An interdepartmental program

Biological Physics

Objectives

The undergraduate major in biological physics is designed to provide the quantitative skills and the background in chemistry and biology for students interested in the study of the physics of biological systems, especially on the molecular scale. This program provides a strong foundation in the physical sciences that underpin much of the modern revolution in biology. It should be of particular interest to students wishing to pursue careers in fundamental or applied research in biophysics, quantitative biology, and biotechnology.

For a related graduate program, please see the Biophysics and Structural Biology program elsewhere in this Bulletin.

How to Become an Undergraduate Major

The major requires a large number of science courses, some of which are prerequisites for more advanced courses. Therefore it is important to start taking these courses in the first year. Students are advised to meet with the biological physics chair as soon as possible to plan their schedule. It is most advantageous to take physics and math in the first year, but starting with chemistry and math in the first year is also adequate.

The Seminar in Biological Physics (BIPH 11a,b) is recommended for first-year students, but can be taken in the second year. Students interested in the honors program, involving a senior research thesis, should begin to seek a faculty mentor by the end of their second year, with the prospect of starting research as early as possible.

Committee

Robert Meyer, Chair
(Physics, Volen National Center for Complex Systems)

Laurence Abbott
(Biology, Volen National Center for Complex Systems)

Karl Canter
(Physics)

Bulbul Chakraborty
(Physics)

Seth Fraden
(Physics, Volen National Center for Complex Systems)

Jeff Gelles
(Biochemistry)

Anne Gershenson
(Chemistry)

Dorothee Kern
(Biochemistry, Volen National Center for Complex Systems)

Jané Kondev
(Physics)

Gregory Petsko
(Biochemistry and Chemistry, and Director, Rosenstiel Center)

Dagmar Ringe
(Biochemistry and Chemistry, and Rosenstiel Center)

Xiao-Jing Wang
(Physics, Volen National Center for Complex Systems)

Requirements for the Undergraduate Major

Degree of Bachelor of Science

To satisfy the requirements for the major in biological physics leading to the degree of Bachelor of Science, students must successfully complete the foundation of this program, which are a set of required courses in the physical and life sciences. The core courses, divided by fields, are:

Physics: PHYS 11a,b or PHYS 15a,b, PHYS 19a,b, PHYS 20a,b, PHYS 30b, PHYS 39, PHYS 40

Mathematics: MATH 10 a,b

Chemistry: CHEM 11a,b and CHEM 18a,b or equivalents

Biology: BIOL 18a,b and BIOL 22a,b

Biological Physics: BIPH 11a,b

The Seminar in Biological Physics (BIPH 11a,b) should be taken in the first or second year. Students are encouraged to participate in the seminar a second year without credit, for enrichment of their program.

Students with high enough Advanced Placement Examination scores may place out of some of the elementary courses. See the Advanced Placement Credit chart on page 22 for details concerning the equivalent Brandeis courses for sufficient scores in the tests in Mathematics (AB or BC), Physics (C), and Chemistry. Concentration credit is given for all these tests except for Physics C: Electrical. Students who take advanced placement credit for Physics 11b will be required to take Physics 30a, the intermediate level course in this subject.

Beyond the core curriculum students are expected to explore areas of further inquiry by taking at least two elective courses. Possible topics and related courses are listed below. Other courses can be taken as electives with approval of the program advisor.

Molecular structure: The use of physical techniques including X-ray diffraction, electron microscopy, nuclear magnetic resonance, to elucidate the structure of bio-molecules. Electives: BIOL 102b, BCHM 171b*, BCHM 126b, BCHM 104b*.

Single molecule biophysics: The study of biological processes on the single molecule scale, such as enzyme function, ion transport through membranes, protein folding, molecular motors. Electives: BIOL 25a, BCHM 101a*.

Modeling of biological structure and function: The development and analysis of mathematical models for elucidating biological structure and function. Electives: CHEM 111a, PHYS 105a, NPHY 115a*, NBIO 136b.

* Required prerequisites for this course are not included in the core curriculum.

A student starting the biological physics major in the first year, with no advanced placement, should follow the recommended sequence:

Year 1: BIPH 11a,b, MATH 10a,b, PHYS 11a,b, PHYS 19a,b
Year 2: CHEM 11a,b, CHEM 18a,b, PHYS 20a,b
Year 3: BIOL 18a,b, BIOL 22 a,b, PHYS 40a
Year 4: PHYS 30b, PHYS 39a, two electives

A student with advanced preparation in math, physics, and chemistry, who wants to emphasize biochemistry might take the following program:

Year 1: BIPH 11a,b, MATH 15a, MATH 20b, PHYS 19b, PHYS 20a,b
Year 2: BIOL 18a,b, BIOL 22a,b, CHEM 25a,b, CHEM 29a,b
Year 3: BCHM 100a, PHYS 40a, one elective
Year 4: PHYS 30a,b, PHYS 39a, one elective

Students with advanced preparation might choose additional courses in other areas, rather than organic and biochemistry. A student who has started as a premed and switched to biological physics (not completing the premed program) might have the following program:

Year 1: CHEM 11a,b, CHEM 18a,b, MATH 10a,b
Year 2: BIOL 18a, BIOL 22a, BIPH 11a,b, PHYS 11a,b, PHYS 19a,b
Year 3: BIOL18b, BIOL 22b, PHYS 20a,b, one elective
Year 4: PHYS 30b, PHYS 39a, PHYS 40a, one elective

In addition to the required courses students are urged to learn the necessary topics in organic chemistry as a preparation for biochemistry. This opens up additional options for undergraduate research and graduate programs in the life sciences. For medical school, a year of organic chemistry with laboratory, in addition to the required courses for biological physics, will complete the premed program requirements.

An important component of the program is the opportunity for students to participate in research. Opportunities exist for research in the laboratories of physics, chemistry, neuroscience, biochemistry, and biology faculty.

Honors Program

Graduation with honors requires completion of a senior research thesis. Students must enroll in BIPH 99d in their senior year to carry out a research project. Students wishing to join the honors program should apply to the honors advisor in the program in the spring of their junior year.

Special Notes Relating to Undergraduates

Students majoring in biological physics may not count required courses toward a minor in physics. By completing other required courses, they can complete a second major in physics. However, for the preparation for a career in biological physics, it might be more valuable to devote extra science courses to deeper preparation in chemistry and biochemistry.

