Syllabi for Required Courses

Math 201a: Algebra I

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

 Group theory: Quick review of the basic theory (subgroups, homomorphisms, etc.). Group actions Sylow theorems. Solvable and nilpotent groups. Free groups, presentations.

2) Category theory

Basic notions of categories and functors Example of categories, basic constructions (products), universal objects Use of Category language when treating the different part of the course Natural transformations

3) Rings and Modules:

<u>Review of basic theory (subrings, ideals, fields, homomorphisms, etc.)</u> <u>PID's, UFD's, Polynomial rings.</u>

Modules (over a commutative ring)

<u>Tensor products</u>, exterior and symmetric powers, determinants. <u>Finitely generated modules over a PID</u> and applications.

4) Field theory:

<u>Field extensions, splitting fields, finite fields.</u> <u>Separable and inseparable extensions, algebraic closure.</u> <u>Fundamental theorem of Galois theory, solvability by radicals.</u>

Additional topics (if time permits):

- Field theory (trace and norm, transcendental extensions, purely inseparable extensions, infinite Galois extensions, Kummer theory).
- Category theory (adjoint functors, Yoneda's lemma, limits).

Possible Texts:

- Lang: Algebra
- Jacobson: Basic Algebra

Math 201b: Algebra II

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

 Homological algebra: <u>Exact sequences</u> <u>Complexes and homology</u> Projective and injective modules Ext and Tor

2) **Commutative algebra:** <u>Chain conditions</u> <u>Hilbert basis theorem</u> <u>Localization.</u> Nullstellensatz

3) Representation theory (of finite groups):

<u>Maschke's theorem</u> <u>Schur's Lemma</u> <u>Fundamental isomorphism theorem for the group algebra</u> <u>Characters.</u> Frobenius reciprocity

Additional topics (if time permits):

• Non-commutative algebra (Semisimple rings, Wedderburn's theorem). • Additional representation theory (representations of Sn, Brauer's theorem, representations in finite characteristic, representations of Lie algebras and Lie groups).

• Commutative algebra/number theory (integrality, completion, DVR's, Dedekind domains). • Commutative algebra/algebraic geometry (dimension theory, Noether normalization, the ideal-variety correspondence, primary decomposition).

Possible Texts:

- Lang: Algebra
- Jacobson: Basic Algebra

3

225a: Geometry of Manifolds

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) Manifolds:

<u>Change of coordinates</u> <u>Differential structure</u>

2) Tangent vectors

Tangent bundle Derivations Vector fields Lie bracket Tensors

3) Vector bundles

Basics of vector bundles Normal bundles Pullback construction

4) Differential topology

<u>Inverse and implicit function theorems</u>—as assigned reading <u>Transversality</u> Sard's theorem—discussion without proof

5) Differential equations and systems

Frobenius Theorem Existence and uniqueness theorems for ODE's—discussion without proof

6) Differential forms:

Closed and exact Poincaré Lemma

7) Integration
 Basics of Integration
 Stokes Theorem
 Orientations and volume elements

Additional topics (if time permits).

- Basic Lie Groups: Lie algebra, one parameter subgroups, structural equations, left and right invariant vector fields.
- Principal bundles; connections on vector bundles
- Frobenius Theorem in differential form version
- de Rham cohomology and theorem

Possible Texts:

- Lee: Introduction to Smooth Manifolds
- Hitchin's Oxford Notes: Differentiable Manifolds (http://people.maths.ox.ac.uk/hitchin/files/LectureNotes/Differentiable_manifolds/manifolds201 4. pdf)
- Spivak: A Comprehensive Introduction to Differential Geometry, vol. I

Additional References:

- Warner: Foundations of Differentiable Manifolds and Lie groups
- Milnor: Topology from the Differentiable Viewpoint
- Bott and Tu: Differential Forms in Algebraic Topology

Math 211a: Real Analysis

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

General topology
 Basic axioms of topology, continuous maps
 <u>Compact spaces</u>
 <u>Metric spaces, completeness</u>, Baire Category Theorem
 Stone-Weierstrass Theorem
 Arzela-Ascoli Theorem, an application to Peano's Existence Theorem

2) Banach spaces:

Topological vector spaces; normed spaces

Linear functionals, dual spaces, Hahn-Banach Theorem

Banach spaces

Contraction principle, applications to Picard's Existence Theorem and Implicit Function Theorem

Hilbert spaces (basic theory), Riesz Representation Theorem

3) Measure theory:

Algebras and sigma-algebras of sets, measurable functions Measure spaces Integrable functions, integration and convergence theorems Extension of measures from algebras to sigma-algebras Lebesgue measurable sets, Lebesgue measure on R^n Products measures, Fubini's Theorem Signed/complex measures, Radon-Nikodym Theorem, Hahn and Jordan decompositions L^p-spaces Egorov's Theorem, Lusin's Theorem

Additional topics (if time permits):

• Open mapping theorem, closed graph theorem (to be covered in Functional Analysis) • Functions of bounded variation, Lebesgue-Stieltjes integral

- Convolution in L^1(R^n)
- Fourier transform, Fourier inversion
- Fourier series, Poisson summation, Fejer's Theorem
- Probability theory. Basic ergodic theory.

