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Abstract

We propose a new method to improve density forecasts of the equity premium us-

ing information from options markets. We tilt the predictive densities from standard

econometric models suggested in the stock return predictability literature towards the

second moment of the risk-neutral distribution implied by options prices. In so do-

ing, we use a simple regression-based approach to remove the variance risk premium.

By combining the backward-looking information contained in the econometric models

with the forward-looking information from the options prices, tilting yields sharper

predictive densities. Using density forecasts of the U.S. equity premium in Rapach and

Zhou (2012), we find that tilting leads to more accurate predictions, both in terms of

statistical and economic performance.
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1 Introduction

Empirical asset pricing usually employs forecasting models that are backward looking—they

use past observations on a set of variables to project future asset returns. The set of variables

is often motivated by economic theory—for example, macroeconomic and financial variables,

such as the dividend yield or the term spread. Derivative prices convey information about

the conditional density of future outcomes and, hence, they are inherently forward looking.

They contain information about market expectations and should be useful for improving

return forecasts.

In this paper, we provide a simple procedure to blend backward- and forward-looking in-

formation to sharpen predictive densities of the equity premium obtained from existing

econometric models. Our approach entails taking a given predictive density and tilting it

towards moments implied by options prices. Specifically, we extract the variance of the risk-

neutral distribution from options prices and subtract from it a regression-based estimate of

the variance risk premium to obtain a forward-looking variance estimate. We then twist the

baseline physical predictive distribution towards this forward-looking variance using entropic

tilting. The procedure is simple; using a few lines of code, we modify the predictive density

such that its variance resembles the risk-neutral variance with the variance risk premium

removed.

To illustrate our method, we use the equity premium on the S&P 500. We take the models in

Rapach and Zhou (2012) and tilt their implied predictive densities towards the option-implied

variance. We find that entropic tilting significantly improves the out-of-sample predictability

of stock returns, both in terms of statistical and economic measures of forecasting accuracy.

Improvements in forecasting performance using option-implied information have been well

documented (Christoffersen et al. (2013)). Christoffersen et al. find that combining historical

information with information extracted from derivative prices can improve forecasts signif-

icantly. Numerous papers also show that option-implied volatility provides a good forecast
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of future realized volatility (e.g., Szakmary et al. (2003)) and predicts the equity premium

(e.g., Bollerslev et al. (2009)).

We make two contributions to the literature on improving forecasts using option-implied

information. First, we provide a highly flexible non-parametric method for incorporating

option-implied moments into baseline forecasts. Second, we work with density forecasts,

whereas the bulk of the existing literature focuses on point forecasts and incorporates option-

implied moments among the predictors in a forecasting regression. (e.g., Altigan et al.

(2015)). Furthermore, our method can be extended to higher moments, such as skewness

and kurtosis, which have received increased attention recently in empirical asset pricing

overall (Young Chang et al. (2013)).

The remainder of the paper is organized as follows. In Section 2, we first provide an overview

of entropic tilting and a method to construct predictive densities for the equity premium.

Our approach for removing the variance risk premium from the variance of the risk-neutral

distribution implied by option prices follows. Section 3 presents our main results, and Sec-

tion 4 focuses on out-of-sample statistical and economic performance. Finally, we provide

some concluding remarks. All tables and figures are provided after the main body of the

text.

2 Entropic Tilting for Equity Premium Forecasting

Entropic tilting is a highly flexible non-parametric method to change the shape of a baseline

predictive distribution to incorporate additional information about an underlying random

variable of interest. Such additional information may come in the form of moments, and

this is the approach we follow here. In particular, we use the density forecasts implied

by the model combination approach of Rapach and Zhou (2012) as baseline distributions.

We use entropic tilting to incorporate moment restrictions derived from options prices in
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these baseline distributions. In what follows, we outline the general tilting method, how

we incorporate the moment-based information from the options markets into the baseline

density forecasts, and the econometric model we rely on to produce the baseline density

forecasts for the equity premium.

2.1 General Method

Let p (rt+1|Dt) denote the baseline predictive density for the equity premium rt+1 with Dt

being the information set available at time t. The econometrician is assumed to have ad-

ditional information about a function g(rt+1), which was not used to generate the baseline

predictive density. This additional information takes the form of moments of g(rt+1) defined

such that

E[g(rt+1)|Dt] = gt. (1)

For example, g(rt+1) may represent quantities such as the mean, g(rt+1) = rt+1, the variance,

g(rt+1) = (rt+1−E[rt+1])
2, or higher moments of the predictive distribution; see e.g., Robert-

son et al. (2005) for a very informative exposition. The information could be in the form of

moment restrictions implied by economic theory, such as Euler conditions in Giacomini and

Ragusa (2013), or could be coming from survey forecasts and model-based nowcasts as in

Altavilla et al. (2014) and Krüger et al. (2015).

