Department of Philosophy

Objectives

The primary concern of philosophy is to explore ideas that are central to the ways we live and that we commonly use without much reflection, ideas such as truth and justice, the notion of consciousness, and good and evil. In the course of our daily lives we take the ideas of time, language, knowledge, and our own identity for granted. Philosophy seeks to push our understanding of these ideas deeper. It is the systematic study of ideas that is fundamental to all the other disciplines taught at the University—the sciences, social sciences, humanities, and the arts.

The skills philosophy helps to develop—critical thinking, sound reasoning, enlightened use of one’s imagination, and the capacity to analyze complex issues—are invaluable in the study of any subject or the pursuit of any vocation. Philosophy is unavoidable: every thoughtful individual is gripped by philosophical questions and is guided by assumptions that the study of philosophy brings explicitly to light and puts into larger perspective.

How to Become a Major

To become a major in philosophy, students must take PHIL 1a (Introduction to Philosophy), a logic course, a course in the history of philosophy, and five additional courses. Four of the courses required for the degree in philosophy must be advanced and must also meet a distribution requirement. To be a candidate in honors, seniors must complete an Honors Thesis. For further information contact the undergraduate advising head.

Faculty

Jerry Samet, Chair

Alan Berger
Logic. Philosophy of science. Philosophy of language.

Robert Greenberg

Eli Hirsch, Undergraduate Advising Head

Marion Smiley
Moral, social, and political philosophy.

Andreas Teuber, Advisor to Minors

Palle Yourgrau

Requirements for the Major

Philosophy courses consist of the following categories:

PHIL 1a [Introduction to Philosophy]; ethics/political and social philosophy (courses numbered 10–34 and 110–134); language/knowledge/metaphysics (PHIL courses numbered 35–59, 135–146, 191a and LING 130a); history (PHIL courses numbered 60–84, 160–184 and AMST 186b); logic (PHIL 6a, 7a, and 106b); PHIL 191a (Senior Seminar); PHIL 98a,b (Readings in Philosophy); and PHIL 99d (Senior Research).

Advanced courses are those numbered 99d and above. PHIL 98a,b is advanced only if specified by the instructor.

Courses counted toward the major cannot be taken pass/fail.

Required of all candidates: Eight semester courses in philosophy [including PHIL and cross-listed courses], conforming to the following provisions:

A. At least four must be advanced courses. [Those numbered 99 and above.]

B. PHIL 1a [Introduction to Philosophy] must be completed within one year of declaring a philosophy major. [At the time of declaring a major, students who have taken a USEM course focused primarily on philosophical texts, as well as others who already have a background in philosophy prior to coming to Brandeis, may petition the undergraduate advising head to have the PHIL 1a requirement waived.] Please note that PHIL 28a also fulfills this requirement.

C. At least one must be a course in history.

D. At least one must be a course in logic.

E. At least one must be an advanced course in ethics/political and social philosophy.

F. At least one must be an advanced course in language/knowledge/metaphysics.

G. No more than one semester course in PHIL 98 and one semester in 99 will count toward fulfilling the major requirements.

This department participates in the European cultural studies major.
Requirements for the Minor

The minor has four “tracks”: each track consists of five courses. Students are required to declare a minor by the beginning of their senior year. Prospective minors are encouraged to begin their course of study with PHIL 1a. Students who have taken a USEM course focused primarily on philosophical texts, as well as others who already have a background in philosophy, may petition the minor advisor to have the PHIL 1a requirement of tracks 2, 3, and 4 waived.

Courses counted toward the minor cannot be taken pass/fail.

Track 1: Language, Logic, and the Philosophy of Science
A. One logic course: 6a, 106b.

B. Three of the following: Contemporary Analytic Philosophy, Philosophy of Mathematics, Philosophy of Science, Philosophy of Social Science, Philosophical Problems of Space and Time, Philosophy of Psychology, Topics in Logic, Philosophy of Language, Topics in the Philosophy of Language, Mathematical Logic, a PHIL 98a or b, or a PHIL 191a in this area.

C. One free elective in philosophy (from among the PHI L and cross-listed offerings).

D. Two of the above must be advanced courses.

Track 2: Value Theory: Ethics, Politics, Society, Religion, and Art
A. Introduction to Philosophy.

B. Three courses selected in ethics/political and social philosophy (a PHIL 98a,b or a PHIL 191a in this area may also count).

C. One free elective in philosophy (from among the PHI L and cross-listed offerings).

D. Two of the above must be advanced courses.

Track 3: Metaphysics and the Philosophy of Mind
A. Introduction to Philosophy.

B. Three of the following: Metaphysics, Philosophy of Mind, Innate Knowledge, Philosophy of Psychology, Personal Identity, Topics in the Philosophy of Language, Contemporary Analytic Philosophy, Philosophy of Language, Theory of Knowledge, a PHIL 98a or b, or a PHIL 191a in this area.

C. One free elective in philosophy (from among the PHI L and cross-listed offerings).

D. Two of the above must be advanced courses.

Track 4: General Minor
A. Introduction to Philosophy.

B. Four electives in philosophy, three of which originate in the philosophy department. [Approval of the student’s program by the minor advisor is required.]

C. Two of the above must be advanced courses.

Courses of Instruction

<table>
<thead>
<tr>
<th>1-99</th>
<th>Primarily for Undergraduate Students</th>
</tr>
</thead>
</table>

PHIL 1a Introduction to Philosophy
[hum]
Enrollment varies according to instructor.
Refer to the University Writing section of this Bulletin for information regarding applicability to the writing intensive requirement.
A general course presenting the problems of philosophy, especially in the areas of metaphysics, epistemology, ethics, and social and political philosophy. Texts will include works of selected philosophers of various historical periods from antiquity to the present. Usually offered every semester. Will be offered in the fall of 2003. Messrs. Berger, Greenberg, Hirsch, Samet, Smiley, Teuber, and Yourgrau

PHIL 6a Introduction to Symbolic Logic
[hum]
Symbolic logic provides concepts and formal techniques that elucidate deductive reasoning. Topics include truth functions and quantifiers, validity, and formal systems. Usually offered every year. Will be offered in the fall of 2003. Messrs. Berger and Samet

PHIL 12b Philosophy and Literature
[hum]
Enrollment limited to 20.
Staff

PHIL 17a Introduction to Ethics
[hum]
Examines the basic concepts and theories of ethical philosophy. What makes a life good? What are our moral obligations to other people? Applications of ethical philosophy to various concrete questions will be considered. Usually offered every year. Last offered in the fall of 2002.
Ms. Smiley

PHIL 19a Human Rights
[hum]
Enrollment limited to 100.
Examines international human rights policies and the moral and political issues to which they give rise. Includes civilians’ wartime rights, the role of human rights in foreign policy, and the responsibility of individuals and states to alleviate world hunger and famine. Usually offered every second year. Last offered in the fall of 2002.
Mr. Teuber

PHIL 20a Social and Political Philosophy: Democracy and Disobedience
[hum]
Enrollment limited to 100.
Focuses on the relation of the individual to the state and, in particular, on the theory and practice of non-violent resistance, its aims, methods, achievements, and legitimacy. Examines the nature of obligation and the role of civil disobedience in a democratic society. Explores the conflict between authority and autonomy and the grounds for giving one’s allegiance to any state at all. Examples include opposition to the nuclear arms race, disobedience in China and Northern Ireland and at abortion clinics. Usually offered every second year. Last offered in the fall of 2002.
Mr. Teuber

PHIL 22b Philosophy of Law
[hum]
Examines the nature of criminal responsibility, causation in the law, negligence and liability, omission and the duty to rescue, and the nature and limits of law. Also, is the law more or less like chess or poker, cooking recipes, or the Ten Commandments? Usually offered every second year. Last offered in the spring of 2002.
Mr. Teuber
PHIL 23b Biomedical Ethics
[hum]
Enrollment limited to 50.
An examination of ethical issues that arise in a biomedical context, such as the issues of abortion, euthanasia, eugenics, lying to patients, and the right to health care. The relevance of ethical theory to such issues will be considered. Usually offered every second year. Last offered in the summer of 2001.
Mr. Hirsch

PHIL 24a Philosophy of Religion
[hum]
An introduction to the major philosophical problems of religion. The existence of God, “God-talk,” evil and suffering, mystical experiences, life after death, free will and determinism, the relation of religion to morality. Usually offered every year. Last offered in the spring of 2002.
Mr. Hirsch

