A kinetic model for the Boltzmann equation is proposed and explored as a practical means to investigate the properties of a dilute granular gas. It is shown that all spatially homogeneous initial distributions approach a universal "homogeneous cooling solution" after a few collisions. The homogeneous cooling solution (HCS) is studied in some detail and the exact solution is compared with known results for the hard sphere Boltzmann equation. It is shown that all qualitative features of the HCS, including the nature of over population at large velocities, are reproduced semi-quantitatively by the kinetic model. It is also shown that all the transport coefficients are in excellent agreement with those from the Boltzmann equation. Also, the model is specialized to one having a velocity independent collision frequency and the resulting HCS and transport coefficients are compared to known results for the Maxwell Model. The potential of the model for the study of more complex spatially inhomogeneous states is discussed.

PACS Numbers: 45.70.-n, 05.20.Dd, 51.10.+y

I. INTRODUCTION

Many features of granular gases are captured by an idealized system of smooth, hard spheres with inelastic collisions [1,2]. During the past decade considerable attention has been given to this simple system to understand better the mechanisms behind observed qualitative differences between real gases and those comprised of grains. Among the most productive theoretical tools for analysis used is that of kinetic theory [3], and more specifically at low density, the Boltzmann equation [4,5]. In recent years important conceptual issues, such as the applicability of fluid dynamical equations, have been clarified and quantitative methods have been developed for accurate predictions over a wide range of experimental conditions. It is fair to say that the Boltzmann kinetic theory is now the primary theoretical method for a quantitative description of granular gases.

While there are accurate and efficient numerical algorithms for solving the Boltzmann equation [6], analytic approximations are more limited and exact solutions non-existent. Such analytic results are of considerable interest because they complement numerical solutions with a more penetrating explication of the dominant mechanisms involved in a specific application. The mathematical complexity of the Boltzmann collision operator is the limiting factor in making progress, so simpler "kinetic models" have been proposed [7]. This approach has been used with great success for real gases with elastic collisions where several exact solutions far from equilibrium have been obtained and shown to be in semi-quantitative agreement with the numerical simulations of the Boltzmann equation [8,9]. Recent applications of kinetic models to granular gases have yielded similar interesting exact results [10–12]. The collision operator for a kinetic model is constrained to preserve the most important exact properties of the Boltzmann collision operator, such as a special homogeneous solution and the macroscopic balance equations for mass, momentum, and energy. Otherwise, the model is chosen for simplicity and tractability. The objective here is to recall one of the first kinetic models proposed for granular gases, the BMD model [13], and to generalize it for both a qualitative and a quantitative representation of the Boltzmann equation. It will be referred to as the Gaussian model for reasons that will become apparent.

In the following sections the Gaussian model is defined and applied to the simplest cases of homogeneous states and weak spatial perturbations of those states. The motivation for this work is to provide a tool for a subsequent more detailed study of spatially inhomogeneous states. For example, recent results suggest that the spectrum of the linearized collision operator for a realistic kinetic model could shed important light on the validity conditions for a hydrodynamic description [14,15]. Also, a more practical means to describe boundary value problems is desired for a more faithful comparison with experiments. Attention is focused here on spatially homogeneous states for an isolated system and on transport coefficients for small spatial perturbations, as a means to compare and contrast models. A more detailed application to inhomogeneous states and shear flow will be presented elsewhere.
II. HARD SPHERE BOLTZMANN EQUATION

The system considered is composed of N smooth hard spheres of diameter σ in a large volume V. If the density is sufficiently small, $N\sigma^3/V \ll 1$, the one-particle distribution function, $f(r,v,t)$, for the number of particles with position r and velocity v at time t is determined from the Boltzmann equation [4,5]

$$\frac{\partial}{\partial t} f(r,v,t) + v \cdot \nabla f(r,v,t) = J(r,v|f(t)). \quad (1)$$

The Boltzmann collision operator, J, has the form

$$J(r,v|f(t)) \equiv -\nu(r,t,v)f(r,v,t) + \int dv_1 \int d\hat{\sigma} \int K(\hat{\sigma} \cdot g') \alpha^{-1} f(r,v',t)f(r,v_1',t). \quad (2)$$

The first term on the right side represents the loss of particles with velocity v at a rate due to the collision frequency $\nu(r,v,t)$

$$\nu(r,v,t) = \int dv_1 \int d\hat{\sigma} \int K(\hat{\sigma} \cdot g)f(r,v_1,t). \quad (3)$$

The second term of (2) represents the gain of particles with velocity v, where $\{v', v_1'\}$ are the "restituting" velocities that lead to $\{v, v_1\}$ following a smooth, inelastic hard sphere collision

$$v' = v - \frac{1}{2} (1 + \alpha^{-1})(\hat{\sigma} \cdot g)\hat{\sigma}, \quad v_1' = v_1 + \frac{1}{2} (1 + \alpha^{-1})(\hat{\sigma} \cdot g)\hat{\sigma}. \quad (4)$$

Here, $\hat{\sigma}$ is a unit vector along the line of their centers, and $g = v - v_1$. The parameter α is the coefficient of restitution, $0 < \alpha \leq 1$, describing the fractional change in the normal component of the relative velocity $(\hat{\sigma} \cdot g = -\alpha \hat{\sigma} \cdot g')$ and.
hence the inelasticity of collisions ($\alpha = 1$ corresponds to elastic collisions. The kernel $K(\hat{\sigma} \cdot g)$ is proportional to the flux of particles times the differential cross section and is given by

$$K(\hat{\sigma} \cdot g) = \sigma^2 \Theta(\hat{\sigma} \cdot g)(\hat{\sigma} \cdot g),$$

where Θ is the Heaviside step function.

The most important properties of the collision operator are those that result from the microscopic balance equations for mass, momentum, and energy in a two particle collision. For the collision rules (4) it follows directly that J has the following exact properties

$$\int d\mathbf{v} \left(\frac{1}{\frac{1}{2} m (\mathbf{v} - \mathbf{u})^2} \right) J(r, v| f(t)) = \left(\begin{array}{c} 0 \\ 0 \\ -\frac{3}{2} n T \zeta \end{array} \right),$$

where m is the mass, n is the density, T is the temperature, and \mathbf{u} is the macroscopic flow velocity

$$\left(\begin{array}{c} n(r, t) \\ n(r, t) u(r, t) \\ \frac{1}{2} n(r, t) T(r, t) \end{array} \right) = \int d\mathbf{v} \left(\frac{1}{\frac{1}{2} m (\mathbf{v} - \mathbf{u})^2} \right) f(r, \mathbf{v}, t).$$

The two zeros on the right side of (6) correspond to conservation of mass and momentum. The last term results from non-conservation of energy and implies the cooling equation for homogeneous states

$$T^{-1} \partial_t T = -\zeta,$$

where ζ is the "cooling rate"

$$\zeta = (1 - \alpha^2) \frac{m \pi \sigma^2}{24 n T} \int d\mathbf{v} \int d\mathbf{v}_1 g^3 f(r, \mathbf{v}, t) f(r, \mathbf{v}_1, t).$$

It is easy to verify from (6) that there is no spatially homogeneous steady state for the isolated system, in contrast to gases with elastic collisions. Instead, there exists a special solution, the homogeneous cooling solution (HCS), which is assumed to be approached in a few collision times by all homogeneous initial conditions. It has a scaling property such that the dependence on time occurs only through the temperature

$$f_{hcs}(v, t) = n v_0^{-3}(t) \phi(v^*), \quad v^* = v/v_0(t), \quad v_0(t) = \sqrt{2T(t)/m}.$$

(10)

In the following $v_0(t)$ will be referred to as the thermal velocity in analogy to a gas with elastic collisions. Substitution of (10) into the Boltzmann equation leads to a time independent equation for $\phi(v^*)$ that must be solved self-consistently with the determination of ζ from (9)

$$\frac{1}{2} \zeta^* \left(3 + v^* \frac{\partial}{\partial v^*} \right) \phi(v^*) = J^* (v^*| \phi), \quad \zeta^* \equiv \frac{\zeta}{v_0}, \quad J^* \equiv \frac{J}{v_0}$$

(11)

where v_0 is an average collision frequency

$$v_0(t) = \frac{16}{5} m \sigma^2 \sqrt{\frac{\pi}{2}} v_0(t).$$

(12)

Because of the scaling property of f_{hcs} both ζ^* and J^* are independent of time. This problem has been studied in detail in recent years and only a few results will be quoted here. For $v^* \leq 2$ the solution to (11) can be expanded in Sonine polynomials about a Maxwellian with the result [18]

$$\phi(v^*) \rightarrow \pi^{-3/2} e^{-v^2} \left[1 + \frac{c(\alpha)}{4} \left(v^{*4} - 5v^{*2} + \frac{15}{4} \right) \right],$$

(13)

with

$$c(\alpha) \rightarrow c_B(\alpha) = \frac{32 (1 - \alpha)(1 - 2\alpha^2)}{81 - 17\alpha + 30\alpha^2 (1 - \alpha)},$$

(14)
The subscript B has been included on $c_B(\alpha)$ here to distinguish the value determined by the hard sphere Boltzmann equation from that for the models introduced below. The accuracy of the representation (13) at small v to within a few percent for all α has been confirmed by Monte Carlo simulation [19,22]. The cooling rate calculated from (13) is
\[\zeta^* = \frac{5}{12} (1 - \alpha^2) \left(1 + \frac{3}{32} c_B(\alpha) \right). \] (15)

For asymptotically large velocities $\phi(v^*)$ has a qualitatively different behavior [18]
\[\phi(v^*) \rightarrow A e^{-\frac{2\beta_B}{\sqrt{\pi}} v^*}, \quad \beta_B(\alpha) = \frac{5\sqrt{2\pi}}{16}. \] (16)

The constant β_B arises in the large velocity limit of the collision frequency,
\[\nu^*(v^*) \equiv \frac{\nu(v,t)}{\nu_0(t)} \rightarrow \beta_B v^*. \] (17)

Thus the origin of the exponential decay is the asymptotic velocity dependence of the collision frequency. The overpopulation in the tail of the distribution, relative to the Gaussian at small velocities, also has been confirmed for $v^* \geq 2$ for all α by Monte Carlo simulation [21,22]. These and the transport properties of Section 5 are the primary results known for the Boltzmann equation with inelastic collisions. They are the main features captured by the kinetic model proposed here.

III. AN OVERVIEW OF KINETIC MODELS

It is remarkable that over a century after Boltzmann wrote his kinetic equation for a low density gas, the content of that equation remains masked by its complexity. Certainly, a great deal is known about solutions near the equilibrium state but the mechanisms controlling nonlinear transport far from equilibrium are still poorly understood. Significant progress has been made in the past twenty years with the development of Direct Simulation Monte Carlo methods (DSMC) by Bird [6]. This numerical tool is exceptionally powerful and provides access now to a wide range of nonequilibrium states for both elastic and inelastic collisions. For more detailed analytical insight, kinetic models have provided a parallel powerful tool in rarefied gas dynamics. The objective of this section is to give a brief summary of the concept of kinetic models and their extension to inelastic collisions. Although the discussion is limited to the Boltzmann equation, it is noted that the same ideas have been applied as well to its dense fluid generalization, the Enskog kinetic equation, for both fluids and solids [27,28].

A. Maxwell Model

The results quoted in the previous section for the HCS are accurate but not exact. To obtain a more penetrating investigation of this and other solutions a simplified version of the Boltzmann equation called the Maxwell model has been proposed [23] whereby the kernel $K(\mathbf{g} \cdot \mathbf{g})$ is replaced by a velocity independent kernel $K(r,t).$ Then (3) implies that the collision frequency also is independent of the velocity, $\nu(r,t) = 4\pi n(r,t) K(r,t).$ The resulting model for the Boltzmann collision operator becomes [24]
\[J(r,v|f(t)) \rightarrow J_M(r,v|f(t)) \equiv -\nu(r,t) \left[f(r,v,t) - \frac{1}{4\pi n(r,t)} \int d\mathbf{v}_1 \int d\mathbf{g} \mathbf{g}^{-1} f(r,v',t,f(r,v',t)) \right]. \] (18)

The collision frequency $\nu(r,t)$ is a free parameter of the model. Its dependence on space and time is due to a possible functional dependence on $f(r,v,t)$. To fix $\nu(r,t)$ the cooling rate is calculated directly for the Maxwell model with the result
\[\zeta_M = \frac{1}{6} (1 - \alpha^2) \nu(r,t). \] (19)

The collision frequency is now chosen to assure that the cooling rate for the model is the same as that for the hard sphere Boltzmann equation, $\zeta_M = \zeta$, given to good approximation by (15). This requires the choice...
\[\nu(r, t) = \frac{5}{2} \left(1 + \frac{3}{32} c_B(\alpha)\right) \nu_0(r, t), \quad (20) \]

where \(\nu_0 \) is given by (12). This completely fixes the Maxwell model.