Possible Texts:

Kolmogorov/Fomin: Introductory Real Analysis

- Lang: Real and Functional Analysis
- Loomis: Abstract Harmonic Analysis
- Royden: Real Analysis
- Rudin: Real and Complex Analysis
- Stein/Shakarchi: Complex Analysis

Math 211b: Complex Analysis

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) Complex analytic functions

<u>Riemann sphere and rational functions</u> <u>Complex derivatives and Cauchy-Riemann equations</u> <u>Holomorphic functions in one variable (basic theory)</u>

2) Integration

Cauchy's theorem, Cauchy's integral formula Applications to: Fundamental Theorem of Algebra, Liouville's theorem, Morera's theorem, Gauss' mean value theorem Maximum principle, Rouche's theorem, argument principle Schwarz reflection principle, analytic continuation

3) Conformal maps

<u>Fractional-linear transformations</u> Open mapping theorem Riemann mapping theorem Harmonic and subharmonic functions, Poisson's formula

4) Power series, partial fractions, special functions

Taylor seriesClassification of singularitiesLaurent seriesWeierstrass theoremMittag-Leffler theoremInfinite products and partial sumsElliptic functions, Weierstrass &-function

Additional topics (if time permits):

• Introduction to Riemann surfaces. Connections with the theory of covering spaces and cohomology. Gamma and zeta functions. Picard's theorem. Runge's theorem. Inhomogeneous Cauchy-Riemann equation. Several complex variables (Hartog's theorem). Phragmen-Lindelof theorem. Vitali-Montel Theorem. Jensen's Formula.

Possible Texts:

- Ahlfors: Complex Analysis
- Conway: Functions of One Complex Variable
- Narasimhan/Nievergelt: Complex Analysis in One Variable
- Gameiln: Comlpex Analysis
- Stein/Shakarchi: Real Analysis

Math 221a: Topology I

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) CW-Complexes

Definitions, direct limit topology

2) Covering Spaces and Fundamental Group

Basic Definitions (homotopy, fundamental group) Existence and classification of covering spaces Correspondence between subgroups and covering spaces Van Kampen's theorem

3) Homology Theory:

Definitions of simplicial complexes and simplicial homology <u>Definition of singular homology</u> <u>Long exact sequence of a pair, excision, Mayer-Vietoris sequence</u> <u>Homology of cell complexes and/or CW complexes</u> <u>Computing homology of basic spaces: eg., spheres, projective spaces</u>

4) Applications of homology:

Maps between spheres; degree of map Vector fields Fixed point theorems Separation theorems (Jordan Curve theorem)

Additional topics (if time permits):

· Homology with coefficients

Possible Texts:

- Hatcher: Algebraic Topology
- Greenberg and Harper: Algebraic Topology: A First Course
- Munkres: Elements of Algebraic Topology

7

Math 221b: Topology II

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) Cohomology theory Definition of cohomology Basic properties Cup and cap products

2) Universal coefficients:

Tor and homology Ext and cohomology Kunneth theorems

3) Poincare duality <u>Poincare duality for manifolds with and without boundaries</u>

Additional topics (if time permits):

- Homotopy theory: Basic properties, Hurewicz theorem, path spaces, fibrations
- Eilenberg-MacLane spaces

Possible Texts:

- Hatcher: Algebraic Topology
- Greenberg and Harper: Algebraic Topology: A First Course
- Munkres: Elements of Algebraic Topology

Math 232a: Numerical Methods for Scientific Computing

Core topics (ALWAYS covered): Please use this checklist as you go through the course.

1) Numerical linear algebra:

Floating point arithmetic Polynomial interpolation Linear systems and LU factorization Least squares and QR factorization Singular Value Decomposition

2) Numerical differential equations:

Quadrature methods Euler and Runge-Kutta methods Accuracy and stability of timestepping schemes

Additional topics (if time permits):

• Optimization, eigenvalue problems, finite difference methods for PDE's, Lax Equivalence Theorem

Possible Texts:

• Heath: Scientific Computing: An Introductory Survey Trefethen and Bau: Numerical Linear Algebra