PHIL 28a Western Philosophical Tradition: Feminist Perspectives
[hum]
Fulfills the PHIL 1a requirement for the major. Enrollment limited to 35.
Examines the place of gender in the history of western philosophy and goes on to ask a series of philosophical questions that are informed by contemporary feminism, including “Is there a woman’s voice?” and “What is gender equality and is it valuable?”
Ms. Smiley

PHIL 35a Philosophy of Science
[hum]
Philosophers in the 20th century have often taken scientific activity to be the ideal source of our knowledge about the world. Discusses the problems involved in the analysis of the principles and methods of scientific activity, with an eye to assessing this claim. Usually offered every second year. Will be offered in the fall of 2003.
Messrs. Berger and Hirsch

PHIL 37a Philosophy of Language
[hum]
Theories of meaning, reference, and methodological issues in account of language and translation. Readings from contemporary sources. Usually offered every year. Last offered in the fall of 2002.
Messrs. Berger, Hirsch, and Yourgrau

PHIL 38b Philosophy of Mathematics
[hum]
Prerequisite: A course in logic or permission of the instructor.
Basic issues in the foundations of mathematics will be explored through close study of selections from Frege, Russell, Carnap, and others, as well as from contemporary philosophers. Questions addressed include: What are the natural numbers? Do they exist in the same sense as tables and chairs? How can “finite beings” grasp infinity? What is the relationship between arithmetic and geometry? The classic foundational “programs”: logicism, formalism, and intuitionism are explored. Usually offered every third year. Will be offered in the fall of 2003.
Messrs. Berger and Yourgrau

PHIL 39b Philosophy of Mind
[hum]
Enrollment limited to 30.
Topics include the mind-body relation and consciousness, reductionism, and the philosophical implications of recent work in neuroscience, cognitive science, and artificial intelligence. Usually offered every second year. Last offered in the spring of 2001.
Mr. Samet

PHIL 66b Contemporary Analytic Philosophy
[hum]
Covers major figures and schools of philosophy in the 20th century. A basic historical treatment of this period, stressing its continuity with the modern period. Emphasis on the role of logic and language in solving philosophical problems, such as the possibility of doing metaphysics, and whether there are a priori, necessary, or analytic truths. Usually offered every year. Last offered in the fall of 2001.
Messrs. Berger or Greenberg

PHIL 71a Medieval Philosophy
[hum]
Examines the period from Augustine to William of Occam and considers the nature of humans in the philosophies of Averroes, Maimonides, and Aquinas. Brief preparatory study of relevant background in Plato and Aristotle. Usually offered every fourth year. Last offered in the spring of 1998.
Staff

PHIL 74b Foundations of American Pragmatism
[hum]
Enrollment limited to 25.
Introduction to American instrumentalism as a philosophical movement and cultural force. Special attention to pragmatic imprints on law and science across the 20th century. Recurring critical debates over ethical relativism, religious skepticism, legal activism, and the cult of scientific and professional expertise. Usually offered every fourth year. Will be offered in the fall of 2003.
Mr. Gaskins

PHIL 98a Readings in Philosophy
Signature of the instructor required.
Readings, reports, and discussions on assigned topics. Usually offered every semester.
Staff

PHIL 98b Readings in Philosophy
Signature of the instructor required.
Readings, reports, and discussions on assigned topics. Usually offered every semester.
Staff

PHIL 99d Senior Research
Signature of the instructor required.
The course is normally a two-semester sequence. It is open to seniors who are candidates for degrees with honors in philosophy and involves the preparation and writing of a thesis, under the direction of a member of the faculty. Usually offered every year.
Staff

PHIL 106b Mathematical Logic
[sn hum]
Prerequisite: One course in logic or permission of the instructor. Enrollment limited to 20.
Covers in detail several of the following proofs: the Gödel Incompleteness Results, Tarski’s Undecidability of Truth Theorem, Church’s Theorem on the Undecidability of Predicate Logic and Elementary Recursive Function Theory. Usually offered every year. Last offered in the spring of 2002.
Mr. Berger

PHIL 110a The Good Life or “How Should I Live?”
[hum]
Prerequisite: One course in philosophy. Enrollment limited to 30.
Much recent philosophy in the English-speaking world has focused on the nature of things and our knowledge and reasoning about such things. But most human mental activity is not theoretical, but practical, less concerned with how the world is than with what is to be done. In the earliest moments of Western philosophy Socrates distinguished himself by asking “How Should One Live?” Increasingly, however, that question and its variants have taken back seat in philosophy, abandoned to the best-seller lists and to publications produced by recent graduates of assertiveness training workshops. We reclaim these questions and take them up again from within the discipline of philosophy itself. Questions asked include: “How Should I Live?” “What Are the Good Things in Life?” “Does Life Have Meaning?” Readings include Darwin, Nietzsche, Freud, Murdoch, Dennett, Dawkins, Hacking, Nozick and Nagel. Usually offered every third year. Will be offered in the fall of 2003.
Mr. Teuber
PHIL 111a “What is Justice?”
[hum]
Prerequisite: One course in philosophy or permission of the instructor. Enrollment limited to 50.
What is justice and what does justice require? The course examines theories of justice, both classical and contemporary. Topics include liberty and equality, “who gets what and how much,” welfare- and resource-based principles of justice, justice as a virtue, liberalism, multiculturalism, and globalization. Usually offered every second year. Last offered in the spring of 2003.
Ms. Smiley

PHIL 112b Philosophy and Public Policy
[hum]
Prerequisite: One course in philosophy or permission of the instructor.
The course examines the case that can be made for and against distributing certain goods and services on an open market as the result of free exchange, or through public mechanisms of planning and control. For examples, the arguments for and against public funding of the arts, fire departments, patents, zoning laws, and national health care. Usually offered every third year. Last offered in the fall of 2000.
Mr. Teuber

PHIL 113b Aesthetics: Painting, Photography, and Film
[hum]
Enrollment limited to 20.
Explores representation in painting, photography, and film by studying painters Rembrandt, Velasquez, and Vermeer, as well as later works by Manet, Degas, Cézanne, and Picasso; photographers Ansel Adams, Dorothea Lange, Edward Weston, Walker Evans, Alfred Stieglitz, and Diane Arbus; and filmmakers Renoir and Hitchcock. Usually offered every second year. Last offered in the spring of 2001.
Mr. Teuber

PHIL 114b Topics in Ethical Theory
[hum]
Prerequisite: One course in philosophy or permission of the instructor. Enrollment limited to 35.
Is morality something we have reasons to obey regardless of our interests and desires, or do the reasons grow out of our interests and desires? Is the moral life always a personally satisfying life? Is morality a social invention or is it more deeply rooted in the nature of things? The course will address such questions. Usually offered every second year. Last offered in the spring of 2001.
Ms. Smiley

PHIL 116a Topics in Political Philosophy
[hum]
Prerequisite: One course in ethics/social and political philosophy or signature of the instructor.
Normative justifications of the state. Examines how western philosophers have used constructs such as the state of nature, the social contract, and the general will to justify state powers. Usually offered every second year. Last offered in the fall of 2001.
Ms. Smiley

PHIL 119b Chinese Philosophy
[nw hum]
Prerequisite: One course in philosophy. Enrollment limited to 35.
Focuses on the ancient philosophies of Confucianism, Taoism, and Ch’ an (Zen) Buddhism. The aim will be to identify the concerns and ways of thinking that are distinctive of each philosophy. Usually offered every third year. Last offered in the fall of 2000.
Staff

PHIL 121a Politics, Philosophy, and the Legal Regulation of Sexuality
[hum]
Prerequisite: Introductory philosophy or political theory. Enrollment limited to 20.
Treating the sexual exchange as a proper subject for politics, students read traditional philosophers like Tocqueville and Mill, as well as laws and court opinions in an effort to understand how sex is regulated in America as a political matter. Usually offered every fourth year. Last offered in the fall of 1999.
Staff

PHIL 135a Theory of Knowledge
[hum]
Prerequisite: One course in philosophy.
An investigation into the nature, sources, and extent of human knowledge, with emphasis on the problem of justifying our beliefs about the existence and character of the external world. Usually offered every second year. Last offered in the fall of 2001.
Mr. Hirsch

PHIL 136a Personal Identity
[hum]
Prerequisite: One course in philosophy.
Messrs. Hirsch and Greenberg