The approximate Maxwell form for the Boltzmann collision operator does not represent any real kinetics due to scattering by a potential. It is called a Maxwell model because the property of \(K \) being independent of the velocity follows for scattering by Maxwell molecules interacting via an inverse fourth power law potential. However, the model described here retains the collision rules for inelastic hard spheres, (4), and therefore is a hybrid not corresponding to any potential. Still, it provides an interesting and tractable model for which several exact results have been obtained recently.

The HCS has been studied for this Maxwell model as well. For small velocities \(\phi(v^* \right) \) again has the form of (13) except that the coefficient \(c(\alpha) \) is replaced by

\[c(\alpha) \to c_M(\alpha) = \frac{12 (1 - \alpha)^2}{5 + 3\alpha (2 - \alpha)} \quad (21) \]

This is significantly different from the small velocity dependence of the hard sphere Boltzmann equation, suggesting that the Maxwell model does not reproduce quantitatively the HCS solution for hard spheres. Furthermore, the difference is even qualitative at larger velocities. The exact asymptotic behavior from the Maxwell model is

\[\phi(v^*) \to Av^{*k(\alpha)}. \quad (22) \]

Thus there is algebraic decay for the Maxwell model in contrast to the exponential decay for hard spheres. The exponent \(k(\alpha) \) is the solution to a transcendental equation [25,26]

\[1 + \frac{1}{12} (1 - \alpha^2)(3 - k) = \left(\frac{1 + \alpha}{2}\right)^{k-3} \frac{\Gamma\left(\frac{k-2}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} + \int_0^1 dx \left(1 - \left(1 - \frac{1}{4} (1 - \alpha)^2\right)x^2\right)^{(k-3)/2}. \quad (23) \]

The behavior of \(c_M(\alpha) \) and \(k(\alpha) \) is illustrated in the next section.

The transport coefficients associated with Navier-Stokes hydrodynamics also have been calculated for the Maxwell model [24]. The agreement with those from the Boltzmann equation for hard spheres is only qualitative (see Section 5). While the Maxwell model allows interesting and exact solutions, it does not appear to provide a reliable representation of the Boltzmann equation for hard spheres and therefore the results obtained from it must be interpreted with some care.

B. Other Kinetic Models

The Maxwell model, while simpler than the Boltzmann equation is still quite complex and even for the HCS the exact distribution function has been calculated only in one dimension. Historically, for normal gases, a number of simpler kinetic models have been applied with great success. More recently, these models have been extended to granular gases with a similar success in applications. To explain them generically, it is useful to rewrite the Boltzmann equation (1) to make the effects of cooling explicit [29]

\[\left(\frac{\partial}{\partial t} + v \cdot \nabla\right)f(r, v, t) - \frac{1}{2} \zeta \nabla v \cdot (Vf) = J'[r, v|f(t)], \quad (24) \]

with

\[J'(r, v|f(t)) = J(r, v|f(t)) - \frac{1}{2} \zeta \nabla v \cdot (Vf), \quad (25) \]

where \(V = v - u \) is the velocity relative to the average flow. Then the condition (6) becomes

\[\int dv \left(\begin{array}{c} 1 \\ \frac{v}{2mV^2} \end{array}\right) J'(r, v|f(t)) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right). \quad (26) \]

In addition, there is a null space for \(J'(r, v|f(t)) \)
The conditions (26) and (27) are the same as those for the conservation laws and the equilibrium state, respectively, for elastic collisions. More generally, (27) defines the HCS in agreement with (11). These two sets of conditions are necessary for the macroscopic balance equations (precursors to hydrodynamics) and the "universal" homogeneous state f_0. The basic idea of kinetic models is to replace the actual Boltzmann collision operator by a simpler structure, while preserving the properties (26) and (27).

There are many ways that a kinetic model can be constructed with these constraints. Perhaps the simplest are the BGK model(s) [7]

$$J' (r, v | f_0(t)) = 0. \quad (27)$$

Clearly, (27) is satisfied and the conditions (26) are imposed by requiring that the relevant moments of f and f_0 should be the same

$$\int dv \begin{pmatrix} 1 \\ \frac{v}{2mV^2} \end{pmatrix} (f(r, v, t) - f_0(r, v, t)) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \quad (29)$$

This implies that f_0 is a functional of f so the apparent simplicity of (28) is misleading. For elastic collisions f_0 is taken to be the local Maxwellian for consistency with the known equilibrium state. In the case of inelastic collisions, it would seem appropriate to choose f_0 as the HCS distribution from the Boltzmann equation. However, since this is not known it is more common to choose again f_0 as the local Maxwellian. As described in the previous section, this is a reasonable first approximation to the HCS if the velocities are not too large. However, it precludes use of the kinetic model to study the HCS itself. The collision frequency $\nu(r, t)$ is a free parameter of the model, usually chosen to fit one of the transport coefficients. On dimensional grounds $\nu(r, t) \propto n(r, t) T^{1/2}(r, t)$ and therefore also a functional of f.

The Chapman-Enskog solution to the BGK kinetic equation for inelastic collisions has been obtained to derive the associated hydrodynamic equations to Navier-Stokes order (see Section 5) [20]. The dependence of all transport coefficients on the restitution coefficient α is in good semi-quantitative agreement with that for the Boltzmann equation. However, the model suffers from the same well-known problem for elastic collisions of an incorrect Prandtl number $\eta C_p/\kappa$ where $C_p = 5k_B/2m$ is the specific heat per unit mass, η is the shear viscosity and κ is the thermal conductivity. Since the BGK model has only one parameter ν the absolute value of either the shear viscosity or the thermal conductivity is wrong by a factor of approximately $2/3$. This can be corrected by choosing for f_0 a more general Gaussian, with an additional parameter leading to the ES model for elastic collisions [17]. BGK models of this type for granular gases have been discussed recently by Astillero and Santos [30].

A related but different kinetic model attempts to represent more directly the gain term of the Boltzmann collision operator [13]. Equation (2) is written as

$$J' (r, v | f(t)) \equiv -\nu(r, V, t) (f(r, v, t) - g(r, V, t | f)) - \frac{1}{2} \xi \nabla_V \cdot (V f). \quad (30)$$

The gain functional $g(r, V, t | f)$ is now chosen for convenience and simplicity to define the model, but restricted by the exact conditions (26) and (27).

In contrast to the BGK model, the condition (27) now provides an equation that determines a non-trivial HCS solution. The simplest choice for $g(r, V, t | f)$ is again a Maxwellian, but with the temperature modified to account for the extra term on the right side of (30). For simplicity, applications of this kinetic model to date have also chosen a velocity independent collision frequency. In the limit of elastic collisions it reduces to the BGK model.

The HCS solution can be obtained exactly for this model and, like the Maxwell model, it has algebraic rather than exponential decay at large velocities. The transport coefficients for this second model are of comparable accuracy to those from the BGK model and suffer from the same difficulty of an incorrect Prandtl number. In the next section the kinetic model based on (30) is generalized to include a velocity dependent collision frequency and a Gaussian form for $g(r, V, t | f)$ that can accommodate the correct Prandtl number.

IV. GAUSSIAN KINETIC MODEL

The main objective of the present work is to propose a synthesis of the BMD and ES models and to extend them to include a velocity dependent collision frequency. This will be referred to as the Gaussian model. Like the Maxwell
model, the Gaussian model admits exact analysis in many interesting cases, but it is simpler and captures more accurately the qualitative features of the Boltzmann equation. In this section the model is defined and the initial value problem is solved exactly for spatially homogeneous states. It is shown that all initial states rapidly approach a universal HCS. The HCS is then studied and compared with known results for the Boltzmann equation for hard spheres. Finally, it is specialized to the case of a velocity independent collision frequency, for comparison with the HCS for the Maxwell model.

The scalar function \(A \) hence so does \(f \) since \(f \) is a function of \(0 \). This also illustrates that the trace of \(M \) where \(\nu \) is a function of \(\delta f \). However, the form is such that the trace of \(B_{ij} \) is proportional to the temperature and therefore a linear functional of \(f \). It is reasonable to choose the remaining elements of \(B_{ij} \) also to have a linear relationship to \(f \). Furthermore, it is required that this traceless part should vanish at \(f_0 \), the solution to (27), which should be isotropic (to agree with the Boltzmann equation)

\[
B_{ij} = \int dv \frac{\delta B_{ij}}{\delta f} |_{f=f_0} (f-f_0).
\]

Thus, the gain \(g(r,v,t | f) \) is anisotropic only when evaluated for anisotropic states \(f \). This is an implicit definition since \(f_0 \) is a function of \(B_{ij} \). However, the form is such that \(B_{ij} \) becomes diagonal when evaluated for \(f = f_0 \), and hence so does \(B_{ij}^{-1} \). This assures that \(f_0 \), when it exists, is isotropic. The trace of \(B_{ij} \) is a scalar moment of degree 2 (including the weight factor \(\nu \)) when \(B_{ij} = 0 \). Consequently, it is suggestive to take \(B_{ij} \) as the traceless part of the moment of degree 2 of \(f - f_0 \). The final form for \(B_{ij} \) is then

\[
B_{ij} = \frac{\nu}{\nu'} \int dv D_{ij}(V) (f-f_0), \quad D_{ij}(V) = m \left(V_i V_j - \frac{1}{3} \delta_{ij} V^2 \right),
\]
where \(y(\alpha) \) is an undetermined dimensionless quantity independent of the velocity. The conditions (33) and (39) completely determine the parameters \(A, B_\alpha \).

It remains to choose the collision frequency \(\nu(r, V, t) \) and the cooling rate \(\zeta(r, t) \). In principle, these are specific functionals of \(f \) in the Boltzmann equation. Here, they are taken to depend on \(f \) only through the temperature and density. The cooling rate is chosen to be the same as the Boltzmann result (15)

\[
\zeta(r, t) = \frac{5}{12} (1 - \alpha^2) \left(1 + \frac{3}{32} c_B(\alpha) \right) \nu_0(r, t),
\]

\[
\nu_0(r, t) = \frac{16}{5} \nu(r, t) \sigma^2 \sqrt{\frac{\pi T(r, t)}{m}}.
\]

Similarly, guidance for the choice of the velocity dependent collision frequency \(\nu(r, V, t) \) is obtained from that for the Boltzmann (see Eq(3))

\[
\nu_B(r, V, t) = \pi \sigma^2 \int dV f(r, V_1, t)|V - V_1|.
\]

For small \(V \) this goes to a constant,

\[
\nu_B \to \pi \sigma^2 n(r, t) V, \quad V = \frac{\int dV_1 fV_1}{\int dV_1 f}.
\]

while for large \(V \) it becomes linear in \(V \).

\[
\nu_B \to \pi \sigma^2 n(r, t) V.
\]

A representation of the complete velocity dependence for the Gaussian model, preserving these limiting forms is obtained from (42) using a Maxwellian for \(f \)

\[
\nu(r, V, t) \equiv x(\alpha) \nu_0(r, t) \nu_M^*(v^*), \quad \nu_M^*(v^*) = \frac{5\sqrt{2}}{16} \left[e^{-v^*^2} + (2v^* + v^*-1) \frac{\sqrt{\pi}}{2} \text{erf}(v^*) \right].
\]

Here \(x(\alpha) \) is a second undetermined dimensionless constant. The particular choice for \(x(\alpha) \) and the resulting accuracy of the transport coefficients is discussed in the next section. It is found that \(x(\alpha) \) is a smooth function of \(\alpha \) of order unity. This form for \(\nu_M^*(v^*) \) has the correct large velocity dependence of (16) but with the coefficient differing by a factor of \(x(\alpha) \) from the Boltzmann equation.

