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motivation and comparative disutility due to ex-ante uncertainty. Narrow goal bracketing can
be used as an instrument to counteract the self-control problem, while broad goal bracketing
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nature of decision-making introduces a differential reaction to outcome uncertainty based on its
timing, which determines the optimal bracketing choice.
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1 Introduction

When contemplating a long-term project, individuals often realize that they may lack the willpower

to achieve a desired outcome, despite the foreknowledge that persistence is beneficial. One com-

monly suggested method of improving perseverance is to set goals to motivate oneself. In addition

to choosing goal levels for achievement, setting appropriate goals also requires a decision regarding

how they should be structured to complete a multi-stage project. One option is to take each stage

“one step at a time,” setting and evaluating goals at each stage. For example, an entrepreneur

building a business can set goals for each potential stage of expansion. A student pursuing an

education can set achievement goals for each stage before deciding whether to continue onto the

next. Alternatively, one could evaluate “the big picture” by setting a holistic goal that is evaluated

only upon the project’s completion.

Neoclassical theory assumes that when making many choices, an agent maximizes utility by

considering a choice in conjunction with the consequences of other choices. However, there exists

extensive evidence that individuals generally do not make decisions on such a global basis. Rather

than considering choices broadly, they tend to consider each choice in isolation - that is, they

bracket narrowly - in the domains of both consumption (Heath and Soll 1996) and risk (Tversky

and Kahneman 1981, Gneezy and Potters 1997, Rabin and Weizsäcker 2009). Similarly, the concept

of mental accounting posits that individuals allocate expenses into various categories with separate

budget constraints, so that they essentially engage in narrow bracketing within each category

(Thaler 1999, Heath and Soll 1996). While this body of work has focused on the decision errors

that narrow bracketing can produce and the benefits of broad bracketing, formal study of when

and why individuals might want to engage in narrow bracketing deliberately has been limited

to qualitative discussion of the practice as a means to counteract a self-control problem, if they

anticipate a lack of willpower to implement ex-ante plans.

This paper develops a theoretical model to study the endogenous choice of level and bracketing

of outcome-based goals, which are outcome targets that the agent expects to achieve, and makes

testable predictions regarding phenomena such as the sunk cost fallacy, based on the timing and

magnitude of environmental uncertainty. Since frequent goal evaluation can be expected to increase

perseverance, a natural question is why an individual might choose to set broader, aggregate goals
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that are evaluated less frequently and more holistically. Intuitively, the agent may dislike frequent

evaluation if there is ex-ante uncertainty regarding how he will fare relative to his goal, since

there is a greater likelihood that he incurs disutility from falling short at each milestone. Setting

broader goals allows the agent to pool the risk from uncertain endeavors, minimizing the expected

comparative disutility from evaluation.1 For example, consider an entrepreneur who is building a

business. He may enforce stronger motivation if he sets and evaluates goals for each potential stage

of expansion. But given ex-ante uncertainty about the profitability of each stage, he is more likely

to disappoint himself at each point, so he might choose to evaluate himself less frequently to avoid

this. For example, he could instead evaluate the profitability of the stages collectively once he has

completed them.

Formally, I consider the optimal bracketing of self-set goals, which I model as reference points.

An agent derives utility from both standard consumption, arising from outcomes, and comparison

utility, arising from the comparison of these outcomes to a self-set goal. At each point in time, his

goal is based on his ex-ante expectations about the outcome of future behavior, which his next “self”

will inherit as a reference point in his utility function. In this way, he provides a degree of internal

motivation that is desirable if he exhibits time inconsistency due to present-biased time preferences.

In addition, the agent determines ex-ante whether to set incremental goals, evaluating “one step

at a time,” or to set aggregate goals, evaluating less frequently and more holistically. The agent

is sophisticated, implying that his goals must ultimately coincide with the rational expectation of

what he will actually do. I assume that the agent is loss averse, which leads him to prefer one-shot

rather than gradual resolution of ex-ante uncertainty over outcomes.

The economic setting I study is a sequential stopping problem in continuous time with an

infinite horizon, in which there exists an option value of waiting due to uncertainty. In the context

of entrepreneurship, a business owner must first establish a storefront before opening a second

location or expanding a product line. Just as in a single optimal stopping problem, present-

biasedness leads the agent to stop too early in each stage because he undervalues this option

relative to his time-consistent counterpart.

1This intuition has been previously been explored in psychology, where more immediate goals are “proximal”
and temporally distant goals are “distal.” Kirschenbaum (1985, p. 503) states “Using very specific and proximal
plans may lead to many failures to reach short-term subgoals. Failures to achieve such subgoals will occur frequently
because people often fail to predict accurately fluctuations in situational demands . . . ”
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How an agent with a self-control problem chooses to bracket his goals is determined by a tradeoff

between motivational power and expected disutility from ex-ante uncertainty over outcomes. In

addition, the intertemporal separation between stopping stages creates an asymmetry in the agent’s

reaction to ex-ante uncertainty across stages, because an aggregate goal both delays interim outcome

evaluation and provides the ability to react to interim news.

Formally, I solve for the unique stationary Markov equilibrium of the intrapersonal game when

the agent sets either incremental or aggregate goals, then determine the conditions under which

each form of goal bracketing maximizes the value of the sequential stopping option ex-ante. I

find that when an agent sets an aggregate goal, he responds to payoff-irrelevant news, exhibiting

behavior such as the sunk cost fallacy and “coasting.” Either form of goal bracketing attenuates

the self-control problem, but setting an aggregate goal is less effective at improving patience than

setting an incremental goal because aggregating outcome uncertainty across stages both decreases

and delays the anticipated disutility incurred upon stopping. Thus the incentive to wait longer

to compensate for such disutility is weaker. However, aggregating goals enables risk pooling and

responses to interim news, so doing so becomes more appealing when initial ex-ante outcome

uncertainty about a project is high. In contrast, greater ex-ante outcome uncertainty regarding

later project stages primarily weakens the motivation to be patient by delaying aggregate goal

evaluation, so setting incremental goals becomes more attractive when ex-ante uncertainty about

later project stages is high. Thus, I find that narrow goal bracketing can be used as an instrument to

counteract the self-control problem, and that broad goal bracketing can itself generate apparently

erroneous behavior such as the sunk cost fallacy. Surprisingly, in contrast to a static model,

the sequential nature of decision-making interacts with motivational power and risk pooling to

introduce a differential reaction to outcome uncertainty based on its timing. This framework also

demonstrates the existence of environments in which loss aversion can be beneficial to the agent

from an ex-ante perspective.

The paper proceeds as follows. Section 2 links this paper to related lines of research. Section 3

describes the model. Section 4 describes the general method of equilibrium construction. Section

5 characterizes the stationary Markov equilibrium when the agent sets incremental goals, while

Section 6 considers the case of aggregate goals. Section 7 derives the conditions under which each

form of goal bracketing maximizes the ex-ante value of the sequential stopping option. Section 8

4



elaborates on the role of loss aversion. Section 9 summarizes the results and discusses avenues for

future research. Proofs are gathered in the Appendix.

2 Related Literature

This paper studies choice bracketing in the context of self-control. It also relates to reference

dependence through the concept of self-imposed, non-binding goals.

There is extensive evidence that individuals often do not make decisions on the global basis

assumed in neoclassical theory, and tend to consider choices in isolation (i.e., to bracket narrowly)

in the domains of consumption (Heath and Soll 1996) and risk (Tversky and Kahneman 1981,

Gneezy and Potters 1997, Rabin and Weizsäcker 2009). Narrow bracketing, in conjunction with

loss aversion, has been used to explain the equity premium puzzle (Benartzi and Thaler 1995), low

stock market participation (Barberis, Huang and Thaler 2006), and individual investors’ portfolio

choices (Odean 1998). The concept of mental accounting posits that individuals create budgets by

earmarking expenses into categories, essentially engaging in narrow bracketing within each category

(Thaler 1999, Heath and Soll 1996).

While it is evident that individuals engage in narrow bracketing across a variety of contexts,

the question of when and why they would choose to do so has been relatively unexplored formally.

Consistent with the interpretation of bracketing as a result of cognitive limitations, most empirical

work has inferred the degree of bracketing necessary to explain observed phenomena (Benartzi and

Thaler 1995, Odean 1998), while existing theoretical work has assumed it as given (Barberis, Huang

and Santos 2001, Barberis et al. 2006). In contrast, Read, Loewenstein and Rabin (1999) suggest

the motivated use of narrow versus broad bracketing intertemporally as a means of self-control.

Similarly, Thaler (1999) discusses how people may deliberately assign “tempting” goods to mental

accounts with small budgets. The psychological literature includes studies of intertemporal brack-

eting in the form of short-term versus long-term goals, referred to as proximal versus distal goals,

respectively, for repeated or lengthy tasks.2 Koch and Nafziger (2014) study an agent’s bracketing

2These studies usually involve the comparison of subjects’ performance when proximal versus distal goals are
assigned by the experimenter, and tend to find a larger response to goals when they are proximal (Bandura and
Simon 1977, Locke and Latham 2002). Recognizing that the terms “proximal” and “distal” are inherently rela-
tive, Kirschenbaum (1985) considers the circumstances under which proximal versus distal goals are preferable and
pinpoints the central factor as a trade-off between motivation and uncertainty.
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decision across simultaneous activities, and consider sequential activities with anticipatory gain-

loss utility in the absence of time discounting, leading to very different incentives. In contrast, I

consider intertemporal bracketing with endogenous timing of goal evaluation, in which the inter-

action between the timing of outcome uncertainty and the value of time plays a central role in

decision-making.

Psychologists have long posited that goals serve as a reference standard in a cognitive compar-

ison process of self-evaluation and satisfaction (Latham and Locke 1991, Locke and Latham 2002,

Bandura 1989), while Heath, Larrick and Wu (1999) explicitly argue that a goal acts as the ref-

erence point in the prospect theory value function formulated by Kahneman and Tversky (1979).

Goal-setting as a mechanism for self-control is discussed by Loewenstein (2007) with respect to

mountaineering, and has been the subject of recent interest by economists. Hsiaw (2013) finds

that even in the absence of loss aversion or diminishing sensitivity, outcome-based goal-setting can

attenuate the hyperbolic agent’s tendency to undervalue the option and stop too early, if there is

sufficient commitment to expectation-based goals. However, too much reference dependence can

itself be a source of intrapersonal conflict, causing an agent to wait longer than the first best.

Suvorov and van de Ven (2008) and Koch and Nafziger (2011) study a three-period problem where

a sophisticated agent sets a goal regarding both current effort and delayed task benefit, while

Koch, Nafziger, Suvorov and van de Ven (2014) extend the goal-setting framework to contingent

self-rewards.

Kőszegi and Rabin (2006) develop a model of reference dependent preferences in which an

individual derives utility from both final outcomes and comparison to a reference point endogenously

determined by rational expectations, and extend it to a dynamic setting (Kőszegi and Rabin 2009).

There is much experimental (Abeler, Falk, Goette and Huffman 2011, Ericson and Fuster 2011,

Sprenger in press) and empirical evidence that people use reference points (Camerer, Babcock,

Loewenstein and Thaler 1997, Goette and Huffman 2005, Farber 2005, Farber 2008, Crawford and

Meng 2008, Pope and Schweitzer 2011, Allen, Dechow, Pope and Wu 2014).
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3 The Model

I first describe the economic environment, followed by the agent’s preferences, which may include

hyperbolic discounting and reference dependence. I study a sequential stopping problem, where

the self-control problem arises purely from the tension between stopping today and waiting for

a better outcome. A number of stopping problems can realistically be cast as sequential stages.

For example, an entrepreneur must build a core business before considering expansion to another

location or a brand extension. A venture capitalist often must invest in an early funding round

in order to participate in the next. A student must obtain a college degree before continuing to

post-graduate studies. A worker searches for a series of jobs to pursue a career.

3.1 Sequential Stopping

I consider a sequential continuous-time stopping problem, in which an infinitely-lived agent is

engaged in a two-stage project.3 For example, consider an entrepreneur who is building a business.

First, he can establish a storefront at some irreversible, fixed cost I1. Completing it buys him the

option to open a second location at another irreversible, fixed cost I2. Thus, he must complete the

first stage in order to continue to the second.

Formally, the agent decides whether to stop or to wait, based on an observation of the current

value of the stage payoff. In the latter case, the payoff of stage i, xit ∈ [0,∞), evolves as a geometric

Brownian motion:

dxit = µixitdt+ σixitdzi, (1)

where zi is a standard Wiener process, µi the average growth rate of xit, and σi its standard

deviation per unit time. The cost of completing stage i at any time is Ii > 0, and is incurred only

at the stopping time ti.
4 Completion of stage i at time ti yields the lump-sum terminal payoff xiti .

The second-stage payoff process x2t only starts upon completion of the first stage, at time t1, and

evolves thereafter independently of x1t, which terminates at time t1. The processes x1t and x2t are

3Of course, the two-stage problem can naturally be extended into several more stages, but all intuitions remain
the same.

4Here, there is no intertemporal separation of the costs and benefit. The agent’s self-control problem arises purely
from the tension between the option value of waiting for an uncertain period of time and stopping today at a known
project value. In contrast, Brocas and Carrillo (2005) and Miao (2008) study irreversible consumption in discrete
time models where costs are delayed until after consumption. Separating the costs and benefits of stopping in such
a manner certainly exacerbates the self-control problem, but is not necessary to produce intrapersonal conflict.
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only linked at one point in time, t1.