Courses of Instruction

[1-99] Primarily for Undergraduate Students

<table>
<thead>
<tr>
<th>BIPH 11a Seminar in Biological Physics</th>
<th>Corequisite: PHYS 11a. May yield half-course credit toward rate of work and graduation. Introduction to recent experimental and theoretical advances in biological physics at the first-year physics level. Examples of topics include the physics of DNA and proteins, molecular motors, principles of laser tweezers and atomic force microscopy. Can be taken before or after BIPH 11b. Usually offered every year. Mr. Kondev and Mr. Meyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIPH 11b Seminar in Biological Physics</td>
<td>Corequisite: PHYS 11b. May yield half-course credit toward rate of work and graduation. Introduction to recent experimental and theoretical advances in biological physics at the first-year physics level. Examples of topics include the physics of DNA and proteins, molecular motors, principles of laser tweezers and atomic force microscopy. Can be taken before or after BIPH 11a. Usually offered every year. Mr. Kondev and Mr. Meyer</td>
</tr>
<tr>
<td>BIPH 98a Reading in Biological Physics</td>
<td>Open to students wishing to study a subject not available in the curriculum. Staff</td>
</tr>
<tr>
<td>BIPH 98b Reading in Biological Physics</td>
<td>Open to students wishing to study a subject not available in the curriculum. Staff</td>
</tr>
<tr>
<td>BIPH 99d Senior Research</td>
<td>Research and preparation of a report under the direction of an instructor. Open to students doing research in an approved topic in biological physics. Staff</td>
</tr>
<tr>
<td>Core Courses</td>
<td>BIOL 18a General Biology Laboratory</td>
</tr>
<tr>
<td></td>
<td>BIOL 18b General Biology Laboratory</td>
</tr>
<tr>
<td></td>
<td>BIOL 22a Genetics and Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>BIOL 22b Cell Structure and Function</td>
</tr>
<tr>
<td></td>
<td>CHEM 11a General Chemistry</td>
</tr>
<tr>
<td></td>
<td>CHEM 11b General Chemistry</td>
</tr>
<tr>
<td></td>
<td>CHEM 18a General Chemistry Laboratory I</td>
</tr>
<tr>
<td></td>
<td>CHEM 18b General Chemistry Laboratory II</td>
</tr>
<tr>
<td></td>
<td>MATH 10a Techniques of Calculus (a)</td>
</tr>
<tr>
<td></td>
<td>MATH 10b Techniques of Calculus (b)</td>
</tr>
</tbody>
</table>
Department of Biology

Objectives

Undergraduate Major
The undergraduate program in biology, leading either to the B.A. or to the B.S. degree, is designed to give students an understanding of fundamental and current biological knowledge in a variety of fields. The program offers a wide array of courses to undergraduates, ranging from introductory courses to advanced, specialized, graduate-level courses in many of these areas. The biology department has 25 full-time faculty members with teaching and research interests in the fields of genetics, molecular biology, development, immunology, neurobiology, motility, cell biology, structural biology, and environment/ecology.

Since the interests and needs of our students vary, the major is designed to provide flexibility once the core courses have been completed. Students may elect undergraduate level courses in a variety of areas of biology and biochemistry, or may choose to obtain more advanced, in-depth training in one particular area. Students are also encouraged to take advantage of opportunities to become integral members of research laboratories in the department and to attend departmental colloquia.

A major in biology provides excellent preparation for students intent on careers in biological research who want to go to graduate school, for those seeking careers in medicine, veterinary medicine, and dentistry, and for those interested in the allied health professions such as public health, genetic counseling, physical therapy, or physician assistant. For those seeking courses concerned with ecology or environmental science, the biology department offers study in those areas. See “Special Note B” below for additional programs in those areas.

Graduate Programs in the Biological Sciences
For M.S. and Ph.D. degrees in the biological sciences, see the separate listings for molecular and cell biology, biophysics and structural biology, neuroscience, and genetic counseling programs in this Bulletin.

How to Become an Undergraduate Major

Courses of Study:
Major [B.A./B.S.]
Combined B.S./M.S.

Students wishing to major in biology should enroll in General Chemistry during their first year. Students may elect to take BIOL 15b, an introductory course in biology in the first year, or omit it and begin the biology series with Genetics and Molecular Biology or Cell Structure and Function [BIOL 22a [formerly BIBC 22a] or b]. During their sophomore year, students typically enroll in Organic Chemistry, Cell Structure and Function, and Genetics and Molecular Biology, with associated labs. While other course schedules are possible, the one described above allows students ample time to complete the remaining requirements (calculus, physics, and biology electives) for the biology degree during the junior and senior years and leaves students the option of enrolling in Senior Research during the senior year. Exceptionally well-prepared students may enroll in Cell Structure and Function and/or Genetics in their first year.

To learn more about the biology major, students should attend one of the special departmental programs held each fall or consult with the undergraduate advising head.
Faculty

Kalpana White, Chair, Senior Honors Coordinator [Volen National Center for Complex Systems]
Developmental neurogenetics.

Laurence Abbott [Volen National Center for Complex Systems]

Susan Birren [Volen National Center for Complex Systems]
Developmental neurobiology.

Carolyn Cohen [Rosenstiel Center]
Structural molecular biology.

David DeRosier [Rosenstiel Center]
Structural studies of actin, actin-containing cytoskeletal assemblies, and bacterial flagella.

Chandler Fulton
Cell differentiation and selective gene expression in eucaryotic cells. Morphogenesis of cell shape and assembly of cell organelles, especially flagella.

Bruce Goode [Rosenstiel Center]
Biochemistry and genetics of yeast cytoskeleton.

Leslie Griffith [Volen National Center for Complex Systems]
Biochemistry of synaptic plasticity.

James Haber [Rosenstiel Center]

Jeffrey Hall [Volen National Center for Complex Systems]
Neurogenetics and molecular neurobiology of higher behaviors in Drosophila.

Kenneth Hayes [Director, Foster Animal Lab]
Comparative nutritional pathophysiology in man and animals. Lipoprotein metabolism and atherogenesis, cholelithiasis.

Elaine Hiller
Human genetics.