PHIL 137a Innateness
[hum]
Prerequisite: One course in philosophy. Enrollment limited to 15.
How much of what we are—what we believe and know, what we think and feel, how we act, is due to our environment and training and how much is a function of our inherent nature? Analyzes the contemporary debate as well as the main positions in the history of philosophy on this question. Also considers recent research in linguistics and the cognitive sciences. Usually offered every third year. Last offered in the spring of 2000.
Mr. Samet

PHIL 138a Metaphysics
[hum]
Prerequisite: One course in philosophy.
Metaphysics is an attempt to describe in a general way the nature of reality and how people fit into the scheme of things. Topics vary from year to year but may include truth, ontology, necessity, free will, causality, temporal passage, and identity. Usually offered every year. Will be offered in the fall of 2003.
Messrs. Berger, Hirsch, and Yourgrau

PHIL 139b Topics in Logic
[hum]
Previous course in introductory logic advised.
Topics may vary from year to year and the course may be repeated for credit. Topics in the past included: Is logic an a priori or empirical science? Does it make sense to say that we can revise or adopt our logic? Is logic true by conventional rules of language? Set theory and the paradoxes. Usually offered every year. Last offered in the fall of 2002.
Messrs. Berger and Yourgrau

PHIL 140a Logic and Language
[hum]
Prerequisite: One course in logic or the permission of the instructor. Enrollment limited to 20.
Covers basic problems and puzzles regarding reference and identity—topics that dominate issues in philosophy of language today. Topics include puzzles about belief, necessity, substitutivity of identity statements, and formal semantics for parts of language and modal notions. Usually offered every second year. Will be offered in the fall of 2003.
Messrs. Berger or Yourgrau
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisite</th>
<th>Enrollment Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 114b Topics in Philosophy and Cognitive Science</td>
<td>[hum ss] Prerequisite: One course in philosophy or permission of the instructor.</td>
<td>Explores the various ways in which philosophical ideas are reflected in and illuminate scientific theorizing about the mind and also examines the implications of recent work in the cognitive sciences for traditional philosophical concerns. Topics differ from year to year. Usually offered every second year. Last offered in the spring of 2001.</td>
<td>Mr. Greenberg</td>
</tr>
<tr>
<td>PHIL 145b Topics in the Philosophy of Language</td>
<td>[hum] Previous course in introductory logic advised.</td>
<td>Topics may vary from year to year and course may be repeated for credit. Topics include the relationship between the language we speak and our view of reality, reference, the sense in which language may structure reality, and formal semantics. Usually offered every second year. Last offered in the spring of 2002.</td>
<td>Messrs. Berger and Hirsch</td>
</tr>
<tr>
<td>PHIL 168a Kant</td>
<td>[hum] Prerequisite: One course in philosophy or permission of the instructor.</td>
<td>An attempt to understand and evaluate the main ideas of the Critique of Pure Reason, the subjectivity of space and time, the nature of consciousness, and the objectivity of the concepts of substance and causality. Usually offered every year. Will be offered in the fall of 2003.</td>
<td>Mr. Greenberg</td>
</tr>
<tr>
<td>PHIL 170a Special Topics in History of Philosophy: Descartes’s Meditations</td>
<td>[hum] Prerequisite: One course in philosophy or permission of the instructor.</td>
<td>Enrollment limited to 20.</td>
<td>Messrs. Berger and Hirsch</td>
</tr>
<tr>
<td>PHIL 171b Problems of A Priori Knowledge</td>
<td>[hum] Familiarity with the Critique of Pure Reason strongly recommended. Enrollment limited to 25.</td>
<td>Examines some of the main problems of a priori knowledge as seen from a Kantian point of view. Usually offered every second year. Last offered in the spring of 2001.</td>
<td>Mr. Greenberg</td>
</tr>
<tr>
<td>PHIL 174a Special Topics in the History of Philosophy: Hume’s First Inquiry</td>
<td>[hum] Prerequisite: One course in philosophy or permission of the instructor.</td>
<td>A close reading of Hume’s short classic Enquiry Concerning Human Understanding, which attempts to distill the key elements of Hume’s Empiricism and make his philosophy accessible to a general audience. Topics include the nature of thought, skepticism and the possibility of knowledge, free will, the credibility of miracles, and the prospects for a life hereafter. Usually offered every fourth year. Last offered in the fall of 1999.</td>
<td>Mr. Samet</td>
</tr>
<tr>
<td>PHIL 178b Major Figures in the Christian Faith: Simone Weil</td>
<td>[hum] Prerequisite: PHIL 1a. Presents the important theological contributions of the major thinkers of the Western Church covering the modern period. Usually offered every fourth year. Last offered in the fall of 1998.</td>
<td></td>
<td>Mr. Yourgrau</td>
</tr>
</tbody>
</table>
PHIL 179b Nietzsche
[hum]
Enrollment limited to 25.
Charts Nietzsche's fateful place in the history of Western philosophy. Examines his revolutionary questioning of traditional ontology and epistemology, and scrutinizes the interaction between his psychological deconstruction and his political philosophy of aristocratic radicalism. Also cultivates sensitivity to the dangers of distortion and misappropriation, which Nietzsche's writings so readily invite. Usually offered every fourth year. Last offered in the spring of 2001. Staff

PHIL 180b British Empiricism
[hum]
Examines the metaphysical and epistemological doctrines of John Locke, Bishop Berkeley, and David Hume, the central figures of 17th- and 18th-century British Empiricism. Also explores the influence of Empiricism on contemporary philosophy. Usually offered every third year. Last offered in the fall of 2002. Mr. Samet

PHIL 191a Senior Seminar
[hum]
May be repeated for credit.
This seminar is given on a rotating basis by members of the department. Its purpose is to allow students to work at an advanced level. Special topics in philosophy vary from year to year. Usually offered upon request. Staff

Cross-Listed Courses

ED 159b
Introduction to Philosophy of Education

ENG 171a
History of Literary Criticism

HOID 101a
Thinking About Ethics with Socrates

HOID 108b
Greek and Roman Ethics: From Plato to the Stoics

HOID 120a
Immorality: Its Sources, Varieties, and Charms

HOID 124a
Stoicism Now and Then

HOID 127a
Seminar in the History of Ideas: Case Studies

HOID 130b
Varieties of Liberty, Freedom, and Choice

HOID 140a

HOID 169a
Reconciling Justice and Ethics

LING 130a
Semantics: The Structure of Concepts

NEJS 157b
(formerly NEJS 123a)
Medieval Jewish Philosophy

NEJS 159a
Major Trends in Modern Jewish Philosophy

POL 186b
Classical Political Philosophy

Physical Education

Objectives

Movement and activity are basic functions necessary for the human body to grow, develop, and maintain health. Realizing that good health is largely self-controlled, the physical education department's curriculum focuses on fitness, dance, and lifetime sports to encourage lifestyle changes in its students.

Brandeis prides itself on education of the body as well as education of the intellect. The physical education department curriculum focuses on cardiovascular fitness, flexibility, body composition (percent of body fat), the maintenance of muscular strength, and endurance.

Students should complete the physical education requirement by the end of their sophomore year. Transfer students may offer toward the requirement physical education courses that appear on the transcript of their previous institutions. Most physical education courses meet for two hours per week and are limited in size; preference is given to first-year students.

Any student who has served in the military, foreign or domestic, is exempt from the entire physical education requirement. Proper documentation must be provided to the physical education department.

Faculty

Denise Dallamora, Chair
Dance. Fitness. Individual sports.

Carol Ann Baer
Dance.

Richard Burr
Athletic training. Fitness.

Jean Cann
Racquet sports. Fitness.

Vincent Christiano
Karate.

Michael Coven
Team sports. Weight training.

Lisa DeNicola
Athletic training. Fitness.

