Measuring the Size and Characteristics of American Jewry:

A New Paradigm to Understand an Ancient People

Leonard Saxe, Elizabeth Tighe, and Matthew Boxer

Brandeis University

Correspondence address:

Professor Leonard Saxe
Cohen Center/Steinhardt Social Research Institute
MS014
Brandeis University
Waltham, MA 02454
saxe@brandeis.edu
Introduction

In the last several decades, the Jewish community in the United States has invested more resources in socio-demographic studies of the Jewish population than in any other type of systematic research.¹ National studies of the size and characteristics of U.S. Jewry were conducted by the central communal organization in 1970, 1990, and 2000. In addition, many large and moderately-sized Jewish Federations conduct decennial studies of their populations.² Although the near-history of socio-demographic work on the U.S. Jewish population is too fresh to evaluate comprehensively, the research has stimulated contentious debate about the trajectory of contemporary Jewish life. Discourse has focused on different, deeply-held narratives of the Jewish future, but underlying the debate are a set of disagreements about the reliability and validity of the research. The intensity of these methodologically-fueled debates has increased in recent years. Disagreements about method reflect the difficulty of identifying a Jewish population that is highly integrated in American³ society and the increased complexity and sophistication of social research.

The present chapter focuses on the state of methodology to count and assess the characteristics of American Jewry. An extensive methodological literature exists that describes past efforts to measure the American Jewish population.⁴ This chapter provides a contemporary update and, along with assessing current methods, details the development of a new paradigm to count and describe American Jewry. We also consider the role of socio-demographic studies in providing scholarly understanding of American Jewish life and developing communal policy.

Conceptual Considerations

Contemporary problems of counting Jews in the United States are challenging. The U. S. census, the only full population count of the country, has never asked Americans to identify
themselves by religion. The lack of a census question about religion is, in part, due to concerns by members of religious minorities (including the Jewish community), that inclusion would lead to discrimination. In the absence of a census, scholars of the American Jewish community have relied in recent decades on two strategies to produce estimates: systematically combining local population estimates and conducting national population surveys.

Unfortunately, neither local nor national surveys provide fully adequate estimates. In the case of local surveys, although it is estimated that 80% or more of the American Jewish population lives in a few dozen metropolitan areas, many of these communities do not conduct demographic studies at regular intervals, and some do not conduct them at all. Smaller communities outside of these few dozen areas typically lack the resources to commission demographic studies and, thus, information is lacking for about 20% of the American Jewish population. Perhaps more problematic, there is little standardization across studies and their sampling designs yield difficult-to-interpret findings. The studies are developed for the benefit of sponsoring communities rather than the national polity and are typically overseen by groups of laypeople. They often reflect parochial interests and, both because of limited resources and poor understanding of survey techniques, fail to use cutting-edge methodologies.

A common methodological flaw of local community studies is that they rely on list-based methods that tend to overestimate affiliated Jews and undercount those who are less active or visible in the Jewish community. Furthermore, because there is little synchronization among studies and the Jewish population is highly mobile, a household that moves from one community to another may end up counted in one community, neither, or both. Similarly, seasonal residents who spend part of the year in each of two or more communities may be included or excluded depending on the time of year in which the survey is conducted. In addition, there are a host of
issues about ensuring representative samples of sub-groups of American Jews, including young adults and immigrant populations; in particular, those from the Former Soviet Union and Israel.

For national surveys of the Jews, the underlying issue is that American Jewry is a “rare population,” accounting for approximately 2% of the total number of individuals in the United States. The use of area probability or random digit dialing (RDD) surveys is extremely expensive. Figure 1 illustrates the number of screener interviews required to achieve a sample of 1,000 respondents of a rare population by incidence of the population. The bend of the curve reveals that the number of interviews required (and, thus, the cost of identifying the population) increases significantly at 4–5% incidence and may be infeasible below 2% of the population.