At this point the Gaussian model has been specified in terms of the two remaining constants \(x(\alpha) \) and \(y(\alpha) \). In the next section it will be shown that the three transport coefficients at Navier-Stokes order are functions of two independent collision integrals. The constants \(x(\alpha) \) and \(y(\alpha) \) are chosen to assure that these two collision integrals are the same as those from the Boltzmann equation. This leads to a coupled pair of equations ((110) and (111) below) that are solved numerically. This completes the definition of the Gaussian model.

A. Spatially homogeneous states

In the rest of this section, attention is restricted to spatially homogeneous states. It is shown that for any arbitrary homogeneous initial condition, the solution goes over to a universal HCS in a few collision times. For these initial conditions \(u(r, t) = u \) is constant and by a Galilean transformation it is possible to choose \(u = 0 \). Also from the continuity equation \(n(t) = n \) is constant. The temperature obeys the cooling equation (8) which is now written

\[
T^{-1} \partial_s T = -\zeta^*, \quad ds = \nu_0(t) dt, \quad \zeta^* = \frac{\zeta(t)}{\nu_0(t)}.
\]

The new time variable \(s \) represents the average number of collisions in the time \(t \). It also follows from the definition of \(\zeta(t) \) that \(\zeta^* \) is constant. The temperature therefore has a simple exponential dependence on the collision number

\[
T(s) = e^{-\zeta^* s} T(0).
\]
Now consider a general homogeneous initial distribution and look for solutions to the model kinetic equation in the dimensionless form

\[f(\mathbf{v}, t) = n v_0^{-3} f^*(\mathbf{v}^*, s), \quad \mathbf{v}^* = \mathbf{v}/v_0(t), \quad \nu^* = \nu(v, t)/\nu_0(t). \]

(48)

The dimensionless form for the model kinetic equation for homogeneous states becomes

\[\left(\partial_s + \frac{1}{2} \zeta^* (3 + \mathbf{v}^* \cdot \nabla_{\mathbf{v}^*}) + \nu^*(\mathbf{v}^*) \right) f^*(\mathbf{v}^*, s) = \nu^*(\mathbf{v}^*) g^*(\mathbf{v}^*, s \mid f^*), \]

(49)

with

\[g^*(\mathbf{v}^*, s \mid f^*) = \frac{v_0^2}{n} g(\mathbf{v}, t \mid f)/n = A^*(s)e^{-\nu^*_0(B^{-1}v_0(s))} \].

The moment \(M_2 \) vanishes since \(u = 0 \). The remaining dimensionless moments are

\[\left(\begin{array}{c} M_1^*(s) \\ M_3^*(s) \end{array} \right) = \left(\begin{array}{c} \frac{M_1(t)}{\nu_0^0(t)} \\ \frac{2M_3(t)}{3nT_0(t)} \end{array} \right) = \int d\mathbf{v}^* \left(\frac{1}{2} v_{\mathbf{v}^*}^2 \right) \nu^*(\mathbf{v}^*) f^*(\mathbf{v}^*, s). \]

(50)

The parameters \(A^*(s) \) and \(B_{ij}^*(s) \) are related to these by

\[\int d\mathbf{v}^* \left(\frac{1}{2} v_{\mathbf{v}^*}^2 \right) \nu^*(\mathbf{v}^*) A^*(s)e^{-\nu^*_0(B^{-1}v_0(s))} = \left(\begin{array}{c} M_1^*(s) \\ M_3^*(s) \end{array} \right), \]

(51)

\[B_{ij}^* = B^*\delta_{ij} + y \int d\mathbf{v}^* \left(v_{i}^* v_{j}^* - \frac{1}{3} \delta_{ij} v_{\mathbf{v}^*}^2 \right) (f^* - f_0^*). \]

(52)

The formal solution to the kinetic equation is found in Appendix B with the result

\[f^*(\mathbf{v}^*, s) = e^{-\frac{2}{3} \zeta^* s} K(\mathbf{v}^*, s)f^*(e^{-\frac{2}{3} \zeta^* s} \mathbf{v}^*, 0) \]

\[+ \int_0^s ds' e^{\frac{2}{3} \zeta^* s'} K(\mathbf{v}^*, s') \nu^*(e^{-\frac{2}{3} \zeta^* s'} \mathbf{v}^*) g^*(e^{-\frac{2}{3} \zeta^* s'} \mathbf{v}^*, s - s'), \]

(53)

where \(K(\mathbf{v}^*, s) \) represents the dynamics due to the loss term alone

\[K(\mathbf{v}^*, s) = \exp \left(- \int_0^s ds' v^* \left(e^{-\frac{2}{3} \zeta^* s'} \mathbf{v}^* \right) \right). \]

(54)

The collision frequency is a monotonically increasing function of the velocity so \(\nu^*(\mathbf{v}^*) \geq \nu^*(0) \). This gives the inequality

\[K(\mathbf{v}^*, s) \leq e^{-\nu^*(0)s}. \]

(55)

Since \(\nu^*(0) \) is of order unity, the domain of integration in (53) is exponentially bounded for \(s > 1 \) and for large \(s \) the integral becomes independent of \(s \). The first term vanishes exponentially fast and the \(s \) independent HCS solution is obtained

\[f^*(\mathbf{v}^*, s) \to \phi(\mathbf{v}^*) = \int_0^\infty ds' e^{\frac{2}{3} \zeta^* s'} K(\mathbf{v}^*, s') \nu^*(e^{-\frac{2}{3} \zeta^* s'} \mathbf{v}^*) g^*(e^{-\frac{2}{3} \zeta^* s'} \mathbf{v}^*, \infty) \]

(56)

It is readily verified that \(\phi(\mathbf{v}^*) \) is a stationary solution to (49) and hence \(\phi(\mathbf{v}^*) = f_0^*(\mathbf{v}^*) \) is the unique HCS solution. It follows from the definition of \(B \) that this distribution becomes isotropic on the same time scale as (54) even if the initial distribution was not

\[B_{ij}^* (s) \to \frac{1}{3} B_{kk}^* (\infty) \delta_{ij} = B^* \delta_{ij}. \]

(56)

For the class of homogeneous initial states considered, this result shows that the HCS is the universal solution after several collisions. Hence it is the special characteristic solution for homogenous states analogous to the Maxwellian
for elastic collisions. The result (56) is stronger than the H-theorem for elastic collisions in the sense that it implies
the approach to the HCS is pointwise in velocity space. It is interesting to observe that this analysis does not require
the explicit form for \(\nu^*(v^s) g^*(v^s, s | \phi^s) \) and so it applies to models with choices other than the Gaussian. In fact, it
applies to the Boltzmann equation itself although in that case (56) is a more implicit functional relationship whose
solution must be proved. The consistency of the moment conditions (50) and (51) is verified in Appendix C using the
explicit form (56). The functions \(A^* = A^* (\infty) \) and \(B^* = B^*_{kk} (\infty) / 3 \) are fixed by the fact that \(B^*_{ij} = 0 \) and
\[
\left(\begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array} \right) = \int d v^* \left(\frac{1}{2} v^* \right) \phi (v^*).
\] (57)
The explicit forms for these equations also are given in Appendix C.

B. The Homogeneous Cooling State

More explicit properties of the HCS are easily obtained. First, it can be written in the more convenient form
\[
\phi (v^*) = \frac{2 A^*}{\xi^* v^{*3}} \int_0^{v^*} dx^2 \exp \left(- \frac{2}{\xi^*} \int x \nu^* (x) \right) \nu^* (x) e^{-B^*_{-1} x^2}.
\] (58)
The coefficients \(A^* \) and \(B^* \) are determined from (57). Both are smooth functions of \(\alpha \) with the limiting values
\(A^* = \pi^{-3/2} \) and \(B^* = 1 \) at \(\alpha = 1 \). Practical fits for other values of \(\alpha \) in the range 0.4 to 1 are given by
\[
A^* = 0.547 - 0.274 \alpha - 0.094 \alpha^2, \quad B^*_{-1} = 1.84 - 0.275 \alpha - 0.568 \alpha^2.
\]
Similarly, fits for \(x(\alpha) \) and \(y(\alpha) \) are found from (110) and (111) to be
\[
x(\alpha) = 0.533 + 0.156 \alpha - 0.302 \alpha^2, \quad y(\alpha) = -0.906 + 2.666 \alpha - 0.724 \alpha^2.
\]
For small \(v^* \) the form of \(\phi (v^*) \) is Gaussian
\[
\phi (v^*) \to C_1 \exp -C_2 v^{*2},
\] (59)
with
\[
C_1 = \frac{A^* p}{3 + p}, \quad C_2 = \frac{3 + p}{5 + p} \left(B^*_{-1} - \frac{3}{2 (3 + p) \nu^* (0) \frac{d^2 \nu^*}{dv^*^2} |_{v^* = 0}} \right),
\] (60)
\[
p = \frac{2 \nu^* (v^* = 0)}{\xi^*}.
\] (61)
The coefficient \(c_G (\alpha) \) in the polynomial expansion (13) for small \(v^* \) is shown for comparison with the corresponding
Boltzmann hard sphere result in Figure 1. A practical fit for \(c_G \) in the range of \(\alpha \) mentioned above is given by
\[
c_G (\alpha) = 0.247 + 0.865 \alpha - 2.907 \alpha^2 + 1.793 \alpha^3.
\]
The model is seen to reproduce quite well the Boltzmann results for \(\alpha \geq 0.8 \) and has the same qualitative behavior for
smaller \(\alpha \). As indicated in Figure 1, the corresponding results for both the Maxwell model and the Gaussian model
with velocity independent collision frequency (to be discussed in the following section) are always positive and much
larger. This is the first of several observations showing an improvement of the model due to the velocity dependent
collision frequency. Figures 2 shows the exact distribution function reduced by the Maxwellian at \(\alpha = 0.9 \). Also
shown are the results from the polynomial expansion using \(c_G (\alpha) \) and using \(c_B (\alpha) \) for the Boltzmann equation. It is
seen that the polynomial expansion follows the exact HCS closely and is close to the expansion using \(c_B (\alpha) \). The
polynomial expansion using \(c_B (\alpha) \) is very close to the actual distribution obtained by Monte Carlo simulation of the
Boltzmann equation for \(v^* < 2 \). Therefore the model gives a good representation of the Boltzmann distribution for
\(v^* < 2 \). This is found to be true over the whole range of \(\alpha \).
The large \(v^* \) dependence can be obtained as follows. First, rewrite (56) as
\[
\phi(v^*) = \frac{I(v^*, c)}{v^3} \exp \left(-\frac{2}{\zeta^*} \int x \frac{dx'}{x'} \nu^* (x') \right),
\] (62)
\[
I(v^*, c) = \frac{2A^*}{\zeta^*} \int_0^{v^*} dx x^2 \exp \left(-\frac{2}{\zeta^*} \int x \frac{dx'}{x'} \nu^* (x') \right) \nu^* (x) e^{-B^*-1 x^2} = I(\infty, c) - \frac{2A^*}{\zeta^*} \int_0^{\infty} dx x^2 \exp \left(-\frac{2}{\zeta^*} \int x \frac{dx'}{x'} \nu^* (x') \right) \nu^* (x) e^{-B^*-1 x^2}.
\] (63)

This form holds for any \(c \leq v^* \). The integral satisfies the bound
\[
I(\infty, c) - I(v^*, c) < I_0 e^2 \nu^* (c) e^{-B^*-1 c^2},
\] (64)
where \(I_0 \) is a constant. Since \(B^* \) is of order unity, this shows that \(I(v^*, c) \to I(\infty, c) \) for \(v^* \geq c \gg 1 \) with deviations of order \(\exp(-v^*^2) \). On this scale of velocities the distribution function becomes
\[
\phi(v^*) = \frac{I(\infty, c)}{v^3} \exp \left(-\frac{2}{\zeta^*} \int x \frac{dx'}{x'} \nu^* (x') \right).
\] (65)

This is not yet the exponential decay quoted in (16) for the Boltzmann equation. Instead, that exponential decay requires a still larger velocity scale due to the slow approach of \(\nu^* (x') \) in (65) to its large \(x' \) limiting form
\[
\nu^* (x') \to \beta_G x' + \frac{\beta_G}{2 x'} + \text{order } e^{-x'^2},
\] (66)
where \(\beta_G/x(\alpha) = \beta_B \) is the coefficient of the large velocity limit for the collision frequency given in (17). Thus (65) behaves as
\[
\phi(v^*) \to I(\infty, c) \exp(-\left(\frac{2}{\zeta^*} \beta_G (v^* - c) + 3 \right) \ln v^* + \frac{\beta_G}{\zeta^*} \left(\frac{1}{v^*} - \frac{1}{c} \right)).
\] (67)

The dominant exponential decay is the same as that for the Boltzmann equation, (16), with only the coefficient \(\beta_B \) changed to \(\beta_G \). In fact, a similar analysis of the derivation of that result for the Boltzmann equation shows that the same intermediate velocity form (67) applies there as well (with \(\beta_G \to \beta_B \)). The cross over to pure exponential decay requires very large velocities. In practical terms for \(\alpha = 0.8 \) this form holds to within 0.1\% for \(v^* \geq 6 \) whereas the exponential decay has the same accuracy only for much larger velocities. This is illustrated in Figure 3 for \(\alpha = 0.8 \). The derivative of the logarithm of the distribution is plotted so that the initial slope for small velocities is near the Maxwellian value \(-2v\), while the asymptotic large velocity value is the constant coefficient of the exponential decay \((\frac{\beta_G}{\zeta^*})\) shown as a dotted line. The intermediate cross over is seen to be governed by the asymptotic form (65)
\[
v^* \partial_{v^*} \ln \phi(v^*) \sim -\frac{1}{v^*} \left(3 + \frac{2}{\zeta^*} \nu^* (v^*) \right).
\] (68)

Figure 3 also shows that this more general form persists to very large velocities before the final exponential decay is attained. This cross over form is expected to apply for the Boltzmann equation as well and should be taken into account in simulation or experimental attempts to measure the over population at large velocities.