John Lisman [Volen National Center for Complex Systems]

Susan Lovett [Rosenstiel Center]
Genetics and molecular biology of bacteria and yeast. DNA repair. Recombination and mutagenesis.

Eve Marder [Volen National Center for Complex Systems]
Neurotransmitter modulation of neural circuits.

Sacha Nelson [Volen National Center for Complex Systems]
Synaptic integration in the visual cortex.

Dan L. Perlman
Ecology and biodiversity.

Joan Press [Rosenstiel Center]
Developmental immunology and immunogenetics.

Ruibao Ren [Rosenstiel Center]
Signal transduction.

Michael Rosbash [Volen National Center for Complex Systems]
RNA processing and molecular neurobiology.

Ranjan Sen [Rosenstiel Center]
Molecular immunology. Transcription factors.

Piali Sengupta [Volen National Center for Complex Systems]
Developmental neurobiology in C. elegans.

William Silen
Human anatomy.

Neil Simister [Rosenstiel Center]
Molecular immunology. Antibody transport.

Judith Tsipis, Undergraduate Advising Head
Genetic counseling.

Gina Turrigiano [Volen National Center for Complex Systems]
Activity-dependent regulation of neuronal properties.

Lawrence Wangh
Molecular controls of DNA replication in Xenopus egg.

Michael Welte [Rosenstiel Center]
Regulation of motor-driven transport.

Requirements for the Undergraduate Major

A. Required of all candidates: BIOL 22a [formerly BIBC 22a,b]; BIOL 18a,b, b lab; CHEM 10a,b or CHEM 11a,b or CHEM 15a,b; CHEM 18a,b or CHEM 19a,b, b lab; CHEM 25a,b; CHEM 29a,b, b lab; MATH 10a; PHYS 10a,b or PHYS 11a,b; PHYS 18a,b or PHYS 19a,b lab, and Option I or II below.

Option I: The B.A. Degree in Biology
The standard biology option that provides students with a general background in biology. In addition to the courses required of all candidates (listed above), students must complete five elective courses chosen from BIOL, BCHM, and NBIO offerings above the 22-level (excluding courses numbered 90-99). ANTH 116a, BIOL 15b, BIOL 17b, CHEM 41a, CHEM 41b may also serve as electives. One of the following math or quantitative methods courses may also serve as elective: MATH 10b, Math 15a, Math 20a, NPHY 115a, NPSY 137b, HSSP 100b or PSYC 51a. Two semesters of BIOL 99 can count as one elective for the B.A. in biology.

Option II: The B.S. Degree in Biology
The intensive biology option that provides students with a strong background in several areas of biology. In addition to the courses required of all candidates (listed above), students must complete BCHM 100a plus an additional course in calculus [MATH 10b] or quantitative methods [BIOL 51a, NBIO 136b, NPHY 115a, NPSY 137b, PSYC 51a or HSSP 100b]. Students must also complete five elective courses chosen from BIOL, BCHM, and NBIO offerings above the 22-level (excluding courses numbered 90-99). ANTH 116a, BIOL 15b, BIOL 17b, CHEM 41a, and CHEM 41b may also serve as electives. BIOL 51a, NBIO 136b can be used either to satisfy the quantitative methods requirement or to count as one of the required electives; they cannot be used for both. Two semesters of BIOL 99 can count as one elective for the B.S. in biology.

No course offered for major requirements in either Option I or II may be taken on a pass/fail basis. Satisfactory grades (C- or above) must be maintained in all biology and biochemistry courses offered for the major and in all elective courses offered for the major in biology. No more than one D will be allowed in any other course offered toward the requirements in this department.
Biology

Courses of Instruction

[1-99] Primarily for Undergraduate Students

BISC 2a Human Reproduction, Population Explosion, Global Consequences

Does NOT meet requirements for the major in biology.

[sn]

Appropriate for students interested in a broad range of fields including biology, environmental studies, and the social sciences. Progresses from the molecular and cellular biology of human reproduction, to a demographic view of human population explosion, to a consideration of some of the very complex problems arising from the presence of six billion people (and counting) on Earth today. Readings include scientific papers appropriate to students with high school backgrounds in biology and chemistry, essays in the social sciences, and a wide variety of other texts. Usually offered every second year.

Mr. Wangh

BISC 2b Genes, Culture, History: A Case Study

Does NOT meet requirements for the major in biology.

An interdisciplinary course with contributions from professors in three departments. Findings from the Human Genome Project is correlated with cultural and historical information about specific human populations. Usually offered every third year.

Mr. Brettlcr, Ms. Joseph, Mr. Kahn, Mr. Polonsky, Ms. Tsipis, and Mr. Wangh

[Course Organizer]

Special Notes Relating to the Undergraduate Program

A. Premedical and Predental Students

BIOL 18a, b (labs) and BIOL 22a (formerly BIBC 22a), b will satisfy the general biology entrance requirements of most medical schools.

B. Biology majors wishing to study ecology, conservation, and marine studies may wish to look into the environmental studies program described in this Bulletin, as well as the following program. See Mr. D.L. Perlman for further information on these programs, including information on transferability of course credits as biology electives.

Marine Studies Consortium: The MSC, with which Brandeis is affiliated, offers a wide variety of courses on the marine environment. These courses are listed among the Biology and Environmental Studies course offerings in this Bulletin.

Denmark’s International Studies Program: DIS offers a range of programs in marine biology and ecology, environmental biology, medical practice and policy, and molecular biology and genetics. Organization for Tropical Studies: OTS, a consortium of more than 50 universities, offers semester-long interdisciplinary programs covering tropical biology, Latin American culture, and Spanish; summer courses include field tropical ecology and field ethnobiology. Courses are offered in both Costa Rica and Africa.

School for Field Studies: SFS offers programs at a number of different sites around the world, including East Africa, Costa Rica, Baja Mexico, Australia, and the West Indies.

School for International Training: SIT offers programs around the world in ecology, conservation, and sustainable development.