Without loss of generality, there is no interim flow payoff nor any direct cost incurred prior

to stopping for each stage.5 In a number of settings, including the one described above, it seems

natural that the initial value of a payoff process depends on the payoff from the preceding stage.

For example, the initial value of the second potential location may be lower if the entrepreneur’s

first storefront, from which he receives a payoff from opening it, was not as successful.

Thus, each stage of the project is a standard optimal stopping problem, where the agent can

only complete the second stage by completing the first. Note, however, that there is nothing to

preclude the agent from completing both stages simultaneously if it is optimal to do so.

I assume that µ1 = µ2 ≡ µ and σ1 = σ2 ≡ σ, but the processes x1t and x2t still evolve

independently. None of the qualitative results rely on or require this simplification, which is made

for simplicity.

3.2 Outcome Uncertainty

In many contexts, an agent must make stopping decisions in each stage i = 1, 2 based on imperfect

observation of the project payoff value, and learns the true realization of xit after stopping. For

example, an entrepreneur relies on observed market conditions to form an estimate of how successful

his business may be and decides when to invest accordingly, but his realized payoff could certainly

differ.

Let x̃it be the observed payoff value in stage i. I assume a discrete, two-point distribution over

the noise regarding the payoff processes for tractability. In particular, x̃it = (1 + ζi)xit for i = 1, 2,

where ζi is a discrete random variable with the following distribution, which is known to the agent:

ζi =











ǫi with probability 1
2

− ǫi
1+2ǫi

with probability 1
2 ,

(2)

where ǫi ∈ [0,∞) and i = 1, 2. Uncertainty over the true payoff values x1t and x2t increases in ǫ,

with perfect observation when ǫ = 0. Given an observed x̃it, the true value of xit is either (
1

1+ǫi
)x̃it

5An alternative setting might include a constant flow payoff y ∈ (y,∞), where y < 0 is the minimal flow payoff
such that the agent stops immediately for any x̃it ≥ 0. Given the other assumptions, the inclusion of a constant flow
payoff has no qualitative effect on the results, so I assume y = 0 for simplicity of exposition. Likewise, incorporating
a stochastic flow payoff that follows a known process with known current value leads to the same qualitative results.
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or (1+2ǫi
1+ǫi

)x̃it with equal probability. Thus, E(xit|x̃it) = x̃it, so the agent expects to receive x̃iti − Ii

if he stops at time ti, for i = 1, 2.6 That is, the agent’s expectation of the true payoff based on his

observation is correct on average in either stage. I construct the noise as a mean-preserving spread

over the expected outcome in order to isolate the effect of observational uncertainty alone. Ex-ante,

nature chooses the realizations of ζ1 and ζ2, which are i.i.d. and fixed throughout, but unknown to

the agent, who knows ǫ1 and ǫ2.
7 Multiplicative, rather than additive, noise prevents an observed

payoff value from falling below the boundary value of zero unless the true payoff value equals zero,

since this case would clearly allow the agent to infer a noise realization ζi. It also implies that the

effect of uncertainty on comparative utility and the observed payoff process is bounded. Unless

otherwise noted, qualitative results apply to both multiplicative and additive noise.

The stage 2 process (x2t) does not begin until stage 1 is completed. The observed processes

x̃1t and x̃2t are linked at only one point in time, t1. In particular, let x̃2t1 = kx̃1t1 where k > 0 is

known to the agent. Thereafter, the evolution of the stage 2 process is unaffected by the events of

stage 1.

3.3 Time Preferences

The agent may have present-biased preferences, creating a self-control problem. I model this

present-biasedness with a continuous time version of quasi-hyperbolic preferences (Harris and

Laibson 2013). At any time s, an agent’s preferences are divided into a “present,” which lasts

from time s to time s + τs, and a “future,” which arrives at time s + τs and persists forever. The

length of the present, τs, is stochastic and distributed exponentially with parameter λ ∈ [0,∞).8

When the future for this self s arrives at time s+ τs, he is replaced by a new self who takes control

of decision-making. Likewise, the preferences of this self s+τs are divided into a “present” of length

τs+τs and a “future” that arrives at time (s + τs) + τs+τs and persists forever. Hence, when each

self’s “future” arrives, it “dies” and is replaced by a new self.

6More generally, any distribution of ζi such that E( 1

1+ζi
) = 1 yields E(xit|x̃it) = x̃it.

7The assumption that uncertainty is fixed ex-ante is a technical necessity, to prevent the observed payoff processes
x̃1t and x̃2t from jumping discontinuously from one instant to the next.

8The assumption of a stochastic arrival time of the future allows for a parsimonious stationary solution to the
stopping problem, but is not necessary to obtain qualitative results.
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Each self s has a stochastic discount function Ds(t):

Ds(t) =











e−ρ(t−s) if t ∈ [s, s+ τs)

βe−ρ(t−s) if t ∈ [s+ τs,∞),
(3)

where β ∈ [0, 1] and ρ > 0. To ensure that the agent never finds it optimal to wait forever in

the optimal stopping problem, let ρ > µ. The function Ds(t) decays exponentially at the rate ρ

throughout, but drops discontinuously at time s+τs to a fraction β of its prior level. In contrast to

the discrete time version, there are two parameters that determine the degree to which an agent’s

behavior deviates from that of a time-consistent individual. First, the parameter β retains the

same role it plays in the discrete-time version, measuring how much the future is valued relative to

the present. Second, the parameter λ determines the arrival rate of the future, and thus how often

preferences change. When β = 1 or λ = 0, the preferences described by Equation (3) are equivalent

to those of an exponential discounter with discount rate ρ.

I assume that the agent is sophisticated, so he is fully aware of his dynamic inconsistency and

would like to bring his future selves’ behavior in line with his own preferences.

3.4 Reference Dependent Preferences

The agent’s preferences are reference-dependent: his utility is composed of both standard consump-

tion utility, which is based on absolute levels, and of comparison utility, which is concerned with

gains and losses relative to a reference point, which here corresponds to a goal. In the optimal-

stopping context with zero flow payoffs, the agent’s expected consumption utility upon completing

stage i at time ti is simply his expected net terminal payoff: E(xiti − Ii|x̃iti) = x̃iti − Ii.

The agent’s comparison utility is closely related to his consumption utility. It is derived by

comparing his actual net terminal payoff at time ti against his goal at that time, rti , and is governed

by a piece-wise linear function ψ(·), given by

ψ(y) =











αηy if y < 0

ηy if y ≥ 0,

where α ≥ 1 and η ≥ 0. The parameter η measures the agent’s degree of reference dependence,
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and can be interpreted as the degree to which he cares about, or pays attention to, the difference

between his outcome and his goal. The parameter α captures his degree of loss aversion, where

α = 1 when loss aversion is absent. If the agent’s goal for the completion of stage i at time ti

is rti , then the argument y is given by xiti − Ii − rti and his expected comparison utility is given

by Eti
[ψ(xiti − Ii − rti)|x̃iti ]. Thus, given an observed x̃it, his expected comparison utility upon

stopping at time ti is derived by applying the comparison function ψ(·) to the difference between

each possible realization of xiti against this goal and weighting these comparisons linearly by their

respective probabilities. However, possible losses relative to the goal are additionally weighted by

α. In the absence of loss aversion, mean-zero ex-ante uncertainty over x1t and x2t clearly has no

effect on behavior, since the consumption-utility component of the agent’s preferences is linear.

Moreover, it is the presence of loss aversion that leads him to prefer aggregated rather than gradual

resolution of ex-ante uncertainty over outcomes.9

I assume that the agent only incurs comparison utility at the time at which he stops and receives

the net terminal payoff. That is, although he is always aware that he will incur comparison utility

at the moment of stopping, he does not directly experience it while waiting. This assumption

accords with the notion from mental accounting that individuals do not necessarily “feel” gains

and losses until they have been realized (Thaler 1999). For example, the disposition effect, where

stockholders are reluctant to sell losing stocks, and hence realize losses relative to their original

buying prices, is consistent with this idea (Odean 1998, Barberis and Xiong 2012). Imas (2015)

finds that individuals’ risk attitudes differ when prior losses are realized or paper.

For simplicity, overall utility is taken to be additively separable in its two components. Thus,

given a goal riti to be evaluated upon completion of stage i, the agent’s expected total utility upon

completing stage i is

Eti

(

xiti − Ii + ψ(xiti − Ii − riti)|x̃iti
)

. (4)

In the absence of such a goal for stage i, the agent does not make any comparison upon completion

of stage i and the last term of Equation (4) is omitted.

9Similarly, Kőszegi and Rabin (2009) find that loss aversion leads agents to prefer information to be received in
clumps rather than spread apart. Palacios-Huerta (1999) demonstrates that an agent with Gul’s (1991) disappoint-
ment aversion is also averse to the sequential resolution of uncertainty. Dillenberger (2010) finds that having recursive,
non-expected utility preferences is not sufficient to exhibit a preference for one-shot resolution of uncertainty. An in-
dividual must also exhibit Negative Certainty Independence, a feature analogous to the “certainty effect” (Kahneman
and Tversky 1979) without requiring non-linear probability weighting.
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3.5 Goal Bracketing

In addition to setting the level of his goals, the agent can choose when and how he evaluates them.

I assume that there exists a “self 0,” an ex-ante self, who learns that the sequential investment

opportunity will present itself in future and forms an expectation of how he will behave once the

option becomes available for exercise. Self 0 determines how to bracket goals and the corresponding

goal levels given the bracketing choice. Because self 0 brackets and sets goals from an ex-ante

perspective for his descendants, this decision is made by maximizing ex-ante welfare. That is, self

0 prefers that all future selves behave as though they were exponential discounters. At any time s,

the goal rs is taken as given by self s and cannot be changed during his entire “lifetime,” having

been set by self 0. The assumption that the agent cannot change an inherited goal implies that

such a goal can provide a degree of internal motivation to his (present-biased) future selves.

In the two-stage problem, his options for bracketing and setting goals are intuitive. First, he

can specify incremental goals for each stage of the project, framing the problem narrowly. That

is, he can set goals for the net terminal payoffs of stages i, denoted rinci for i = 1, 2, and evaluate

himself against rinci upon completion of each stage i. In the context of the entrepreneur, he can

set goals for each stage of his business project, evaluating himself against individual goals for each.

Alternatively, he can specify an aggregate goal for the entire project, framing the problem broadly.

That is, he can set a goal regarding the total net payoff from the entire project, denoted ragg2 , and

evaluate the sum of net payoffs from both stages against ragg2 upon completion of the entire project.

When the agent sets an aggregate goal, he only derives comparison utility at the end of the second

stage. However, when making the stopping decision in the first stage, he is aware that he will make

a comparison at the end of the entire project, so his behavior in each stage will contribute to his

overall evaluation.

Because the agent is sophisticated and correctly anticipates his actions, I assume that each self,

including self 0, has rational expectations about goal achievement. That is, he cannot consistently

fool himself about what he can or cannot achieve - he sets goals that are realistic.10 Thus, self

0 prefers that future selves behave like exponential discounters, but brackets and sets goals with

10Based on the results of lab and field experiments, Latham and Locke (1991) conclude that goal choice integrates
what one wants and what one believes is possible, suggesting that goals must be, and are, realistic to the agent. In
Hsiaw (2013), I study behavior when the agent’s goals are not constrained to satisfy rational expectations.
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the knowledge that they will respond to such goals with present bias. Because he has ex-ante

uncertainty over the realized terminal payoff when setting a goal, I assume that his goal is the

expectation of his net terminal payoff, given the observed payoff upon stopping. If the agent

has a goal regarding his stage i payoff and stops at ti, then rational expectations require that

rti = E(xiti |x̃iti) − Ii. The particular formulation of reference point as a degenerate distribution

that is the expectation of his payoff is not essential to the intuitions that drive the main results.

Although it determines the magnitude of distaste over ex-ante uncertainty, it does not affect the

relevant comparative statics. The key requirements are that the agent has distaste over ex-ante

uncertainty, which arises from loss aversion, and that he holds rational (endogenous) expectations,

comparing possible realizations against his reference point.11

4 Equilibrium Construction

To determine the conditions under which setting incremental versus aggregate goals is optimal, I

analyze the agent’s behavior under each form of bracketing, then consider the intertemporal brack-

eting choice from an ex-ante perspective. Because the agent is quasi-hyperbolic and sophisticated,

the problem takes on the nature of a dynamic game between successive selves. I focus on the

stationary Markov equilibrium, in which each self employs the same threshold strategy in each

stage.

To construct such an equilibrium, I solve the intrapersonal game backwards in the manner

delineated in Grenadier and Wang (2007) and Hsiaw (2013), which study a single optimal stopping

problem.12 I apply backwards induction to determine the agent’s behavior in the second stage upon

completion of the first stage, then consider his behavior in the first stage. Each self anticipates

that his descendants will act according to a threshold that maximizes their own current benefit of

waiting, so they will face a problem that is identical to his own. Constructing the stationary solution

involves, within each stage of the sequential stopping problem, searching for a fixed point such that

11There are a number of other proposed formulations of the reference point. Although there is some evidence
supporting the theory of expectations as a reference point (Abeler et al. 2011, Crawford and Meng 2008), the precise
formulation that individuals actually use is an unresolved empirical question. Kőszegi and Rabin (2006) assume
that an agent holds a stochastic reference point when there is ex-ante uncertainty, where rational (endogenous)
expectations imply that it must be the probability measure over realized outcomes. Gul’s (1991) model implies that
the reference point is the certainty equivalent of a chosen lottery.