Generally, the expected value of g(rt+1) under the baseline distribution will not equal gt

∫
g(rt+1)p

(
rt+1|Dt

)
drt+1 6= gt. (2)

Thus, by transforming p (rt+1|Dt) so that (1) holds, we sharpen the baseline predictive

density. To implement the method, consider N random draws from the baseline predictive

distribution p (rt+1|Dt). We denote these draws with
{
rit+1

}N
i=1

, where each draw is associated

with a weight πi = 1/N . We construct a new set of weights {π∗it}Ni=1 that represent a new

4



predictive density that is as close as possible to the baseline but that satisfies the moment

restriction implied by (1). Following a standard approach in the literature, we use the

empirical Kullback-Leibler Information Criterion (KLIC) to measure the distance between

the baseline and the new predictive density1

KLIC(π∗t ; π) =
N∑
i=1

π∗it ln

(
π∗it
πi

)
. (3)

The objective is to find new weights that minimize (3) subject to the constraints

π∗it ≥ 0,
N∑
i=1

π∗it = 1,
N∑
i=1

π∗itg(rit+1) = gt, (4)

where the last constraint may be viewed as the Monte-Carlo approximation to the moment

restriction in (1) using the language in Cogley et al. (2005).2 The implied first-order condi-

tions are given by

1 + ln

(
πi
π∗it

)
− µt − γ′tg(rit+1) = 0, i = 1, . . . , N (5)

with µt and γt being the Lagrange multipliers associated with the adding-up and moment

constraints. The new weights are then given by

π∗it =
πi exp(γ∗′t g(rit+1))∑N
i=1 πi exp(γ∗′t g(rit+1))

. (6)

As a result, the baseline weights are tilted in an exponential fashion via (6) to generate the

1Other measures of divergence could be chosen. As Giacomini and Ragusa (2013) note, the two main
reasons for working with the Kullback-Leibler measure are that: (i) it provides a convenient analytical
expression for the tilted weights; (ii) unlike other measures of distance, it has a direct counterpart in the
logarithmic scoring rule, which is a common and well-studied measure for evaluating density forecasts (see
e.g., Amisano and Giacomini (2007)).

2See Robertson et al. (2005) and the references there in. The 2012 Econometric Reviews Special Issue on
Entropy and the 2002 Journal of Econometrics Issue on Information and Entropy Econometrics offer more
detailed treatments on entropy and the use of alternative divergence measures.
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new weights. The tilting parameter γ∗t can be found by solving the minimization problem

γ∗t = arg min
γt

N∑
i=1

exp(γ′t[g(rit+1)− gt]). (7)

In our case, we use the variance of the risk-neutral distribution for the equity premium,

as implied by the option markets, to distort the baseline predictive distribution p (rt+1|Dt)

so that its dispersion, as captured by V ar (rt+1|Dt), resembles that of the option implied

risk-neutral distribution. It is the forward-looking aspect of the options market that serves

as the source of new information and is also the novelty in our approach. In the spirit of

Robertson et al., we incorporate restrictions that could in principle be built directly into the

forecasting model in a manner that is less demanding computationally.

2.2 Equity Premium Predictions

We now describe the econometric model we rely on to construct the baseline predictive

density p (rt+1|Dt). We follow Rapach et al. (2010) and Rapach and Zhou (2012), who find

that model combinations based on popular predictors in the literature lead to significant

improvements in the out-of-sample predictability of stock returns. In particular, Rapach

and Zhou start with a set of linear univariate regression models, each including a constant

and one of fourteen predictors described in Goyal and Welch (2008)

rt+1 = µi + βixi,t + εi,t+1 i = 1, ..., K, (8)

where K = 14, xi,t is the i-th predictor at time t, and εi,t+1 ∼ N (0, σ2
i ). The model in (8)

entails estimating two mean parameters, µi and βi, via an OLS regression. For each predictor

i ∈ {1, ..., K} and time period t, we obtain the point forecast at time t + 1 conditional on
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information available up to time t as follows3

r̂i,t+1|t = µ̂i,t + β̂i,txi,t, (9)

where µ̂i,t and β̂i,t are the OLS estimators of (8) given by

(
µ̂i,t, β̂i,t

)′
=

(
t∑

τ=2

zi,τ−1z
′
i,τ−1

)−1( t∑
τ=2

zi,τ−1rτ

)
, (10)

and zi,τ−1 ≡ (1, xi,τ−1)
′. Next, Rapach and Zhou show that combining the individual forecasts

in (9) delivers substantial improvements in out-of-sample forecasting accuracy. In one case,

they combine point forecasts with weights that depend on recent forecasting performance

on the basis of a discounted mean squared forecast error (DMSFE). More specifically, their

DMSFE return forecast is given by

r̂DMSFE
t+1|t =

K∑
i=1

w∗i,tr̂i,t+1|t, (11)

where

w∗i,t =
φ−1i,t∑K
i=1 φ

−1
i,t

, φi,t =
t−1∑
s=m

θt−1−s(rs+1 − r̂i,s+1|s)
2, θ = 0.75

with m+ 1 being the beginning of the out-of-sample period and θ being a discount factor.

We proceed in a similar fashion, but given that our goal is to produce a full predictive density

for the equity premium, we use the DMSFE weights to construct a combined density forecast

as follows

p
(
rt+1|Dt

)
=

K∑
i=1

w∗i,t × p
(
rt+1|Mi,Dt

)
, (12)

3We use an expanding window approach, where we recursively extend the estimation window one month
at a time to obtain new predictive coefficients and to construct an out-of-sample density forecast for the
following month. We proceed in this way until the full sample is exhausted. The procedure mimics the
real-time information set for an investor.
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where rt+1|Mi,Dt ∼ N
(
r̂i,t+1|t, σ̂

2
i

)
, Mi identifies the univariate model based on predictor

i, and σ̂2
i denotes the OLS estimates of the corresponding variance.

