Indoor Air Quality Survey of Boston Nail Salons

JBS Environmental Health and Justice Program
Introduction

- Number and popularity of nail salons in the U.S. has grown within the past two decades
 - In the U.S., nail salon revenue totaled over $6.5 billion in 2003
 - Vietnamese-Americans make up 37% of licensed nail salon owners and workers
 - Nail salon employees are of reproductive age and are exposed to chemicals on a daily basis which have a potential of causing harm to them and their unborn children
Exposures and Health

- Xylene, toluene, acetone, and methyl ethyl ketone in nail polishes and hardeners are neurological toxicants (short-term effects may include headaches, nausea, dizziness, and irritability).

- Ng et al. (1992) suggest that spontaneous abortion in workers exposed to toluene may occur nearly 3 times more than a control group.

- Roelofs et al. (2008) showed an elevation of respiratory symptoms, skin problems, and headaches among nail salon workers as compared to the general population.

- Harris-Roberts et al. (2011) reported that chemicals found in nail salon products are associated with occupational asthma and contact dermatitis.
Study Team and Objective

Researchers in the JBS Environmental Justice Program worked in collaboration with the Nail Salon Partners, including the Boston Public Health Commission and Viet-Aid

Objectives

- Assess indoor air quality in Boston nail salons
- Assess factors that may influence exposure
Table 1: Sampling Locations: Boston, MA, 2011

<table>
<thead>
<tr>
<th>Storefront, Basement, Stand Alone Building</th>
<th>Store Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salons (n=21)</td>
<td></td>
</tr>
<tr>
<td>Most Common Salon Architecture Type</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neighborhood Distribution</th>
<th>Proportions</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorchester</td>
<td>16/21</td>
<td>76.2%</td>
</tr>
<tr>
<td>Roxbury</td>
<td>1/21</td>
<td>4.8%</td>
</tr>
<tr>
<td>Jamaica Plain</td>
<td>1/21</td>
<td>4.8%</td>
</tr>
<tr>
<td>Mattapan</td>
<td>3/21</td>
<td>14.2%</td>
</tr>
</tbody>
</table>
Study Methods

- A total of 21 salons participated in this study, which was conducted September through December, 2011.

- All data, participants, and locations are confidential.

- This study was reviewed by the Brandeis Institutional Review Board (IRB).

- Each salon visit had three components: air quality measurements, observations of salon activities, and a short questionnaire.
Study Methods

- **Carbon Dioxide (CO$_2$)** can be used as an indicator of ventilation

- **Total volatile organic compounds (TVOCs)** are potential toxins

- **Particulate matter 2.5 (PM$_{2.5}$)** are linked with respiratory problems
Table 1: Descriptive Characteristics of Nail Salons: Boston, MA, 2011

<table>
<thead>
<tr>
<th></th>
<th>Percentiles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Min</td>
</tr>
<tr>
<td>Salon Layout (n=21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (m<sup>3</sup>)</td>
<td>218</td>
<td>89</td>
</tr>
<tr>
<td>Number of Measurement</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Locations in Salon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Manicure Stations</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Number of Pedicure Stations</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Ventilation<sup>1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Ventilation Systems</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Measurement Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TVOC's (ppb)</td>
<td>9,519</td>
<td>45</td>
</tr>
<tr>
<td>CO<sub>2</sub> (ppm)</td>
<td>1,085</td>
<td>641</td>
</tr>
<tr>
<td>PM<sub>2.5</sub> (µg/m<sup>3</sup>)</td>
<td>21</td>
<td>6</td>
</tr>
</tbody>
</table>
Average Measured CO₂ (ppm) Concentrations

- CO₂ levels in 15 of 21 salons exceeded 800 ppm indicating these salons may have insufficient ventilation
86% of the salons studied were above the household average.

Background: PM$_{2.5}$ concentration in households in Boston is 13.9 μg/m3.
Average Measured TVOC (ppb) Concentrations

Background: TVOC concentration in households in New York is 336.62 ppb

NOTE: Salons # 131, 151, 556, 710 had NO services being done while we sampled.

Niagara Falls Study TVOC Baseline: 336.62 (ppb) in households

TVOC Averages (ppb)

- Salon #131
- Salon #151
- Salon #210
- Salon #556
- Salon #1004
- Salon #355
- Salon #710
- Salon #450
- Salon #972
- Salon #332
- Salon #333
- Salon #220
- Salon #1003
- Salon #720
- Salon #121
- Salon #908
- Salon #1002
- Salon #460
- Salon #1001
- Salon #141
- Salon #111

Salons
Higher CO₂ levels were found in salons with higher TVOC levels. This suggests that higher ventilation rates may decrease TVOC concentrations.
Particulate Matter is an indicator of nail salon services being performed.
This suggests that higher ventilation rates may decrease PM$_{2.5}$ concentrations.
Services Being Performed vs. Not

- Nail salons performing services had significantly higher TVOC and PM$_{2.5}$ concentrations
- Not dependent on number of services
Door Open vs. Door Closed Comparisons

- Salons with open doors and/or windows had significantly reduced TVOC concentrations
- Opening doors and windows may be a simple approach to reducing exposures
Conclusions

• CO₂ levels in 15 of 21 salons exceeded 800 ppm indicating that these salons may have insufficient ventilation

• Higher TVOC and PM₂.₅ levels were found in salons with poorer ventilation (as determined by elevated CO₂ concentrations)

• Contrary to our *a priori* hypothesis, average levels of TVOCs, CO₂ and PM₂.₅ were consistent throughout salons, indicating that elevated exposures may not be restricted to areas in the salon where work is being performed (eg., at the manicure table)

• Higher TVOC concentrations were observed when tasks were being performed, and were not dependent upon the number of tasks being performed.