12Grenadier and Wang (2007) solve for the stationary Markov equilibrium when the agent has quasi-hyperbolic
time preferences, which is equivalent to the η = 0 case in Hsiaw (2013).

13



current and future selves stop at a common threshold. Thus, the agent faces ex-ante uncertainty

about the stopping time, but not his stopping threshold, in a stationary Markov equilibrium. In

the absence of observational noise over the payoff process, the agent would have no uncertainty

over the payoff he received upon stopping. Henceforth, I refer to ex-ante outcome uncertainty due

to ǫi > 0 simply as ex-ante uncertainty for brevity.

Since the agent incurs no flow utility while waiting, the Bellman equations describing his decision

problem only differ in his total utility upon stopping, given his bracketing and goal choices and

the current stage. Let the function Φb
i(xi, r

b
i ) describe the current self’s utility upon stopping in

stage i = 1, 2, given his bracketing choice b of either incremental goals (inc) or an aggregate goal

(agg), his corresponding goal rbi , and the current payoff value xi. Likewise, let φbi(xi, r
b
i ) denote

his consideration of future selves’ utility from stopping. Using these generic stopping values, I will

solve for his optimal threshold, then obtain specific expressions for each bracketing choice b and

stage i by substituting for Φb
i(xi, r

b
i ) and φ

b
i(xi, r

b
i ) appropriately in the following sections.

Because each self controls the stopping decision in the present, and cares about - but cannot

directly control - those of the future, two value functions are required to describe the intrapersonal

problem in a given stage. The continuation value function, denoted vbi (·) where i = {1, 2} and

b = {inc, agg}, describes each self s’s consideration (or internalization) of his future selves, following

the random arrival of the future at time τs. Denoting the goal inherited by future selves as r̂i, the

continuation value function in stage i is

ρvbi (xi, r̂
b
i ) = µxi(

∂vbi
∂xi

) +
1

2
σ2x2i (

∂2vbi
∂x2i

). (5)

Beyond time τs, he discounts any future utility flows exponentially at rate ρ. For this reason, it also

describes his preference for future selves to behave as exponential discounters. That is, he prefers

that future selves choose the maximum of the current total utility from stopping stage i, described

by φbi(xi, r̂
b
i ), and the expected present discounted value of waiting for a higher realization of x̃i,

where this discounting is exponential. If the agent were time consistent (β = 1 or λ = 0), then all

selves’ preferences would coincide and he would choose the optimal strategy by maximizing vbi .

However, if the agent is present-biased (β < 1 and λ > 0), he maximizes the current value func-

tion, denoted wb
i (·) where i = 1, 2, which overweights the present relative to the future. Denoting
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the goal inherited by the current self as rbi , the Bellman equation for the current value function is

wb
i (xi, r

b
i ) =max{E[Φi(xi, r

b
i )|x̃i], (1− e−λdt)e−ρdtβE[vbi (xi + dxi, r̂

b
i )|x̃i]

+ (e−λdt)e−ρdtE[wb
i (xi + dxi, r

b
i )|x̃i]}. (6)

Given the observed x̃i and an inherited goal rbi , and anticipating that his future selves will inherit

r̂bi (with the knowledge that he sets r̂bi for his immediate descendant), the current self chooses

the maximum of the current total utility from stopping, described by Φb
i(xi, r

b
i ), and the expected

present discounted value of waiting for a higher realization of x̃i, where this discounting discontin-

uously drops by the factor β upon future’s arrival. A future self arrives in the next instant dt with

probability 1− e−λdt, while the current self remains in control with probability e−λdt.

The agent’s expectation of his terminal payoff, and hence his goal, is dependent on whether he

completes the second stage simultaneously with or strictly after the first. In this paper, I assume

that he completes stages sequentially, then find the conditions required for such a strategy to be

optimal. Because the case of simultaneous completion includes the same intuitions but lacks the

richer dynamics that arise from intertemporal separation, I omit that analysis and focus on the

more interesting sequential scenario.

5 Incremental Goals

First, consider the case in which the agent sets incremental goals for the net terminal payoffs of

stages i, denoted rinci for i = 1, 2. He evaluates himself against a goal rinci only upon completion

of stage i. Given that he sets incremental goals for himself, let xinci be the stopping threshold that

the agent employs to complete stage i = 1, 2. I apply backwards induction to obtain the optimal

thresholds employed in each stage.

Because the comparison utility function is kinked at the origin, I derive xinci under the assump-

tion that rinci is such that

(
1

1 + ǫi
)xinci − Ii ≤ rinci ≤ (

1 + 2ǫi
1 + ǫi

)xinci − Ii, (7)

which is satisfied in equilibrium when expectations are rational. Thus his expected comparison
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utility upon stopping at xinci is

E[ψ(xi − Ii − rinci )|x̃i = xinci ] =
1

2
αη[(

1

1 + ǫi
)xinci − Ii − rinci ] +

1

2
η[(

1 + 2ǫi
1 + ǫi

)xinci − Ii − rinci ]. (8)

In the case of incremental goals, the current self evaluates current and future comparison utility the

same way, since they involve only instantaneous utilities at the stopping time: E[ψ(xi−Ii−r
inc
i )|x̃i =

xinci ] = E[Ψ(xi − Ii − rinci )|x̃i = xinci ]. The agent employs the following stopping threshold xinci in

stage i:13

xinci =
γ[Ii +

1
2η(α+ 1)(rinci + Ii)]

(γ − 1)[1 + 1
2η(

1+α+2ǫi
1+ǫi

)]
, (9)

where γ ≡ βγ1 + (1− β)γ2, γ1 > 1 is the positive root14 of the quadratic equation

1

2
σ2γ21 + (µ−

1

2
σ2)γ1 − ρ = 0, (10)

and γ2 ≥ γ1 is the positive root15 of the quadratic equation

1

2
σ2γ22 + (µ−

1

2
σ2)γ2 − (ρ+ λ) = 0. (11)

As in Hsiaw (2013), the parameter γ1 reflects the fact that the agent discounts the future expo-

nentially at the rate ρ, while the parameter γ2 reflects the fact that each self’s expected “lifetime”

ends with hazard rate λ. The degree to which this feature affects behavior is determined by his

degree of present-biasedness, measured by 1− β. Thus, the parameter γ = βγ1 + (1− β)γ2 serves

as a sufficient statistic for measuring the agent’s impulsiveness, which is determined by both β and

λ. The self-control problem is absent when γ = γ1 and worsens as γ increases.

Proposition 1 In a stationary equilibrium with incremental goals at each stage, the agent’s stop-

ping threshold in stage i, xinci , exhibits the following properties:

13Unsurprisingly, in the absence of loss aversion (α = 1), the threshold xinc
i reduces to the threshold xSE found in

Hsiaw (2013), which describes the sophisticate agent’s optimal stopping threshold in a single-stage stopping problem
in the absence of loss aversion.

14The negative root is ruled out by the boundary condition for x = 0. Writing out γ1 explicitly, we have γ1 =

− µ

σ2 + 1

2
+
√

( µ

σ2 − 1

2
)2 + 2ρ

σ2 . To see that γ1 > 1, note that σ2 > 0 and the left-hand side of the quadratic is negative

when evaluated at γ1 = 0 and γ1 = 1, implying that the negative root is strictly negative and the positive root is
strictly greater than 1 if µ < ρ.

15Again, the negative root is ruled out by the boundary condition for x = 0. It follows that γ2 ≥ γ1 because λ ≥ 0,
with equality only if λ = 0.
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1. The stage i threshold is unaffected by stage j ex-ante uncertainty, where j 6= i:
∂xinc

i

∂ǫj
≥ 0.

2. The stage i threshold increases with stage i ex-ante uncertainty if the agent is loss averse:

∂xinc
i

∂ǫi
≥ 0, with equality only if α = 1 or η = 0.

3. The stage i threshold increases with the degree of loss aversion:
∂xinc

i

∂α
> 0.

When the agent sets incremental goals for each stage, he employs thresholds in each as if they

were separate stopping decisions, just as a standard agent without reference dependent preferences

would. Note that the standard agent’s stopping thresholds correspond to xinci (η = 0) for i = 1, 2.

Once its option has been acquired, the stopping decision in stage 2 is completely independent of the

first stage, since the incremental goal for stage 2 only pertains to the outcome of stage 2. Moreover,

his incremental goal for stage 1 only pertains to the outcome of stage 1, so his stage 1 decision is

unaffected by stage 2 uncertainty.

It is only in the presence of loss aversion (α > 1) that the agent dislikes ex-ante, mean-zero

outcome uncertainty, since it leads him to overweight the possibility of a loss. In this case, expected

comparative disutility, given by Equation (8), increases with the degree of uncertainty, measured

by ǫi, leading him to wait for a higher realization of the project value in order to compensate for

the anticipated loss. Increasing loss aversion implies increasing weight on the possibility of a loss,

leading the agent to wait longer to compensate for it.

The agent expects to receive a terminal payoff that is determined by stopping threshold xinci .

Rational expectations imply that his incremental goal satisfies rinci = xinci − Ii. Substituting this

condition into Equation (9) yields the threshold xinci when he sets incremental goals and stops

sequentially:16

xinci =
γIi

(γ − 1)[1− 1
2η(α− 1)( ǫi

1+ǫi
)]− 1

2η(α+ 1)
, (12)

where 1
2η(α+ 1) < (γ − 1)[1− 1

2η(α− 1)( ǫi
1+ǫi

)]. In equilibrium, the thresholds xinc2 and xinc1 differ

only in the fixed stopping cost Ii and degrees of noise ǫi where i = 1, 2. The expected equilibrium

value functions, winc
1 and vinc1 in the first stage are provided in Appendix 10.2.

16Clearly, condition (7) is satisfied here.
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6 Aggregate Goals

Now, consider the case in which the agent specifies an aggregate goal for the entire project, framing

the problem broadly. He sets a goal regarding the total net payoff from the entire project, denoted

ragg2 , and evaluates the sum of net payoffs from both stages against ragg2 upon completion of the

entire project. When the agent sets an aggregate goal, he has no goal against which to evaluate

himself in the first stage and derives no comparison utility upon its completion. Given that he sets

an aggregate goal for himself, let xaggi be the stopping threshold that the agent employs to complete

stage i = 1, 2.

In the standard case without reference dependent preferences (i.e., η = 0), the outcome of stage

1 is irrelevant to the decision in stage 2. Likewise, when the agent sets incremental goals for each

stage, his behavior in stage 2 is unaffected by the outcome of stage 1. But when the agent sets an

aggregate goal, information about the stage 1 outcome becomes relevant to his behavior in stage 2,

because it enters into his evaluation relative to ragg2 . Thus, there are two key differences between

incremental and aggregate goals: the first is the nature of goal evaluation, and the second is the

relevance of information regarding the outcome of the completed first stage.

6.1 Stage 2

Upon completing the project, it is the sum of the payoffs that the agent expects from both stages

that he compares against his aggregate goal. When making this stopping decision, he knows that

he has stopped stage 1 at the threshold xagg1 and has observed the true realization x1t. Therefore,

his second-stage stopping threshold will be contingent on this information. Let xaggL2 be his stage

2 stopping threshold when he has learned that his stage 1 payoff was lower than expected: x1t1 =

( 1
1+ǫ1

)xagg1 . Let xaggH2 be his stage 2 stopping threshold when he has learned that his stage 1 payoff

was higher than expected: x1t1 = (1+2ǫ1
1+ǫ1

)xagg1 .

Because the comparison utility function is kinked at the origin, I derive xaggL2 and xaggH2 under

the assumption the stage 2 payoff realization has a marginal effect on whether he ends up in the
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gain or loss region. That is, the aggregate goal ragg2 satisfies:

(
1 + 2ǫ2
1 + ǫ2

)xagg1 − I1 + (
1

1 + ǫ2
)xaggH2 − I2 ≤ ragg2 ≤ (

1 + 2ǫ2
1 + ǫ2

)xagg1 − I1 + (
1 + 2ǫ2
1 + ǫ2

)xaggH2 − I2

(
1

1 + ǫ2
)xagg1 − I1 + (

1

1 + ǫ2
)xaggL2 − I2 ≤ ragg2 ≤ (

1

1 + ǫ2
)xagg1 − I1 + (

1 + 2ǫ2
1 + ǫ2

)xaggL2 − I2.

These conditions are satisfied in equilibrium under rational expectations whenever ǫ1 ≤ ǫ2, or as

long as ǫ1 − ǫ2 > 0 is not too large. Then the contingent thresholds employed in stage 2 as a

function of any given goal ragg2 are:

xaggL2 =
γ[I2 −

1
2η(α+ 1)( 1

1+ǫ1
)xagg1 + 1

2η(α+ 1)(ragg2 + I1 + I2)]

(γ − 1)[1 + 1
2η(

1+α+2ǫ2
1+ǫ2

)]
(13)

xaggH2 =
γ[I2 −

1
2η(α+ 1)(1+2ǫ1

1+ǫ1
)xagg1 + 1

2η(α+ 1)(ragg2 + I1 + I2)]

(γ − 1)[1 + 1
2η(

1+α+2ǫ2
1+ǫ2

)]
(14)

Because the agent compares the sum of net project payoffs from both stages against a given goal,

Equations (13) and (14) are decreasing in xagg1 . Expecting to receive a larger payoff from the

first stage brings the agent closer to a given aggregate goal and decreases the potential penalty

from falling short of it for any x2t2 , weakening the agent’s motivation to wait longer in the second

stage. Since both xagg2 and xagg1 contribute to his comparison against a given goal ragg2 , they act as

motivational substitutes in the agent’s stopping behavior across stages.