To explore the limiting form for \(\alpha \to 1 \) it is useful to integrate by parts in (58) to get
\[
\phi(v^*) = \frac{A^*}{v^3} \int_0^{v^*} dx x^3 e^{-B^*-1 x^2} \frac{d}{dx} \exp \left(-\frac{2}{\zeta^*} \int x \frac{dx'}{x'} \nu^* (x') \right) = A^* e^{-B^*-1 v^2} - \frac{A^*}{v^3} \int_0^{v^*} dx \exp \left(-\frac{2}{\zeta^*} \int x \frac{dx'}{x'} \nu^* (x') \right) (3x^2 - 2B^*-1 x^4) e^{-B^*-1 x^2}.
\] (69)

The second term on the right side vanishes at \(\alpha = 1 \) leaving the expected Maxwellian. For \(\alpha < 1 \) the second term gives the exponential decay at large velocities. In order to dominate the first term it is necessary that \(v^* \gg 1 \). Since the coefficient in the exponential decay is proportional to \((1 - \alpha)^{-1} \) the relevant domain for overpopulation is \(v^* > (1 - \alpha)^{-1} \). Clearly for \(\alpha \to 1 \) this overpopulation becomes physically insignificant.

In summary, it has been shown that all of the qualitative features of the HCS for the hard sphere Boltzmann equation are reproduced by the Gaussian model. In the next section it is shown that this quality of the model extends to transport properties as well.
C. Limiting Case: Velocity independent collision frequency

To emphasize the effects of the velocity dependence of the collision frequency, it is instructive to consider the same Gaussian model with a velocity independent collision frequency, \(\nu^* (v^*) \rightarrow \nu^*_B (\alpha) \). The HCS for the Gaussian model then reduces to that of the BMD model. The single parameter of the model, the constant collision frequency, can be chosen to fit the shear viscosity or the thermal conductivity. Due to the choice of \(x(\alpha) \) made here the model is tailored to fit the thermal conductivity. The functional form of \(\nu^*_B (\alpha) \) is given by (101) of the next section. The HCS solution (56) simplifies to

\[
\phi(v^*) = A^* \int_0^\infty ds e^{-s} e^{-3s/p} e^{-B^{*2} e^{-2s/p} v^*^2},
\]

where \(A^*, B^*, M_1^*, M_3^* \) and \(p \) are given by

\[
A^* = (\pi B^*)^{-3/2}, \quad B^* = \frac{(p - 2)}{p}, \quad M_1^* = M_3^* = \nu^*, \quad p = 2\nu^*_B/\zeta^*.
\]

A change of variables, \(t = e^{-2s/p} v^*^2 p / (p - 2) \) allows this to be expressed in terms of an incomplete gamma function

\[
\phi(v^*) = \frac{p}{2\pi^{3/2}} \left(\frac{p - 2}{p}\right)^{p/2} v^*^{-(3+p)} \gamma \left(\frac{p + 3}{2}, \frac{p}{p - 2} v^*^2 \right),
\]

with

\[
\gamma(x, y) = \int_0^y dte^{-t} t^{x-1}.
\]

Interestingly, the dimensionless distribution function is entirely characterized by the single constant \(p = 2\nu^*_B (\alpha) / \zeta^* (\alpha) \). Its relationship to \(\alpha \) is fixed by the choices of cooling rate and collision frequency

\[
p = \frac{8\left(1 + \frac{3}{16} (1 - \alpha) + \frac{10}{192} c_B (\alpha)\right)}{5(1 - \alpha) \left(1 + \frac{3}{32} c_B (\alpha)\right)}.
\]

For small velocities the representation (13) applies with \(c(\alpha) \) given by

\[
c(\alpha) \rightarrow c_{G1} (\alpha) = \frac{8}{(p - 4) p}.
\]

Figure 1 shows a comparison of the coefficient \(c_{G1} (\alpha) \) with that for the Maxwell model given by (21). They are seen to be similar for weak dissipation but the Gaussian model grows more rapidly with increasing dissipation. Of course, this difference can be eliminated by a different choice of the parameters for the Gaussian model for a closer agreement to the Maxwell model rather than the hard sphere Boltzmann equation. The accuracy of this polynomial representation is within a few percent for relatively weak dissipation, comparable to that observed for the hard sphere Boltzmann equation. It is clear from this figure that the HCS for models with velocity independent collision frequencies differs from that of the Boltzmann equation and the true Gaussian model at small velocities (see Figure 2). Also, at small velocities, the HCS in (70) can be represented as a Gaussian given by

\[
\phi(v^*) \rightarrow \frac{p}{3 + p} A e^{-\frac{p(p + 3)}{2(p - 2)} v^*^2}.
\]

The asymptotic behavior for large velocities is obtained from (72) using the limiting form for the incomplete gamma function

\[
\phi(v^*) \rightarrow \frac{p}{2\pi^{3/2}} \left(\frac{p}{p - 2}\right)^{p/2} \Gamma \left(\frac{p + 3}{2}, \frac{p}{p - 2} v^*^2 \right).
\]

This algebraic decay is similar to that of the Maxwell model, and in contrast to the exponential decay for the hard sphere Boltzmann equation. This difference is due to neglect of the velocity dependence of the collision frequency in both models. Since the exact solution to the Gaussian model is known the crossover from Gaussian to algebraic forms can be determined explicitly. Figure 4 illustrates this for \(\alpha = 0.8 \). The cross over domain occurs for \(v^* \gtrsim 1 \), increasing
slightly with decreasing α, with no special intermediate behavior. Figure 5 shows a comparison of the exponent for the algebraic decay for the Gaussian model, $k(\alpha) = 3 + p(\alpha)$, with the corresponding result for the Maxwell model obtained from the solution to (23). Near $\alpha = 1$ both exponents diverge as $(1 - \alpha)^{-1}$ but with different coefficients.

In summary, the simple Gaussian model with constant collision frequency captures semi-quantitatively all of the relevant features of the Maxwell model. It has the additional feature of demonstrating explicitly the solution for all homogeneous states to show the rapid transition to the homogeneous cooling state, and the detailed features of the growing over population of large velocities in the HCS. However, the HCS for both the Maxwell model and the Gaussian model with constant collision frequency differ qualitatively from the Boltzmann result for large and small velocities.

V. NAVIER-STOKES HYDRODYNAMICS

In this section, states with smooth spatial and temporal variations in the density, temperature and flow velocity are considered. These are states for which a macroscopic hydrodynamic description is expected to apply. First, the results of the Chapman-Enskog method for the kinetic equation generated by the Chapman-Enskog method is recalled. Next, the transport coefficients obtained from this solution are identified exactly and in a first Sonine polynomial approximation. Finally, these latter expressions are evaluated for the model and compared with the corresponding results for the Boltzmann equation.

A. Chapman-Enskog solution

The hydrodynamic equations for spatially inhomogeneous states are obtained from a special solution to the kinetic equation generated by the Chapman-Enskog method. The method is quite general and requires only the properties (6) for the collision operator. Since these are preserved in the Maxwell and Gaussian models the results obtained earlier for the Boltzmann equation [20] apply for the models as well. The solution is "normal" in the sense that all space and time dependence occurs only through the hydrodynamic fields. To first order in the spatial gradients of these fields it is found to be

$$f(r, V, t) = f^{(0)}(r, V, t) + f^{(1)}(r, V, t),$$

(78)

where $V = v - u(r, t)$ is the velocity relative to the flow field. The first term of (78) is the solution to the kinetic equation to zeroth order in the spatial gradients

$$\frac{1}{2} \zeta^{(0)}(r, t) \nabla \cdot (V f^{(0)}(r, V, t)) = J[r, v|f^{(0)}(t)].$$

(79)

where the superscript on $\zeta^{(0)}$ denotes (9) evaluated with $f^{(0)}$. Equation (79) is an equation for the velocity dependence of $f^{(0)}(r, V, t)$ which is the same as that for the HCS distribution of the previous sections. The dependence on r, t occurs only through the parameters of the HCS. More specifically, $f^{(0)}(r, V, t)$ is the local HCS obtained from (10) by replacing the density, temperature, and flow velocity by their actual values in the spatially inhomogeneous state

$$f^{(0)}(r, V, t) = n(r, t) v_0^{-3}(r, t) \phi(V^*), \quad V^* = V/v_0(r, t), \quad v_0(r, t) = \sqrt{2T(r, t)/m}. \quad (80)$$

The second term on the right side of (78) is proportional to the gradients

$$f^{(1)}(r, V, t) = A \cdot \nabla \ln T + B \cdot \nabla \ln n + C_{ij} \frac{1}{2} \left(\partial_j u_i + \partial_i u_j - \frac{2}{3} \delta_{ij} \nabla \cdot u \right)$$

(81)

(There are no contributions from the expansion of $\zeta(r, t)$ to first order as this vanishes for both the Boltzmann case and for the models). The functions $A(V|n, u, T)$, $B(V|n, u, T)$, and $C_{ij} (V|n, u, T)$ are solutions to the integral equations

$$\left(-\zeta^{(0)} T \partial_T + \mathcal{L} - \frac{\zeta^{(0)}}{2}\right) A = A,$$

$$\left(-\zeta^{(0)} T \partial_T + \mathcal{L}\right) B = B + \zeta^{(0)} A,$$
\[
\left(-\zeta^{(0)} T \partial_T + \mathcal{L} \right) C_{ij} = C_{ij},
\]
with the definitions
\[
A(V|n,u,T) = \left(\frac{5}{2} + \frac{1}{2} V \cdot \nabla V \right) f^{(0)} V - V f^{(0)} - \frac{T}{m} \nabla_V f^{(0)}, \tag{85}
\]
\[
B(V|n,u,T) = -V f^{(0)} - \frac{T}{m} \nabla_V f^{(0)}, \tag{86}
\]
\[
C_{ij}(V|n,u,T) = V_i \left(\partial_{V_j} f^{(0)} \right). \tag{87}
\]

The linear operator \(\mathcal{L} \) is the collision operator expanded to first order in \(f^{(1)} \)
\[
\mathcal{L} f^{(1)} = \int dV \frac{\delta J[r,v,f(t)]}{\delta f(r,v',t)} \bigg|_{f=f^{(0)}} f^{(1)}(r,V',t). \tag{88}
\]