C. Biology majors who wish to enroll in PHYS 11a,b (Basic Physics), rather than PHYS 10a,b [Physics for the Life Sciences], must complete both MATH 10a and b as prerequisites.
BISC 3b Humans and the Environment
[sn]
Does NOT meet requirements for the major in biology.
Explores a range of interactions between organisms and their environments. Focuses on human impacts on, and interactions with, the natural world. Usually offered every second year.
Mr. D.L. Perlman

BISC 4a Heredity
[sn]
Does NOT meet requirements for the major in biology. May not be taken by students who have completed BIOL 22a (formerly BIBC 22a).
An exploration of what genes are that focuses on human genetics. Examines how genes are inherited, how they work, and how changes in certain genes cause inherited diseases. Also investigates recent biological developments such as Human Genome Project, gene therapy, and designer babies, and the new challenges these developments pose in the 21st century. Usually offered every third year.
Ms. White

BISC 5a Viruses and Human Disease
[sn]
Prerequisite: High school chemistry. Does NOT meet requirements for the major in biology. May not be taken by students who have completed BIOL 22a (formerly BIBC 22a) or BIOL 22b.
Explores the biology of viruses that cause important human diseases such as HIV/AIDS, hepatitis, influenza, infectious mononucleosis, and cancer as well as emerging viruses like Ebola. Other topics include antiviral therapy, immune responses to viruses, and vaccine development. Usually offered every year.
Staff

BISC 6b Environmental Health
[sn]
Does NOT meet requirements for the major in biology.
The impact on human health of environmental contamination with toxic, carcinogenic, or pathogenic agents. Tools of toxicology, epidemiology, and risk assessment are applied to specific environmental issues such as air and water quality, petroleum, metal, and other chemical contaminations. Usually offered every second year.
Staff

BISC 7b Exercise Physiology
[sn]
Does NOT meet requirements for the major in biology.
An introductory course in exercise physiology, with the focus on the muscular, neuromuscular, cardiovascular, and metabolic responses and the physiological adaptations that occur during exercise. Concepts related to physical fitness, body composition/weight control, and training principles are discussed. Usually offered every year.
Mr. Burr

BIOL 12a General Biology Lab I
Prerequisites: Must be taken concurrently with BIOL 14a. Does yield half-course credit toward rate of work and graduation. Two semester hour credits. Laboratory fee: $15 per semester. Does NOT meet requirements for the major in biology, biochemistry, or neuroscience, but does satisfy the general biology entrance requirement of most medical schools.
Provides firsthand experience with a wide array of organisms and illustrates basic approaches to problem solving in biology. Usually offered every summer.
Staff

BIOL 12b General Biology Lab II
Prerequisites: Must be taken concurrently with BIOL 14b. Does yield half-course credit toward rate of work and graduation. Two semester hour credits. Laboratory fee: $15 per semester. Does NOT meet requirements for the major in biology, biochemistry, or neuroscience, but does satisfy the general biology entrance requirement of most medical schools.
See BIOL 12a for course description. Usually offered every summer.
Staff

BIOL 14a General Biology I
[sn]
Does NOT meet requirements for the major in biology.
An introduction to the biology of organisms and populations. Topics include evolution of life, biological diversity, and the physiology of plants and animals. Usually offered every summer.
Staff

BIOL 14b General Biology II
[sn]
Prerequisite: BIOL 14a, an introductory biology course, or high school AP biology. Does NOT meet requirements for the major in biology.
An introduction to the principles of modern cellular and molecular biology. Also includes selected topics in genetics, biochemistry, and developmental biology. Usually offered every summer.
Staff

BIOL 15b Biology: Its Human Implications
[sn]
This course may not be taken for credit by students who have completed BIOL 22a (formerly BIBC 22a) or BIOL 22b. Core course for the HSSP program.
Gives an overview of biological sciences and serves as a foundation for the department’s cell biology and genetics courses. Topics covered include: the role of proteins in cellular function, with muscle contraction as a case study; genes and the molecular process by which they produce proteins; one of the last great frontiers in biological science—the attempt to understand the mind in terms of cellular and network processes in the brain; and the integrative concepts that place humans in the larger context of biology on earth.
Usually offered every year.
Mr. Lisman

BIOL 17b Conservation Biology
[sn wi]
First- and second-year students should contact the instructor before enrolling in this writing intensive course. Considers the current worldwide loss of biological diversity, causes of this loss, and methods for protecting and conserving biodiversity. Explores biological and social aspects of the problems and their solutions. Usually offered every year.
Mr. D.L. Perlman

BIOL 18a General Biology Laboratory
[sn wi]
Prerequisites: CHEM 18a or 19a, and BIOL 18b or permission of the instructor. BIOL 22a (formerly BIBC 22a) must be taken before or concurrently with this course.
Does yield full-course credit toward rate of work and graduation. Laboratory fee: $20 per semester. This lab is time intensive and students will be expected to come in to lab between regular scheduled lab sessions.
Provides firsthand experience with a wide array of organisms and illustrates basic approaches to problem solving in genetics and molecular biology. Usually offered every year.
Ms. Tsipis

BIOL 18b General Biology Laboratory
Prerequisites: CHEM 18a or 19a. BIOL 22b must be taken before or concurrently with this course. Does yield half-course credit toward rate of work and graduation. Laboratory fee: $20 per semester.
Provides firsthand experience with a wide array of organisms and illustrates basic approaches to problem solving in cell biology. Usually offered every year.
Ms. Tsipis

BIOL 22a Genetics and Molecular Biology
[qr sn]
Prerequisite: CHEM 10a or 11a or 15a. This course may not be repeated for credit by students who have taken BIBC 22a in previous years.
An introduction to our current understanding of hereditary mechanisms and the cellular and molecular basis of gene transmission and expression. Usually offered every year.
Mr. Hall

BIOL 22b Cell Structure and Function
[sn]
Prerequisite: CHEM 10a or 11a or 15a.
An introduction to the architecture of cells, organelles, and their macro-molecular components. Topics include fundamental processes that are common to all cells, and the functions of specialized cells. Usually offered every year.
Mr. Goode
BIOL 23a Evolutionary Ecology
Prerequisites: BIOL 22a or 22b, or 15b, or a score of 5 on the AP Biology Exam.
Ecology is the study of organisms and the environments in which they live. This class, taught from an evolutionary perspective, focuses on the physical factors and intra- and inter-species interactions that explain the distribution and abundance of individual species. Usually offered every year.
Mr. D.L. Perlman