Imposing rational expectations, so that ragg2 = xagg1 − I1+
1
2(x

aggL
2 +xaggH2 )− I2, the contingent

stopping thresholds employed in stage 2 are

xaggL2 = xinc2 +

(

1
2γη(α+ 1)( ǫ1

1+ǫ1
)

(γ − 1)[1− 1
2η(α− 1)( ǫ2

1+ǫ2
) + 1

2η(α+ 1)]

)

xagg1 (15)

xaggH2 = xinc2 −

(

1
2γη(α+ 1)( ǫ1

1+ǫ1
)

(γ − 1)[1− 1
2η(α− 1)( ǫ2

1+ǫ2
) + 1

2η(α+ 1)]

)

xagg1 . (16)

Proposition 2 When the agent is reference dependent (η > 0) and sets an aggregate goal, his stage

2 behavior responds to unexpected payoff-irrelevant gains and losses from stage 1. He exhibits the

sunk cost fallacy by waiting longer in response to unexpected losses:
∂x

aggL
2

∂ǫ1
> 0. In addition, he

“coasts” by stopping earlier in response to unexpected gains:
∂x

aggH
2

∂ǫ1
< 0.

Equations (15) and (16) illustrate the effect of an aggregate goal on the agent’s behavior. For
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a standard agent without reference dependent preferences, information about the stage 1 outcome

is not materially payoff-relevant in stage 2, so he would ignore such information when choosing his

stage 2 stopping threshold. In contrast, the agent who sets an aggregate goal reacts to news about

the stage 1 outcome, because it enters into his aggregate goal comparison.

The first terms of xaggL2 and xaggH2 are identical, since they indicate the agent’s stage 2 stopping

threshold if his realized stage 1 payoff were equal to his stage 1 stopping threshold (e.g., if ǫ1 = 0).

If he knows he has neither fallen short of nor exceeded his expectation of the outcome of stage 1,

this component of his goal exerts no influence on his decision in stage 2. As a result, he behaves as

though the outcome of stage 1 is irrelevant to his decision, just as he does when he sets incremental

goals for each stage and just as a standard agent without reference dependent preferences would.

Thus, xaggL2 (ǫ1 = 0) = xaggH2 (ǫ1 = 0) = xinc2 .

The second terms of xaggL2 and xaggH2 indicate the agent’s reaction to news that his stage 1

payoff has not met his expectation of it. If it has fallen short, he is motivated to “make up”

for the shortfall by waiting for a higher payoff in stage 2 to meet his aggregate goal. Thus, he

exhibits the sunk cost fallacy, but only in response to an unexpected loss. But if his stage 1 payoff

has exceeded his expectation, he is closer to reaching his aggregate goal than expected, so he can

settle for a lower payoff in stage 2 to meet his aggregate goal. That individuals often respond

to sunk costs has been well documented (Kahneman and Tversky 1979, Arkes and Blumer 1985),

and reference dependence has been proposed as a mechanism (Thaler 1980, Thaler 1999). While

a distinction between planned and unexpected losses has not been made, many classic sunk cost

examples actually involve reactions to interim surprises. For example, betting on longshots increases

during the horseracing day (McGlothlin 1956, Ali 1977). While this behavior has been interpreted

as poor adaptation to losses (Thaler 1980), it is also consistent with having an aggregate goal for

the day’s gambling profits, which is evaluated only at the end of the day.

In the psychology literature on goal-setting, there is extensive evidence that individuals are

motivated when lagging behind on their goals (Locke and Latham 2002, Koo and Fishbach 2008).17

While less studied, there is also evidence suggesting that individuals “coast” when their progress

toward a goal is unexpectedly high. That is, they reduce subsequent effort toward accomplishing

17More precisely, individuals are motivated when lagging behind their goals, in the absence of uncertainty about
their ability to accomplish them, as implicitly modeled here. When past behavior is a signal of willpower, Bénabou
and Tirole (2004) show that lagging behind can be demotivating.
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goals (Fulford, Johnson, Llabre and Carver 2010), or instead pursue unrelated or even conflicting

goals (Louro, Pieters and Zeelenberg 2007, Fishbach and Dhar 2005).

Note that the agent’s expected stage 2 stopping threshold, and therefore payoff, does not depend

on ǫ1: E(xagg) = xinc2 . Although loss aversion implies asymmetric utility over gains and losses, his

response to good and bad news regarding the stage 1 outcome is not asymmetric when it is his

current behavior that has a marginal effect on whether he gains or loses relative to the aggregate

goal. Thus, when the agent sets an aggregate goal, the effect of stage 1 uncertainty is to introduce

mean-zero variance into his stage 2 behavior.

Just as in the case of incremental goals, the aggregate goal leads the agent to wait longer as ǫ2

increases:
∂x

aggL
2

∂ǫ2
> 0 and

∂x
aggL
2

∂ǫ2
> 0. Because he expects more disutility when he compares his

payoffs against his aggregate goal, he waits for a higher realization of the stage 2 project value to

compensate for the anticipated loss.

Corollary 1 When the agent sets an aggregate goal, his reaction to news is amplified by the size

of his payoff in stage 1 and his degree of uncertainty in either stage:

∣

∣

∣

∣

∂x
aggL
2

∂ǫ1

∣

∣

∣

∣

=

∣

∣

∣

∣

∂x
aggH
2

∂ǫ1

∣

∣

∣

∣

> 0,
∣

∣

∣

∣

∂x
aggL
2

∂x
agg
1

∣

∣

∣

∣

=

∣

∣

∣

∣

∂x
aggH
2

∂x
agg
1

∣

∣

∣

∣

> 0, and

∣

∣

∣

∣

∂2x
aggL
2

∂ǫ1ǫ2

∣

∣

∣

∣

=

∣

∣

∣

∣

∂2x
aggH
2

∂ǫ1ǫ2

∣

∣

∣

∣

> 0.

Unsurprisingly, the extent of the agent’s reaction to news about the stage 1 outcome increases

with ǫ1, which measures the size of the gap between outcome and expectation. The latter two

properties of Corollary 1 result from the assumption that the observed payoff is proportional,

rather than additive, to the true payoff. Because the magnitude of this gap is proportional to

the payoff, the degree of his reaction also increases with xagg1 . Moreover, the magnitude of the

agent’s reaction to news is proportional to ǫ2, because his marginal incentive to wait increases with

anticipated comparative disutility when ex-ante uncertainty is multiplicative.

Note that loss aversion is not necessary for Proposition 2 to hold. Since the agent knows ex

post whether his stage 1 payoff is than or less than he expected, his subsequent stage 2 behavior

will be influenced by whether he is “ahead” or “behind” his prior expectation as long as he is

reference dependent. In ex post situations, loss aversion serves to amplify his reaction to information

regarding the gap between realized payoff and prior expectation.

The equilibrium value functions for the second stage, wagg
2 and vagg2 , are provided in Appendix

10.2. They differ from those of incremental goals in the goal comparison that is being made and
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the expected comparison utility given the realization of x1t.

6.2 Stage 1

In contrast to the case of incremental goals, the agent makes no direct evaluation against a goal

upon completing the first stage. However, he is aware that he will be comparing the sum of net

payoffs from both stages to the aggregate goal ragg2 upon completion of the second stage. This

knowledge is reflected in the option value of stage 2 that he obtains upon completion of the first

stage. Thus, the current self’s total utility upon stopping stage 1 is given by E(Φagg
1 (x1, r

agg
2 )|x̃1),

where

E(Φagg
1 (x1, r

agg
2 )|x̃1) = E(x1 − I1 + wagg

1 (x2, r
agg
2 )|x̃1). (17)

His consideration of future selves’ stopping utility for stage 1 is given by E(φagg1 (x1, r
agg
2 )|x̃1), where

E(φagg1 (x1, r
agg
2 |x̃1)) = E(x1 − I1 + vagg1 (x2, r

agg
2 )|x̃1). (18)

The stopping values E(Φagg
1 (x1, r

agg
2 )|x̃1) and E(φagg1 (x1, r

agg
2 |x̃1)) differ in their last terms, since

the agent considers the option to complete stage 2 differently depending on whether it is obtained

by the current or future self.

Imposing the requirement that ragg2 = xagg1 − I1 +
1
2(x

aggL
2 + xaggH2 ) − I2 yields the following

nonlinear equation to describe the stationary threshold that the agent employs in stage 1, given an

aggregate goal and rational expectations:

xagg1 = (
γ

γ − 1
)I1 + (

xagg1

4
)η(α+ 1)(

1

γ − 1
)2

(

βkγ1(γ1 − 1)

(

(
1

1 + ǫ1
)(
xagg1

xaggL2

)γ1 + (
1 + 2ǫ1
1 + ǫ1

)(
xagg1

xaggH2

)γ1

)

+(1− β)kγ2(γ2 − 1)

(

(
1

1 + ǫ1
)(
xagg1

xaggL2

)γ2 + (
1 + 2ǫ1
1 + ǫ1

)(
xagg1

xaggH2

)γ2

))

. (19)

Proposition 3 Setting an aggregate goal is less effective at curbing impatience than setting incre-

mental goals: xagg1 < xinc1 and E(xagg2 ) = xinc2 . However, the aggregate goal does induce patience

even in the first stage, relative to its absence.

Although the agent does not directly evaluate himself upon completion of the first stage, he

anticipates that he will evaluate the sum of both stages’ payoffs at the end of stage 2 when he sets
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an aggregate goal. Because settling for a lower stage 1 payoff detrimentally affects his comparison

utility in the future, the aggregate goal provides motivation for him to be more patient in the first

stage as well. Recall that when he sets incremental goals, he expects to incur comparative disutility

upon completing stage 1, due to evaluation of the goal rinc1 . Consequently, he waits for a higher

payoff to compensate for this disutility. But when he sets an aggregate goal, this disutility is absent

from the first stage, so he does not have this immediate motivation to wait longer. Moreover, this

disutility is reduced by the risk pooling effect of evaluating the outcomes of both stages together,

and is incurred in the relatively distant future, so it is discounted more heavily in the first stage. In

contrast, an incremental goal for the first stage is a source of larger, direct expected comparative

disutility and is evaluated sooner on average, so it provides a stronger incentive to practice patience.

Thus, the aggregate goal is less effective at curbing impatience than incremental goals.

Proposition 4 In a stationary equilibrium with an endogenous, aggregate goal, the agent’s stopping

threshold in the first stage responds to ex-ante uncertainty differently in each stage when he stops

sequentially:
∂x

agg
1

∂ǫ2
≤ 0 and

∂x
agg
1

∂ǫ1
≥ 0, with equality only if α = 1 or η = 0.

When the agent sets an aggregate goal and stops sequentially, his reaction to ex-ante uncertainty

differs markedly from that of incremental goals in the first stage as well. Rather than being

unresponsive, his stage 1 stopping threshold decreases as ǫ2 increases. He anticipates that he

will wait longer to complete stage 2 in order to compensate for greater anticipated comparative

disutility, so the potential disutility from evaluating the aggregate goal is incurred even farther in

the future, and thus it is discounted it more heavily in stage 1. For this reason, the agent chooses

a lower stopping threshold in the first stage in reaction to more stage 2 uncertainty.

Just as with incremental goals, the agent’s stage 1 threshold increases with ǫ1 when he sets an

aggregate goal. However, his motivation for doing so is quite different. While his average stage 2

stopping payoff does not change with ǫ1 on average, its variance increases because ǫ1 measures the

degree to which he adjusts his stage 2 behavior to compensate for unexpected gains or losses. Thus,

the parameter ǫ1 introduces uncertainty over the agent’s future behavior, so he waits for a higher

payoff in stage 1 to compensate for the possibility of a lower stage 2 payoff. Thus, the mechanisms

by which stage 1 uncertainty leads the agent to wait longer in stage 1 differ markedly depending

on goal type. In the case of incremental goals, stage 1 uncertainty directly increases expected
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comparative disutility from (incremental) evaluation upon stopping. In the case of aggregate goals,

it increases uncertainty about future behavior and therefore the value of waiting.

In equilibrium, the agent’s current and continuation value functions, denoted wagg
1 and vagg1

respectively, are provided in Appendix 10.2. The first two terms of the expected current value

function, given by Equation (45), in its wait region reflect the option value of stopping in the

first stage, while the second two reflect that of stopping in the second. In contrast to the case of

incremental goals, the disutility from ex-ante uncertainty is absent from the first two terms, as the

agent does not directly evaluate himself against a goal in the first stage.

Since xagg1 < xinc1 and xaggH2 ≤ xinc2 ≤ xaggL2 , the agent stops sequentially with either form of

goal bracketing if he stops sequentially when setting an aggregate goal. This occurs whenever the

following upper bound on k is satisfied:

k <

(

I2
I1

)

(

(γ − 1)[1− 1
2η(α− 1)( ǫ1

1+ǫ1
)]− 1

2η(α+ 1)

(γ − 1)[1− 1
2η(α− 1)( ǫ2

1+ǫ2
)]− 1

2η(α+ 1)

)

−
1
2γη(α+ 1)( ǫ1

1+ǫ1
)

(γ − 1)[1− 1
2η(α− 1)( ǫ2

1+ǫ2
) + 1

2η(α+ 1)]
.