B. Transport coefficients

The Boltzmann equation and all models considered give the same macroscopic balance equations for mass, energy, and momentum (or density, temperature, and flow velocity) because they all imply the properties (6). The Navier-Stokes hydrodynamic equations follow by evaluating the momentum flux \(P_{ij} \) and the heat flux \(q \) in the macroscopic balance equations using the Chapman-Enskog solution to first order in the spatial gradients, with the results
\[
P_{ij} = -\eta \left(\partial_j u_i + \partial_i u_j - \frac{2}{3} \delta_{ij} \nabla \cdot u \right), \quad q = -\kappa \nabla T - \mu \nabla n. \tag{89}
\]
The first of these is Newton’s viscosity law, where \(\eta \) is the shear viscosity. The second is a generalization of Fourier’s law, where \(\kappa \) is the thermal conductivity. There is an additional contribution for granular gases proportional to the density gradient, with a transport coefficient \(\mu \), that does not occur for normal gases. These are identified from the Chapman-Enskog solution as \([20] \)
\[
\eta = n T \left(\nu_\eta - \frac{1}{2} \zeta^{(0)} \right)^{-1}, \tag{90}
\]
\[
\kappa = \frac{5 n T}{2 m} \left(\nu_\kappa - 2 \zeta^{(0)} \right)^{-1} (1 + c), \tag{91}
\]
\[
\mu = \frac{15 T^2}{2 m} \left(2 \nu_\mu - 3 \zeta^{(0)} \right)^{-1} \left(\zeta^{(0)} \frac{\kappa}{\kappa_0} + \frac{1}{3} \right). \tag{92}
\]
with the definitions
\[
\nu_\eta = \frac{\int dV D_{ij}(V) \mathcal{L} C_{ij}(V)}{\int dV D_{ij}(V) C_{ij}(V)}, \quad \nu_\kappa = \frac{\int dV S(V) \cdot \mathcal{L} A(V)}{\int dV S(V) \cdot A(V)}, \quad \nu_\mu = \frac{\int dV S(V) \cdot \mathcal{L} B(V)}{\int dV S(V) \cdot B(V)}. \tag{93}
\]
The functions \(D_{ij}(V) \) and \(S(V) \) are
\[
D_{ij}(V) = m \left(V_i V_j - \frac{1}{3} V^2 \delta_{ij} \right), \quad S(V) = V \left(\frac{1}{2} m V^2 - \frac{5}{2} T \right). \tag{94}
\]
Also, \(\kappa_0 = 15 \eta_0 / 4 m \) and \(\eta_0 = 5 (m T)^{1/2} / 16 \sigma^2 \pi^{1/2} \) are the low density values of the thermal conductivity and the shear viscosity in the elastic limit, respectively. The constant \(c(\alpha) \) is the same as that occurring in the representation (13), appropriate for either the Boltzmann equation or the model being considered. The forms (90) - (92) provide the exact expressions for these transport coefficients.
C. Sonine Polynomial Approximation

More explicit results require determination of \(f^{(0)} \) and the solutions \(A, B, \) and \(C_{ij} \) to the linear integral equations (82)–(84). The Gaussian model allows explicit construction of these. However, in general it is useful to represent these quantities as an expansion in a complete set of polynomials and generate approximations by truncating the expansion. In practice the leading term in these expansions provides a very accurate description over the full range of dissipation and density. The determination of \(f^{(0)} \) to leading order in the Sonine polynomial has already been given by (13). Similarly, the leading contributions to the expansions of \(A, B, \) and \(C_{ij} \) are found to be [20]

\[
\begin{pmatrix}
A(V) \\
B(V) \\
C_{ij}(V)
\end{pmatrix}
\rightarrow f_M(V)
\begin{pmatrix}
c_A S(V) \\
c_B S(V) \\
c_C D_{ij}(V)
\end{pmatrix},
\quad f_M(V) = n \left(\pi v_0^2 \right)^{-3/2} e^{-(V/v_0)^2}.
\]

(95)

with the coefficients

\[
\begin{pmatrix}
c_A \\
c_B
\end{pmatrix} = \frac{2m}{15n T^3} \int dV \begin{pmatrix} A(V) \cdot S(V) \\ B(V) \cdot S(V) \end{pmatrix} = \begin{pmatrix} -\frac{2m n T^3}{2m} \eta_k \\ -\frac{2m n T^3}{2m} \mu \end{pmatrix},
\]

(96)

\[
c_C = \frac{T^2}{10n} \int dV C_{ij}(V) D_{ij}(V) = -\frac{T^2}{n} \eta.
\]

(97)

The distribution function \(f^{(1)} \) in this approximation is obtained from (81)

\[
f^{(1)} \rightarrow -f_M \left[\frac{2m}{5n T^3} \left(\nu \nabla T + \nu \nabla n \right) \cdot S(V) + \frac{1}{n T^2} \eta \right] \left(\partial_i u_j + \partial_j u_i - \frac{2}{3} \delta_{ij} \nabla \cdot \mathbf{u} \right) D_{ij}(V)
\]

(98)

To evaluate the transport coefficients the forms (90)–(92) are used, with the frequencies \(\nu_\eta(\alpha), \nu_\kappa(\alpha), \) and \(\nu_\mu(\alpha) \) determined in this approximation by

\[
\nu_\eta = \frac{\int dV D_{ij} L f_M D_{ij}}{\int dV f_M D_{ij} D_{ij}}, \quad \nu_\kappa = \nu_\mu = \frac{\int dV S \cdot L f_M S}{\int dV f_M S \cdot S}.
\]

(99)

These integrals have been calculated for the Boltzmann equation [20]

\[
\nu_\eta^* = \frac{\nu_\eta B}{\nu_0(R,t)} = \left(1 - \frac{1}{4} \left(1 - \alpha \right)^2 \right) \left(1 - \frac{1}{64} c_B(\alpha) \right),
\]

(100)

\[
\nu_\kappa^* = \nu_\mu^* = \frac{1 + \alpha}{3} \left(1 + \frac{33}{16} (1 - \alpha) + \frac{19 - 3\alpha}{1024} c_B(\alpha) \right).
\]

(101)

The average local frequency \(\nu_0(R,t) \) is given by (41). The corresponding results for the Maxwell model [24] are

\[
\nu_\eta^*_{M} = \frac{(1 + \alpha) (4 - \alpha)}{6} (1 + \frac{3}{32} c_B(\alpha)),
\]

(102)

\[
\nu_\kappa^*_{M} = \nu_\mu^*_{M} = \frac{1}{24} \left(1 + \alpha \right) (19 - 11\alpha) (1 + \frac{3}{32} c_B(\alpha)).
\]

(103)

Finally, it is straightforward to perform the same calculations for the Gaussian model considered here. The form of the linearized collision operator \(\mathcal{L} \) for the Gaussian model is obtained in Appendix D

\[
\mathcal{L} f^{(1)} = (1 - \mathcal{P}) \nu f^{(1)} - \frac{5}{2} \frac{\nu g^{(0)} D_{ij}(V)}{\int dV D_{ij} g^{(0)}} \int d\nu D_{ij} f^{(1)}.
\]

(104)

Here \(\mathcal{P} \) is a projection operator defined by

\[
\mathcal{P} X = \nu g^{(0)} \psi_\sigma \int d\nu \psi_\sigma X, \quad g^{(0)} = g(\mid f^{(0)}),
\]

(105)
and \(\{ \psi_\alpha \} \) is the orthonormal set

\[
\left(\begin{array}{c}
\psi_1 \\
\psi_2 \\
\psi_3 \\
\end{array} \right) = \left(\begin{array}{c}
\sqrt{\frac{1}{N_1}} \ n_1 \\
\sqrt{\frac{1}{N_2}} \ n_2 \\
\sqrt{\frac{1}{N_3}} \ (V^2 - N_3) \\
\end{array} \right).
\]

(106)

The normalization constants \(N_\alpha \) are given in Appendix D. With these results the frequencies \(\nu_{\eta G}, \nu_{\kappa G}, \) and \(\nu_{\mu G} \) are found to be

\[
\nu_{\eta G} = x \left(\int \frac{dV}{f_M} D_{ij} \nu_M f_M D_{ij} - \frac{1}{2} \nu \left(\int \frac{dV}{f_M} D_{ij} \nu_M g(0) D_{ij} \right) \right),
\]

(107)

\[
\nu_{\kappa G}^* = \nu_{\mu G}^* = \frac{x \int dV f_M S \cdot (1 - \mathcal{P}) \nu_M^* f_M S}{\int dV f_M S^2}.
\]

(108)

The constants \(x(\alpha) \) and \(y(\alpha) \) are now chosen to assure accurate transport coefficients. This is most directly done by requiring that the above frequencies are the same as those from the Boltzmann equation, i.e.

\[
\nu_{\eta G} = \nu_{\eta B}, \quad \nu_{\kappa G} = \nu_{\kappa B}.
\]

(109)

It follows form (90) and (91) that the Prandtl number at \(\alpha = 1 \) is \(\nu_\kappa / \nu_\eta \). So this choice assumes that the Gaussian model also will have the correct Prandtl number in the elastic limit. This gives

\[
x(\alpha) = \nu_{\kappa B}^*(\alpha) \frac{\int dV f_M S^2}{\int dV f_M S \cdot (1 - \mathcal{P}) \nu_M^* f_M S},
\]

(110)

\[
y(\alpha) = -2 \left(\nu_{\eta B}^*(\alpha) - x(\alpha) \frac{\int dV f_M S^2}{\int dV f_M S \cdot (1 - \mathcal{P}) \nu_M^* f_M S} \right) \left(\frac{x(\alpha) \int dV D_{ij} \nu_M g(0) D_{ij}}{\int dV g(0) D_{ij} D_{ij}} \right)^{-1}.
\]

(111)

With these choices, the transport coefficients are given by (90)–(92), and the only differences from the Boltzmann values results from the replacement of \(c_B(\alpha) \) by \(c_G(\alpha) \) in the expressions for \(\kappa \) and \(\mu \). It should be noted that Eqs. (111) and (110) are implicit since the right sides depend on \(x(\alpha) \) through the collision frequency in Eq. (57) that determines the parameters \(A \) and \(B_{ij} \). In practice the calculation of \(x(\alpha) \) is done iteratively. First, the integrals in (110) are evaluated at \(\alpha = 1 \) to determine a zeroth order estimate for \(x(\alpha) \). Then (57) is used to get a first approximation to \(A \) and \(B_{ij} \). Next, these results are used in (111) and (110) to calculate the first approximation to \(x(\alpha) \) and \(y(\alpha) \). The process is repeated starting with this first approximation for \(x(\alpha) \). The results reported here are for two iterations, showing good convergence of the process. The fits obtained for \(x \) and \(y \) are

\[
x(\alpha) = 0.533 + 0.156\alpha - 0.302\alpha^2,
\]

\[
y(\alpha) = 0.906 - 2.666\alpha + 0.724\alpha^2.
\]

For \(\alpha = 1 \) these results reduce to

\[
\nu_{\eta G}^*(1) = \nu_{\eta B}^*(1) = 1, \quad \nu_{\kappa G}^*(1) = \nu_{\kappa B}^*(1) = \frac{2}{3}.
\]

(112)

\[
x(1) = \frac{448}{1153}, \quad y(1) = -\frac{1247}{1106}.
\]

(113)

These results define a new kinetic model for normal gases, extending the ES model to one with a more realistic velocity dependent collision frequency.

Also, for the special case of a constant collision frequency the general results reduce to

\[
x(\alpha) \nu_M^* = \nu_{\kappa B}^*(\alpha), \quad y(\alpha) = -2 \left(\frac{\nu_{\eta B}^*(\alpha)}{\nu_{\kappa B}^*(\alpha)} - 1 \right).
\]

(114)
This case is relevant also if one wanted to use the Gaussian kinetic model to represent the Maxwell model. Then in (114) \(\nu^*_{B} (\alpha) \) and \(\nu^*_{M} (\alpha) \) should be replaced by \(\nu^*_{G} (\alpha) \) and \(\nu^*_{M} (\alpha) \), respectively. Finally, for both \(\alpha = 1 \) and constant collision frequency the usual Ellipsoidal Statistical model is recovered

\[
\nu^*_{G} (1) = 1, \quad \nu^*_{M} (1) = \nu^*_{M} (1) = x \nu^* = \frac{2}{3}, \quad y = -1. \tag{115}
\]

Figures 6, 7 and 8 show the shear viscosity, thermal conductivity and the new transport coefficient \(\mu \) for the various models compared with the Boltzmann equation results. It is seen that the shear viscosity for the Gaussian model with either a velocity dependent or velocity independent collision frequency is indistinguishable from the Boltzmann result. The small differences between the velocity dependent collision frequency Gaussian model and the Boltzmann results for the \(\kappa \) and \(\mu \) coefficients are due to the differences between \(c_B (\alpha) \) and \(c_G (\alpha) \), and by truncation of the above iteration solution for \(x (\alpha) \) after two steps. The differences in the case of the constant collision frequency models are more pronounced because as seen in Figure 1, the \(c_G (\alpha) \) and \(c_M (\alpha) \) are significantly different from \(c_B (\alpha) \) for smaller \(\alpha \) values. These results show that the Gaussian model has the ability to fit the transport properties to the hard sphere Boltzmann results for all \(\alpha \), including the correct Prandtl number \(\eta C_p / \kappa = 2/3 \) at \(\alpha = 1 \). The other model do not have this capacity and the associated transport coefficients do not represent as well those from the Boltzmann equation [24], although they yield the correct Prandtl number at \(\alpha = 1 \). Clearly, the inclusion of the velocity dependent collision frequency in the model allows excellent agreement with the Boltzmann results.