BIOL 25a Molecular Motors
Prerequisite: BIOL 22b.
A discussion of movement at the cellular level. Analyzes how molecular motors generate motion and how their activity is controlled. Topics include intracellular transport, muscle contraction, rotary motion, enzymes moving along DNA, and cell division. Usually offered every second year.
Mr. Welte

BIOL 27a Aquatic Ecology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b. Students may not take this course and BIOL 17b for credit.
Analysis of biotic and abiotic factors that govern life in lakes and streams. Topics include hydrology, food webs, special aquatic habitats, conservation and restoration, and principles of monitoring the health of fresh waters. Field and laboratory work is included. Usually offered every second year.
Staff

BIOL 28a Marine Biology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b. Offered under the auspices of the MSC and open to Brandeis students by petition.
Survey of the basic biology, behavior, and life history of marine biota. Review of physical habitats from polar to tropical waters. Focus is on the evolution of adaptive responses to the physical and biological factors in marine communities. Weekly laboratory consists of field trips to different habitats and examination of specimens from several marine phyla. Usually offered every fall (at Brandeis).
Mr. D.L. Perlman (Brandeis coordinator)

BIOL 30b Biology of Whales
Prerequisites: BIOL 22a and BIOL 22b, plus two upper-level biology electives. This limited enrollment course is offered under the auspices of the MSC and is open to Brandeis students by petition.
Examines the biology and conservation of whales, dolphins, and porpoises. Topics include physiology, morphology, population biology, life history, molecular genetics, distributional ecology, and social behavior. Usually offered every year (at Brandeis).
Mr. D.L. Perlman (Brandeis coordinator)

BIOL 31b Biology of Fishes
Prerequisites: BIOL 22a and BIOL 22b, plus two upper-level biology electives. This limited enrollment course is offered under the auspices of the MSC and is open to Brandeis students by petition.
Evolution, systematics, anatomy, physiology, and behavior of freshwater, marine, and anadromous fishes from temperate and tropical environments. Fish interactions in communities: predator/prey, host/symbiont relationships, and fish as herbivores. The ecology of fish populations. Usually offered every year (at the New England Aquarium).
Mr. D.L. Perlman (Brandeis coordinator)

BIOL 32a Field Biology
Introduces students to the biodiversity of southern New England, emphasizing plants and insects. Course work primarily takes place on field trips to various terrestrial and aquatic habitats. Field trip scheduling will be discussed during the first meeting. Usually offered every second year.
Mr. D.L. Perlman

BIOL 37b Biology of Extreme Environments
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b, BCHM 100a recommended.
A study of molecular, metabolic, and physiological mechanisms of adaptations to extreme environments, such as hot springs, polar regions, and deserts. Examines the limits to which biological systems can be modified by nature and human manipulation. Usually offered every second year.
Mr. Welte

BIOL 42a Physiology
Prerequisite: BIOL 22b.
Basic physiological principles will be introduced with an overview of neural and hormonal control mechanisms. Topics include physiology of cardiovascular and respiratory systems, electrolyte regulation, digestion and absorption, and the reproductive system. Usually offered every year.
Mr. Nelson

BIOL 43b Human Anatomy
Prerequisite: Provide a sound basis for an understanding of human (mammalian) anatomy. The gross and microscopic morphology of each organ system is discussed in depth. Correlations between structure and function are emphasized. Usually offered every year.
Mr. Silen

BIOL 50b Biology of Behavior
Prerequisites: BIOL 15b, BIOL 22a (formerly BIBC 22a), BIOL 23a or BIOL 60b.
Examines mating and reproductive behaviors, territoriality, and costs and benefits of sociality along with other behaviors. The course employs an ecological framework to understand the evolution of behavior. Usually offered every second year.
Mr. D.L. Perlman

BIOL 51a Biostatistics
Prerequisite: MATH 10a.
A basic introduction to methods of statistics, differential calculus, and mathematical analysis applied to problems in the life sciences. Topics include statistical analysis of experimental data, mathematical description of chemical reactions, and mathematical models in neuroscience, population biology, and epidemiology. Usually offered every year.
Staff

BIOL 55b Diet and Health
Prerequisite: BIOL 22b.
Reviews the current evidence concerning the dietary impact on the chronic diseases of humans. Topics include genetics and nutrition, cardiovascular disease, obesity, diabetes, osteoporosis, and cancer. Students also examine the involvement of specific nutrients, e.g., fat and cholesterol, vitamins, minerals, fiber, and alcohol in these disease processes. Usually offered every fourth year.
Mr. Hayes

BIOL 60b Evolution
Prerequisite: BIOL 22a (formerly BIBC 22a).
An introduction to evolution, with in-depth exploration of selected topics in evolutionary biology. These topics will range from molecular evolution as revealed by DNA sequencing to the origin and evolution of primates. Usually offered every second year.
Mr. Fulton

BIOL 98a Readings in Biology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b. Does NOT meet the requirement in biology. May not be taken for credit by students who have satisfactorily completed BIOL 98b.
Open to exceptionally well-qualified students. This is a tutorial course with readings in a specified biological field. The student will be given a reading list, including current literature and reviews of the topic to be discussed. Course requirements include weekly discussions and the writing of several papers. Usually offered every year.
Staff
BIOL 98b Readings in Biology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b. Does NOT meet the major requirement in biology. May not be taken for credit by students who have satisfactorily completed BIOL 98a. See BIOL 98a for course description. Usually offered every year.

BIOL 99d Senior Research
A year-long, two-semester course involving the student in an independent research project conducted under the supervision of a staff member and serving as an intensive introduction to specific methods of biological research. In cases where students are able to do unusually long, intensive work in the laboratory, they may request a third course credit during the petition process; if this request is approved by the senior honors coordinator, students should register for BIOL 99d (fall) followed by BIOL 99e (spring). The combined enrollments for Senior Research may not exceed three semester course credits. To fulfill the BIOL 99 requirements, students must (1) submit to their research sponsor, at the conclusion of their first BIOL 99 semester, a paper that reviews the literature pertinent to their field of research, and (2) submit to their research sponsor, at the conclusion of their second BIOL 99 semester, a senior thesis that includes an abstract, an introduction, a review of materials and methods, results, discussion, and references. Usually offered every year.

BIOL 99e Senior Research
See BIOL 99d for course description. Usually offered every semester.

