 1.700 0.000 0.118 0.465 0.427 0.502 0.537

Most Likely Choice of p p = 0 p = 1

Estimated AMSE, Preferred p and CCT Bandwidths for the Triangular Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT,noreg b̂CCT,noreg

poly. order p n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558 n = 500 n = 6558
0 2.10 0.39 0.914 0.196 0.116 0.035 0.548 0.191
1 4.70 0.426 0.083 0.559 0.472 0.188 0.487 0.271
2 8.41 0.425 0.003 0.102 0.482 0.309 0.517 0.414
3 20.1 0.699 0.000 0.144 0.518 0.475 0.539 0.581

Most Likely Choice of p p = 0 p = 1

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based 10,000 repetitions. The program–available upon re-
quest–is a variant of the Stata package described in Calonico et al. (2014a).
The reported CCT bandwidths, ĥCCT,noreg and b̂CCT,noreg, are the averages over
repeated simulation samples.
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Table A.14: Estimated AMSE of the Bias-corrected Estimator from Simulations Using the CCT Bandwidth
without regularization: Ludwig-Miller DGP

Estimated AMSE, Preferred p and CCT Bandwidths for the Uniform Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT,noreg b̂CCT,noreg

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.28 1.53 0.072 0.000 0.079 0.051 0.206 0.148
2 8.71 1.38 0.748 0.323 0.240 0.173 0.424 0.335
3 68.2 3.96 0.180 0.677 0.446 0.388 0.507 0.538

Most Likely Choice of p p = 2 p = 3

Estimated AMSE, Preferred p and CCT Bandwidths for the Triangular Kernel
ÂMSE×1000 Fraction of Times Preferred ĥCCT,noreg b̂CCT,noreg

poly. order p n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138 n = 500 n = 3138
1 8.09 1.48 0.080 0.000 0.100 0.064 0.232 0.167
2 9.42 1.00 0.727 0.302 0.283 0.204 0.464 0.366
3 25.4 1.91 0.194 0.698 0.502 0.440 0.550 0.583

Most Likely Choice of p p = 2 p = 3

Note: The bias-corrected estimator is τ̂bc
p,p+1. It is equal to the sum of the

conventional RD estimator from a p-th order local regression and the bias cor-
rection term estimated from a (p+1)-th order local regression.
The simulation is based on 10000 repetitions. The program–available upon
request–is a variant of the Stata package described in Calonico et al. (2014a).
The simulation for the Ludwig-Miller DGP does not include the local constant
(p = 0) estimator, because too few observations lie within its corresponding
bandwidth under when n = 500 or 3138.
The reported CCT bandwidths, ĥCCT,noreg and b̂CCT,noreg, are the averages over
repeated simulation samples.
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Figure A.1: Weights for Global Polynomial Estimators: Lee Data
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Figure A.2: Weights for Global Polynomial Estimators: Ludwig-Miller Data
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