• Salons with open doors and/or windows had significantly reduced TVOC concentrations.
Recommendations

• Improving ventilation conditions in salons to meet minimum outdoor air delivery requirements can reduce exposures to TVOCs and PM$_{2.5}$

• Weather permitting, increasing outdoor-indoor air exchange by opening doors and windows may be a simple approach to reducing exposures.

• Conduct additional studies of personal exposures to individual VOCs to characterize occupational exposure

• Evaluate options to increase ventilation on TVOC exposures and filtration on reducing PM$_{2.5}$ exposures
Thank you!

Thank you to all of the salon owners and workers that allowed us to conduct our study in their salons, our research and study partners, Tiffany Skogstrom and Nancy Nguyen at BPHC and Professor Goldin!
Introduction

The number and popularity of nail salons in the U.S. has grown tremendously in the past two decades, resulting in a 67% increase in revenue and over $6.5 billion for 2003 (Protecting the Health of Nail Salon, 2004). An overwhelming majority of nail salon workers are of Asian descent; Vietnamese-Americans make up 37% of licensed nail salon owners and workers nationwide (Design for the Environment, 2011). Nail salon employees typically are of reproductive age and are exposed to chemicals on a daily basis, which have the potential for causing harm to them and to their unborn children. According to the EPA, xylene, toluene, acetone, and their derivatives are known reproductive and developmental toxins. Short-term effects are headaches, nausea, dizziness, and irritability. These solvents may cause neurobehavioral effects, such as difficulty learning numbers and concentrating. For example, toluene in nail polish remover can be a reproductive and developmental toxicant, and may retard the development of fetuses exposed in the uterus. A 1992 epidemiological study by Ng et al. suggests that spontaneous abortion in workers exposed to toluene may occur nearly 3 times more than the general population (Institute for Environmental Studies, 1987).

Methods

An indoor air quality survey was conducted in 21 nail salons in Roxbury, Dorchester, Mattapan, and Jamaica Plain from September to December, 2011. All information gathered was kept confidential and individuals and salons were not identified. The study protocol was reviewed by the Institutional Review Board (IRB) at Brandeis University. Study visits consisted of three parts: indoor environmental quality measurements, site observations, and a short interview with each salon owner. Field sampling teams created a diagram including general dimensions and ventilation characteristics such as locations of doors, windows, fans and vents. Observational data included what services were being provided at the time: acrylic, silk, gel, airbrushing, manicure, or pedicure, as well as the number of employees and customers present. Six to eight sampling locations were selected in each salon. A Q-Trak was used to measure carbon dioxide (CO2), temperature and relative humidity. A DustTrak was used to measure airborne particles, and a ppbRae was used to measure total volatile organic compounds (TVOCs). Outdoor measurements were taken at each salon before entering as quality control indicators.

Table 1. Descriptive Characteristics of Nail Salons, Boston, MA, 2011

<table>
<thead>
<tr>
<th>Saloon Layout (n=21)</th>
<th>Percentiles</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (m^3)</td>
<td>218-89</td>
<td>117</td>
<td>295</td>
</tr>
<tr>
<td>Number of Measurement Locations in Salon</td>
<td>7-6</td>
<td>7-6</td>
<td></td>
</tr>
<tr>
<td>Number of Manicure Stations</td>
<td>14-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Pedicure Stations</td>
<td>11-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilation*</td>
<td>2-5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

Brandeis Environmental Health & Justice students conducted sampling in 21 salons in Roxbury, Dorchester, Mattapan and Jamaica Plain between September and December, 2011. All information gathered was kept confidential and individuals and salons were not identified. The study protocol was reviewed by the Institutional Review Board (IRB) at Brandeis University. Study visits consisted of three parts: indoor environmental quality measurements, site observations, and a short interview with each salon owner. Field sampling teams created a diagram including general dimensions and ventilation characteristics such as locations of doors, windows, fans and vents. Observational data included what services were being provided at the time: acrylic, silk, gel, airbrushing, manicure, or pedicure, as well as the number of employees and customers present. Six to eight sampling locations were selected in each salon. A Q-Trak was used to measure carbon dioxide (CO2), temperature and relative humidity. A DustTrak was used to measure airborne particles, and a ppbRae was used to measure total volatile organic compounds (TVOCs). Outdoor measurements were taken at each salon before entering as quality control indicators.

Conclusions and Recommendations

- CO2 levels in 15 of 21 salons exceeded 800 ppm indicating that these salons may have insufficient ventilation.
- Higher TVOC and PM2.5 levels were found in salons with poorer ventilation (as determined by elevated CO2 concentrations).
- Contrary to our a priori hypothesis, average levels of TVOCs, CO2, and PM2.5 were consistent throughout salons, indicating that elevated exposures may not be restricted to areas in the salon where work is being performed (e.g., at the manicure table).
- Higher TVOC concentrations were observed when tasks were being performed, and were not dependent upon the number of tasks being performed.
- Salons with open doors and/or windows had significantly reduced TVOC concentrations.
- Improving ventilation conditions in salons to meet minimum outdoor air delivery requirements can reduce exposures to TVOCs.
- Weather permitting, increasing outdoor-indoor air exchange by opening doors and windows may be a simple approach to reducing exposures.
- Conduct additional studies of personal exposures to individual VOCs to characterize occupational exposure.
- Evaluate the effectiveness of options to increase ventilation on TVOC exposures and filtration on reducing PM2.5 exposures.

Thank you to our collaborators:

Laura Pohl1, Sam Porter1, Vivian Zeng1, Tiffany Skogstrom2, Joseph Allen1, Matt Fragala1, Theodore Myatt1, James Stewart1, Laura Goldin1

1Brandeis University, Waltham, MA
2Boston Public Health Commission, Roxbury, MA