2.3 Removing the Variance Risk Premium

We capitalize on the literature that has demonstrated the predictive power of implied volatil-

ity regarding future realized volatility; see Jorion (1995) and, more recently, Szakmary et al.

(2003), among others. The basic argument is that implied volatility—inferred from options

data as in our case—can be perceived as the market’s expectation of future volatility and,

hence, it is a market-based volatility forecast (Poon and Granger (2003)). The feature of

the implied volatility that is particularly appealing for a forecasting exercise like the one

undertaken here is that it is inherently forward looking.

In the presence of a variance risk premium, the implied or risk-neutral variance is a biased

estimate of the variance of the physical predictive density. Economic agents dislike the

uncertainty of future variance and, in equilibrium, command a premium for accepting this

risk, which gives rise to the variance risk premium. Bollerslev et al. (2009) provides strong

evidence of variance risk premia in financial assets. Thus, we first remove the variance

risk premium from the risk-neutral variance before tilting the baseline predictive density

p (rt+1|Dt) towards it.

Let ûP,t+1 denote the forecast error from the baseline physical predictive distribution at time

t+ 1 obtained following the approach in the previous section

ûP,t+1 = rt+1 − E
(
rt+1|Dt

)
, (13)

where E (rt+1|Dt) is the posterior mean of p (rt+1|Dt). The posterior variance of the predic-

tive distribution is σ2
P,t+1 ≡ E

(
û2P,t+1|Dt

)
. From options prices, we can compute the variance

of the risk-neutral distribution, σ2
Q,t+1, which differs from σ2

P,t+1 by the variance risk premium
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V RPt+1

σ2
P,t+1 = σ2

Q,t+1 − V RPt+1. (14)

We assume that the variance risk premium is such that the following holds

log
(
σ2
P,t+1

)
= α + βlog

(
σ2
Q,t+1

)
. (15)

Because the log squared forecast error is a noisy measure of log σ2
P,t+1, we can estimate α and

β using a regression of log
(
û2P,t+1

)
on log

(
σ2
Q,t+1

)
. Thus, we tilt the predictive distribution

towards a variance given by

σ̂2
P,t+1 = exp

(
α̂ + β̂log

(
σ2
Q,t+1

))
, (16)

which implies that the variance risk premium is

V RPt+1 = σ2
Q,t+1 − exp

(
α + β log

(
σ2
Q,t+1

))
V̂ RP t+1 = σ2

Q,t+1 − exp
(
α̂ + β̂ log

(
σ2
Q,t+1

))
. (17)

To implement our approach, for our measure of risk-neutral variance of the S&P 500 re-

turns, σ2
Q,t+1, we follow Bollerslev et al. (2009) and use the end-of-month values of the

squared Chicago Board Options Exchange (CBOE) Volatility Index (VIX). In 1993, the

CBOE introduced VIX, originally designed to measure the market’s expectation of 30-day

volatility implied by ATM S&P 100 Index (OEX) option prices. In 2003, CBOE together

with Goldman Sachs updated the methodology and formula for VIX. The new VIX is based

on the S&P 500 Index (SPX) and estimates expected volatility by averaging the weighted

prices of SPX puts and calls over a wide range of strikes and its values are available back to

January 1990.
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Figure 1 provides a time series plot of the end-of-month values of the VIX squared between

January 1995 and December 2010—January 1995 is the first month in our sample for which

we tilt the baseline predictive densities. Setting aside the very prominent spike in October

2008 around the peak of the most recent financial crisis, our measure of risk-neutral variance

is higher during 1997–2003, a period of well-documented turmoil in the financial markets

(Bloom (2009)). Events during this period include the Asian crisis (Fall 1997), the Russian

Financial Crisis (Fall 1998) September 11 (Fall 2001), the Enron and WorldCom scandals

(Summer/Fall 2002), and Gulf War II (Spring 2003).

3 Empirical Results

We obtain the data necessary to generate the predictive densities in (12) from Goyal and

Welch (2008), who subsequently extended their original data to December 2010.4 End-of-

month stock returns are computed from the S&P500 index and include dividends. A short

T-bill rate is subtracted from stock returns in order to obtain the excess returns shown in

Figure 2. The red and green vertical lines in the figure indicate the first month for which the

VIX is available, January 1990, and the first month for which we tilt the baseline predictive

density, January 1995. When annualized, the equity premium has an average of 5.6% and

a standard deviation of 19.3% over the period January 1926 to December 2010. During the

more recent period, January 1995 to December 2010, the mean and standard deviation of

the equity premium are 5.1% and 16.1%, respectively. In this later part of the sample, we

can easily identify the highly-volatile periods of 1997–2003 and the recent financial crisis

through Figure 2.

In the empirical exercises that follow, we begin by computing the baseline predictive densities

for the equity premium using (12). For the univariate models’ densities, p (rt+1|Mi,Dt),

i = 1, ..., K, we start in January 1980 and proceed in a recursive fashion using an expanding-

4The data are readily available from Amit Goyal’s website at http://www.hec.unil.ch/agoyal/.
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window approach until the last observation in the sample. Hence, we produce K time series

of one-step-ahead density forecasts between January 1980 and December 2010. Next, we

combine the univariate models’ densities into p (rt+1|Dt), holding out the period January

1980 to December 1989 to train the combination weights. This leaves us with an initial out-

of-sample period from January 1990 to December 2010. Subsequently, we tilt the DMSFE

predictive densities towards the option implied risk-neutral variance using (16) to remove the

variance risk premium. In particular, we obtain our estimates for the variance risk premium

by regressing the log squared forecast error implied by the DMSFE predictive density on

the the log squared VIX using (15) and an expanding-window approach. Setting aside the

period January 1990 to December 1994 to estimate the first variance risk premium, our final

out-of-sample period is January 1995 to December 2010.