Susan Dibble
Dance.
Physical Education 313

Courses of Instruction

Aquatics Certification

PE 1a Beginner’s Swimming
Enrollment limited to 16.
Designed to teach the non-swimmer the basic skills of floating, treading water, and the crawl stroke. Usually offered in the fall semester.
Ms. Sullivan

Dance

PE 26a Ballroom Dance
Enrollment limited to 40.
Latin dances are covered: introduction to cha-cha, rumba, tango, and mambo. Also, swing, waltz, and fox-trot. Usually offered every semester.
Ms. Evans-Baer

PE 26b Intermediate Ballroom Dance
Prerequisite: PE 26a or comparable dance experience. Enrollment limited to 40.
A follow-up to PE 26a. Learn new steps in cha-cha, rumba, tango, and waltz. Usually offered every spring semester.
Ms. Evans-Baer

PE 31a Ballet
Enrollment limited to 15.
Students begin with warm-up exercises (barre work); balance, control, stretch, and arm movements will be incorporated. When dancers become strong enough, class will proceed to center work, including balancing exercises, turns, and jumps. Dancers will learn stretching and cool-down exercises. Usually offered every semester.
Ms. Margosian

William Shipman

Carol Simon
Fitness. Team sports. Racquet sports.

Mary Sullivan
Aquatics. First aid. CPR.

Jean-Robert Theodat
Fitness

PE 31b Intermediate Ballet
Enrollment limited to 15.
Students need to have two to three years of recent ballet training to participate. Same material as beginning ballet is covered at an accelerated pace. Russian style ballet, the Legat Technique, will be taught. Usually offered every semester.
Ms. Margosian

PE 32a Modern Dance
Enrollment limited to 20.
A beginning course in modern dance technique, based on Martha Graham and Jose Lemon style. The course will offer stretching and alignment to dance sequences. Usually offered every semester.
Ms. Dibble

Health and Safety
Note: Students with approved medical excuses should take courses from this area.

PE 5a First Aid and Community CPR
Enrollment limited to 12.
An instruction in the American Red Cross standard First Aid and Cardiopulmonary Resuscitation. Upon course completion, certificates will be given to students who successfully complete the skills test and pass the written test with scores of 80 percent or better. Usually offered every semester.
Mr. Burr and Ms. Sullivan

PE 6a Sports Medicine
Enrollment limited to 20.
Introduction to sports medicine and a basic understanding of human anatomy and sports is required. The course will look at many facets of sports medicine including weight training, nutrition, drug education, flexibility, and rehabilitation. Each of the major joints of the body will be examined anatomically, based on injuries sustained. Class will also look briefly at surgical repair of certain joints. Usually offered every spring semester.
Mr. Burr

PE 40a Personal Safety/Self Defense
Enrollment limited to 25.
Learn how to assert yourself and deal with the natural excitement and fear that can cause you to “freeze-up” when faced with an aggressor. Students are led through simple but effective drills and scenarios designed to help overcome the uncomfortable feelings and fear that can mark an individual as an easy target for attack. Since fear and anger are tremendous sources of power when used in defense, understand how to use your emotions to help you become stronger and safe. Usually offered every semester.
Mr. True

Undergraduate Degree Requirements

Physical education is an undergraduate degree requirement at Brandeis. This requirement is satisfied by successful completion of two, semester-long, noncredit courses, or by passing a fitness test taken the first year.

All students have two opportunities during their first year at Brandeis to exempt themselves from all or part of the physical education requirement by taking a battery of tests that measure muscular strength and endurance, flexibility, cardiovascular endurance, and body composition. A student unable to pass the fitness test should enroll in a course in the Personal Fitness Group.

A grade of 70-79 percent will exempt you from one physical education class or half of your requirement. A grade of 80 percent or better will exempt you from two physical education classes or all of your requirement. Physical education classes meet the first day of regular classes and attendance is mandatory. A maximum of two absences is allowed in a class that meets once per week and a maximum of four absences for a class that meets twice per week.
Personal Fitness

PE 2a Swim Fitness
Enrollment limited to 20.
Designed to improve overall fitness levels through lap swimming. Emphasis is on using the heart rate to improve cardiovascular endurance level. The instruction is geared more to understanding and implementing swimming as a vehicle to fitness and less toward teaching individual swimming stroke mechanics. Usually offered every semester.
Mr. Zotz

PE 2b Water Aerobics
Enrollment limited to 20.
Designed to improve overall fitness levels through water exercise. Emphasis is on improving cardiovascular endurance through a cross-section of exercises done in the water. Usually offered every semester.
Mr. Zotz

PE 11a Nautilus/Free Weights
Enrollment limited to 25.
Instruction of proper use of Nautilus, Body Master, and free-weight training. Classes also include aerobic activity such as use of Lifecycle and Tru-Climb 450. Usually offered every semester.
Staff

PE 12a Step Aerobics
Enrollment limited to 30.
Step aerobics is a program that includes stepping up and down on an adjustable platform while performing upper-body movements to music. Unlike aerobics, it is low impact and can be moderated to any fitness level. Usually offered every semester.
Ms. DeNicola

PE 14a Yoga
Enrollment limited to 15.
Hatha yoga is physical in nature and is based on proper body alignment and is distinctive in its use of props such as belts, walls, and blankets. Classes start with gentle stretches and work toward more challenging poses. Usually offered every semester.
Ms. Dallamora

PE 27a Keeping Stress in Check
Enrollment limited to 25.
Designed to help students achieve wellness through exercise, nutrition, and health education. Students are taught to recognize components of their lifestyles that are detrimental to their health while developing a personal fitness program. Usually offered every semester.
Mr. Zotz

PE 29a Yoga
Enrollment unlimited.
Designed to improve your overall fitness level through walking. Emphasis is on improving cardiovascular endurance level. Instruction is given on how to develop a personal fitness program. Usually offered every semester.
Staff

PE 30a Power Walking
Enrollment limited to 25.
Designed to help increase the fitness level of the students through a high-intensity, low-impact workout. The workout consists of walking with hand-held weights. Usually offered every semester.
Staff

PE 31a Pilates
Enrollment limited to 25.
A series of exercises designed to strengthen the abdominals and back muscles. These core exercises are combined with some yoga stretches to enhance flexibility and well-being. Usually offered every semester.
Ms. Cann

PE 41a Pilates
Enrollment limited to 25.
A series of exercises designed to build strength, flexibility, and endurance. Through physical training, students build a strong mind and spirit. Usually offered every semester.
Mr. Theodat

Sport Appreciation

PE 9a Volleyball
Enrollment limited to 40.
An introduction to the fundamentals of volleyball—scoring, rotation, rules, and the basic skills of passing, serving, hitting, and setting. Methodology includes lectures, demonstrations, drills, but mostly play. Course is intended to be fun through active participation. Usually offered every fall.
Staff

PE 10a Basketball
Enrollment limited to 30.
Structured to meet needs of students with an overview of offensive and defensive skills. Methods used are lecture, demonstrations, drills, and play. Usually offered every semester.
Mr. Ford

PE 16a Golf
Enrollment limited to 12.
A beginning golf group instructional course. Techniques such as grip, set-up, swing, chipping, pitching, and putting are covered. Some discussion on golf rules and etiquette is introduced. Usually offered every semester.
Staff

PE 17a Beginner’s Fencing
Enrollment limited to 20.
Covers basic mobility, offensive and defensive strategy, and tactics. Competitive bout ing is done, with a class tournament scheduled for the end of the semester. Usually offered every semester.
Mr. Shipman

PE 21a Tennis
Students must provide their own racquet.
Enrollment limited to 16.
An overview of grips, groundstrokes, serve, return of serve, and net play. Basic singles and doubles strategy, rules, and scoring of the game are introduced. Usually offered every semester.
Staff

PE 22a Squash
Students must provide their own racquet and protective eye wear.
For sections that are one-hour in length, enrollment is limited to 16; for sections that are one-and-a-half hours in length, enrollment is limited to 25.
Covers rules for squash. The serve, return of serve, grip, forehand, backhand, and other basic strokes are introduced. Strategy and play will be emphasized. Usually offered every semester.
Staff

PE 24a Beginner’s Karate
Enrollment limited to 25.
The first three Kata of Uechi-Ryu is taught. Application to kanshiwa and kanshu is explored. Students begin slow speed, focused free-fighting, with emphasis on technique from Uechi-Ryu Kata. Usually offered every semester.
Mr. Christiano

PE 25a Intermediate Karate
Prerequisite: PE 24a. Enrollment limited to 25.
Advanced Kotekeite and body conditioning, especially shin and toe development, is practiced. Study of self-defense focuses on multiple, unarmed attackers. Usually offered every spring semester.
Mr. Christiano

PE 38a Indoor Soccer
Enrollment limited to 18.
An introduction to the fundamentals of soccer—skill development, dribbling, passing, shooting, offense, and defense. Intended to be fun through participation in elementary games and exercises.
Section 1: Mr. Reythloit
Section 2: Mr. Coven

PE 40a Personal Safety and Self-defense
Enrollment limited to 25.
Teaches students to assess themselves and deal with the natural excitement and fear that can cause a person to freeze-up when faced with an aggressor. Students are led through simple but effective drills and scenarios designed to help them overcome the uncomfortable feelings and fear that can mark a person as an easy target for an attack.
Staff
Theoretical Physics

Brandeis, may be carried out in the following areas:

- Research upon which theses may be based, with residence at Brandeis, will constitute partial fulfillment of these requirements.
- Modern physics. The satisfactory completion of advanced courses requires knowledge, understanding, and proficiency in classical and modern physics.
- Advanced degrees will be granted upon evidence of the student's ability to execute the typical scenario of physical explanation and to strengthen the experimental skills used in exploring new phenomena and in carrying out the verification step of the typical scenario.