(20)

Unsurprisingly, the second-stage process must start at a sufficiently low value for the agent not

to invest in both stages simultaneously. The upper bound on the initial value of the second-stage

process to allow sequential investment is increasing in I2 and ǫ2 because they increase his stage 2

stopping threshold, and decreasing in I1 and ǫ1 because they increase his stage 1 stopping threshold.

7 Optimal Bracketing

Having separately considered the agent’s behavior given that he sets incremental or aggregate goals,

I now determine the conditions under which each type of bracketing is optimal from an ex-ante

perspective. Because he prefers that future selves behave in a time consistent manner, he chooses to

bracket such that the continuation value, rather than the current value, of the project is maximized.

When the agent chooses how to bracket his goals and his goal level(s), he faces a trade-off

between the benefits of additional motivation and the costs of additional comparative disutility from

frequent goal evaluation. When decisions are made sequentially, the decision to aggregate goals

becomes more complex. First, aggregating goals necessarily implies postponing interim evaluation,
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and therefore delays the timing of evaluation. Second, aggregating goals introduces the ability to

respond to interim news, and therefore introduces uncertainty over future behavior.

Proposition 5 If the agent is sufficiently impulsive, he sets incremental goals whenever ǫ1 is suf-

ficiently low, and an aggregate goal when ǫ1 is sufficiently high. That is, for γ sufficiently high,

there exists a unique threshold ǫ̃1 ≥ 0 such that E[vinc1 (x1)|x̃1] > E[vagg1 (x1)|x̃1] when ǫ1 < ǫ̃1, and

E[vinc1 (x1)|x̃1] < E[vagg1 (x1)|x̃1] when ǫ1 > ǫ̃1.

In the absence of stage 1 outcome uncertainty, there is no risk pooling benefit from setting

an aggregate goal. Since incremental goals provide stronger motivation than aggregate goals, the

agent prefers to set incremental goals rather than an aggregate goal if his self-control is sufficiently

poor (i.e., γ is sufficiently high): E[vagg1 (x1, r
agg
2 )|x̃1] ≤ E[vinc1 (x1, r

inc
1 )|x̃1] when ǫ1 = 0. As

stage 1 outcome uncertainty increases, the expected disutility incurred upon evaluation of the

incremental goal increases, making it less desirable and the risk pooling benefit of the aggregate

goal more attractive. Moreover, setting an aggregate goal becomes more attractive due to its effect

on behavior in both stages. If the agent sets an aggregate goal, more stage 1 uncertainty leads to

larger surprises, and therefore more ex-ante uncertainty regarding stage 2 behavior in reaction to

such news. That is, setting an aggregate goal introduces a mean-preserving spread over the stage 2

payoff, relative to an incremental goal. This increases the option value of stage 2. Additionally, the

fact that agent is motivated to wait longer in stage 1 to compensate for the possibility of a lower

stage 2 payoff counteracts his impulsiveness, increasing the time value of his stage 1 option as well.

Proposition 6 If the agent is sufficiently impulsive that he sets incremental goals given some

(ǫ1, ǫ2), then there exists no ǫ̃2 ≥ ǫ2 such that he sets an aggregate goal when (ǫ1, ǫ̃2).

Surprisingly, setting an aggregate goal becomes relatively less appealing than setting incremen-

tal goals as stage 2 outcome uncertainty increases. This implies that if the agent sets incremental

goals to counteract his impulsiveness given some environmental uncertainty, he would do so when-

ever stage 2 uncertainty is even greater. When stage 2 uncertainty determines whether the agent

gains or loses relative to his aggregate goal, the risk pooling benefit of aggregation comes from

shielding the agent from ǫ1 shocks, rather than ǫ2 shocks. In both cases, more stage 2 uncertainty

leads the agent to wait longer on average in stage 2, to compensate for greater anticipated disutility
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Figure 1: Optimal Bracketing

upon stopping and evaluating himself against his goal. Thus, more stage 2 uncertainty decreases the

option value of stage 2 regardless of his bracketing choice, due to both waiting longer and incurring

greater anticipated disutility. Because there is ex-ante uncertainty regarding stage 2 behavior in

the case of aggregate goals, the (negative) marginal effect is greater under an aggregate goal than

under incremental goals.18 Moreover, when the agent has set an aggregate goal, waiting longer in

stage 2 implies later goal evaluation and therefore weakens his motivation to be more patient in

stage 1.

The results in Propositions 5 and 6 imply that optimal goal bracketing can be described by

Figure 1 when the agent is sufficiently impulsive.

Thus, the intuition that risk pooling through an aggregate goal should become more appealing

as ex-ante uncertainty increases is only partially correct when goals are evaluated sequentially

rather than simultaneously. That gains or losses relative to the aggregate goal are determined by

the stage 2 payoff implies that the risk pooling incentive is driven by the presence of uncertainty in

stage 1. Moreover, the intertemporal separation of each stage means that setting aggregate goals

implies both delayed evaluation of the stage 1 outcome and the ability to react to interim news

about the stage 1 outcome. Both of these effects are anticipated ex-ante and therefore also affect

stage 1 behavior and the optimal bracketing choice. Changes in ǫ1 primarily affect the risk pooling

incentive, which is amplified by these two effects of intertemporal separation. As ǫ1 increases,

18There is an ambiguous second-order effect on the option value of stage 2. First, stopping earlier in stage 1
decreases the size of the stage 1 surprise. Because there is less uncertainty regarding the agent’s future behavior, this
decreases the option value of stage 2. Second, the multiplicative nature of uncertainty implies a stronger reaction
to surprises, increasing the option value of stage 2. However, I show in the Appendix that the combination of these
effects is always smaller than the first-order effects of waiting longer and incurring greater disutility.
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delaying the expected disutility from evaluating the outcome of stage 1 and being able to react to

interim surprises becomes more valuable, making the aggregate goal more attractive. Changes in

ǫ2 primarily affect the motivation incentive, which is again amplified by intertemporal separation.

As ǫ2 increases, further delayed goal evaluation weakens the motivation to wait in stage 1, making

the aggregate goal less attractive.

Taken together, these results imply that we should observe aggregate goal-setting in contexts

where ex-ante outcome uncertainty regarding earlier investment stages is relatively high, and ex-ante

outcome uncertainty regarding the latter stages is relatively low. Otherwise, setting incremental

goals is optimal when the self-control problem is sufficiently severe. That is, reactions to payoff-

irrelevant news, like the sunk cost fallacy, are more likely to occur in settings where ex post

realized values are more difficult to predict from ex-ante observable market conditions in the initial

investment stages of a project in comparison to later investment stages. Setting an aggregate goal

allows the agent to avoid the disutility from evaluating more uncertain outcomes in the initial stages

and be able to react to large interim surprises without giving up much motivational power from

goal setting. This implies that whether an agent reacts to sunk costs or coasts is dependent on the

degree of environmental uncertainty that he faces, rather than his degree of reference dependence

(and loss aversion) alone. For example, this predicts that an entrepreneur is more likely to exhibit

the sunk cost fallacy when his business plan for a startup is to eventually open a second location,

for which he will have likely learned enough from the first stage to better predict its payoff, than

when his business plan is to eventually expand his product line, for which breaking into a new

market is more unpredictable.

These results also have implications for contracting based on the nature of the project and

the principal’s objective. A principal whose agent is reference-dependent can expect the agent to

exhibit the sunk cost fallacy or “coast” in certain projects whose outcome uncertainty is relatively

high in the earlier stages and relatively low in the later stages. Therefore, an employer who wants

to maximize worker output may be interested in designing a contract to counteract this behavior.

On the other hand, consider a principal with the impulsive agent’s welfare in mind, such as parent

motivating a child. If the initial stages of the child’s project are relatively difficult to predict at

the stopping decision while the latter stages are not, the principal should set an aggregate goal.

Otherwise, he should set incremental goals.
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8 The Effect of Loss Aversion

While the detrimental effects of loss aversion have been demonstrated in contexts such as portfolio

choice (Odean 1998) and contract renegotiation (Herweg and Schmidt 2015), this model implies

that loss aversion can be beneficial for individual decision-making from an ex-ante perspective

when the agent is sufficiently present-biased. In the presence of outcome uncertainty, the agent’s

degree of loss aversion has two countervailing effects on the agent’s ex-ante value of the project.

First, it is costly because it leads the agent to incur comparative disutility upon stopping. Second,

it may be beneficial because it contributes to patient behavior for precisely this reason, as he

waits longer to compensate for such expected disutility. Unsurprisingly, if the agent’s degree of

reference dependence is so high that it overcompensates for his self-control problem, loss aversion is

unambiguously detrimental, since it both amplifies the effect of reference dependence and generates

comparative disutility. But if reference dependence is not sufficient to counteract the self-control

problem, some degree of loss aversion can be beneficial by counteracting impulsiveness, despite

its comparative disutility. The threshold of outcome uncertainty that allows for beneficial loss

aversion increases with γ, which measures the degree of impulsiveness, and decreases with the level

of reference dependence η, which amplifies the effects of loss aversion.

Proposition 7 From an ex-ante perspective, a positive degree of loss aversion is beneficial to the

agent when reference dependence (η) and outcome uncertainty (ǫ1, ǫ2) are sufficiently small.

Some recent evidence suggests that agents may anticipate the beneficial effects of loss aversion

if they are present-biased. In an experimental setting, Imas, Sadoff and Samek (forthcoming) find

that subjects prefer performance incentives as upfront payments that they can lose over payoff-

equivalent gain contracts. While this choice would be detrimental in the absence of a self-control

problem, it is consistent with selection into loss contracts as a commitment device to improve

performance when subjects anticipate loss aversion.

9 Conclusion

This paper develops a theoretical model of goal bracketing, which serves as a source of internal

motivation to attenuate the self-control problem of a hyperbolic discounter, and offers testable
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predictions of behavior in uncertain environments. When setting non-binding goals in a sequential

stopping problem, an individual must decide how and when to evaluate himself against such goals.

In particular, he can bracket broadly by setting an aggregate goal for the entire project, or he

can bracket narrowly by setting incremental goals for individual stages. In the presence of loss

aversion and uncertainty over outcomes, the intertemporal bracketing decision involves a trade-off

between motivation and comparative disutility due to ex-ante uncertainty. When decisions are

made sequentially, the effect of aggregating goals becomes more complex. First, aggregating goals

necessarily implies postponing interim evaluation, and therefore delays the timing of evaluation.

Second, it introduces the ability to respond to interim news, and therefore introduces uncertainty

over future behavior. I find that when an agent sets an aggregate goal, he responds to payoff-

irrelevant news, exhibiting behavior such as the sunk cost fallacy and “coasting.” Either form of

goal bracketing attenuates the self-control problem, but setting an aggregate goal is less effective

at improving patience than setting an incremental goal. However, aggregating goals enables risk

pooling and responses to interim news, so doing so becomes more appealing when initial ex-ante

outcome uncertainty about a project is high. In contrast, greater ex-ante outcome uncertainty

regarding later project stages primarily weakens the motivation to be patient by delaying aggregate

goal evaluation, so setting incremental goals becomes more attractive when ex-ante uncertainty

about later project stages is high. Thus, I find that narrow goal bracketing can be used as an

instrument to counteract the self-control problem, and that broad goal bracketing can itself generate

apparently erroneous behavior such as the sunk cost fallacy. Surprisingly, in contrast to a static

model, the sequential nature of decision-making interacts with motivational power and risk pooling

to introduce a differential reaction to outcome uncertainty based on its timing. I also show that

loss aversion can, under some circumstances, be beneficial from an ex-ante perspective.

The results suggest that the prevalence of phenomena such as the sunk cost fallacy and “coast-

ing” is quite dependent on both the nature and timing of ex-ante outcome uncertainty in the decision

making process, not just an agent’s degree of reference dependence and loss aversion. They also

have potential ramifications for contracting, if the principal anticipates such behavior by agents in

response to certain project types or is interested in goal-setting to motivate agents.

The model’s predictions regarding the instrumental use of bracketing could also be tested in

a controlled environment by varying the degree of ex-ante outcome uncertainty in each stage. In
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particular, the comparative statics regarding the agent’s response to environmental uncertainty in

the first stage and whether he responds to payoff-irrelevant news differ with his bracketing choice.

Moreover, the model can be distinguished from an alternative specification, in which the agent’s

consumption utility is concave rather than linear and his comparison utility is either linear or non-

existent. In this case, risk aversion in consumption utility implies that the agent dislikes mean-zero

uncertainty, so he waits longer as uncertainty increases, just as if he has linear consumption utility

but is loss averse and sets incremental goals. However, this alternative specification predicts that

the bracketing choice does not vary in response to ex-ante uncertainty over outcomes, since there

is no risk pooling benefit from aggregating anticipated comparative disutility. Thus, the agent’s

response to environmental uncertainty does not change in this case. In addition, an agent without

comparison utility would never respond to payoff-irrelevant news.

The study of instrumental bracketing in intertemporal choice has been relatively unexplored

by economists thus far. This paper offers several testable implications regarding the interaction

between bracketing and ex-ante outcome uncertainty when the agent has a self-control problem due

to present-biased preferences. In particular, it predicts the environments in which we can expect

to observe phenomena like the sunk cost fallacy and “coasting.” Experimental and empirical tests

of the theory would greatly contribute to our understanding of how, why, and when individuals

bracket decisions and set goals for themselves.
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10 Appendix

10.1 Equilibrium Construction

To construct the continuation value function vbi , I suppose that all future selves inherit the goal

r̂bi and employ the threshold x̂bi such that they wait if x̃i < x̂bi and stop if x̃i ≥ x̂bi . Because the

geometric Brownian motion xi, and thus x̃i, changes continuously, I construct vbi by considering

its behavior in the “wait” and “stop” regions separately, then joining them using the appropriate

boundary conditions.