(100-199) For Both Undergraduate and Graduate Students

BIOL 102b Structural Molecular Biology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b, or permission of the instructor.

Cells are filled with machines that carry materials about the cell, that chemically transform molecules, that transduce energy, and much more. Our understanding of how these machines work depends on understanding their structures. This introduction to the structural basis of molecular biology examines the designs of proteins and nucleic acids, their assembly into macromolecular complexes, and the means whereby we visualize these structures. Considers the physical and chemical basis for specificity in molecular recognition. Usually offered every other year.

Mr. DeRosier

BIOL 103b Mechanisms of Cell Functions
Prerequisite: BIOL 22b or permission of the instructor.

An advanced course focusing on a mechanistic understanding of cell biological processes and the methods by which these processes are elucidated. Papers are chosen to illustrate a variety of experimental approaches including biochemistry, genetics, and microscopy. Topics include cell cycle, signal transduction, cytoskeleton and cell movement, membrane traffic, intercellular transport, and organelle functions. Usually offered every year.

Mr. Welte

BIOL 105b Molecular Biology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b. Section 2 is open only to students in the Genetic Counseling Program. Class work for this section is supplemented by special readings and lectures with a clinical focus. Examination of molecular processes in replication and expression of genetic information and techniques by which this understanding has been achieved. Topics include recombinant DNA and other molecular biological techniques, structure and organization of DNA in chromosomes, DNA replication, transcription and regulation of gene expression, RNA structure and processing, mRNA stability, and other mechanisms of post-translational control. Usually offered every year.

Mr. Haber and Staff

BIOL 108b Readings in Biology
See BIOL 98a for course description. Usually offered every year.

BIOL 109b Structural Molecular Biology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b, or permission of the instructor.

Progressive introduction to the structural basis of molecular biology emphasizing the design of proteins and nucleic acids, their assembly into macromolecular complexes and the means whereby we visualize these structures. Considers the physical and chemical basis for specificity in molecular recognition. Usually offered every other year.

Mr. DeRosier

BIOL 111a Developmental Biology
Prerequisite: BIOL 22b.

How do complex organisms build themselves starting from single cells? Examines how processes such as fertilization, embryogenesis, cell differentiation, and tissue-specific gene expression occur, what is known about the key molecules and genes that orchestrate these processes, and how genetic changes affecting these processes underlie the evolution of body form. Usually offered every second year.

Ms. White

BIOL 115a Immunology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b.

Topics include properties, functions of cells involved in immunity; genes, structure, function of immunoglobins and T cell receptors; cell interactions; antigen recognition; lymphokines; tolerance; lymphocyte differentiation; genetic regulation; viral immunity; autoimmunity; AIDS; vaccines. Usually offered every year.

Ms. Press

BIOL 126b Protein Structure and Disease
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b, or the equivalent, or permission of the instructor.

Reviews the basic principles of protein structure, so that the functional aspects of different protein designs may be understood. Examines various protein mutations related to certain molecular diseases and the architecture of some key viruses and their infectivity. Consideration of drug design is an integral part of the course. Student presentations are essential to the course. Usually offered every second year.

Ms. Cohen

BIOL 128a Human Genetics
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b.

Survey of mutation and polymorphism, molecular techniques, single-gene inheritance and complexities thereof; risk assessment and Bayesian analysis; cytogenticics, hemoglobinopathies, population genetics, physical and genetic mapping strategies, cancer genetics, ethical considerations, multifactorial inheritance, immunogenetics, pharmacogenetics, genetics of development, molecular and biochemical basis of genetic disease, genomics, proteomics, and bioinformatics; gene therapy, and computer databases in human genetics. Usually offered every year.

Ms. Hiller

BIOL 132a General Microbiology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b.

A survey of the physiology of bacteria and other microorganisms. Concentrates on those aspects of cell structure and function that are important for diverse microbial lifestyles. In addition, pays special attention to the biology of disease-causing organisms and microbiological problems facing medicine today. Usually offered every second year.

Staff

BIOL 132b General Microbiology
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b, CHEM 25a and 25b.

A survey of the physiology of bacteria and other microorganisms. Concentrates on those aspects of cell structure and function that are important for diverse microbial lifestyles. In addition, pays special attention to the biology of disease-causing organisms and microbiological problems facing medicine today. Usually offered every second year.

Staff
B I O L 134b Topics in Ecology
[sn]
Prerequisites: BIOL 23a or permission of the instructor.
Each year a different aspect of the global biosphere is selected for analysis using contemporary tools and approaches. The most recent topic was tropical ecology. Consult the Schedule of Classes for current topic. Usually offered every other year. Mr. D. L. Perlman

N B I O 136b Computational Neuroscience
[sn]
Prerequisites: MATH 10a or PHYS 10a or approved equivalents.
An introduction to methods and results in mathematical and computer modeling of neural systems. Topics include the basic biophysics of ion conduction, single- and multi-compartment neuron models, information theory and neural codes, the representation and processing of images by the visual system, and models of synaptic plasticity, learning, and memory. Usually offered every second year. Mr. Abbott

N B I O 140b Principles of Neuroscience
[sn]
Prerequisite: BIOL 22b or permission of the instructor.
Basic principles of neurobiology. Topics include ion channels and their role in generating resting and action potentials, basic synaptic physiology and pharmacology, neural circuits underlying behavior, learning, and mental illness. Usually offered every year. Ms. Marder

N B I O 143b Developmental Neurobiology
[sn]
Prerequisite: BIOL 22b or permission of the instructor.
Discusses the mechanisms used in the development of the nervous system. Topics include determination of neuronal cell fates, neuronal differentiation and pattern formation, neuron survival and growth, and mechanisms responsible for generation of connectivity in the nervous system. Usually offered every second year. Ms. Sengupta

N B I O 145b Systems Neuroscience
[sn]
Prerequisite: NBIO 140b.
The neural basis of sensation and animal behavior studied at the level of individual neurons and neural circuits. Students read and discuss papers from the scientific literature. Usually offered every year. Mr. Abbott