3.1 Variance Risk Premium

The top panel of Figure 3 shows three different variance measures that are relevant in our

exercise. The first is the variance associated with the baseline DMSFE predictive densities

(baseline) in (12). The second is the end-of-month squared VIX, which is our measure of

the risk-neutral variance (risk-neutral). The third is the variance associated with the tilted

DMSFE predictive densities (tilted). A striking feature of the baseline variance is that it

exhibits very little variation over time, even during periods of well-documented turmoil. In

addition, for most of the sample, the tilted variance is smaller than the baseline variance.

The most notable exception is 2009, when the variance of the titled densities is larger than

the variance of the baseline densities in 7 of the 12 months.

The bottom panel of Figure 3 provides the slope estimate from the variance risk premium

regression in (16), along with 95% confidence intervals. The regressions use an expanding

window with initial size of 60 monthly observations. The slope estimate fails to be statisti-

cally different from 1 during the entire 16-year period, which implies that the variance risk
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premium equals approximately the average difference between the squared forecast error and

the squared VIX.

Figure 4 plots the evolution of the estimated variance risk premium in the out-of-sample

period. Our estimated variance risk premium is high during the periods of economic un-

certainty, such as the recent financial crisis (Fall 2008), around the WorldCom and Enron

scandals (Summer/Fall 2002) and Gulf War II (Spring 2003), as well as close the Russian

financial crisis (Fall 1998). In addition, the same figure shows that our variance risk premium

is highly comparable to the variance risk premium from Bollerslev et al. (2009) with the two

series tracking each other closely. The only notable deviation between the two variance risk

premium series is in October 2008. Bollerslev et al. compute their volatility risk premium

by taking the difference between implied and realized volatility, whereas we obtain ours from

a regression of the log squared forecast error on log squared VIX, so the similarity in these

series provides some evidence that our log linear approximation is reasonable. Of course, the

true test of our procedure is its forecasting performance.

3.2 Entropic Tilting

Figure 5 shows the posterior probability intervals for the tilted and the baseline densities

over the out-of-sample period. Consistent with our earlier findings, the shape of the tilted

predictive densities exhibits much more variation over time compared to its baseline coun-

terpart. For example, if we focus on the far left tail of the distributions, the 1% quantile for

the baseline density forecasts is between -0.132 and -0.124, while that for the tilted density

forecasts is between -0.262 and -0.033. In the case of the far right tail of the distributions,

the 99% quantile for the baseline density forecasts is 0.131—0.138, while that for the tilted

density forecasts is 0.043–0.265. Similar conclusions are drawn by looking at the shoulders

of the two distributions.

As we discussed earlier in paper, the empirical KLIC defined in (3) gauges how much the
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baseline density is altered by the tilting procedure. That is, small values of the empirical

KLIC signify agreement between the baseline predictive model and outside information, while

large values signify disagreement.5 As a practical matter, large discrepancies also serve as

warnings about the accuracy of statistics computed from the tilted densities. In fact, a large

KLIC value implies that the distribution of the weights is highly skewed, with many draws

from the baseline density being ignored and a few draws becoming highly influential. The

average KLIC for the entire out-of-sample period is 0.21, which is within the range of KLIC

values reported in Cogley et al. (2005) and Robertson et al. (2002), 0.12–0.68 and 0.06–

0.66, respectively.6 One of the three examples in Robertson et al. uses an intertemporal

consumption-CAPM to add moment restrictions on a VAR forecasting real consumption

growth and interest rates. This is the example that gives rise to the largest KLIC value

reported in their paper (0.66), and—according to Cogley et al.—these values can serve as

benchmark for aggressive twisting given that the consumption-CAPM is known to fit the

data poorly. In our case, although the KLIC achieves some of its largest value in 1995–1996,

2004–2007, and also in 2009, its annual averages never exceed 0.6 in any of these years. In

summary, it appears that for the largest part of out sample, the twisting of the baseline

distributions is not excessively aggressive.

To conclude this section, Figure 6 gives a sense of the magnitude of the tilting effect on the

baseline predictive distributions at four distinct dates. In each of these panels, we provide

kernel plots for both the baseline and tilted predictive densities, along with a vertical line

indicating the realized value of the equity premium on that date. In the top two panels—

referring to December 1997 and August 1999, respectively— tilting has a very moderate

effect on the baseline distributions, which are already properly centered with respect to the

observed value of the equity premium. In the third panel (January 2006), tilting sharpens

5Note that when KLIC(π∗
t ;π) is zero, it means that the baseline and tilted densities coincide.

6The ranges reported here are based on Table 2 in Cogley et al., and on the KLIC statistics reported in
Tables 1b, 2b, and 3b in Robertson et al..
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the baseline density forecasts by reducing its variance.7 Finally, in the fourth panel (May

2009), tilting turns out to be detrimental to the baseline predictive density, as it shifts mass

to the tails of the distribution and increasing the variance of the tilted density. Recall that

2009 is the year in which the variance of the tilted distribution is systematically higher than

the variance of the baseline distribution.