Because xi is a geometric Brownian motion, xi = 0 is an absorbing barrier. Clearly, the agent

should never stop the process if xi = 0. Moreover, the continuation value must be continuous

everywhere, including at the threshold between waiting and stopping. Because there is no optimal

decision embodied in the continuation value function, the smooth pasting condition does not apply

to vbi (xi, r̂
b
i ) if the agent is present-biased. The stopping decision is never made by future selves,

only by current selves. Thus, there are two relevant boundary conditions for vbi :

Boundary: E[vbi (xi, r̂
b
i )|x̃i = 0] = 0, (21)

Value Matching: E[vbi (xi, r̂
b
i )|x̃i = x̂bi ] = E[φbi(xi, r̂

b
i )|x̃i = x̂bi ]. (22)

To construct the current value function wb
i , I suppose that all current selves inherit the goal

rbi and employ the threshold xbi such that they wait if x̃i < xbi and stop if x̃i ≥ xbi . The threshold

strategy implies that the value of wb
i in its “stop” region (x̃i ≥ xbi) is given by E[Φb

i(xi, r
b
i )|x̃i].

In its wait region (x̃i < xbi), standard results imply that wb
i obeys the following linear differential

equation:

ρwb
i (xi, r

b
i ) = λ(βvbi (xi, r̂

b
i )− wb

i (xi, r
b
i )) + µxi(

∂wb
i

∂xi
) +

1

2
σ2x2i (

∂2wb
i

∂x2i
). (23)

Comparing Equation (23) to Equation (5), the additional term λ(βvbi (xi, r̂
b
i ) − wb

i (xi, r
b
i )) is the

expected value of the change in the current value wb
i that occurs through the stochastic arrival of

a transition from the present to the future.

As with vbi , xi = 0 is an absorbing barrier and wb
i must be continuous everywhere. Since the

optimal threshold is chosen to maximize the current value function by the current self, the smooth
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pasting condition, that the marginal value of waiting equals that of stopping, must apply to wb
i

with respect to xi. This yields the boundary conditions for wb
i :

Boundary: E[wb
i (xi, r

b
i )|x̃i = 0] = 0, (24)

Value Matching: E[wb
i (xi, r

b
i )|x̃i = xbi ] = E[Φb

i(xi, r
b
i )|x̃i = xbi ], (25)

Smooth Pasting: E[
∂wb

i

∂xi
(xi, r

b
i )|x̃i = xbi ] = E[

∂Φb
i

∂xi
(xi, r

b
i )|x̃i = xbi ]. (26)

Applying conditions (21) and (22) to Equation (5) yields the solution to the continuation value

function vbi . Under the assumption that xi ≤ x̂bi , which the fixed point condition satisfies, it is

the value of vbi in its wait region that applies to Equation (23). Combining vbi in its wait region

with Equation (23), along with conditions (24), (25), (26), we obtain the solution to the optimal

threshold xbi as a function of goal rbi and the conjectured future goals r̂bi and threshold x̂bi . Moreover,

stationarity implies that xbi = x̂bi and r
b
i = r̂bi , allowing us to obtain xbi as a function of the goal rbi .

10.2 Equilibrium Value Functions

This section collects the equilibrium current and continuation value functions that arise for each

bracketing choice, with its corresponding goals, and each stage. For ease of reference, it reiterates

the key features of each.

Incremental Goals: Stage 2

The value of Equation (32) in its wait region is the expected present value of the option to stop,

given the current value of the project’s payoff, x < xinc2 . This is essentially the weighted average

of two time-consistent option values, where the first, weighted by β, uses the discount rate ρ, and

the second, weighted by 1− β, uses the discount rate ρ+ λ. Moreover, the expected present value

of the stopping option reflects the comparative disutility that the agent expects to incur upon

stopping and evaluating himself against his goal, which is 1
2η(α− 1)( ǫ

1+ǫ2
)xinc2 when x̃2 < xinc2 .

Because it reflects his preferences from an ex-ante perspective, the value of Equation (33) in its

wait region is the expected present value of the option to stop, using only the discount rate ρ.

In the second stage, the agent’s problem is identical to a standard, single-stage optimal stopping

problem. Because his goal in this stage only pertains to the outcome of stage 2, his behavior in
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the first stage is irrelevant at this point.19 Since he evaluates himself against the goal rinc2 upon

completion of stage 2, the current self’s total utility upon stopping stage 2 is given by

E(Φinc
2 (x2, r

inc
2 )|x̃2):

E(Φinc
2 (x2, r

inc
2 )|x̃2) = E[x2 − I2 + ψ(x2 − I2 − r2)|x̃2], (27)

which is simply the sum of his net terminal payoff and his expected comparison utility, and enters

into Equation (6). Likewise, he anticipates that future selves obtain the same utility from

stopping:

E(φinc2 (x2, r
inc
2 )|x̃2) = E[x2 − I2 + ψ(x2 − I2 − rinc2 )|x̃2], (28)

which enters into Equation (5). Thus, the agent employs the following stopping threshold xinc2 in

the second stage:20

xinc2 =
γ[I2 +

1
2η(α+ 1)(rinc2 + I2)]

(γ − 1)[1 + 1
2η(

1+α+2ǫ2
1+ǫ2

)]
, (29)

where γ ≡ βγ1 + (1− β)γ2, γ1 > 1 is the positive root21 of the quadratic equation

1

2
σ2γ21 + (µ−

1

2
σ2)γ1 − ρ = 0, (30)

and γ2 ≥ γ1 is the positive root22 of the quadratic equation

1

2
σ2γ22 + (µ−

1

2
σ2)γ2 − (ρ+ λ) = 0. (31)

As in Hsiaw (2013), the parameter γ1 reflects the fact that the agent discounts the future

exponentially at the rate ρ, while the parameter γ2 reflects the fact that each self’s expected

19In the standard problem without reference dependent preferences, it is also the case that stage 1 behavior is
irrelevant to the stage 2 decision. However, stage 1 behavior will not be irrelevant when the agent sets an aggregate
goal.

20Unsurprisingly, in the absence of loss aversion (α = 1), the threshold xinc
2 reduces to the threshold xSE found in

Hsiaw (2013), which describes the sophisticate agent’s optimal stopping threshold in a single-stage stopping problem
in the absence of loss aversion.

21The negative root is ruled out by the boundary condition for x = 0. Writing out γ1 explicitly, we have γ1 =

− µ

σ2 + 1

2
+
√

( µ

σ2 − 1

2
)2 + 2ρ

σ2 . To see that γ1 > 1, note that σ2 > 0 and the left-hand side of the quadratic is negative

when evaluated at γ1 = 0 and γ1 = 1, implying that the negative root is strictly negative and the positive root is
strictly greater than 1 if µ < ρ.

22Again, the negative root is ruled out by the boundary condition for x = 0. It follows that γ2 ≥ γ1 because λ ≥ 0,
with equality only if λ = 0.
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“lifetime” ends with hazard rate λ. The degree to which this feature affects behavior is determined

by his degree of present-biasedness, measured by 1− β. Thus, the parameter γ = βγ1 + (1− β)γ2

serves as a sufficient statistic for measuring the agent’s impulsiveness, which is determined by

both β and λ. The self-control problem is absent when γ = γ1 and worsens as γ increases.

The equilibrium value functions for the second stage, winc
2 and vinc2 , are given by

E[winc
2 (x2, r

inc
2 )|x̃2] =











xinc
2

(

1− 1

2
η(α−1)(

ǫ2
1+ǫ2

)+ 1

2
η(α+1)

)

γ

(

β( x̃2

xinc
2

)γ1 + (1− β)( x̃2

xinc
2

)γ2
)

if x̃2 < xinc2

x̃2 − I2 + E[ψ(x2 − I2 − rinc2 )|x̃2] if x̃2 ≥ xinc2

(32)

E[vinc2 (x2, r
inc
2 )|x̃2] =











xinc
2

(

1− 1

2
η(α−1)(

ǫ2
1+ǫ2

)+ 1

2
η(α+1)

)

γ
( x̃2

xinc
2

)γ1 if x̃2 < xinc2

x̃2 − I2 + E[ψ(x2 − I2 − rinc2 )|x̃2] if x̃2 ≥ xinc2 .

(33)

Incremental Goals: Stage 1

In the first stage, the agent faces a problem very similar to that of the second, since his goal

pertains only to the outcome of stage 1 and he evaluates himself upon its completion. The only

difference is that in addition to receiving the project payoff x1t1 upon completing stage 1 at time

t1, he obtains the option to complete the second stage of the project. Thus, the current self’s

total utility upon stopping stage 1 is given by E(Φinc
1 (x1, r

inc
1 )|x̃1), where

E(Φinc
1 (x1, r

inc
1 )|x̃1) = E(x1 − I1 + ψ(x1 − I1 − rinc1 ) + winc

2 (x2, r
inc
2 )|x̃1), (34)

which enters into Equation (6) and its corresponding boundary conditions (24), (25), and (26).

Note that E(x2|x̃1) = kx1. Equation (34) only differs from the second-stage stopping utility

described by (27) in its last term, the option to complete stage 2. When evaluating the possibility

that a future self will complete the first stage, the agent considers the option to complete stage 2

by discounting it exponentially. Thus, his consideration of future selves’ stopping utility for stage

1 is given by E(φinc1 (x1, r
inc
1 )|x̃1), where

E(φinc1 (x1, r
inc
1 )|x̃1) = E(x1 − I1 + ψ(x1 − I1 − rinc1 ) + vinc2 (x2, r

inc
2 )|x̃1), (35)
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which enters into Equation (5) and its boundary conditions (21) and (22). The stopping values

Φinc
1 (x1, r

inc
1 ) and φinc1 (x1, r

inc
1 ) differ only in their last terms, since the agent values the option to

complete stage 2 differently depending on whether it is obtained by the current or future self.

The value of the option to complete stage 2 depends on whether it is optimal for him to complete

it immediately upon completion of stage 1. Because I assume that he completes stages

sequentially (without loss of generality), it is the wait regions of the stage 2 option values

winc
2 (kx1, r

inc
2 ) and vinc2 (kx1, r

inc
2 ) that are applicable to Equations (34) and (35), respectively.

Finally, imposing the requirement that rinc1 = xinc1 − I1 gives the optimal threshold when the goal

is self-set and expectations are rational:

xinc1 =
γI1

(γ − 1)[1− 1
2η(α− 1)( ǫ1

1+ǫ1
)]− 1

2η(α+ 1)
, (36)

where 1
2η(α+ 1) < (γ − 1)[1− 1

2η(α− 1)( ǫ1
1+ǫ1

)].

In the first stage, the equilibrium current and future value functions when the agent sets

incremental goals are given by winc
1 and vinc1 , respectively and simplify to:

E[winc
1 (x1, r

inc
1 , rinc2 )|x̃1] =























xinc
1

(

1− 1
2
η(α−1)(

ǫ1
1+ǫ1

)+ 1
2
η(α+1)

)

γ

(

β( x̃1

xinc
1

)γ1 + (1− β)( x̃1

xinc
1

)γ2

)

+kγ1E[winc
2 (x2, r

inc
2 )|x̃1] if x̃1 < xinc1

x̃1 − I1 + E[ψ(x1 − xinc1 )|x̃1] + kγ1E[winc
2 (x2, r

inc
2 )|x̃1] if x̃1 ≥ xinc1 ,

(37)

E[vinc1 (x1, r
inc
1 , rinc2 )|x̃1] =











xinc
1

(

1− 1
2
η(α−1)(

ǫ1
1+ǫ1

)+ 1
2
η(α+1)

)

γ
( x̃1

xinc
1

)γ1 + kγ1E[vinc2 (x2, r
inc
2 )|x̃1] if x̃1 < xinc1

x̃1 − I1 + E[ψ(x1 − xinc1 )|x̃1] + kγ1E[vinc2 (x2, r
inc
2 )|x̃1] if x̃1 ≥ xinc1

(38)

Because the agent completes the second stage strictly after the first, the stop regions of the

current and continuation value functions, winc
1 and vinc1 , are composed of two regions. When the

observed first-stage payoff x̃1 is such that kx̃1 < xinc2 , the option value of stage 2 is determined by

the value of waiting to stop the process x2t. When x̃1 is sufficiently high that kx̃1 ≥ xinc2 , the

option value of stage 2 is simply the value of stopping x2t immediately. Since the agent evaluates

himself against a goal at the end of each stage when he sets incremental goals, he expects to incur
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comparative disutility at the end of each.

Aggregate Goals: Stage 2

In the second stage, the agent compares the sum of his net payoffs in each stage against his goal

for it, rather than making a comparison regarding the outcome of stage 2 alone. At this point, he

has stopped stage 1 at the threshold xagg1 and observed the true realization x1t1 . Therefore, the

current self’s total expected utility upon stopping stage 2 is given by E(Φagg
2 (x2, r

agg
2 )|x̃2):

E(Φagg
2 (x2, r

agg
2 )|x̃2) = E(x2 − I2 + ψ(x1t1 − I1 + x2 − I2 − ragg2 )), (39)

which enters into Equations (6) and its corresponding boundary conditions (24)- (26). Likewise,

he anticipates that future selves obtain the same utility from stopping:

E(φagg2 (x2, r
agg
2 )|x̃2) = E(x2 − I2 + ψ(x1t1 − I1 + x2 − I2 − ragg2 )|x̃2), (40)

which enters into Equations (5) and its corresponding boundary conditions (21) and (22). In

comparison to Equations (27) and (28), which describe the utility upon stopping stage 2 when he

sets incremental goals, Equations (39) and (40) differ only in the goal evaluation that occurs upon

completion of the project. Upon completing the project, it is the sum of the payoffs that the

agent expects from both stages that he compares against his aggregate goal.