Figure 1. Screener Interviews Required for a Sample of n=1,000

This sampling problem has been exacerbated over the last two decades because of changes in the telephone system and the profusion of surveys that flood Americans’ telephones, email, and mail. The introduction and proliferation of caller ID, call blocking, privacy managers, answering machines and voicemail, and other technologies make it easier to avoid survey researchers and have led to a steep decline in response rates. Additionally, more than one-
quarter of U.S. households lack landline telephones,\textsuperscript{10} which creates several problems for use of RDD sampling frames. The federal Telemarketing Consumer Protection Act of 1991 (47 U.S.C 227) prohibits the use of autodialers to contact wireless telephones without the user’s prior expressed consent. The ethical guidelines of the American Association for Public Opinion Researchers (AAPOR), the leading association of public opinion and survey researchers in the U.S., note that soliciting survey respondents on their wireless phones potentially exposes them to greater risk of physical harm than if they were contacted on landlines, particularly if they are “operating a motor vehicle or any type of potentially harmful machinery… during a research interview.”\textsuperscript{11} Further, because wireless phone users sometimes have to pay for the time they spend on the phone even when someone else has called them, they may be less willing to cooperate.

The widespread growth of survey research also threatens response rates. Customer satisfaction surveys conducted, as well as political polls, have been become ubiquitous.\textsuperscript{12} There is long-standing concern that the growth of survey research and subsequent increase in number of contacts per person will depress response rates.\textsuperscript{13} A wide array of surveys -- across topics and using different methodologies -- has shown increasing refusal rates and declining response rates.\textsuperscript{14} Surveys of U.S. Jews have consequently been plagued by low response rates and controversial sampling techniques with attendant statistical adjustments; as well, they have struggled to deal with the complexity of contemporary Jewish identity.\textsuperscript{15}

The increasing expense and difficulty of relying on RDD sampling frames in national studies of the Jewish community is illustrated by the National Jewish Population Study (NJPS) of 1990 and 2000-2001.\textsuperscript{16} These studies relied on RDD sampling frames. NJPS 1990 was relatively inexpensive, comprised of an amalgam of data collected as part of omnibus market
research surveys. NJPS 2000 was more costly, with an initial budget of $2.5 million that eventually ballooned to a reported $6 million.\textsuperscript{17} The overruns were attributed to a series of methodological difficulties, including low response rates.\textsuperscript{18}

The sampling issues are made complex by the difficulty of applying uniform definitions of Jewish identity. Intermarriage and secularization, in particular, have created a host of problems in terms of framing questions about who is Jewish. “Who is a Jew” is no longer a binary categorization, but rather a social classification with opaque boundaries that depend on Jewish law (halacha), religious identity, ethnicity, culture, language, and/or descent. Accordingly, “who is a Jew” to one person may not be a Jew to another. Further, individual survey respondents may identify themselves inconsistently across surveys, perhaps depending on the context and question wording.\textsuperscript{19} Thus, studies of the American Jewish population are socio-psychological assessments, less concerned with the precise location of boundaries between Jewish and non-Jewish and more concerned with the ways those boundaries are socially constructed and reconstructed in different contexts. In general, a survey respondent’s claim of Jewish identity is accepted at face value. Theological perspectives are relevant primarily in influencing individuals’ views of their identity.

Definitional concerns notwithstanding, for most purposes of understanding American Jewry, the exact size of the population is not a central concern. Although increases or decreases can reveal the extent to which Jewish identity is valued, knowing the size of the American Jewish community does not, in itself, yield useful information about the lived behavior or attitudes of individual Jews. At the same time, reliable and valid estimates that can be compared over time provide some useful information and are the basis for other, more substantive, descriptions of the state of the community.
Further complicating the interpretation of socio-demographic studies of the U.S. Jewish population is that most national population surveys rely on complex sample designs, with some areas oversampled and with statistical adjustments applied, *post hoc*, to improve estimates. Such design and post-stratification weights account for the complexity of the design, as well as factors that could bias the estimates. Biases result from survey nonresponse and over- or under-representation of particular groups. Decisions about which factors to include in calculating weights can greatly influence the resultant estimates. And the greater the bias in the sample, the larger the effect weighting decisions have on final estimates.\(^{20}\)

The need for adjustments to account for a particular sub-sample that participates in a survey is common. Typically, however, adjustments to account for disproportionate sampling are based on externally valid data about the population. This presents particular challenges to Jewish population surveys because, unlike demographic characteristics such as age and sex that can be compared against the U.S. census, there is no valid source of data on the distribution of the Jewish population in the United States. The expense of conducting a national population survey, combined with low response rates and the potential bias introduced by sampling error and weighting, point to a need for a new method to estimate the American Jewish population—one that is cost effective as well as sensitive to and able to account for the variation in estimates that are introduced by different study and sampling designs.