The ability to execute the typical scenario of physical explanation is useful not only to research physicists, but also to scientists in many other fields, especially interdisciplinary ones, such as biophysics and environmental science; it is also useful to engineers, to members of the medical profession, and to architects. For that reason, the physics program has made special arrangements to integrate a physics major with study preparing for a career in any of the areas mentioned above.

Graduate Program in Physics

The Graduate Program in Physics is designed to equip students with a broad understanding of major fields of physics and to train them to carry out independent, original research. This objective is to be attained by formal course work and supervised research projects. As the number of students who are accepted is limited, a close contact between students and faculty is maintained, permitting close supervision and guidance of each student.

Advanced degrees will be granted upon evidence of the student's knowledge, understanding, and proficiency in classical and modern physics. The satisfactory completion of advanced courses will constitute partial fulfillment of these requirements.

Research upon which theses may be based, with residence at Brandeis, may be carried out in the following areas:

1. Theoretical Physics
 - Quantum theory of fields;
 - Elementary particle physics;
 - Relativity;
 - Supergravity;
 - String theory;
 - Condensed matter physics;
 - Statistical mechanics;
 - Quantum theory of the solid state;
 - Critical phenomena and phase transitions;
 - Computational neuroscience.

2. Experimental Physics
 - High-energy experimental physics;
 - Condensed matter physics;
 - Radio astronomy;
 - Biophysics.

Every graduate teaching fellow (TF) is supervised by a member of the faculty who serves as a mentor to improve the quality of the TF's teaching. In recognition of this objective, each year the physics department awards the David Falkoff Prize to an outstanding teaching fellow. An additional goal of the department is to enable graduate students to be able to present their research findings in a clear and effective manner. Each spring the department organizes the Stephan Berko Symposium, where students give short presentations of their research. These talks are prepared with the assistance of their faculty research advisors. The best graduate student research project and the best undergraduate research project are recognized with Stephan Berko Prizes.

How to Become an Undergraduate Major

Since the sequence in which physics courses should be taken is tightly structured, and in most cases requires at least three years to complete, students contemplating a major in physics should consult the physics advising coordinator at the first opportunity. For most students either such consultation should take place before enrolling in courses at the beginning of the first year, or PHYS 11a and 19a should be part of the first semester program.

How to Be Admitted to the Graduate Program

The general requirements for admission to the Graduate School, given in an earlier section of the Bulletin, apply to candidates for admission to the graduate area in physics. Admission to advanced courses in physics will be granted following a conference with the student at entrance.

Courses of Related Interest

<table>
<thead>
<tr>
<th>Courses of Related Interest</th>
<th>THA 9a</th>
<th>THA 110b</th>
</tr>
</thead>
<tbody>
<tr>
<td>These courses count as activity courses towards the physical education requirement.</td>
<td>Movement for the Stage I</td>
<td>Modern Dance and Movement</td>
</tr>
<tr>
<td></td>
<td>THA 9b</td>
<td>THA 120b</td>
</tr>
<tr>
<td></td>
<td>Movement for the Stage II</td>
<td>Movement and Dance Theater Composition</td>
</tr>
<tr>
<td></td>
<td>THA 10b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage Combat</td>
<td></td>
</tr>
</tbody>
</table>

Department of

Physics

Objectives

Undergraduate Major

A typical scenario for a physical explanation of a given situation is this: a small collection of basic physical principles relevant to the situation is used to create a mathematical model of it; computations are carried out using the model, leading to predictions that are checked experimentally; if there is agreement, the physical situation is deemed to have been explained. The objective of the program in physics is to make it possible for students to execute such a scenario for a wide range of physical situations. To that end, students are required to attain a firm grasp of the basic principles of classical physics and familiarity with those of quantum physics, to learn how to decide which principles are relevant to a given situation and how to construct the appropriate mathematical model, to develop the mathematical skills necessary to carry out the computations that generate predictions, and to strengthen the experimental skills used in exploring new phenomena and in carrying out the verification step of the typical scenario.

The ability to execute the typical scenario of physical explanation is useful not only to research physicists, but also to scientists in many other fields, especially interdisciplinary ones, such as biophysics and environmental science; it is also useful to engineers, to members of the medical profession, and to architects. For that reason, the physics program has made special arrangements to integrate a physics major with study preparing for a career in any of the areas mentioned above.

Graduate Program in Physics

The Graduate Program in Physics is designed to equip students with a broad understanding of major fields of physics and to train them to carry out independent, original research. This objective is to be attained by formal course work and supervised research projects. As the number of students who are accepted is limited, a close contact between students and faculty is maintained, permitting close supervision and guidance of each student.

Advanced degrees will be granted upon evidence of the student’s knowledge, understanding, and proficiency in classical and modern physics. The satisfactory completion of advanced courses will constitute partial fulfillment of these requirements.

Research upon which theses may be based, with residence at Brandeis, may be carried out in the following areas:

1. Theoretical Physics
 - Quantum theory of fields;
 - Elementary particle physics;
 - Relativity;
 - Supergravity;
 - String theory;
 - Condensed matter physics;
 - Statistical mechanics;
 - Quantum theory of the solid state;
 - Critical phenomena and phase transitions;
 - Computational neuroscience.
Faculty

Robert Meyer, Chair
Physics of liquid crystals, colloids, and polymer gels.

James Bensinger
Experimental high-energy physics.

Craig Blocker
Experimental high-energy physics.

Karl Canter
Experimental biophysics.

Bulbul Chakraborty
Theoretical condensed matter physics.

Stanley Deser

Richard Fell
Theoretical quantum electrodynamics.

Seth Fraden
Physics of liquid crystals, colloids, and macromolecules.

Lawrence Kirsch
Experimental high-energy physics.

Jané Kondev
Theoretical condensed matter physics.

Robert Lange
K-12 science and environmental education, teacher training, and curriculum research.

Albion Lawrence
String theory and its applications to particle physics and cosmology.

David Roberts
Theoretical astrophysics. Radio astronomy.

Howard Schnitzer
Elementary particle theory. Quantum theory of fields. String theory.

Xiao-Jing Wang (Volen National Center for Complex Systems)
Computational neuroscience.

John Wardle
Radio astronomy. Cosmology.

Hermann Wellenstein
Experimental high-energy physics.

Requirements for the Undergraduate Majors

Degree of Bachelor of Arts
The requirement for the major in physics leading to the degree of Bachelor of Arts is the equivalent of 11 semester courses in physics and two semester courses in mathematics. There must be the equivalent of at least three semesters in laboratory courses [PHYS 19a and 19b together count as one semester, as do PHYS 18a and 18b]. One must also take PHYS 30b. Mathematics and physics courses numbered under 10 may not be used to fulfill the requirement for the major in physics. A student not intending to pursue graduate study in physics may be permitted to substitute two advanced courses in other fields to meet the requirements for the major in physics, subject to the approval of the advising coordinator. A student with a major in physics and an interest in biophysics may want to take courses in biophysics, biology, biochemistry, chemistry, or neuroscience. With departmental approval, a student may use such courses to satisfy part of the requirements for the major in physics.

Degree of Bachelor of Science
To satisfy the requirements for the major in physics leading to the degree of Bachelor of Science, students must successfully complete the 11 physics courses required for the B.A. in physics and six additional courses. Two of the additional six courses should be chosen from the following: PHYS 25b, 32b, 39a, 40a, 100a, 104a, 110a. Another two courses must be selected from the following: NPHY 115a, NBio 136b, CHEM 41a, 41b, any MATH course numbered 27 or higher (excluding courses used to fulfill the math requirement below), any COSI course numbered 21 or higher, or any other course approved by the physics department that is either listed or cross-listed in other departments within the School of Science. The final two courses must be chosen from one of the following pairs of courses: MATH 15a and MATH 20a, or MATH 21a and MATH 21b, or any two MATH courses numbered higher than 21.