VI. HYDRODYNAMIC MODES AND GREEN-KUBO EXPRESSIONS

The simplest solutions to the Navier-Stokes equations are those for a large system with small perturbations about the HCS (not the local HCS as considered above). The resulting five independent solutions are referred to as hydrodynamic modes. For a gas with elastic collisions, these would correspond to shear diffusion, heat diffusion, and damped sound propagation. The hydrodynamic modes are more complicated for inelastic collisions but their properties have been worked out and discussed [20].

The Chapman-Enskog method provides a "normal" solution that implicitly presumes the existence of a hydrodynamic description. A more fundamental study of the context or validity of hydrodynamics is possible by determining the possible solutions to the Boltzmann equation for small perturbations of the HCS. The resulting linearized Boltzmann equation is obtained by substituting \(f = f_{hcs} [1 + \Delta] \) into (1) and retaining terms linear in \(\Delta \)

\[
(\partial_t + \mathbf{v} \cdot \nabla) \Delta = 0. \tag{116}
\]

The dimensionless units of Section 4 have been used, and the linear operator \(\mathcal{L}_0 \) is defined by

\[
\mathcal{L}_0 \Delta = \phi^{-1} \mathcal{L} (\phi \Delta) - \phi^{-1} \frac{\xi_0}{2} \frac{\partial}{\partial \mathbf{v}} \cdot (\phi \Delta). \tag{117}
\]

For elastic collisions the second term of (117) vanishes, \(\phi \) becomes the Maxwellian, and \(\mathcal{L}_0 \) is the usual linearized Boltzmann collision operator. Its spectrum includes a five fold degenerate value at zero. The corresponding eigenfunctions are \(\Delta \rightarrow \) linear combinations of 1, \(\mathbf{v}^{+} \), \(\mathbf{v}^{-} \). These eigenfunctions are known as the summational invariants because their sum for two particles is conserved in a two particle collision. Thus, for \(\alpha = 1 \) the eigenfunctions and eigenvalues of \(\mathcal{L}_0 \) are known and constitute the hydrodynamic modes in the long wavelength limit.

The identification of the linear combinations of these hydrodynamic modes as eigenvalues and eigenfunctions of \(\mathcal{L}_0 \) has been given recently [14,15] with the results

\[
\mathcal{L}_0 \chi_n = \lambda_n \chi_n, \tag{118}
\]

\[
\lambda_1 = 0, \quad \lambda_2 = \frac{\xi_0}{2}, \quad \lambda_3 = \lambda_4 = \lambda_5 = -\frac{\xi_0}{2}. \tag{119}
\]

The degeneracy for elastic collisions is partially broken, with some zero eigenvalues going to \(\pm \xi_0 / 2 \). The corresponding eigenfunctions are

\[
\chi_1 = 4 + \nu \partial_v \ln \phi (\mathbf{v}^{+}), \quad \chi_2 = -3 - \nu \partial_v \ln \phi (\mathbf{v}^{+}), \tag{120}
\]

\[
\chi_n = \vec{v}_n \partial_v \ln \phi (\mathbf{v}^{+}), \quad n = 3, 4, 5. \tag{121}
\]
For $\alpha = 1$, $\partial_t \ln \phi(v^*) = -2v$ and the χ_n become linear combinations of $1, v^*, v^{*2}$. This suggests that (119)-(121) provide the hydrodynamic modes for $\alpha < 1$ as well. This is confirmed by noting that these eigenvalues are the same as those of the macroscopic balance equations in the long wavelength limit.

The velocity dependence of the hydrodynamic modes for $\alpha < 1$ is complicated due to their definitions in terms of the HCS distribution. An advantage of the Gaussian models is that this distribution is known explicitly and the construction of the eigenfunctions is straightforward. All of these modes are characterized by $\partial_t \ln \phi$. This has already been shown in Figure 3 for $\alpha = 0.8$. Figure 9 shows the same data but with the result for the velocity independent collision frequency model included. The dashed curve in each case represents the elastic $\alpha = 1$ limit. For the velocity independent collision frequency χ_1 approaches a constant for large v, due to the asymptotic algebraic decay of ϕ. For the velocity dependent collision frequency it approaches v according to the exponential decay of ϕ.

Figure 9 shows that there are significant qualitative differences from the hydrodynamic modes from the elastic limit when $v^* > 2$. This is the crossover of the distribution function to its large velocity form (68). The fact that the hydrodynamic modes are related to the log of the distribution function lends new importance to these asymptotic forms.

Related properties are the fluxes appearing in the Green-Kubo expressions for the transport coefficients. The expressions in the previous section can be written in a form suggestive of Green-Kubo relations for normal fluids [34]

$$\eta = \frac{nm\ell v_0(t)}{10} \int_0^s ds' \langle D_{ij}^* \Phi_{2,ij}^*(s') \rangle e^{-\frac{1}{2} \zeta s'},$$

$$\kappa = \frac{n\ell v_0(t)}{3} \int_0^s ds' \langle S^* \cdot \Phi_3^*(s') \rangle e^{\frac{1}{2} \zeta s'},$$

$$\mu = \frac{T}{n} \kappa + \frac{m\ell v_0^2(t)}{3} \int_0^s ds' \langle S^* \cdot (\Phi_1^*(s') - \Phi_3^*(s')) \rangle.$$

(122)

(123)

(124)

The brackets denote an average over the HCS in the dimensionless velocities

$$\langle X \rangle = \int d\mathbf{v}^* \phi(\mathbf{v}^*) X(\mathbf{v}^*).$$

(125)

Furthermore, the dependence on the dimensionless time s is defined by

$$X(s) = e^{s\zeta_0} X(V^*).$$

(126)

The averages in these expressions therefore have the interpretation of time correlation functions. The momentum flux D_{ij}^* and heat flux S^* are the same as in (94). They are fluxes in the usual sense of the velocity v times linear combinations of the summational invariants $1, v^*, v^*2$. In the elastic limit the other functions Φ_n^* also have these forms

$$\Phi_1^* \to 0, \quad \Phi_{2,ij}^* \to D_{ij}^*, \quad \Phi_3^* \to S^*(V).$$

(127)

The resulting expressions (122) and (123) for η and κ are then precisely the low density limits of the usual Green-Kubo expressions as time integrals of flux autocorrelation functions [32].

For $\alpha < 1$ the functions Φ_n^* are no longer simply related to fluxes of the summational invariants. Instead they can be written as fluxes for the hydrodynamic modes defined above

$$\Phi_1^* = v^* (\chi_1 + \chi_2) + \frac{1}{2} \chi,$$

$$\Phi_{2,ij}^* = \frac{1}{2} \left(v_i \chi_j - \frac{1}{3} \delta_{ij} v \cdot \chi \right), \quad j = 3, 4, 5,$$

$$\Phi_3^* = \frac{1}{2} (v^* \chi_2 + \chi),$$

(128)

(129)

(130)

where χ is the vector whose components are χ_n, $n = 3, 4, 5$. This relationship of the "fluxes" to the hydrodynamic modes is the same as for a normal gas. Only the forms of the hydrodynamic modes change for $\alpha < 1$. However, since these modes are significantly different at large velocities, it is expected that their effect on the transport coefficients may be important.
VII. DISCUSSION

The objective here has been to describe a simple but realistic kinetic model for the hard sphere Boltzmann equation. The new features of the Gaussian kinetic model defined in section 4 relative to previous models are 1) a velocity dependent collision frequency, 2) two free parameters for a good description of transport coefficients, and 3) applicability to both elastic and inelastic collisions. For elastic collisions and constant collision frequency it reduces to the ES kinetic model [17,7], while for inelastic collisions and symmetric Gaussian it reduces to the BMD model [13]. For elastic collisions, constant collision frequency, and symmetric Gaussian it becomes the usual BGK model [7]. It is also shown here that the Gaussian model for constant collision frequency can be "tuned" to represent well the more complicated Maxwell models. One motivation for the generalization of a kinetic model to include a velocity dependent collision frequency is a more accurate description of the overpopulation at large velocities for granular gases. The decrease of the distribution function for large velocities in the simplest state of HCS is algebraic for any model with a constant collision frequency, including the Maxwell model. In contrast, the decay found from the hard sphere Boltzmann equation is exponential due to the velocity dependence of the loss term in the collision operator. This qualitative difference may be important for driven states as well. Although this asymptotic behavior occurs only for extremely large velocities it can have an effect on the moments of the distribution function. In addition it has been shown in Section 6 that the hydrodynamic modes and the Green-Kubo fluxes depend on the log of the HCS distribution function, so this asymptotic behavior is even more important. The Gaussian model with velocity dependent collision frequency incorporates this behavior and in addition gives a quite good quantitative representation of the HCS distribution function for small velocities as well. This is illustrated in Fig 1 where $c_G(\alpha)$ shows significant improvement over the velocity independent case. As a consequence the transport coefficients $\kappa(\alpha)$ and $\mu(\alpha)$ are also significantly improved due to their dependence on $c_G(\alpha)$.

The second feature of a non-symmetric Gaussian provides an additional parameter beyond the collision frequency that can be chosen to optimize the quality of all transport coefficients. Here they are chosen such that the shear viscosity is accurate for both the constant collision frequency and the velocity dependent collision frequency for all values of the restitution coefficient. The other transport coefficients are accurate in the elastic limit, including the correct Prandtl number for both cases. For inelastic collisions the agreement with Boltzmann remains excellent for the velocity dependent collision frequency case for all α. This is a primary improvement of the Gaussian model. In contrast, the transport coefficients from the Maxwell model are quite different from those of the hard sphere Boltzmann equation, and the other kinetic models using a symmetric Gaussian all give the wrong Prandtl number.

An advantage of most kinetic models is their structural simplicity. They can be solved exactly for many states as functionals of a few moments of the distribution. These moments still obey complicated nonlinear integral equations but the problem is simplified to the extent that exact results are often possible for states with sufficient symmetry. An example is given here for homogeneous states where the exact solution is obtained in terms of the parameters of the Gaussian gain term, $A(s)$ and $B_{ij}(s)$, which in turn are defined in terms of the moments $M_\lambda(s)$. It is shown that an arbitrary homogeneous initial condition evolves after a few collisions to a universal scaling solution, the HCS. Such behavior is expected also from the hard sphere Boltzmann equation but its complexity has precluded a proof to date. It is useful also to have the explicit representation of the HCS for other purposes as well. Here it has been noted that the hydrodynamic modes for weakly inhomogeneous states are described by eigenfunctions of the linearized Boltzmann collision operator. These eigenfunctions are determined from the HCS and a contrast with the corresponding eigenfunctions for elastic collisions was made possible by the explicit results for the HCS for the kinetic model. Significant differences are observed between the cases of the velocity independent and velocity dependent collision frequency, due to the qualitative differences in the large velocity dependences of the HCS. This is also related to the Hilbert space for formulating the eigenvalue problem for the linearized kinetic equation. The natural scalar product is an integration over the velocities weighted by the HCS distribution function. Due to the algebraic decay at large velocities for the constant collision frequency case (including the Maxwell model), polynomials of high degree do not exist in this space [14]. This restriction does not occur for the hard sphere Boltzmann equation or the Gaussian model with velocity dependent collision frequency. It is of some interest to study any qualitative differences in the spectrum of the linearized collision operator and any consequences for the existence of hydrodynamics. The Gaussian kinetic model provides a tractable context to address this issue.