**A New Paradigm**

In the wake of the challenges inherent in the use of general population surveys to study American Jews, we have been developing a new approach to estimation of the size and characteristics of the population.\(^ {21}\) The methodology is based on the premise that no single study (or survey) is without error and, constrained by current resources, no single survey is able to
provide a valid estimate of the population at the national level. Our methodology improves estimation by drawing on repeated independent sampling of the entire U.S. population and synthesizing data across these repeated observations. The methods go beyond averaging each of the estimates. Instead, the raw individual-level data across studies are combined using statistical techniques that take into account the different variance distributions, thereby enabling not only overall estimates across surveys, but also distributions by age, sex, education, and geographic areas. These distributions will prove to be very important for future proposed surveys.

Combining multiple data sources to increase the reliability of estimates is the basic premise of traditional meta-analytic methods, and more recently of methods of small area estimation (SAE). Meta-analysis and SAE provide a more systematic approach to data synthesis than simple pooling of data and are an elegant solution to generating valid population estimates. Rather than relying on the assumption that repeated administrations of a survey can be combined, each administration is treated as unique; thus, the specific properties of each survey are taken into account when the data are combined. A key feature of this approach is that all available and relevant sources of data are reviewed. The systematic review of a representative sample of studies or surveys allows one to assess the reliability of estimates from individual studies. This is particularly important in estimating the size of a small population group. As Rao explains:

In making estimates for small areas with adequate level of precision, it is often necessary to use ‘indirect’ estimators that ‘borrow strength’ by using values of the variable of interest, y, from related areas and/or time periods and thus increase the ‘effective’ sample size.
In the present case, we “borrow strength” from the vast extant data on religious/ethnic identification for our variable of interest, whether a person is Jewish, along with related factors, such as geographic dispersion and demographic composition. These data are not collected for the purpose of population estimation, in particular, the Jewish population. All of the surveys, however, are designed to provide representative samples of the U.S. population and include assessment of religious or ethnic identification. They are thus well-suited for purposes of population estimation. In addition, the surveys are fielded with sufficient frequency as to generate a substantial amount of data on the sub-group of the U.S. population that self-identify as Jewish. Typically, this is based on a question about current religious identity or affiliation. A smaller number of surveys include assessment of religion raised, or parents’ religious/ethnic identification, or non-religious Jewish identification (e.g., “Do you consider yourself Jewish?”) in addition to current religious affiliation. Data from this subset of surveys can be used both as part of the full sample of surveys used to estimate the proportion of the U.S. population that identifies by religion and, as well, for supplemental analyses of the subset of the population that identifies as Jewish in other ways.

Although any single survey might contain too few respondents who identify as Jewish to serve as a reliable source of data on its own, systematically combining data from repeated, independent samples of the U.S. population provides a highly reliable source of data. It allows one to describe the basic demographic composition of the U.S. Jewish population. Such data syntheses have become common throughout the social sciences and biomedical and physical sciences but have yet to be utilized in the study of the Jewish population.

The results described here focus on data related to the estimation of the adult Jewish population identified through responses to questions about religious identity. With estimates of
the adult population who self-identify by religion as a base, additional sources of data that assess other forms of Jewish identification, such as lineage or ethnicity, or that assess subgroups (children/youth) can be used to supplement/adjust population estimates accordingly. Self-identification by religion is a substantial proportion of the population and is the group that is most commonly assessed across the many general population surveys conducted in the United States. Often the question is asked as “What is your religion? Is it Protestant, Roman Catholic, Jewish, something else, or no religion?” With increased attention to the variety of religious groups in the United States, and depending on the purpose of the survey, the discrete options that are provided change. For example, the series of surveys on Religion and Public Life conducted jointly by the Pew Research Center for the People and the Press and the Pew Forum on Religion asks, “What is your religious preference, do you consider yourself Christian, Jewish, Muslim, other non-Christian such as Buddhist or Hindu, atheist, agnostic, something else, or don’t you have a religious preference?” Nearly all include Jewish as one of the discrete options. A few surveys, such as the AJIS and NJPS, provide no discrete options. Instead they ask simply, “What is your religion, if any?” and record all self-generated responses to the question. Whether the way the question is asked or worded influences Jewish population estimates can be examined directly and taken into account as necessary.