Combined B.A./M.A. Program
A student may be admitted to a special four-year B.A./M.A. program upon recommendation of the department and the Graduate School by May 1 preceding the senior year. The student must successfully complete at least 38 courses. All the regular requirements for the M.A. degree in physics must be met: successful completion of six graduate courses in physics numbered 160 or above, and satisfactory performance on the qualifying examination. No more than two of the graduate-level courses may be counted towards major requirements. Grades of B- or better are required in the six courses numbered 160 or above. The qualifying examination includes the final examinations in PHYS 161a, 161b, 162a, and 162b, and two oral examinations on all of physics through the first-year graduate level. The department will recommend admission to this program only if the student’s record indicates that the student can successfully complete the requirements. Consultation with the physics advising coordinator before March 1 of the sophomore year is highly recommended for a student contemplating this program.

Requirements for the Undergraduate Minor
Six semester courses in physics at the level of PHYS 10 or above, not including PHYS 18a,b or PHYS 19a,b.

Special Notes Relating to Undergraduates
There are several natural tracks through the undergraduate physics courses. The first is: Year 1—PHYS 11a,b, 19a,b, MATH 10a,b; Year 2—PHYS 20a,b, 29a,b, MATH 21a,b or PHYS 110a; Year 3—PHYS 30a,b; Year 4—PHYS 40a, 100a.

The second, a premedical track, is: Year 1—PHYS 11a,b, 19a,b, MATH 10a,b; Year 2—PHYS 20a,b, 29a,b, CHEM 11a,b, 18a,b; Year 3—BIOL 22a [Formerly BBC 22a], BIOL 22b, 18a,b, CHEM 25a,b, 29a,b; Year 4—PHYS 30a,b.

Students are encouraged to construct other tracks that might better suit their needs in consultation with their advisors.
Students considering a career in engineering should consult the description of the Columbia University School of Engineering Combined Degree Program in the Special Academic Opportunities section of this Bulletin.

A student intending to pursue graduate work in physics will normally add to the tracks above PHYS 25b, 39a, 100a, and 104a or graduate courses dealing with previously treated subjects at a more advanced level, such as PHYS 161a,b (formerly 101a,b), and 162a,b (formerly 102a,b). Normally only two or three of the five courses PHYS 25b, 32b, 100a, 104a, and 110a will be offered in a given year; the others will normally be offered in the following year. Undergraduates are not permitted to enroll in physics courses numbered above 160 without the explicit approval of their appropriate major advisors.

A student who has attained a grade of 4 or 5 on the Advanced Placement Examination Physics B may obtain credit for PHYS 10a,b, a student who has attained a grade of 4 or 5 on the Advanced Placement Examination C: Mechanical may obtain credit for PHYS 11a while a grade of 4 or 5 on Advanced Placement Examination Physics C: Electrical may earn credit for PHYS 11b. A student who claims any of these advanced placement credits may not take the same or equivalent courses for credit: PHSC 9b, PHYS 10a,b, PHYS 11a,b.

In order to be a candidate for a degree with distinction in physics, one must take a departmentally approved honors program of either PHYS 99d or two semester courses in physics numbered above 160, and one must obtain honor grades. Students should have their honors programs approved by the departmental honors advisor before the beginning of the senior year.

Requirements for Advanced Degrees

Normally, first-year graduate students will elect courses from the 100 series, with at least four courses numbered above 160. To obtain credit toward residence for a graduate course taken at Brandeis, a student must achieve a final grade of B- or better in that course. Students may obtain credit for advanced courses taken at another institution provided their level corresponds to the level of graduate courses at Brandeis and that an honor grade in those courses was obtained. To place out of PHYS 161a or b or 162a or b, a student must pass an exemption exam before the end of the second week of the course.

Requirements for the Degree of Master of Arts

Residence Requirement
One year in residence as a full-time student. No transfer residence credit will be allowed toward the fulfillment of the master's requirements.

Course Requirements
Six semester-courses in physics numbered above 160. A thesis on an approved topic may be accepted in place of a semester-course.

Language Requirement
There is no foreign language requirement for advanced degrees in physics.

Qualifying Examination
Satisfactory performance in the qualifying examination is required. The qualifying examination consists of a written and an oral part and both parts are administered during the first year of the program.

Requirements for the Degree of Doctor of Philosophy

All of the requirements for the master's degree and the following:

Residence Requirement
The minimum residence requirement is three years. A student may obtain up to one year's residence credit toward the Ph.D. requirements for graduate studies taken at another institution.

Teaching Requirement
It is required that all Ph.D. candidates participate in undergraduate teaching during the course of their studies.

Course Requirements
At least two graduate courses in the list below must be taken during the first four terms: PHYS 163a, 167b, 168b, 169b, 200a, 202a, 204a. Note, however, that not all of the above courses will necessarily be given each year. PHYS 202a (Quantum Mechanics III) is strongly recommended for all students. A total of at least nine semester courses in physics numbered above 160 are required for the doctoral degree.

Advanced Examinations
Advanced examinations will be in topics partitioned in the several areas of research interest of the faculty. Faculty members working in each general area will function as a committee for this purpose and provide information about their work through informal discussions and seminars. The advanced examination requirement consists of a written paper and an oral examination. While no original research by the student is required, it is hoped that a proposal for a possible thesis topic will emerge. It is generally expected that the candidates will take the advanced examination in the field they wish to pursue for the Ph.D. thesis by the middle of the fourth term.

Thesis Research
After passing the advanced examination, the student begins work with an advisor who guides his or her research program. The advisor should be a member of the Brandeis faculty but in special circumstances may be a physicist associated with another research institution. The graduate committee of the physics faculty will appoint a dissertation committee to supervise the student's research. The student's dissertation advisor will be the chair of the dissertation committee.

Dissertation and Final Oral Examination
The doctoral dissertation must represent research of a standard acceptable to the faculty committee appointed for each Ph.D. candidate. The Final Oral Examination, or defense, is an examination in which the student will be asked questions pertaining to the dissertation research.
Courses of Instruction

[1-99] Primarily for Undergraduate Students

PHSC 2b Introductory Astronomy
[qr sn]
Does not meet requirements for the major in physics.
Elementary physical ideas will be used to discuss the life and death of stars, the structure of the galaxies, and the large-scale features and evolution of the universe.
Usually offered every year. Will be offered in the fall of 2003.
Mr. Wardle

PHSC 4a Science and Development
[qr sn]
Does not meet requirements for the major in physics. Enrollment limited to 30.
Focuses on specific scientific and technological issues encountered in economic development. The scientific material needed to understand different approaches will be analyzed using simple mathematics as an essential tool. Usually offered every year. Last offered in the fall of 2002.
Mr. Lange

PHSC 7b Technology and the Management of Public Risk
[qr sn]
Does not meet requirements for the major in physics. Enrollment limited to 75.
Analyzes some of the public safety issues involved in assessing risk and making technological decisions. The case history method will be used. Usually offered every fourth year. Last offered in the fall of 1999.
Staff

PHSC 9b Introduction to Physics
[qr sn]
Does not meet requirements for the major in physics. Enrollment limited to 64.
Introduces students to the laws, concepts, and phenomena of physics. Lecture and laboratory are well integrated to explore selected topics of general interest. Usually offered every year. Will be offered in the spring of 2004.
Mr. Wellenstein

PHYS 10a Physics for the Life Sciences I
[qr sn]
Corequisite: MATH 10a or equivalent.
Introduces students in the life sciences to the laws and concepts of mechanics and thermodynamics. Usually offered every year. Will be offered in the fall of 2003.
Mr. Lange

PHYS 10b Physics for the Life Sciences II
[qr sn]
Prerequisite: PHYS 10a.
Introduces students in the life sciences to the phenomena and concepts of acoustics, electricity and magnetism, optics, and modern physics. Usually offered every year. Will be offered in the spring of 2004.
Mr. Lange

PHYS 11a Basic Physics I
[qr sn]
Corequisite: MATH 10a,b or the equivalent.
Enrollment limited to 100.
Classical mechanics, plus topics from kinetic theory and thermodynamics. Usually offered every year. Will be offered in the fall of 2003.
Mr. Roberts