The most interesting states for experimental purposes are quasi-steady states for systems driven at the boundaries. For states of high spatial symmetry the kinetic model again offers the advantage of an exact solution as a functional of low degree moments. An example is that of uniform shear flow where an exact solution for the distribution function has been obtained in the case of a symmetric Gaussian [35]. The result applies even for large shear rates so the rheology of states far from equilibrium can be studied directly. The Gaussian model described here also can be solved exactly for uniform shear flow and will be given elsewhere. Vibrated systems, with and without gravity, have been studied on the basis of the Boltzmann equation using Monte Carlo simulation methods leading to a number
of important results bearing on experiments (e.g., boundary layers \[36\], dependence of velocity distribution on the distance from the driving wall \[38\], symmetry breaking \[37\]). The Gaussian kinetic model may be simple enough for a complementary analytical study of such problems.

In summary, the work here has extended earlier kinetic models to bring closer correspondence with the Boltzmann equation for the HCS and small spatial perturbations of that state. The price for these improvements is an increased complexity of the model, although this has not been an impediment for the simple states considered here. It remains to demonstrate significant new results for more complex states, not already addressed by the simpler existing models.

VIII. ACKNOWLEDGMENTS

This research was supported in part by Department of Energy grant DE-FG02-02ER54677 and by grants from Asociación Mexicana de Cultura, A.C and from Consejo Nacional de Ciencia y Tecnología grant 020163. The authors are grateful to A. Santos for sending results prior to publication and for his careful reading of the first draft. J.W.D and A.B acknowledge the hospitality of the University of Seville where part of this work was performed.

APPENDIX A: MOTIVATION FOR GAUSSIAN MODEL

The Gaussian model results from an approximation to the gain contribution to the Boltzmann collision operator, denoted by \(g(\mathbf{r}, \mathbf{V}, t \mid f) \) in (30). The specific choice of a Gaussian can be interpreted as resulting from maximizing the information entropy \(I[g] \)

\[
I[g] = \int d\mu(\mathbf{v}) g(\mathbf{r}, \mathbf{V}, t \mid f) \ln g(\mathbf{r}, \mathbf{V}, t \mid f),
\]

among the class of functions whose weighted moments of degree 2 are specified

\[
\int d\mu(\mathbf{v}) \left(\frac{1}{2} \mathbf{v}^2 \right) g(\mathbf{r}, \mathbf{V}, t \mid f) = \begin{pmatrix} G_1 \\ G_2 \\ G_{3ij} \end{pmatrix}.
\]

The measure for the velocity integration has been chosen to include the velocity dependence of the collision frequency. Incorporating these constraints with Lagrange multipliers and minimizing \(I[g] \) leads directly to the Gaussian form

\[
g(\mathbf{r}, \mathbf{V}, t \mid f) = \exp \left(-\lambda_1 \mathbf{v} - \lambda_2 \cdot \mathbf{v} - \lambda_{3ij} \mathbf{v}_i \mathbf{v}_j \right),
\]

where the coefficients \(\lambda_\alpha \) are determined in terms of \(G_\alpha \) from (A2). Thus, if the only known or important exact properties of the gain term are the moments in (A2) then (A3) is a "natural" choice for the model.

It may be useful to recall that \(g(\mathbf{r}, \mathbf{V}, t \mid f) \) is exactly Gaussian for \(f = \text{Maxwellian at } \alpha = 1 \). It has been verified numerically that this property remains true to an excellent approximation for \(\alpha < 1 \) as well, with only the parameters of the Gaussian changing. This gives further support for the choice (A3).

APPENDIX B: FORMAL SOLUTION FOR HOMOGENEOUS STATES

The formal solution to the Gaussian model kinetic equation (49) is

\[
f^*(\mathbf{v}^*, s) = e^{-\left(\frac{1}{2} \mathbf{v}^* \cdot (3+\mathbf{v}^* \cdot \nabla_{\mathbf{v}^*} + \mathbf{v}^* s) \right) s} f^*(\mathbf{v}^*, 0)
\]

\[
+ \int_0^s ds' e^{-\left(\frac{1}{2} \mathbf{v}^* \cdot (3+\mathbf{v}^* \cdot \nabla_{\mathbf{v}^*} + \mathbf{v}^* s') \right) s'} g^*(\mathbf{v}^*, s') g^*(\mathbf{v}^*, s').
\]

The action of the exponential in (B1) can be determined as follows. Define a function \(X(\mathbf{v}^*, s) \) by

\[
X(\mathbf{v}^*, s) = e^{-\left(\frac{1}{2} \mathbf{v}^* \cdot (3+\mathbf{v}^* \cdot \nabla_{\mathbf{v}^*} + \mathbf{v}^* s) \right) s} X(\mathbf{v}^*),
\]

which then obeys the equation
\[
\left(\partial_s + \frac{1}{2}\zeta^* (3 + \mathbf{v}^* \cdot \nabla_{\mathbf{v}^*}) + \nu^*(v^*) \right) X = 0. \tag{B3}
\]

Next introduce
\[
X(v^*, s) = e^{-\frac{1}{2}\zeta^* \mathbf{v}^* \cdot \nabla_{\mathbf{v}^*}} X(v^*, s), \tag{B4}
\]
so that \(X(v^*, s)\) obeys the equation
\[
\left(\partial_s + \frac{3}{2}\zeta^* + e^{\frac{1}{2}\zeta^* \mathbf{v}^* \cdot \nabla_{\mathbf{v}^*}} \nu^*(v^*) e^{-\frac{1}{2}\zeta^* \mathbf{v}^* \cdot \nabla_{\mathbf{v}^*}} \right) X = 0. \tag{B5}
\]

From the identity
\[
e^{\frac{1}{2}\zeta^* \mathbf{v}^* \cdot \nabla_{\mathbf{v}^*}} F(v^*) e^{-\frac{1}{2}\zeta^* \mathbf{v}^* \cdot \nabla_{\mathbf{v}^*}} = F\left(e^{\frac{1}{2}\zeta^* \mathbf{v}^*} \right), \tag{B6}
\]
this equation becomes
\[
\left(\partial_s + \frac{3}{2}\zeta^* + \nu^* \left(e^{\frac{1}{2}\zeta^* \mathbf{v}^*} \right) \right) X = 0. \tag{B7}
\]

This can be integrated directly and inserted in (B4) to give
\[
X(v^*, s) = e^{-\frac{1}{2}\zeta^* s} e^{\frac{1}{2}\zeta^* \mathbf{v}^* \cdot \nabla_{\mathbf{v}^*}} \exp \left(- \int_0^s ds' \nu^* \left(e^{\frac{1}{2}\zeta^* s' \mathbf{v}^*} \right) \right) X(v^*)
\[
= e^{-\frac{1}{2}\zeta^* s} \exp \left(- \int_0^s ds' \nu^* \left(e^{-\frac{1}{2}\zeta^* s' \mathbf{v}^*} \right) \right) X\left(e^{-\frac{1}{2}\zeta^* s \mathbf{v}^*} \right). \tag{B8}
\]

The formal solution to the kinetic equation becomes
\[
f^*(v^*, s) = e^{-\frac{1}{2}\zeta^* s} K(v^*, s) f^*(e^{-\frac{1}{2}\zeta^* s \mathbf{v}^*}, 0)
\[
+ \int_0^s ds' e^{-\frac{1}{2}\zeta^* s' \mathbf{v}^*} K(v^*, s') \nu^* \left(e^{-\frac{1}{2}\zeta^* s' \mathbf{v}^*} \right) g^* \left(e^{\frac{1}{2}\zeta^* s' \mathbf{v}^*}, s - s' \right), \tag{B9}
\]
\[
K(v^*, s) = \exp \left(- \int_0^s ds' \nu^* \left(e^{-\frac{1}{2}\zeta^* s' \mathbf{v}^*} \right) \right). \tag{B10}
\]

It is interesting to note that no use of the explicit form for \(g^*\) has been used. So, this result applies to the Boltzmann equation as well.

APPENDIX C: MOMENT CONDITIONS

The HCS for the Gaussian model is given by (56)
\[
\phi(v^*) = \int_0^\infty ds' e^{-\frac{1}{2}\zeta^* s' \mathbf{v}^*} K(v^*, s') \nu^*(e^{-\frac{1}{2}\zeta^* s' \mathbf{v}^*}) g^*(e^{-\frac{1}{2}\zeta^* s' \mathbf{v}^*}, \infty). \tag{C1}
\]

This is restricted by the moment conditions (50)
\[
\begin{pmatrix}
M_1^1 \\
M_3^1
\end{pmatrix} = \int dv^* \begin{pmatrix}
1 \\
\frac{1}{3} v^* s^2
\end{pmatrix} \nu^*(v^*) \phi(v^*). \tag{C2}
\]

These conditions can be verified by direct integration
\[
\begin{pmatrix}
M_1^1 \\
M_3^1
\end{pmatrix} = \int dv^* \begin{pmatrix}
1 \\
\frac{1}{3} v^* s^2
\end{pmatrix} \nu^*(v^*) \int_0^\infty ds' e^{-\frac{1}{2}\zeta^* s'} K(v^*, s') \nu^*(e^{-\frac{1}{2}\zeta^* s' \mathbf{v}^*}) g^*(e^{-\frac{1}{2}\zeta^* s' \mathbf{v}^*}, \infty)
\]
\[= \int dv^* \left(\frac{1}{2} v^{*2} \right) \frac{1}{\nu \sqrt{\pi}} \int_0^{\nu} dxx^2 \nu^*(x)g^*(x, \infty) \frac{2}{\zeta^*} \nu^*(v^*) \overline{K}(v^*, x), \]

with the notation

\[\overline{K}(v^*, x) \equiv \exp \left(-\frac{2}{\zeta^*} \int_x^{\nu} \frac{dxx'}{x^2} \nu^*(x') \right). \]

Next eliminate \(2\nu^*(v^*)/\zeta^* \) by noting it can be generated by differentiating \(\overline{K} \)

\[\left(\begin{array}{c} M_1^* \\ M_3^* \end{array} \right) = -4\pi \int_0^{\infty} dv^* \left(\frac{1}{4} v^{*2} \right) \int_0^{\nu^*} dxx^2 \nu^*(x)g^*(x, \infty) \frac{dK(v^*, x)}{dv^*} \]

\[= -4\pi \int_0^{\infty} dxx^2 \nu^*(x)g^*(x, \infty) \int_x^{\nu} dv^* \left(\frac{1}{4} v^{*2} \right) \frac{dK(v^*, x)}{dv^*} \]

\[= 4\pi \int_0^{\infty} dxx^2 \nu^*(x)g^*(x, \infty) \left\{ \left(\frac{1}{3} x^2 \right) + \int_x^{\nu} dv^* \left(\frac{2}{v^{*2}} \right) \overline{K}(v^*, x) \right\} \]

\[= \left(\begin{array}{c} M_1^* \\ M_3^* - \zeta^* \end{array} \right) + 4\pi \int_0^{\infty} dv^* \left(\frac{0}{4} v^{*2} \right) \int_0^{v^*} dxx^2 \nu^*(x)g^*(x, \infty)\overline{K}(v^*, x). \tag{C3} \]

where use has been made of (51). The second term of (C3) can be recognized as moments of \(\phi(v^*) \) to give the desired result

\[\left(\begin{array}{c} M_1^* \\ M_3^* \end{array} \right) = \left(\begin{array}{c} M_1^* \\ M_3^* - \zeta^* \end{array} \right) + \frac{\zeta^*}{2} \int dv^* \left(\frac{0}{3} v^{*2} \right) \phi(v^*) \]

\[= \left(\begin{array}{c} M_1^* \\ M_3^* \end{array} \right). \tag{C4} \]

The last equality follows from (7) in the form

\[\left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \int dv^* \left(\frac{1}{2} v^{*2} \right) \phi(v^*). \tag{C5} \]

This confirms the consistency of moment conditions (50) and (51).