4 Out-of-Sample Performance

In this section, we look into the question of whether the approach introduced in Section 2

leads to more accurate equity premium forecasts, both in terms of statistical and economic

criteria. The predictive accuracy is measured relative to the historical average (HA) as

in Goyal and Welch (2008) and Rapach and Zhou (2012). However, we focus on density

forecasts as opposed to point forecasts.

4.1 Specification Testing

The probability integral transformation (PIT) provides an alternative global assessment of

the predictive density and can be complementary to the metrics discussed above. If the

predictive density equals the true density, then the realized CDF of the predictive density will

have a uniform distribution on the zero-to-one interval, i.e, for an optimal forecast CDF Gt,

the PIT random variable ξt is iid U(0, 1). A series of diagnostic checks can be applied on the

PIT values or the values given by their inverse normal transformations ξ̃t = Φ−1(ξt), where

Φ(·) is the standard normal CDF. The basic premise here is that if {ξt}Tt=m+1 ∼ iid U(0, 1),

then {ξ̃t}Tt=m+1 ∼ iid N(0, 1) for a correctly specified predictive density.

The PITs can be tested for uniformity using the Kolmogorov-Smirnov (KS) tests or its

7For the vast majority of the forecast dates in our sample, the reshaping of the baseline distribution is
very similar to what we see for January 2006.
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Anderson-Darling (AD) modification—see Rossi and Sekhposyan (2014) and the references

therein for a more detailed discussion of these tests. The tests measure the difference between

the PIT and the CDF of a uniform distribution. The Doornik-Hansen (DH) test for normality

of the ξ̃ series is based on the sum of the squares of transformed skewness and kurtosis

measures (Doornik and Hansen (2008)).8

We also test for independence in the first and second central moments of the PITs using

the Ljung-Box (LB)—Ljung and Box (1978)—test of serial correlation and a maximum lag

length of 12 given that we use monthly data. Correct specification of density forecasts

requires independence of the PITs. Under the maintained hypothesis of normality, using

the Berkowitz (2001) likelihood ratio (LR) test, the joint null of goodness-of-fit (correct

mean and variance) is tested against an AR(1) alternative with mean and variance possibly

different from zero and one, respectively. An LR test with three degrees of freedom is based

on δ = 0, ρ = 0, and sε = 1, using the equation below

ξ̃t − δ = ρ(ξ̃t−1 − δ) + εt, εt ∼ N(0, s2ε). (18)

Testing the significance of ρ in (18) gives a test of the independence component alone, while

testing for δ = 0 and sε = 1 pertains to normality alone. On one hand, there is evidence

that the tests based on the inverse normal of the PIT à la Berkowitz are more powerful than

those based directly to the PIT, at least, in finite samples. On the other hand, detecting

violations of the normality assumption only through the first two moments is a limitation.

In the first part of Table 1, we report the p-values of two PIT-based tests of uniformity;

namely, the Kolomogorov-Smirnov (KS) and the Anderson-Darling (AD). Both the KS and

the AD tests—under the maintained assumption of independence—favor the tilted over the

baseline densities. In particular, the AD test, which has a a power advantage over the KS

8Rossi and Sekhposyan highlight the power advantage of the AD over the KS test. They also provide
MATLAB codes for implementing the tests described here at http://www.tateviksekhposyan.org/.
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test, strongly rejects the null of correct specification for the baseline and HA densities.

In the absence of mis-specification, the PITs should be independent. We test for indepen-

dence using the Ljung-Box test of no autocorrelation in the first (LB-I) and second (LB-II)

central moments of the PITs. The p-values for the independence tests are reported in the

second part of Table 1. Although we fail to reject the null of no autocorrelation in both

moments for the PITs associated with the tilted densities (p-values in excess of 0.44), we fail

to reject the null only for the first central moment of the baseline and HA PITs, where we

see p-values of 0.657 and 0.645, respectively. In addition, we strongly reject the null of no

autocorrelation in the second moments of the baseline PITs.

In the last part of the table, we employ tests based on the inverse normal transformation

of the PITs. Overall, there is strong evidence for mis-specification for the baseline and

HA densities on the basis of the normality (Berkowitz I), as well as the normality-and-

independence (Berkowitz III) tests. We strongly fail to reject the null for all three Berkowitz

tests in the case of the tilted densities with p-values greater than or equal to 0.30. The

Doornik-Hansen normality test, which relies on transformations of the third and fourth

moments, points to mis-specification for all three densities.

4.2 Statistical Forecasting Performance

Predictive densities are collections of probabilities assigned to potential future outcomes.

Hence, we use tools from the density forecasting evaluation literature to evaluate their relative

accuracy. For the purpose of the discussion below, let T denote the total sample size and

let T −m be the number of out-of-sample observations. Following Amisano and Giacomini

(2007), we consider the average log score differential

ALSDg,h =
1

T −m

T∑
t=m+1

LSDg,h(t) (19)
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where LSDg,h(t) ≡ LSg,t − LSh,t, and LSg,t (LSh,t) denotes the time-t log predictive score

for density g (h). For example, in our application, g and h may correspond to the baseline

DMSFE and the historical-average (HA) predictive densities. Alternatively, g and h may

correspond to the tilted DMSFE and the HA predictive densities. The logarithmic score

gives a high value to a predictive density that assigns a high probability to the event that

actually occurred. Hence, a positive ALSDg,h value indicates that, on average, g is more

accurate than h in predicting the outcome of interest.