PHYS 11b Basic Physics II
[qr sn]
Prerequisite: PHYS 11a. Enrollment limited to 100.
Elementary electromagnetism presented from a modern point of view, plus topics in special relativity. Usually offered every year. Will be offered in the spring of 2004.
Mr. Roberts

PHYS 15a Honors Basic Physics I
[qr sn]
Prerequisite: MATH 10a,b or the equivalent. Corequisite: PHYS 19a
Mr. Roberts

PHYS 15b Honors Basic Physics II
[qr sn]
Prerequisite: MATH 10a,b or the equivalent. PHYS 11a or 15a or the equivalent Corequisite: PHYS 19b
Mr. Roberts

PHYS 18a Introductory Laboratory I
Corequisite: PHYS 10a. May yield half-course credit toward rate-of-work and graduation. Two semester hour credits. Total enrollment in lab sections limited to 144.
Laboratory course consisting of basic physics experiments designed to accompany PHYS 10a. One two-and-a-half hour laboratory per week. One, one-hour lecture per week. Usually offered every year. Will be offered in the fall of 2003.
Mr. Bensinger

PHYS 18b Introductory Laboratory II
Corequisite: PHYS 10b. May yield half-course credit toward rate-of-work and graduation. Two semester hour credits. Total enrollment in lab sections limited to 126.
Laboratory course consisting of basic physics experiments designed to accompany PHYS 10b. One two-and-a-half hour laboratory per week. One, one-hour lecture per week. Usually offered every year. Will be offered in the spring of 2004.
Mr. Wellenstein

PHYS 19a Physics Laboratory I
May yield half-course credit toward rate-of-work and graduation. Two semester hour credits. Total enrollment in lab sections limited to 100.
Laboratory course designed to accompany PHYS 11a. Introductory statistics and data analysis including use of microcomputers and basic experiments in mechanics. One afternoon or evening of laboratory per week.
One, one-and-a-half hour lecture per week. Usually offered every year. Will be offered in the fall of 2003.
Mr. Fell

PHYS 19b Physics Laboratory II
May yield half-course credit toward rate-of-work and graduation. Two semester hour credits. Total enrollment in lab sections limited to 100.
Laboratory course designed to accompany PHYS 11b. Basic experiments in electricity, magnetism, and optics. Basic electrical measurements. Determination of several fundamental physical constants. One afternoon or evening of laboratory per week.
One, one-and-a-half hour lecture per week. Usually offered every year. Will be offered in the spring of 2004.
Mr. Canter

PHYS 20a Modern Physics I
[sn]
Prerequisites: PHYS 11a, 11b, or equivalent.
A survey of phenomena, ideas, and mathematics underlying modern physics—special relativity, waves and oscillations, optics, thermal and statistical physics, and introductory quantum mechanics, as well as a selection of topics such as nuclear physics and radioactivity, elementary particles, cosmology, and electronic properties of crystals, semiconductors, and metals. Usually offered every year. Will be offered in the fall of 2003.
Mr. Fell

PHYS 20b Modern Physics II
[sn]
Prerequisite: PHYS 20a.
Continuation of PHYS 20a. Usually offered every year. Will be offered in the spring of 2004.
Mr. Wardle
PHYS 29a Electronics Laboratory I
[sn]
Prerequisites: PHYS 10a, 10b or 11a, 11b and Math 10a, 10b.
Application of basic physical principles to the study of stars, galaxies, quasars, and the large-scale structure of the universe. Usually offered every second year. Last offered in the spring of 2003.
Mr. Roberts

PHYS 29b Electronics Laboratory II
[sn]
Prerequisite: PHYS 29a. Enrollment limited to 16.
Introductory laboratory in digital electronics. Topics to be covered are Boolean algebra, combinatorial logic; sequential logic; state machines; digital-analog conversion; and microprocessors. The last part of the semester will be spent on individual design projects. Usually offered every year. Will be offered in the spring of 2004.
Mr. Blocker

PHYS 30a Electromagnetism
[sn]
Prerequisite: PHYS 20b or permission of the instructor.
The fundamentals of electromagnetic theory. Includes electrostatics, magnetostatics, electric and magnetic circuits, and Maxwell’s equations. Usually offered every year. Will be offered in the fall of 2003.
Ms. Chakraborty

PHYS 30b Quantum Theory
[sn]
Prerequisites: PHYS 11a,b and PHYS 20a,b; or permission of the instructor.
Introduction to quantum mechanics: atomic models, Schrödinger equation, angular momentum, and hydrogen atom. Multielectron atoms and interaction of atoms with the electromagnetic field. Usually offered every year. Will be offered in the spring of 2004.
Mr. Canter

PHYS 32b Microprocessor Laboratory
[sn]
Prerequisite: PHYS 29a or 29b. Enrollment limited to 10.
Study of microprocessor design and use as controller for other devices. Topics include architecture of microcomputers, interfacing, digital control, analog control, and software development. Usually offered every second year. Will be offered in the spring of 2004.
Mr. Kirsch

PHYS 33a Optics Laboratory
[sn]
Prerequisites: PHYS 11a,b, PHYS 20a,b, and PHYS 29a,b. Enrollment limited to 10.
Geometric optics, wave optics, optical signal processing, and integrated optics. Usually offered every third year. Last offered in the fall of 2000.
Mr. Bensinger

PHYS 39a Advanced Physics Laboratory
[sn]
Prerequisite: PHYS 20a. Signature of the instructor required. This course may be repeated once for credit with permission of the instructor.
Experiments in a range of topics in physics, possibly including selections from the following: wave optics, light scattering, Nuclear Magnetic Resonance, x-ray diffraction, scanning tunneling microscopy, numerical simulation and modeling, holography, electro-optics, phase transitions, rubber elasticity, laser tweezers, chaotic dynamics, and optical microscopy. Students work in depth on three or four experiments during the term. Usually offered every semester. Will be offered in the fall of 2003.
Mr. Meyer

PHYS 40a Introduction to Thermodynamics and Statistical Mechanics
[sn]
Statistical approach to thermal properties of matter. Theoretical tools are developed for studying questions such as: “Why does a rubber hand contract upon heating?” or “What is the size of a white dwarf star?” Usually offered every year. Will be offered in the fall of 2003.
Mr. Wang

PHYS 97a Tutorial in Physics
Signature of the instructor required.
Tutorial for students studying advanced material not covered in regular courses. Usually offered every year.
Staff

PHYS 97b Tutorial in Physics
Signature of the instructor required.
Tutorial for students studying advanced material not covered in regular courses. Usually offered every year.
Staff

PHYS 98a Readings in Physics
Signature of the instructor required.
Open to exceptional students who wish to study an area of physics not covered in the standard curriculum. Usually offered every year.
Staff

PHYS 98b Readings in Physics
Signature of the instructor required.
Open to exceptional students who wish to study an area of physics not covered in the standard curriculum. Usually offered every year.
Staff

PHYS 99d Senior Research
Permission of the advising coordinator required. Signature of the instructor required.
Research assignments and preparation of a report under the direction of an instructor. Usually offered every year.
Staff

[100-199] For Both Undergraduate and Graduate Students

PHYS 100a Classical Mechanics
[sn]
Prerequisites: PHYS 20a and 20b, or permission of the instructor.
Staff

PHYS 104a Condensed Matter I
[sn]
Mechanical and thermal properties of solids, liquids, and polymers. Emphasis on statistical physics, elasticity theory, and fluid dynamics, as theoretical tools for studying soft condensed matter systems. Examples include bacterial motion, protein folding, and packing of DNA in viral heads. Usually offered every second year. Last offered in the fall of 2002.
Mr. Kondev
PHYS 107b Particle Physics
Prerequisite: PHYS 30a or permission of the instructor. Corequisite: PHYS 30b or permission of the instructor.
The phenomenology of elementary particles and the strong, weak, and electromagnetic interactions are studied. Properties of particles, quarks, neutrinos, vector bosons, Higgs particles, supersymmetry, symmetries, and conservation laws are covered. This course is co-taught with the graduate course PHYS 167b, and the workload will be appropriate to each group. Usually offered every other year. Will be offered in the spring of 2004.
Mr. Blocker