The two equations (C5) fix the values of \(A^* \) and \(B^{*-1} \) in the Gaussian model (49). A convenient representation is

\[\frac{3}{2} = \frac{\int_0^{\infty} dv^* v^* \int_0^{v^*} dxx^2 \nu^*(x)e^{-B^{*-1}x^2} \overline{K}(v^*, x)}{\int_0^{\infty} dv^* v^{*2-1} \int_0^{v^*} dxx^2 \nu^*(x)e^{-B^{*-1}x^2} \overline{K}(v^*, x)}, \]

or

\[0 = \int_0^{\infty} dv^* \left(v^* - \frac{3}{2} v^{*2-1} \right) \int_0^{v^*} dxx^2 \nu^*(x)e^{-B^{*-1}x^2} \overline{K}(v^*, x). \tag{C6} \]

This determines \(B^* \). Next \(A^* \) is obtained from

\[A^{*-1} = \frac{8\pi}{\zeta^*} \int_0^{\infty} dv^* v^{*2-1} \int_0^{v^*} dxx^2 \nu^*(x)e^{-B^{*-1}x^2} \overline{K}(v^*, x). \tag{C7} \]

Finally, with \(A^* \) and \(B^{*-1} \) known, the moments are determined from (51)

\[\left(\begin{array}{c} M_1^* \\ M_3^* - \zeta^* \end{array} \right) = \int dv^* \left(\frac{1}{2} v^{*2} \right) \nu^*(v^*) A^* e^{-B^{*-1}v^{*2}}. \tag{C8} \]
APPENDIX D: LINEARIZED COLLISION OPERATOR

The collision operator for the Gaussian model is

$$J ([r, v | f(t)]) = -\nu(r, v, t) [f (r, V, t) - g(r, V, t | f)].$$ \hspace{1cm} (D1)

The distribution function is expanded as

$$f (r, V, t) = f^{(0)} (r, V, t) + f^{(1)} (r, V, t) + \ldots,$$ \hspace{1cm} (D2)

$$g(r, V, t | f) = g(r, V, t | f^{(0)}) + \int dV' \frac{\delta g(r, V, t | f)}{\delta f (r, V', t)} |_{f = f^{(0)}} f^{(1)} (r, V', t) + \ldots$$ \hspace{1cm} (D3)

The linearized collision operator is therefore

$$\mathcal{L} f^{(1)} = - \int dV' \frac{\delta J [r, v | f(t)]}{\delta f (r, V', t)} |_{f = f^{(0)}} f^{(1)} (r, V', t)$$

$$= \nu(r, v, t) \left[f^{(1)} (r, V, t) - \int dV' \frac{\delta g(r, V, t | f)}{\delta f (r, V', t)} |_{f = f^{(0)}} f^{(1)} (r, V', t) \right].$$ \hspace{1cm} (D4)

The second term of (D3) can be made more explicit by recalling that the functional dependence of $g(r, V, t | f)$ occurs only through A and B_{ij}

$$\int dV' \frac{\delta g(r, V, t | f)}{\delta f (r, V', t)} |_{f = f^{(0)}} f^{(1)} (r, V', t) = g(r, V, t | f^{(0)}) \left[\int dV' \frac{\delta A(r, t | f)}{\delta f (r, V', t)} |_{f = f^{(0)}} f^{(1)} (r, V', t) \right.$$ \hspace{1cm} (D5)

$$- V_i V_j \int dV' \frac{\delta B_{ij}^{-1} (r, t | f)}{\delta f (r, V', t)} |_{f = f^{(0)}} f^{(1)} (r, V', t) \right].$$

Using the definition of B_{ij} in (39) gives

$$\frac{\delta B_{ij}^{-1} (r, t | f)}{\delta f (r, V', t)} = \left(-B^{-1} (r, t | f^{(0)}) \frac{\delta B (r, t | f)}{\delta f (r, V', t)} B^{-1} (r, t | f^{(0)}) \right)_{ij}$$

$$= - \frac{\gamma}{B_{kk}} \left(\frac{1}{3} \delta_{ij} + \frac{\delta_{ij}}{nm D_{ij} (V)} \right).$$ \hspace{1cm} (D6)

Then (D5) becomes

$$\int dV' \frac{\delta g(r, V, t | f)}{\delta f (r, V', t)} |_{f = f^{(0)}} f^{(1)} (r, V', t) = g(r, V, t | f^{(0)}) \left[\int dV' \frac{\delta A(r, t | f)}{\delta f (r, V', t)} |_{f = f^{(0)}} f^{(1)} (r, V', t) \right.$$ \hspace{1cm} (D7)

$$+ V^2 \frac{3}{B_{kk}} \int dV' \frac{\delta B_{kk} (r, t | f)}{\delta f (r, V', t)} |_{f = f^{(0)}} f^{(1)} (r, V', t) + \frac{9 \gamma m}{nm B_{kk}^2} D_{ij} (V) \int dV' D_{ij} (V') f^{(1)} (r, V', t) \right].$$

The expansion (D2) leads to an corresponding expansion for the moments

$$\begin{pmatrix} M_1 \\ M_2 \\ M_3 \end{pmatrix} = \int dV \left(\begin{array}{c} 1/2 m (v - u)^2 \\ u \\ \frac{1}{2} m (v - u)^2 \end{array} \right) \nu(r, v, t) \left(f^{(0)} (r, V, t) + f^{(1)} (r, V, t) + \ldots \right)$$

$$= \begin{pmatrix} M_1^{(0)} \\ M_2^{(0)} \\ M_3^{(0)} \end{pmatrix} + \begin{pmatrix} M_1^{(1)} \\ M_2^{(1)} \\ M_3^{(1)} \end{pmatrix} + \ldots$$ \hspace{1cm} (D8)

The coefficients $A(r, t | f^{(0)})$ and $B_{ij} (r, t | f^{(0)}) = (B_{kk} (r, t | f^{(0)}) / 3) \delta_{ij} = B \delta_{ij}$ are determined from $M_1^{(0)}$ just as is done in Appendix B. The remaining part of the moment conditions are
Equation (D7) may now be written in the form

\[
\left(\begin{array}{c} M_1^{(1)} \\ M_2^{(1)} \\ M_3^{(1)} \end{array} \right) = \int dv \left(\begin{array}{c} 1 \\ v \\ \frac{1}{2} mv^2 \end{array} \right) \nu(r, v, t) \int dv' \frac{\delta g(r, v', t | f)}{\delta f(r, v', t)} |_{f=f^{(0)}} f^{(1)}(r, v', t). \quad (D9)
\]

The terms on the right side of (D7) can be identified as an expansion in terms of polynomials of degree 2 in the velocity. To do so, first define a Hilbert space with scalar product

\[
(a, b) = \int dv \nu g^{(0)} a^* b, \quad g^{(0)} = g \left(\mid f^{(0)} \right). \quad (D10)
\]

Next, define the set of functions \{\psi_{\sigma}\}

\[
\left(\begin{array}{c} \psi_1 \\ \psi_2 \\ \psi_3 \end{array} \right) = \left(\begin{array}{c} \frac{1}{\sqrt{N_1}} \\ \frac{1}{\sqrt{N_2}} V \\ \frac{1}{\sqrt{N_3}} \left(V^2 - \frac{N_2}{N_1} \right) \end{array} \right), \quad (D11)
\]

with normalization constants

\[
N_1 = (1, 1), \quad N_2 = (V, V_i) = (1, V^2), \quad N_3 = \left(\left(V^2 - \frac{N_2}{N_1} \right), \left(V^2 - \frac{N_2}{N_1} \right) \right) = (1, V^4) - \frac{N_2}{N_1}. \quad (D12)
\]

These functions form an orthonormal set

\[
(\psi_{\sigma}, \psi_{\mu}) = \delta_{\sigma\mu}. \quad (D13)
\]

Equation (D7) may now be written in the form

\[
\int dv' \frac{\delta g(r, v', t | f)}{\delta f(r, v', t)} |_{f=f^{(0)}} f^{(1)}(r, v', t) = g(r, v, t | f^{(0)}) \left[e_{\alpha} \psi_{\alpha} (V) + \frac{y(\alpha)}{nm^2 B^2} D_{ij} (V) \int dv' D_{ij} f^{(1)} \right]. \quad (D14)
\]

The coefficients \(e_{\alpha}\) can be determined by taking the scalar product of this equation with \(\psi_{\mu}\)

\[
e_{\mu} = \int dv \nu \psi_{\mu} \int dv' \frac{\delta g(r, v', t | f)}{\delta f(r, v', t)} |_{f=f^{(0)}} f^{(1)}(r, v', t) = \int dv \nu \psi_{\mu} f^{(1)}. \quad (D15)
\]

The second equality follows from (D9) and allows these terms to be represented as a projection onto the subspace spanned by the \{\psi_{\sigma}\}

\[
\nu(r, v, t) \int dv \frac{\delta g(r, v, t | f)}{\delta f(r, v, t)} |_{f=f^{(0)}} f^{(1)}(r, v, t) = \mathcal{P} f^{(1)} + \frac{y}{nm^2 B^2} \nu g^{(0)} D_{ij} \int dv' D_{ij} f^{(1)}, \quad (D16)
\]

where \(\mathcal{P}\) is a projection operator

\[
\mathcal{P} X = \nu g^{(0)} \psi_{\sigma} \int dv \psi_{\sigma} X. \quad (D17)
\]

The linearized collision operator of (D4) now takes the simple form

\[
\mathcal{L} f^{(1)} = (1 - \mathcal{P}) \nu f^{(1)} - \frac{y}{nm^2 B^2} \nu g^{(0)} D_{ij} (V) \int dv' D_{ij} f^{(1)}. \quad (D18)
\]

The first term represents the fact that \(\mathcal{L}\) has a null subspace due to the moment conditions

\[
\int dv \left(\frac{1}{\sqrt{m} V} \right) \mathcal{L} f^{(1)} = 0. \quad (D19)
\]

This is the usual BGK-like operator with a single, infinitely degenerate point in the spectrum for all functions of the orthogonal subspace. The second term is a projection onto a specific function in the orthogonal subspace and is the new effect of the asymmetric Gaussian approximation, or the non-zero value of \(\tilde{B}_{ij}\).
Finally, noting that
\[\int d\nu D_{ij} D_{ij} g^{(0)} = \frac{5}{2} m^2 B^2, \]
allows the linearized operator to be written
\[\mathcal{L} f^{(1)} = (1 - P) \nu f^{(1)} - \frac{5}{2} \nu g^{(0)} D_{ij}(V) \int d\nu' D_{ij} f^{(1)} \int d\nu D_{ij} D_{ij} g^{(0)}. \]

\[\text{(D20)} \]

\[\text{(D21)} \]

FIG. 1. Comparison of coefficients $c_G(\alpha)$, $c_{G1}(\alpha)$ and $c_M(\alpha)$ with $c_B(\alpha)$.

FIG. 2. Comparison of the HCS divided by the Maxwellian for the Gaussian model and the velocity independent collision frequency model with the Sonine approximation using both $c_G(\alpha)$ and $c_B(\alpha)$ for $\alpha = 0.8$.
FIG. 3. Illustration of the cross over of the HCS for the Gaussian model to the intermediate form, eq(67), by plotting \(\partial v^\ast \ln \phi(v^\ast) \) for the HCS, the asymptotic form and the Maxwellian for \(\alpha = 0.8 \).

FIG. 4. Illustration of crossover of the HCS for the velocity independent model from the Gaussian given by Eq.(76) to an algebraic decay, Eq.(77) for \(\alpha = 0.8 \).
FIG. 5. The exponent of algebraic decay for the Maxwell model, Eq.(23), and velocity independent Gaussian model, Eq.(77) plotted as a function of α.

FIG. 6. Plot of the fitted dimensionless viscosity $\eta^* = \eta/\eta_0$ for the velocity dependent and velocity independent collision frequency Gaussian models with the Boltzmann and Maxwell model results.
FIG. 7. Comparison of dimensionless thermal conductivity $\kappa^* = \kappa/\kappa_0$ as calculated from the velocity dependent and velocity independent collision frequency Gaussian models with the Boltzmann and Maxwell model results.

FIG. 8. Comparison of $\mu^* = \mu n / T \kappa_0$ as calculated from the Gaussian models with the Boltzmann and Maxwell model results.
FIG. 9. Plot of $\partial v^* \ln \phi(v^*)$ for the Gaussian model and velocity independent Gaussian model and the Maxwellian for $\alpha = 0.8$.