In the second stage, the equilibrium current and future value functions when the agent sets

aggregate goals are given by wagg
2 and vagg2 , respectively. They differ from those of incremental

goals only in the goal comparison that is being made.

E[waggL
2 (x2, r

agg
2 )|x̃2] =











x
aggL
2

(

1− 1
2
η(α−1)(

ǫ2
1+ǫ2

)+ 1
2
η(α+1)

)

γ

(

β( x̃2

x
aggL
2

)γ1 + (1− β)( x̃2

x
aggL
2

)γ2

)

if x̃2 < xaggL2

x̃2 − I2 + E[ψ(x1 + x2 − xagg1 − 1
2 (x

aggL
2 + xaggH2 ))|x̃1] if x̃2 ≥ xaggL2

(41)
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E[waggH
2 (x2, r

agg
2 )|x̃2] =











x
aggH
2

(

1− 1
2
η(α−1)(

ǫ2
1+ǫ2

)+ 1
2
η(α+1)

)

γ

(

β( x̃2

x
aggH
2

)γ1 + (1− β)( x̃2

x
aggH
2

)γ2

)

if x̃2 < xaggH2

x̃2 − I2 + E[ψ(x1 + x2 − xagg1 − 1
2 (x

aggL
2 + xaggH2 ))|x̃1] if x̃2 ≥ xaggH2

(42)

E[vaggL2 (x̃2, r
agg
2 )|x̃2] =











x
aggL
2

(

1− 1
2
η(α−1)(

ǫ2
1+ǫ2

)+ 1
2
η(α+1)

)

γ
( x̃2

x
aggL
2

)γ1 if x̃2 < xaggL2

x̃2 − I2 + E[ψ(x1 + x2 − xagg1 − 1
2 (x

aggL
2 + xaggH2 ))|x̃1] if x̃2 ≥ xaggL2 .

(43)

E[vaggH2 (x̃2, r
agg
2 )|x̃2] =











x
aggH
2

(

1− 1
2
η(α−1)(

ǫ2
1+ǫ2

)+ 1
2
η(α+1)

)

γ
( x̃2

x
aggH
2

)γ1 if x̃2 < xaggH2

x̃2 − I2 + E[ψ(x1 + x2 − xagg1 − 1
2 (x

aggL
2 + xaggH2 ))|x̃1] if x̃2 ≥ xaggH2 .

(44)

Aggregate Goals: Stage 1

E[wagg
1 (x1, r

agg
2 )|x̃1] =























(xagg1 − I1)
(

β( x̃1

x
agg
1

)γ1 + (1− β)( x̃1

x
agg
1

)γ2

)

+kγ1

2

(

E[waggL
2 (x2, r

agg
2 )|x̃1] + E[waggH

2 (x2, r
agg
2 )|x̃1]

)

if x̃1 < xagg1

x̃1 − I1 +
kγ1

2

(

E[waggL
2 (x2, r

agg
2 )|x̃1] + E[waggH

2 (x2, r
agg
2 )|x̃1]

)

if ≤ x̃1 ≥ xagg1 ,

(45)

E[vagg1 (x1, r
agg
2 )|x̃1] =











(xagg1 − I1) (
x̃1

x
agg
1

)γ1 + kγ1

2

(

E[waggL
2 (x2, r

agg
2 )|x̃1] + E[waggH

2 (x2, r
agg
2 )|x̃1]

)

if x̃1 < xagg1

x̃1 − I1 +
kγ1

2

(

E[waggL
2 (x2, r

agg
2 )|x̃1] + E[waggH

2 (x2, r
agg
2 )|x̃1]

)

if x̃1 ≥ xagg1 .

(46)

The first two terms of the expected current value function, given by Equation (45), in its wait

region reflect the option value of stopping in the first stage, while the second two reflect that of

stopping in the second. In contrast to the case of incremental goals, the disutility from ex-ante

uncertainty is absent from the first two terms, as the agent does not directly evaluate himself

against a goal in the first stage. Likewise, the first term of the expected continuation value

function, given by Equation (46), in its wait region reflects the option value of the first stage from

an ex-ante perspective, while the second term reflects that of the second.
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10.3 Proof of Proposition 3

Proof.

First, I show existence and uniqueness of xagg1 . Define the following function, G(x):

G(x) = γI1 + (
x

4
)η(α+ 1)(

1

γ − 1
)

(

βkγ1(γ1 − 1)

(

(
1

1 + ǫ1
)(

x

xaggL2

)γ1 + (
1 + 2ǫ1
1 + ǫ1

)(
x

xaggH2

)γ1

)

+(1− β)kγ2(γ2 − 1)

(

(
1

1 + ǫ1
)(

x

xaggL2

)γ2 + (
1 + 2ǫ1
1 + ǫ1

)(
x

xaggH2

)γ2

))

− (γ − 1)x. (47)

Clearly, G(xagg1 ) = 0, so it is sufficient to verify that G(x) has a unique root in the range

0 < xagg1 < xinc1 . First, G(0) = γI1 > 0. Second, G is clearly increasing in k. Therefore,

G(xinc1 ) = γI1 + (
xinc1

4
)η(α+ 1)(

1

γ − 1
)

(

βkγ1(γ1 − 1)

(

(
1

1 + ǫ1
)(
xinc1

xaggL2

)γ1 + (
1 + 2ǫ1
1 + ǫ1

)(
xinc1

xaggH2

)γ1

)

+(1− β)kγ2(γ2 − 1)

(

(
1

1 + ǫ1
)(
xinc1

xaggL2

)γ2 + (
1 + 2ǫ1
1 + ǫ1

)(
xinc1

xaggH2

)γ2

))

− (γ − 1)xinc1

≤ γI1 + (
xinc1

4
)η(α+ 1)(

1

γ − 1
)

(

β(γ1 − 1)

(

(
1

1 + ǫ1
) + (

1 + 2ǫ1
1 + ǫ1

)

)

+(1− β)(γ2 − 1)

(

(
1

1 + ǫ1
) + (

1 + 2ǫ1
1 + ǫ1

)

))

− (γ − 1)xinc1

= γI1 + (
xinc1

2
)η(α+ 1)(

1

γ − 1
) (β(γ1 − 1)

+(1− β)(γ2 − 1))− (γ − 1)xinc1

= γI1 +
1

2
η(α+ 1)xinc1 − (γ − 1)xinc1

< γI1 +
1

2
η(α+ 1)xinc1 − (γ − 1)xinc1 +

1

2
η(α− 1)(γ − 1)(

ǫ

1 + ǫ
)xinc1

= γ(I1 − II) = 0,

where the first inequality holds if xaggH2 ≥ kxinc1 and the last line follows from the definition of

xinc1 . Since G(0) > 0 and G(xinc1 ) < 0, then there exists at least one root in this range. Moreover,

we can verify that d2G(x)
dx2 > 0 for all x > 0. Therefore, there exists a unique xagg1 ∈ (0, xinc1 ). We

can verify that our assumption for sequential stopping is satisfied: Since xagg1 is bounded above by

xinc1 , then xaggH2 ≥ kxinc1 ≥ kxagg1 .

Thus, xagg1 exists and is unique, and xagg1 < xinc1 . The fact that xagg1 > ( γ
γ−1)I1, where the

right-hand side of the inequality is the agent’s stopping threshold in the absence of reference
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dependence (η = 0), is obvious by inspection of Equation (19).

10.4 Proof of Proposition 4

To find
∂x

agg
1

∂ǫi
, we apply the implicit function theorem to Equation (47). We can verify that

∂G
∂ǫ2

≤ 0, with equality only when η = 0 or α = 1. We can also verify that ∂G
∂ǫ1

≥ 0, with equality

only when η = 0 or α = 1. In the preceding proof of the existence of xagg1 , I have shown that

∂G
∂x

< 0 when 0 < x < xinc1 . By the implicit function theorem,

∂xagg1

∂ǫi
= −

∂G
∂ǫi
∂G
∂x

.

Thus,
∂x

agg
1

∂ǫ2
≤ 0 and

∂x
agg
1

∂ǫ1
≥ 0, with equality only when η = 0 or α = 1.

10.5 Proof of Proposition 5

To find the optimal bracketing choice as ǫ1 varies, I compare the expectations of vagg1 and vinc1 . If

Equation (20) is satisfied, then the agent completes each stage sequentially regardless of how he

brackets.

Proof.

Direct differentiation of E[vinc1 (x1, r
inc
1 , rinc2 )|x̃1] yields

∂

∂ǫ1
(E[vinc1 (x1, r

inc
1 )|x̃1]) = −

I1
2
η(α− 1)(

1

1 + ǫ1
)2
(

x̃1
xinc1

)γ1

(

(γ − 1)[1− 1
2η(α− 1)( ǫ1

1+ǫ1
)]− 1

2η(α+ 1) + (γ − 1)(γ1 − 1)(1 + 1
2η(

1+2ǫ1+α
1+ǫ1

))

[(γ − 1)[1− 1
2η(α− 1)( ǫ1

1+ǫ1
)]− 1

2η(α+ 1)]2

)

< 0.

Direct differentiation of E[vagg1 (x1, r
agg
2 )|x̃1] yields

∂

∂ǫ1
(E[vagg1 (x1, r

agg
2 )|x̃1]) = (x̃1)

γ1

[

(

∂xagg1

∂ǫ1

)(

1

xagg1

)γ1+1

[γ1I1 − xagg1 (γ1 − 1)]

+
kγ1

2

(

∂

∂ǫ1

(

ǫ1
1 + ǫ1

xagg1

))

1

2
η(α+ 1)

(

γ1 − 1

γ − 1

)

((

1

xaggH2

)γ1

−

(

1

xaggL2

)γ1
)]

> 0.

The first term is positive whenever Equation (48) holds, since
∂x

agg
1

∂ǫ1
> 0. The second term is

positive since ǫ1
1+ǫ1

and xagg1 increase in ǫ1, and x
aggH
2 < xaggL2 . Since ∂

∂ǫ1
(E[vinc1 ]) < 0 and
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∂
∂ǫ1

(E[vagg1 ]) > 0, uniqueness and existence of ǫ̃1 are shown when E[vinc1 (ǫ1 = 0)] > E[vagg1 (ǫ1 = 0)]

and limǫ1→∞E[vinc1 ] < limǫ1→∞E[vagg1 ].

First, E[vinc1 (ǫ1 = 0)] > E[vagg1 (ǫ1 = 0)] whenever the agent does not wait longer than the ex-ante

optimum when he sets incremental goals, even when uncertainty is greatest. Note that the

first-best stage 1 threshold given an incremental goal is given by:

xinc∗1 =
γ1I1

(γ1 − 1)[1− 1
2η(α− 1)( ǫ1

1+ǫ1
)]
,

where xinc∗1 is increasing in ǫ1. In particular, xinc∗1 ≥ ( γ1
γ1−1)I1, where E[vagg1 (ǫ1 = 0)] is maximized

when xagg1 = ( γ1
γ1−1)I1. Since x

agg
1 < xinc1 and the second-stage stopping threshold is the same

regardless of how he brackets when ǫ1 = 0, then E[vinc1 (ǫ1 = 0)] > E[vagg1 (ǫ1 = 0)] whenever

limǫ1→∞ xinc1 ≤ ( γ1
γ1−1)I1, which holds when the following condition is satisfied:

0 ≤ γ − γ1 − γ1[1 +
1

2
η(α− 1)γ1 +

1

2
η(α+ 1)]. (48)

The right-hand side of Equation (48) is decreasing in η and γ, and increasing in γ when

1
2η(α− 1) < 1

γ1
. That is, the agent’s self-control is sufficiently poor (i.e., γ is sufficiently high)

relative to his reference dependence and loss aversion that incremental goals are preferred to the

aggregate goal in the absence of outcome uncertainty.

I now consider conditions such that E[vagg1 (x1, r
agg
2 )|x̃1] > E[vinc1 (x1, r

inc
1 )|x̃1] when ǫ1 → ∞. Since

E[vagg2 ] > E[vinc2 ] whenever ǫ1 > 0, then this is certainly satisfied whenever the value of the

first-stage threshold under the aggregate goal exceeds the value of the first-stage threshold under

incremental goals:

lim
ǫ1→∞

E[vinc1 (x1, r
inc
1 , rinc2 )−vagg1 (x1, r

agg
2 )|x̃1] = [xinc1 (1−

1

2
η(α−1))−I1](

x̃1
xinc1

)γ1−[xagg1 −I1](
x̃1
xagg1

)γ1 .