We also calculate the cumulative log-score difference (CLSD) between densities g and h, to

track the relative ranking of the two predictive densities through the entire out-of-sample

period

CLSDg,h(t) =
t∑

τ=m+1

LSDg,h(τ), t = m+ 1, ..., T. (20)

If g is more accurate than h in every period out-of-sample, then the CLSDg,h line is mono-

tonically increasing. Conversely, periods during which density g is less accurate than density

h generate dips in the CLSDg,h line.

The top section of Table 2 reports ALSDs for the tilted-HA and baseline-HA pairs based on

(19). We do so for three distinct sub-samples, 1995–2000, 2001–2005, and 2006–2010, which

are long enough to give us a fairly reliable estimate for the average LSDs. The superior

performance of the tilted density forecasts, especially after 2000, is clear. The average LSD

for the tilted-HA pair is around 0.2, while that for the baseline-HA pair never exceeds 0.003.9

We also employ a Diebold and Mariano (1995) one-sided test to assess whether the differences

in forecast accuracy of the HA, baseline, and tilted densities over the entire out-of-sample

period are statistically significant. The last row of Table 2 reports Diebold-Mariano p-

values of the t-statistic from regressing the LSDs on a constant over the whole out-of-sample

9Note also that there is a positive relationship between the LSD for the titled-HA pair and KLIC. The
slope coefficient in an OLS regression of the LSD on the KLIC is positive and highly significant for both the
entire sample and the three sub-samples.
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period. Following Clark and Ravazzolo (2015), we compute the t-statistic using Newey-West

standard errors with one lag and a pre-whitening of the LSDs.10 Based on the p-values of the

Diebold-Mariano statistic, we strongly reject the null of equal predictive accuracy between

the tilted and HA densities; the p-value for the statistic is less than 0.001. However, we fail

to do so for the baseline and HA densities—the p-value of the statistic is 0.436.

Figure 7 shows time-series plots of the cumulative log score difference (CLSDs), where, once

again, we pit the baseline and tilted densities against the HA (panel (a)). The baseline

DMSFE densities fail to beat the HA baseline between February 1995 and December 2008

with very few exceptions. The CLSD for the baseline-HA pair systematically exceeds zero

only in 2009 and 2010, the last two years of our sample (panel (b)). On the other hand, the

tilted predictive densities win the horse race against the HA densities by a large margin. In

panel (b), the CLSD for the tilted densities exhibits an upward trend for January 1995 to

June 1996 (period I), looses some ground between September 1998 and April 2003 (period

II), and then continues with an upward trend up to May 2008 (period III), before it flattens

out in the last part of the sample starting in early 2009 (period IV). For both periods I and

III, the variance of the baseline density systematically exceeds its counterpart of the tilted

density and the distance and the KLIC attains some of its largest values.

To sum up, the tilted DMSFE densities outperforms the baseline DMSFE densities for the

equity premium on the basis of numerous statistics and diagnostics used in the density

forecast evaluation literature.

4.3 Economic Performance

Up to this point, we compared the statistical performance of the baseline, tilted, and HA

predictive densities. In this section, we compare their economic performance using the setup

10Citing Monte Carlo evidence in Clark and McCracken (2011), with nested models, Clark and Ravazzolo
argue that the Diebold-Mariano test with normal critical values is a somewhat conservative test – has sizes
that tend to fall below the nominal – for equal accuracy in finite samples.
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of an investor utilizing these densities to make optimal portfolio decisions, taking parameter

uncertainty into consideration as in Kandel and Stambaugh (1996) and Barberis (2000)),

among others.

Given the availability of density forecasts as opposed to just point forecasts, we are not

restricted to rely on a mean-variance utility function, and we can focus on functions with

better properties such as the power utility. The power utility avoids the major limitation of

the mean-variance utility, namely, that investors care only about the first two moments of

returns. Furthermore, it is well known that mean-variance portfolio optimization is consistent

with expected utility maximization only under special circumstances.11

Our interest lies on the optimal asset allocation of a representative investor facing a utility

function U(ωt−1, rt) with ωt−1 denoting the share of her portfolio allocated into risky assets,

and rt being time t equity premium. The economic agent solves the optimal asset allocation

problem

ω∗t−1 = arg max
ωt−1

E
[
U (ωt−1, rt)| Dt−1

]
, (21)

with t = m+ 1, ..., T . She is assumed to have power utility of the form

U (ωt−1, rt) =
[(1− ωt−1) exp (rf,t−1) + ωt−1 exp (rf,t−1 + rt)]

1−A

1− A
, (22)

where rf,t−1 is the continuously compounded T-bill rate available at time t − 1, and A is

the coefficient of relative risk aversion. The subscript t− 1 on the portfolio implies that the

investor solves the portfolio optimization problem using information available only at time

t − 1. Taking expectations with respect to the predictive density of rt, we can rewrite (21)

as follows

ω∗t−1 = arg max
ωt−1

∫
U (ωt−1, rt) p

(
rt|Dt−1

)
drt. (23)

The integral in (23) can be approximated using draws from the competing predictive den-

11Sufficient conditions include quadratic utility or elliptical return distributions (Back (2010)).
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sities. Specifically, using the HA predictive density h, we can approximate the solution to