N B I O 147a Neurogenetics
[sn]
Prerequisites: BIOL 18a and BIOL 22a (formerly BIBC 22a).
Development and function of the nervous system and responses of excitable cells studied in neurological and behavioral mutants. Characterization and manipulation of genes, defined by these mutations and using molecular biological tools. Organisms: microbes, roundworms, fruit flies, mammals. Neurobiological areas: embryonic neural development, nerve cell differentiation and pattern formation, membrane excitability, responses to visual and chemical stimuli, biological rhythms, and reproductive behavior. Usually offered every third year. Mr. Hall

N B I O 148b Cellular Neuroscience
[sn]
Prerequisite: NBIO 140b or permission of the instructor. May be taken concurrently with NBIO 140b. This course may not be repeated for credit by students who have taken NBCH 148b in previous years.
Focuses on cellular mechanisms of excitability and synaptic plasticity. Students examine classic experiments on action potentials and synaptic transmission and the original research literature dealing with the cellular mechanisms of developmental and learning-related plasticity. Usually offered every year. Ms. Turrigiano

B I O L 149b Molecular Pharmacology
[sn]
Prerequisites: BIOL 22b and CHEM 25a and b. NBIO 140b strongly recommended.
Covers the essentials of pharmacology and the study of the actions of chemical agents (drugs, toxins, neurotransmitters, and hormones) that interact with living systems. Emphasizes molecular mechanisms of neuropharmacology. Topics include pharmacokinetics, hormone action, autonomic pharmacology, and the psychopharmacology of drugs of abuse and mental disorders. Usually offered every third year. Ms. Griffith

N B I O 150a Autism and Human Developmental Disorders
[sn]
Prerequisite: BIOL 22b.
Autism and other developmental disorders are characterized by abnormal brain development resulting in cognitive and behavioral deficits. Takes an integrative approach to investigate the biological, behavioral, medical, and social aspects of human developmental disorders. Usually offered every year. Ms. Birren

B I O L 160b Human Reproductive and Developmental Biology
[snwi]
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b.
Course deals with hormonal, cellular, and molecular aspects of gametogenesis, fertilization, pregnancy, and birth. Discusses pathological and abnormal variations that occur and the available medical technologies for intervention, correction, and facilitation of these processes are discussed. Usually offered every year. Mr. Wangh

B I O L 172b Growth Control and Cancer
[sn]
Prerequisites: BIOL 22a (formerly BIBC 22a) and BIOL 22b.
Covers the fundamental rules of behavior of cells in multicellular organisms. Examines cellular and molecular mechanisms that govern cell growth, differentiation and survival in normal cells, as well as how this regulation is disrupted in cancer. Usually offered every year. Mr. Ren

B I O L 173b Programmed Cell Death
[sn]
Prerequisites: BIOL 22a (formerly BIBC 22a), BIOL 22b, and BCHM 100a or permission of the instructor.
Apoptosis, the programmed death of vertebrate cells, is essential for normal development and health. The topic is examined through recent research papers, lectures, and student presentations, with emphasis on the mechanism of apoptosis and its role in human diseases such as cancer and neurological disorders. Usually offered every third year. Mr. Fulton

B I O L 174b Stem Cells
[sn]
Prerequisites: BIOL 22a and BIOL 22b.
Covers stem cell biology, cell differentiation and transdifferentiation, cell lineage commitment, gene expression, signal transduction, cell identity memory and cell therapies. Provides a unique way to gain insights into developmental biology, molecular and cell biology, cancer biology, biology of aging, and regenerative medicine, as well as bioethics and health and public policies. Usually offered every second year. Mr. Ren

B I O L 175b Advanced Immunology
[sn]
Prerequisite: BIOL 125a or permission of the instructor.
A survey of recent advances in molecular immunology. Topics include hematopoietic stem cell biology, blood lineage commitment, growth factor signal transduction, the nature and specificity of antigen receptors, the regulation and mechanism of V(D)J recombination, and B and T cell development. Usually offered every second year. Staff
Cross-Listed Courses

ANTH 116a
Human Osteology

NBIO 150a
Autism and Human Developmental Disorders

Bioorganic Chemistry

See Biochemistry.

A graduate program

Biophysics and Structural Biology

Objectives

Graduate Program in Biophysics and Structural Biology
The interdepartmental graduate program in biophysics and structural biology, leading to the degree of Doctor of Philosophy, is designed to develop the student’s capacity for independent research. The program is focused on the application of the physical sciences to important problems in molecular and cellular biology. It offers opportunities for study and research in a variety of fields, including protein crystallography and magnetic resonance spectroscopy, molecular microscopy, biophysical chemistry, neuroscience, sensory transduction, and chemo-mechanical energy transduction. Applicants are expected to have strong backgrounds in physical sciences with undergraduate majors in any related field, such as biology, biochemistry, chemistry, engineering, mathematics, or physics. The course requirements for the Ph.D. degree are formulated individually for each student to complement the student’s previous academic work, with the goal of providing a broad background in the physics and chemistry of biological processes.

Research for the Ph.D. dissertation is carried out under the personal supervision of a faculty advisor; advisors can be from any department within the School of Science. Prospective applicants should obtain the complete list of faculty research interests and recent publications from the program or view this information at: www.bio.brandeis.edu/biophysics.

How to Be Admitted to the Graduate Program

The general requirements for admission to the Graduate School are given in an earlier section of this Bulletin. Applications should include, in addition to letters of reference, a personal statement describing the reasons for the applicant’s interest in the field and previous research experience, if any. Applicants are required to take the Graduate Record Examination and are encouraged to visit Brandeis for interviews, if possible.

Faculty Advisory Committee

Jeff Gelles, Chair
(Biochemistry)

Ulrich Genick
(Biochemistry)

Nikolaus Grigorieff
(Biochemistry)

Janë Kondev
(Physics)

Christopher Miller
(Biochemistry)

Dorothee Kern
(Biochemistry)
Requirements for the Degree of Master of Science

Program of Study
This graduate program does not normally admit students to pursue the M.S. degree. In special cases, however, the M.S. degree may be awarded upon completion of an approved program of study consisting of at least six graduate-level courses in biology, physics, biochemistry, or chemistry with a grade of B- or better. Generally, the courses include BIOP 200b, BIOP 300a, and BIOP 300b.

Residence Requirement
The minimum residence requirement is one year.

Language Requirement
There is no language requirement.