(49)

Although we do not have an explicit expression for xagg1 , we know that it is bounded below:

xagg1 > ( γ
γ−1)I1 ≡ xh. Then the second term in Equation (49) is bounded below by

[xh − I1](
x̃1
xh

)γ1 .
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Thus, any (η, α) such that

0 ≥ [xinc1 (1−
1

2
η(α− 1))− I1](

x̃1
xinc1

)γ1 − [xh − I1](
x̃1
xh

)γ1

will also satisfy the condition that Equation (49) is negative. Since the left-hand term is strictly

decreasing in α and η, then Equation (49) will be negative for any (η, α) sufficiently high that this

inequality is satisfied. This inequality can be reduced to the following:

M(η, α) ≡ (γ − 1)γ1−1 − (1 + η)

(

(γ − 1)[1−
1

2
η(α− 1)]−

1

2
η(α+ 1)

)γ1−1

≥ 0,

where M(0, 1) = 0. Also, consider the maximum permissible combination(s) (η, α), which satisfies

(γ − 1)[1−
1

2
η(α− 1)(

ǫ1
1 + ǫ1

)]−
1

2
η(α+ 1) = 0,

and where η ≤ γ − 1. Evaluating M at such a point, we must have that M(η, α) > 0 since ǫ1 ≥ 0.

Furthermore, ∂M
∂α

> 0 for η > 0. Differentiating M with respect to η, we have that M is

increasing if

γ(α+ 1)− 2γ1(1 + η)− γ1γ(α− 1)(1 + η) ≤ 0, (50)

and decreasing otherwise. Since the left-hand side of Equation (50) is decreasing in both η and α,

we require (η, α) sufficiently large so that Equation (50) is satisfied in order for Equation (49) to

be negative. Since M(0, 1) = 0, M(η, α) > 0, ∂M
∂α

> 0 when η > 0, and M is initially decreasing

(and therefore negative) before increasing thereafter in η, then there exist some combinations

(η′, α′) such that M(η′, α′) = 0 and M(η, α) > 0 for all η′ ≤ η ≤ η and α′ ≤ α ≤ α, where η′ > 0

and α′ > 1.

To verify that there exist values of (η, α) that satisfy both (48) and M(η, α) > 0, let us consider

whether (50) can be satisfied when Equation (48) holds with equality. If not, then such values

(η, α) do not exist and such a threshold ǫ̃1 does not exist. Suppose that α is sufficiently high

(denoted α̂), given some η, that Equation (48) holds with equality. Does there exist some range of
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η such that M(η, α) > 0 is still satisfied? When Equation (48) holds with equality, M becomes

M(η, α̂) = (γ − 1)γ1−1 − (1 + η)(
γ(γ1 − 1)

γ1
)γ1−1. (51)

Since the second term is strictly positive and less than γ − 1 when η = 0, then M(0, α̂) is strictly

positive whenever η = 0. We can also verify that ∂M
∂η

|(0,α̂) < 0 and ∂M
∂α

> 0 for η > 0. Therefore,

there exists some range of η such that M(η, α̂) is satisfied when (48) holds with equality. Thus,

for γ sufficiently high, there exists some threshold ǫ̃1 such that

E[vagg1 (x1, r
agg
2 )|x̃1] < E[vinc1 (x1, r

inc
1 , rinc2 )|x̃1] when ǫ1 < ǫ̃1, and

E[vagg1 (x1, r
agg
2 )|x̃1] > E[vinc1 (x1, r

inc
1 , rinc2 )|x̃1] when ǫ1 > ǫ̃1. In particular, ǫ̃1 exists for any (η, α)

that satisfy both (48) and M(η, α) > 0.

10.6 Proof of Proposition 6

To find the optimal bracketing choice as ǫ2 varies, I compare the expectations of vagg1 and vinc1 . If

Equation (20) is satisfied, then the agent completes each stage sequentially regardless of how he

brackets.

That there exist some combinations of (ǫ1, ǫ2) such that

E[vagg1 (x1, r
agg
2 )|x̃1] < E[vinc1 (x1, r

inc
1 , rinc2 )|x̃1] when γ is sufficiently high follows from the Proof of

Proposition 5.

Direct differentiation of E[vagg1 (x1, r
agg
2 )− vinc1 (x1, r

inc
1 , rinc2 )] yields

∂

∂ǫ2
(E[vagg1 (x1, r

agg
2 )− vinc1 (x1, r

inc
1 , rinc2 )]) =

(x̃1)
γ1

(

(

∂xagg1

∂ǫ2

)(

1

xagg1

)γ1+1

(γ1I1 − xagg1 (γ1 − 1))

+
kγ1

γ



−
1

2
η(α− 1)(

1

1 + ǫ2
)2





1

2





(

1

xaggH2

)γ1−1

+

(

1

xaggL2

)γ1−1


−

(

1

xinc2

)γ1−1




−(γ1 − 1)

(

1−
1

2
η(α− 1)(

ǫ2
1 + ǫ2

) +
1

2
η(α− 1)

)

(A(ǫ2))

])

.

Under aggregate goals,
∂x

agg
1

∂ǫ2
< 0, so the option value of stage 1 decreases with ǫ2 (i.e., the first
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term is negative) when Equation (49) is satisfied. The second term is negative, since the function

(1/x)c where c > 0 is convex. I now show that the third term is also negative since A(ǫ2) is

positive.

A(ǫ2) =

(

1
2η(α− 1)( 1

1+ǫ2
)2γ(γ − 1)I2

[(γ − 1)(1− 1
2η(α− 1)( ǫ2

1+ǫ2
))− 1

2η(α+ 1)]2

)(

1

2

((

1

xaggH2

)γ1

+

(

1

xaggL2

)γ1
)

−

(

1

xinc2

)γ1

)

−
1

2

(

1
2η(α+ 1) 12η(α− 1)( 1

1+ǫ2
)2γ( ǫ1

1+ǫ1
)xagg1

(γ − 1)[1− 1
2η(α− 1)( ǫ2

1+ǫ2
) + 1

2η(α+ 1)]2
+

1
2γη(α+ 1)( ǫ1

1+ǫ1
)

(γ − 1)[1− 1
2η(α− 1)( ǫ2

1+ǫ2
) + 1

2η(α+ 1)]
(
∂xagg1

∂ǫ2
)

)

((

1

xaggH2

)γ1

−

(

1

xaggL2

)γ1
)

.

The first term is positive. The second term is bounded below, since
∂x

agg
1

∂ǫ2
< 0, yielding

A(ǫ2) ≥

(

1
2η(α− 1)( 1

1+ǫ2
)2γ(γ − 1)I2

[(γ − 1)(1− 1
2η(α− 1)( ǫ2

1+ǫ2
))− 1

2η(α+ 1)]2

)(

1

2

((

1

xaggH2

)γ1

+

(

1

xaggL2

)γ1
)

−

(

1

xinc2

)γ1

)

−
1

2

(

1
2η(α+ 1) 12η(α− 1)( 1

1+ǫ2
)2γ( ǫ1

1+ǫ1
)xagg1

(γ − 1)[1− 1
2η(α− 1)( ǫ2

1+ǫ2
) + 1

2η(α+ 1)]2

)((

1

xaggH2

)γ1

−

(

1

xaggL2

)γ1
)

.

=
1

2
η(α− 1)(

1

1 + ǫ2
)2

[(

xinc2 (γ − 1)

(γ − 1)(1− 1
2η(α− 1)( ǫ2

1+ǫ2
))− 1

2η(α+ 1)

)(

1

2

((

1

xaggH2

)γ1

+

(

1

xaggL2

)γ1
)

−

(

1

xinc2

)γ1

)

−
1

2

(

H(ǫ2)x
agg
1

1− 1
2η(α− 1)( ǫ2

1+ǫ2
) + 1

2η(α+ 1)

)((

1

xaggH2

)γ1

−

(

1

xaggL2

)γ1
)]

,

where the equality follows from xaggH2 = xinc2 −H(ǫ2)x
agg
1 and xaggL2 = xinc2 +H(ǫ2)x

agg
1 , where

H(ǫ2) =
1

2
γη(α+1)(

ǫ1
1+ǫ1

)

(γ−1)[1− 1

2
η(α−1)(

ǫ2
1+ǫ2

)+ 1

2
η(α+1)]

. Combining xaggH2 = xinc2 −H(ǫ2)x
agg
1 and

xaggL2 = xinc2 +H(ǫ2)x
agg
1 with the fact that

1

2





(

1

xaggH2

)γ1−1

+

(

1

xaggL2

)γ1−1


−

(

1

xinc2

)γ1−1

≥ 0

implies that

1

2
H(ǫ2)x

agg
1

((

1

xaggH2

)γ1

−

(

1

xaggL2

)γ1
)

≤ xinc2





1

2





(

1

xaggH2

)γ1−1

+

(

1

xaggL2

)γ1−1


−

(

1

xinc2

)γ1−1


 .
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Moreover,

1

1− 1
2η(α− 1)( ǫ2

1+ǫ2
) + 1

2η(α+ 1)
<

γ − 1

(γ − 1)(1− 1
2η(α− 1)( ǫ2

1+ǫ2
))− 1

2η(α+ 1)
.

Thus, A(ǫ2) ≥ 0 so ∂
∂ǫ2

(E[vagg1 (x1, r
agg
2 )− vinc1 (x1, r

inc
1 , rinc2 )]) < 0.

10.7 Proof of Proposition 7

To show Proposition 7, it is sufficient to show that ∂
∂α

(E[vinc1 (x1)|x̃1])|α=1 > 0 for some

combination of η ≥ 0 and ǫi > 0 for i = 1, 2.

If the agent sets incremental goals,

∂

∂α
(E(vinc1 (x1, r

inc
1 , rinc2 ))) =

(

x̃1

xinc1

)γ1

(
1
2ηx

inc
1

γ
)

(

1

1 + ǫ1
−
γ1[(γ − 1)( ǫ1

1+ǫ1
) + 1][1− 1

2η(α− 1)( ǫ1
1+ǫ1

+ 1
2η(α+ 1)]

(γ − 1)(1− 1
2η(α− 1)( ǫ1

1+ǫ1
))− 1

2η(α+ 1)

)

+

(

kx̃1

xinc2

)γ1

(
1
2ηx

inc
2

γ
)

(

1

1 + ǫ2
−
γ1[(γ − 1)( ǫ2

1+ǫ2
) + 1][1− 1

2η(α− 1)( ǫ2
1+ǫ2

+ 1
2η(α+ 1)]

(γ − 1)(1− 1
2η(α− 1)( ǫ2

1+ǫ2
))− 1

2η(α+ 1)

)

(52)

Evaluating at α = 1, a necessary condition for ∂
∂α

(E[vinc1 (x1)|x̃1])|α=1 > 0 is

η <
γ − γ1
γ1

,

where the right-hand side is clearly non-negative and only equals zero when the agent is not

impulsive. In addition, a sufficient23condition for ∂
∂α

(E[vinc1 (x1)|x̃1])|α=1 > 0 is that ex-ante

outcome uncertainty must be sufficiently small in each stage:

ǫi <
γ − γ1(1 + η)

γ(γ1 − 1)(1 + η)
for i = 1, 2.

23This condition is stricter than necessary and guarantees that both terms of Equation (52) are positive. Clearly,
the necessary condition is that this upper bound be satisfied for at least one stage.
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If the agent sets an aggregate goal, the analogous result holds.

∂

∂α
(E[vagg1 (x1, r

agg
2 )]) =

(x̃1)
γ1

(

(

∂xagg1

∂ǫ2

)(

1

xagg1

)γ1+1

(γ1I1 − xagg1 (γ1 − 1))

)

+
kγ1

γ

[(

1
2ηx

inc
2

2

((

1

xaggH2

)γ1

+

(

1

xaggL2

)γ1
))

B(α)

+D(α)

(

H(ǫ2)x
agg
1

2

((

1

xaggH2

)γ1

−

(

1

xaggL2

)γ1
))

+

(

H(ǫ2)

2

((

1

xaggH2

)γ1

−

(

1

xaggL2

)γ1
))

(γ1 − 1)(1−
1

2
η(α− 1)(

ǫ2
1 + ǫ2

) +
1

2
η(α+ 1))(

∂xagg1

∂α
)

]

where

B(α) =
1

1 + ǫ2
−

((γ − 1)( ǫ2
1+ǫ2

) + 1)(γ1 − 1)(1− 1
2η(α− 1)( ǫ2

1+ǫ2
) + 1

2η(α+ 1))

(γ − 1)(1− 1
2η(α− 1)( ǫ2

1+ǫ2
))− 1

2η(α+ 1)

D(α) = −
1

2
η(

1

1 + ǫ2
) + (γ1 − 1)(1−

1

2
η(α− 1)(

ǫ2
1 + ǫ2

) +
1

2
η(α+ 1)(

ǫ2
1 + ǫ2

))

Evaluating at α = 1, a sufficient condition for ∂
∂α

(E[vagg2 (x1)|x̃1])|α=1 > 0 is

η <
γ − γ1
γ1

,

and

ǫ2 <
γ − γ1(1 + η)

γ(γ1 − 1)(1 + η)
.

The first term of ∂
∂α

(E[vagg1 (x1, r
agg
2 )])|α=1 is positive whenever

∂x
agg
1

∂α
> 0, which is guaranteed24

whenever

I1k(γ − 1− η)2 − I2γ2η(γ − 1) > 0 (53)

and

ǫ2 <
I1k(γ − 1− η)2 − I2γ2η(γ − 1)

I2γ2ηγ(γ − 1)− I1k(γ − 1− η)2
. (54)

Note that Equation (53) is decreasing in η, and is positive when η = 0, so there exists a range of

24These conditions are stronger than required, to establish existence.
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η > 0 sufficiently small that satisfies this requirement, and likewise ǫ2 in Equation (54). Thus,

∂
∂α

(E[vagg1 (x1, r
agg
2 )])|α=1 > 0 whenever η and ǫ2 are sufficiently small, implying that some degree

of loss aversion is beneficial to the agent from an ex-ante perspective.
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