(23) using a large number of draws J ,
{
rjh,t
}J
j=1

, using the following expression

ω̂h,t−1 = arg max
ωt−1

1

J

J∑
j=1

{[
(1− ωt−1) exp (rf,t−1) + ωt−1 exp

(
rf,t−1 + rjh,t

)]1−A
1− A

}
. (24)

Similarly, using g ∈ {base, tilt} to denote the baseline and tilted DMSFE predictive densities,

we can approximate (23) via

ω̂g,t−1 = arg max
ωt−1

1

J

J∑
j=1

{[
(1− ωt−1) exp (rf,t−1) + ωt−1 exp

(
rf,t−1 + rjg,t

)]1−A
1− A

}
. (25)

The sequence of portfolio weights {ω̂h,t−1}Tt=m+1 and {ω̂g,t−1}Tt=m+1 are used to compute the

realized utilities under the HA, the DMSFE baseline, and the DMSFE tilted densities. Let

Ŵh,t and Ŵg,t be the corresponding realized wealth at time t, where Ŵh,t and Ŵg,t are

functions of time t realized excess return, rt, as well as the optimal allocations to the risky

and risk-free assets computed in (24) and (25)

Ŵh,t = (1− ω̂h,t−1) exp (rf,t−1) + ω̂h,t−1 exp (rf,t−1 + rt)

Ŵg,t = (1− ω̂g,t−1) exp (rf,t−1) + ω̂g,t−1 exp (rf,t−1 + rt) . (26)

Following Cenesizoglu and Timmermann (2012), we assess the performance of the predictive

densities by calculating the implied annualized certainty equivalent return (CER) values for

the out-of-sample period as follows

CERk =

(
(1− A)(T −m)−1

T∑
τ=m+1

Ûk,τ

)12/(1−A)

− 1, (27)

where k ∈ {base, tilt, bench} and Ûτ,k = Ŵ 1−A
k,τ /(1 − A) denotes the time-τ realized utility

associated with predictive density k. Finally, we compute the certainty equivalent return
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differential between models g and h as

CERDg,h = CERg − CERh, g ∈ {base, tilt} (28)

Table 3 reports the annualized CERD estimates associated with the DMSFE tilted and

baseline density forecasts for the equity premium, relative to the HA. We report CERD

values for the entire out-of-sample period, 1995—2010, as well as for the three sub-samples

1995–2000, 2001–2005, and 2006–2010. We also examine the sensitivity of the results to

different risk preferences by considering a range of values for the risk-aversion coefficient,

A = 2, 3, 5, 10.12

Overall, the tilted DMSFE predictive densities produce higher risk-adjusted returns than

their HA counterparts. During 1995–2010, their implied annualized percent CERDs lie be-

tween 1% and 5.2%, depending on the value of the risk aversion coefficient. The correspond-

ing CERDs for the baseline predictive densities range between -0.4% and -0.07%. Switching

to the different sub-samples, we find that between 1995–2000, the CERDs based on the tilted

densities are between 2.6% and 14.8%, while their baseline counterparts lie between -3.7%

and -0.7%. As for the two more recent sub-samples, 2001–2005 and 2006–2010, we see that

the magnitudes of the CERDs for the tilted densities are much smaller with values between

0.11% and 1% depending on the sub-sample and risk aversion coefficient. Although the tilted

CERDs are smaller than the baseline CERDs during 2001–2005, they are higher than their

baseline counterparts between 2006 and 2010 for all levels of risk aversion.

12We compute the optimal portfolio weights for the CRRA investor using the approximation proposed by
Campbell and Viceira (2001), without imposing any constraints to preclude short-selling or leverage.
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5 Conclusions

The paper introduces a novel approach to improve density forecasts for the equity premium

using information from the derivatives markets in a time-series setting. We tilt predictive

densities from a state-of-the-art model in the empirical asset-pricing literature towards the

second moment of the distribution implied by option prices, after removing the variance risk

premium using a simple regression-based approach. Tilting augments the backward-looking

information in the baseline models with forward-looking information from the options in a

straightforward manner that is not computationally intensive.

Using monthly density forecasts for the U.S. equity premium based on the model combi-

nation approach of Rapach and Zhou (2012), we show that tilting significantly improves

both the statistical and economic predictability of stock returns, based on standard metrics

from the density forecast comparison and evaluation literature. Although improvements in

forecasting the equity premium using information from the derivative markets have been pre-

viously documented, they have been limited to point forecasts, incorporating option-implied

moments among predictors in forecasting regressions. Extending our methodology to higher

moments, such as skewness and kurtosis, which have been receiving increased attention in

empirical asset pricing, is a research agenda worth pursuing, especially as more options data

become available.
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Tables

Table 1: Density calibration diagnostics

Test Tilted DMSFE Baseline DMSFE HA

Kolmogorov-Smirnov 0.063 0.049 0.085

Anderson-Darling 0.067 0.009 0.007

Ljung-Box I 0.447 0.657 0.645

Ljung-Box II 0.722 <0.001 <0.001

Berkowitz I 0.875 <0.001 <0.001

Berkowitz II 0.299 0.146 0.130

Berkowitz III 0.703 0.001 <0.001

Doornik-Hansen <0.001 <0.001 <0.001

Note: We report p-values for all tests. We use DMSFE to refer to discounted mean squared forecast

error densities and HA to refer to historical average densities. The Kolmogorov-Smirnov and the