Thesis
To qualify for the M.S., a student must submit a thesis reporting a substantial piece of original research carried out under the supervision of a research advisor or advisors.

Requirements for the Degree of Doctor of Philosophy

Program of Study
The Ph.D. program in biophysics and structural biology is designed to accommodate students with previous academic majors in a wide range of fields, including biology, physical chemistry, engineering, and physics. Consequently, the course requirements for the Ph.D. degree are tailored to the needs of the particular student. In consultation with each entering student, the program chair formulates a program of study for the student based on the student’s previous academic accomplishments and scientific interests. Successful completion of the courses listed in the program of study fulfills the course requirements for the Ph.D. degree. The required program of study consists of seven one-semester courses, of which six are completed in the student’s first year. The first year courses include BIOP 200b and two courses of laboratory rotations (BIOP 300a,b). In addition to the seven courses, the noncredit course CONT 300b (Ethical Practice in Health-Related Sciences) is required of all first-year students. All students beyond the first year must register for BIOP 401d. Students third and higher years of study will have yearly progress meetings with a faculty committee of three for the purpose of maintaining a satisfactory trajectory towards completion of the thesis defense.

Teaching Requirement
As part of their Ph.D. training, students are required to assist with the teaching of two, one-semester courses.

Residence Requirement
The minimum residence requirement is three years.

Language Requirement
There is no language requirement.

Financial Support
Students may receive financial support (tuition and stipend) throughout their participation in the Ph.D. program. This support is provided by a combination of University funds, training grants, and faculty research grants.

Qualifying Examinations
To qualify for the Ph.D. degree, each student must write and defend in oral examinations three propositions related to research in biophysics or structural biology. The subject of the second proposition must be outside the immediate area of the student’s dissertation research.

Dissertation and Defense
The dissertation must report the results of an original scientific investigation into an approved subject and must demonstrate the competence of the Ph.D. candidate in independent research. The dissertation research must be presented and defended in a Final Oral Examination.

Courses of Instruction

(200 and above) Primarily for Graduate Students

BIOP 200b Biophysics and Structural Biology Graduate Seminar
Required for first-year biophysics and structural biology graduate students. Introduces students to quantitative and physical approaches to biological problems through critical evaluation of the original literature. Students analyze scientific papers on a wide range of topics in the fields of biophysics and structural biology. Discussion focuses on understanding of the scientific motivation for and experimental design of the studies. Particular emphasis is placed on making an independent determination of whether the authors’ conclusions are well justified by the experimental results. In consultation with the instructor, each student also develops a research proposition based on independent reading and prepares a research plan in the form of a mock-grant proposal. Usually offered every year.
Mr. Gelles

BIOP 300a Introduction to Research in Biophysics
Students must consult with the program chair prior to enrolling in these courses. Students carry out four nine-week projects in the research laboratories of biological and physical science faculty members.
Mr. Gelles and Staff

BIOP 300b Introduction to Research in Biophysics
A continuation of BIOP 300a.
Staff

BIOP 401d Biophysical Research Problems
Independent research for the M.S. or Ph.D. degrees. All graduate students beyond the first year must register for this course. Usually offered every semester.
Staff

CONT 300b Ethical Practice in Health-Related Sciences
Required of all first-year graduate students in health-related science programs. Not for credit. Ethics is an essential aspect of scientific research. This course, taught by University faculty from several graduate disciplines, covers major ethical issues germane to the broader scientific enterprise, including areas or applications from a number of fields of study. Lectures and relevant case studies are complemented by two public lectures during the course. Usually offered every year.
Ms. Press, Mr. Simister
Cross-Listed Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCHM 101a</td>
<td>Advanced Biochemistry: Enzyme Mechanisms</td>
</tr>
<tr>
<td>BCHM 102a</td>
<td>Quantitative Approaches to Biochemical Systems</td>
</tr>
<tr>
<td>BCHM 103b</td>
<td>Advanced Biochemistry: Information Transfer Mechanisms</td>
</tr>
<tr>
<td>BCHM 104b</td>
<td>Physical Chemistry of Macromolecules</td>
</tr>
<tr>
<td>PHYS 105a</td>
<td>Biological Physics</td>
</tr>
</tbody>
</table>

Courses of Related Interest

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCHM 170b</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>BCHM 219b</td>
<td>Enzyme Mechanisms</td>
</tr>
<tr>
<td>BCHM 220a</td>
<td>Proteases</td>
</tr>
<tr>
<td>BCHM 223a</td>
<td>Signal Transduction</td>
</tr>
<tr>
<td>BCHM 224a</td>
<td>Single-Molecule Biochemistry and Biophysics</td>
</tr>
<tr>
<td>BCHM 271b</td>
<td>Protein X-ray Crystallography</td>
</tr>
<tr>
<td>BIBC 224b</td>
<td>The RNA World</td>
</tr>
<tr>
<td>BIOL 102b</td>
<td>Structural Molecular Biology</td>
</tr>
<tr>
<td>BIOL 103b</td>
<td>Mechanisms of Cell Functions</td>
</tr>
<tr>
<td>CHEM 111a</td>
<td>Computational Chemistry</td>
</tr>
<tr>
<td>CHEM 132b</td>
<td>Advanced Organic Chemistry: Spectroscopy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 141b</td>
<td>Kinetics</td>
</tr>
<tr>
<td>CHEM 229b</td>
<td>Special Topics in Inorganic Chemistry: Introduction to X-Ray Structure Determination</td>
</tr>
<tr>
<td>CHEM 235b</td>
<td>Advanced NMR Spectroscopy</td>
</tr>
<tr>
<td>NBIO 140b</td>
<td>Principles of Neuroscience</td>
</tr>
<tr>
<td>NBIO 145b</td>
<td>Systems Neuroscience</td>
</tr>
<tr>
<td>PHYS 39a</td>
<td>Advanced Physics Laboratory</td>
</tr>
<tr>
<td>PHYS 104a</td>
<td>Condensed Matter I</td>
</tr>
<tr>
<td>PHYS 110a</td>
<td>Mathematical Physics</td>
</tr>
<tr>
<td>PHYS 163a</td>
<td>Statistical Physics and Thermodynamics</td>
</tr>
<tr>
<td>PHYS 169b</td>
<td>Advanced Laboratory</td>
</tr>
</tbody>
</table>