PHYS 110a Mathematical Physics
Complex variables; Fourier and Laplace transforms; special functions; partial differential equations. Usually offered every year. Will be offered in the spring of 2004.
Mr. Deser

PHYS 113a First Year Tutorial I
A review of physics from the most elementary topics to those treated in other first-year graduate courses. The environment of an oral qualifying examination is reproduced in the tutorial. Usually offered every year. Will be offered in the fall of 2003.
Ms. Chakraborty

PHYS 113b First Year Tutorial II
Continuation of PHYS 113a. Usually offered every year. Will be offered in the spring of 2004.
Staff

NPHY 115a Dynamical Systems, Chaos, and Fractals
(formerly PHYS 115a)
Prerequisite: PHYS 10a or 11a, MATH 21a, MATH 36a, or approved equivalents. This course may not be repeated for credit by students who have taken PHYS 115a in previous years. Advanced introduction to the theory of nonlinear dynamical systems, bifurcations, chaotic behaviors, and fractal patterns. Concepts and analysis are illustrated by examples from physics, chemistry, and biology. The course will be complemented by a significant number of computer labs. Usually offered every second year. Last offered in the spring of 2003.
Mr. Wang

PHYS 161a Electromagnetic Theory I
Mr. Schnitzer

PHYS 161b Electromagnetic Theory II
Mr. Schnitzer

PHYS 162a Quantum Mechanics I
Mr. Deser

PHYS 162b Quantum Mechanics II
Mr. Kondyev

PHYS 163a Statistical Physics and Thermodynamics
Ms. Kondyev

PHYS 167b Particle Phenomenology
The phenomenology of elementary particles and the strong, weak, and electromagnetic interactions. Properties of particles, kinematics of scattering and decay, phase space, quark model, unitary symmetries, and conservation laws. Usually offered every second year. Will be offered in the spring of 2004.
Mr. Blocker

PHYS 168b Introduction to Astrophysics
Messrs. Roberts and Wardle

PHYS 169b Advanced Laboratory
Advanced laboratory for graduate students. Usually offered every year. Will be offered in the fall of 2003.
Mr. Heller

PHYS 200a General Relativity
Introduction to current research and problems in gravitational physics. Physical and mathematical background are provided as needed, but emphasis is on recent literature. Usually offered every second year.
Mr. Deser

PHYS 202a Quantum Mechanics III
Mr. Lawrence

PHYS 204a Condensed Matter II
Modern techniques such as effective field theory, scaling, and the renormalization group are introduced and used to study solids, magnets, liquid crystals, and macromolecules. Most of the theory is developed on simple models and applied experiments. Usually offered every second year.
Ms. Kondyev

PHYS 210a Particle Seminar I
Analysis of important recent developments in particle physics. Usually offered every year.
Mr. Schnitzer

PHYS 210b Particle Seminar II
A continuation of PHYS 210a. Usually offered every year.
Mr. Schnitzer

PHYS 213a Advanced Examination Tutorial I
Supervised preparation for the advanced examination. Usually offered every year.
Staff

PHYS 213b Advanced Examination Tutorial II
Supervised preparation for the advanced examination. Usually offered every year.
Staff

PHYS 301a Astrophysics Seminar I
Advanced topics and current research in astrophysics are discussed. Usually offered every year.
Mr. Roberts

PHYS 301b Astrophysics Seminar II
A continuation of PHYS 301a. Usually offered every year.
Mr. Wardle
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 302a</td>
<td>Particle Seminar III</td>
<td>Mr. Blocker</td>
<td>Seminar covers latest advances in elementary particle physics. Includes student presentations and invited speakers. Usually offered every year.</td>
</tr>
<tr>
<td>PHYS 302b</td>
<td>Particle Seminar IV</td>
<td>Mr. Canter</td>
<td>A continuation of PHYS 302a. Usually offered every year.</td>
</tr>
<tr>
<td>PHYS 303a</td>
<td>Positron Seminar I</td>
<td>Ms. Chakraborty</td>
<td>Seminar covers latest developments in atomic, solid-state, and surface physics as studied using positron techniques. Includes student presentations and invited speakers. Usually offered every year.</td>
</tr>
<tr>
<td>PHYS 303b</td>
<td>Positron Seminar II</td>
<td>Mr. Canter</td>
<td>A continuation of PHYS 303a. Usually offered every year.</td>
</tr>
<tr>
<td>PHYS 304a</td>
<td>Condensed Matter Seminar I</td>
<td>Ms. Chakraborty</td>
<td>Analysis and discussion of recent important developments in solid-state physics. Usually offered every year.</td>
</tr>
<tr>
<td>PHYS 304b</td>
<td>Condensed Matter Seminar II</td>
<td>Mr. Kondev</td>
<td>A continuation of PHYS 304a. Usually offered every year.</td>
</tr>
<tr>
<td>PHYS 305a</td>
<td>Liquid Crystals I</td>
<td>Mr. Meyer</td>
<td>Recent advances in the physics of liquid crystals and related systems such as microemulsions, colloidal suspensions, and polymer solutions. Usually offered every year.</td>
</tr>
<tr>
<td>PHYS 305b</td>
<td>Liquid Crystals II</td>
<td>Mr. Fraden</td>
<td>A continuation of PHYS 305a. Usually offered every year.</td>
</tr>
<tr>
<td>NPHY 341b</td>
<td>Neural Computation</td>
<td>Mr. Wang</td>
<td>An advanced graduate seminar course on current theoretical issues dealing with the dynamics and information processing of neural systems. Usually offered every year.</td>
</tr>
<tr>
<td>PHYS 349a</td>
<td>Readings in Condensed Matter</td>
<td>Ms. Chakraborty</td>
<td>Usually offered every year.</td>
</tr>
</tbody>
</table>

Research Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 405d</td>
<td>Experimental Elementary Particle Physics</td>
<td>Staff</td>
<td>Specific sections for individual faculty members as requested.</td>
</tr>
<tr>
<td>PHYS 408d</td>
<td>Computational Neuroscience</td>
<td>Staff</td>
<td>Specific sections for individual faculty members as requested.</td>
</tr>
<tr>
<td>PHYS 409d</td>
<td>Theoretical Elementary Particle Physics</td>
<td>Staff</td>
<td>Specific sections for individual faculty members as requested.</td>
</tr>
<tr>
<td>PHYS 417d</td>
<td>Theoretical Condensed Matter Physics</td>
<td>Ms. Chakraborty and Mr. Kondev</td>
<td></td>
</tr>
<tr>
<td>PHYS 421d</td>
<td>Relativity</td>
<td>Mr. Deser</td>
<td></td>
</tr>
<tr>
<td>PHYS 426d</td>
<td>Astrophysics</td>
<td>Staff</td>
<td>Specific sections for individual faculty members as requested.</td>
</tr>
<tr>
<td>PHYS 429d</td>
<td>Structural Biology</td>
<td>Staff</td>
<td>Specific sections for individual faculty members as requested.</td>
</tr>
<tr>
<td>PHYS 430d</td>
<td>Experimental Solid-State Physics</td>
<td>Staff</td>
<td>Specific sections for individual faculty members as requested.</td>
</tr>
<tr>
<td>PHYS 431d</td>
<td>Experimental Condensed-Matter Physics</td>
<td>Staff</td>
<td>Specific sections for individual faculty members as requested.</td>
</tr>
<tr>
<td>PHYS 436d</td>
<td>Biophysics</td>
<td>Staff</td>
<td></td>
</tr>
<tr>
<td>BIOP 200b</td>
<td>Seminar in Biophysical Research</td>
<td>Staff</td>
<td></td>
</tr>
</tbody>
</table>

Cross-Listed Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 421d</td>
<td>Relativity</td>
<td>Mr. Deser</td>
</tr>
<tr>
<td>PHYS 426d</td>
<td>Astrophysics</td>
<td>Staff</td>
</tr>
<tr>
<td>PHYS 429d</td>
<td>Structural Biology</td>
<td>Staff</td>
</tr>
<tr>
<td>PHYS 430d</td>
<td>Experimental Solid-State Physics</td>
<td>Staff</td>
</tr>
<tr>
<td>PHYS 431d</td>
<td>Experimental Condensed-Matter Physics</td>
<td>Staff</td>
</tr>
<tr>
<td>PHYS 436d</td>
<td>Biophysics</td>
<td>Staff</td>
</tr>
</tbody>
</table>

Staff Members

- Specific sections for individual faculty members as requested.