Anderson-Darling are uniformity tests for the probability integral transformation (PIT). The Ljung-

Box I and Ljung-Box II tests are independence tests for the 1st and 2nd central PIT moments. The

Berkowitz tests are based on the normal inverse transformation of the PITs and pertain to normality

(I), independence (II), and both normality & independence (III). The Doornik-Hansen is a normality

test for the the normal inverse transformation of the PITs based on the squares of skewness and

kurtosis measures. See Section 4.2 for details.
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Table 2: Forecast performance: average log score differentials

1995-2000

2001-2005

2006-2010

Full Sample

Baseline DMSFE-HATilted DMSFE-HA

0.0969

0.2121

0.2255

<0.001

-0.0037

0.0026

0.0032

0.436

Note: We use DMSFE to refer to discounted mean squared forecast error densities and HA to

refer to historical average densities. We report average monthly log score differences for the tilted

DMSFE-HA and baseline DMSFE-HA pairs of density forecasts for three different periods in our

sample: (i) 1995–2000, (ii) 2001–2005, and (iii) 2006–2010. The last row of the table reports the

p-values for a Diebold-Mariano test based on the log score differences for the tilted DMSFE-HA

and baseline DMSFE-HA pairs over the entire out-of-sample period. See Section 4.2 for details.
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Table 3: Economic performance

A=2 A=3 A=5 A=10 A=2 A=3 A=5 A=10

1995-2000 14.82% 9.31% 5.30% 2.55% -3.66% -2.36% -1.42% -0.66%

2001-2005 0.95% 0.62% 0.41% 0.23% 2.09% 1.39% 0.84% 0.46%

2006-2010 0.40% 0.38% 0.23% 0.11% 0.27% 0.26% 0.16% 0.04%

Full Sample 5.18% 3.41% 2.02% 0.99% -0.44% -0.27% -0.17% -0.07%

Tilted DMSFE-HA Baseline DMSFE-HA

Note: We use DMSFE to refer to discounted mean squared forecast error densities and HA to refer

to historical average densities. We report the relative return performance (percent, annualized)

of portfolios for the tilted and baseline DMSFE density forecasts versus those based on the HA

density forecasts for the full sample and three different periods: (i) 1995–2000, (ii) 2001–2005, and

(iii) 2006–2010. A positive number indicates that the DMSFE density forecasts generate higher

risk-adjusted returns than the historical average. We examine the sensitivity to risk preferences

by considering alternative values of the coefficient of relative risk aversion A. See Section 4.3 for

details.
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Figures

Figure 1: Monthly risk-neutral variance
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Note: We plot the end of month values of the CBOE VIX squared as in Bollerslev et al. (2009).

Figure 2: Monthly U.S. equity premium
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Note: We plot the US monthly equity premium between January 1926 and December 2010 using

end-of-month returns for the S&P 500 and the risk-free rate as in Goyal and Welch (2008). The

red vertical line indicates January 1990, when VIX becomes available, and the green vertical line

indicates January 1995, the first date when we tilt the baseline predictive densities.
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Figure 3: Physical and risk-neutral variance series
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Note: Panel (a) of the figure contains monthly time series of the variance for the tilted (blue),

baseline (red), and risk-neutral (black) distributions. We use the end-of-month values of the squared

VIX as our measure of risk-neutral variance. Panel (b) of the figure contains the estimate and

associated 95% confidence intervals for the slope coefficient in the variance risk premium regression

described in Section 2.3 using an expanding window with initial size of 60 monthly observations

starting in January 1995.
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Figure 4: Variance risk premium
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Note: We plot the our variance risk premium (VRP) along with the variance risk premium from

Bollerslev et al. (2009).

Figure 5: Posterior probability intervals
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Note: We use DMSFE to refer to discounted mean squared forecast error densities. We plot the

posterior probability intervals for the baseline and tilted DMSFE densities over the out-of-sample

period. The shading of varying intensity indicates the 1%-99%, 5%–95%, 10%–90% and 25%–75%

interquantile ranges for the DMSFE density forecasts in each month.
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Figure 6: Illustrating the effect of tilting
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(c) 2006:01, KLIC=0.5588
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Note: We use DMSFE to refer to discounted mean squared forecast error densities. We provide

kernel density plots for the baseline and tilted DMSFE predictive densities for 4 distinct forecast

dates within the out-of-sample period. The black vertical line indicates the observed value of the

equity premium for the forecast date under consideration.
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Figure 7: Cumulative log score differences
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Note: We use DMSFE to refer to discounted mean squared forecast error densities and HA to

refer to historical average densities. Using LSbase(t), LStilt(t), and LSHA(t) to denote the log

scores associated with the baseline DMSFE, tilted DMSFE, and HA predictive densities for month

t, we plot the cumulative sums of the following log score differences indicated by the red and

blue lines, respectively: CLSD(t)base,HA =
∑t

τ=m+1 LSbase(τ)− LSHA(τ) and CLSD(t)tilt,HA =∑t
τ=m+1 LStilt(τ)− LSHA(τ), where t = m + 1, ..., T . For each month t, we estimate the fore-

casting models recursively and generate one-month ahead density forecasts, which are used to

calculate the cumulative log-score differences. Due to large scale differences for CLSD(t)tilt,HA and

CLSD(t)base,HA in panel (a), we plot CLSD(t)base,HA in panel (b) using a smaller scale.
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