The breadth of data available is displayed in Figure 2, which shows the estimated percent of the U.S. population that self-identifies as Jewish (by religion) across 128 surveys of the U.S. population conducted between 2000 and 2008. Note that estimates are ordered by magnitude of the estimated proportion of US adults who identify as Jewish, irrespective of time within the 2000 to 2008 period. The bars around each estimate indicate the confidence interval, or the range that is expected to include the “true population” proportion who identify as Jewish based
on the particular sample of people included in each survey. Factors such as how many people were surveyed and what kinds of weighting and adjustments were employed affects this range. The lowest estimate was observed in a survey conducted by International Communications Research (ICR) for a group at Georgetown University in 2006 which estimated less than 1% of U.S. adults identified as Jewish by religion. The highest was 3.2%, observed in one of Gallup’s 2008 Mood of the Nation Polls.

Although many of the surveys yield estimates that are substantially higher than previous Jewish population-focused surveys, some surveys yield estimates of 1.3% and 1.4%, on par with that observed in NJPS 2000 and AJIS 2000. These include a CBS news poll conducted in 2007, a Gallup survey in 2004, an ABC poll in 2005, and two of the Pew surveys on Religion and Public Life. The Religion and Public Life survey conducted in April 2001 indicated 1.2% of the population was Jewish by religious identification. The same survey, administered just two years later in 2003, indicated 1.8% self-identified as Jewish. And, in 2006 and 2007, respectively, the estimates from this survey were 2.2% and 1.8%. In 2007, Pew sponsored the U.S. Religious Landscape Survey, which was a large-scale survey of over 35,000 people. They estimated 1.7% of the population as Jewish, with a confidence interval that ranged from 1.6% to 1.9%. Other surveys, such as the Baylor Religion Survey, estimate over 2% of the population as Jewish.

Any single sample of the same underlying population yields a somewhat different estimate of that population. The advantage of the current approach is that, rather than relying exclusively on one source and ignoring all others, we examine the range in estimates. The goal is to determine how best to derive meaning from these multiple snapshots of the U.S. population. Any number of factors could affect an estimate observed in a single sample, such as the purpose of the survey, the identity of the person conducting or sponsoring the survey, or even
methodological idiosyncrasies affecting the makeup of the sample. The benefit of our approach is that the variability in these estimates and possible explanations can be analyzed directly.

Figure 2. Estimated Proportion Jewish by Survey, 2000 to 2008.

To identify surveys to include in our analyses, major data repositories were searched for any studies conducted since the year 2000 that assessed religious identification or affiliation. The archives included the Inter-University Consortium for Political and Social Research (ICPSR) and the American Religion Data Archive (ARDA), as well as collections such as the Institute for Quantitative Social Sciences Dataverse Network at Harvard. In addition, poll archives at the Odum Institute, Roper Center, Gallup, and Pew Research were searched.
Keywords for searching each of the databases were: religion; relig*; Protestant; Catholic; Jewish; denom*; religious preference; religious id*. Searches of the social science and religious studies literature were also conducted. Criteria for inclusion were: (1) a nationally representative sample of the U.S. adult population; (2) information to classify respondents by current religious identity; and, (3) baseline demographic information (sex, race, education, and age). The search strategy yielded 301 surveys conducted since the year 2000.

Although the goal was to include all available sources, given the time and resources required to process data, priority was given to surveys with the greatest sample sizes (at least 1,000 respondents or more), and, within any given year, a representative sample from different sources. To date, the set of surveys consists of 140 independent samples of the U.S. adult population collected between 2000 and 2008 and a total of 390,728 respondents. About 20% of the surveys specifically addressed topics of religion (See Table 1). The rest were on more general topics such as politics, social life, health care issues, and combinations thereof. The average response rate across the surveys was 34%, with a high of 73%. Average response to the religious identity question across the surveys was 97.5%, with over 75% of the surveys obtaining valid responses to this question greater than 98%.
Table 1. Characteristics of the surveys

<table>
<thead>
<tr>
<th>Primary Purpose</th>
<th>Number of Surveys</th>
<th>Percent of Surveys</th>
<th>Survey Sponsor</th>
<th>Number of Surveys</th>
<th>Percent of Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Religion</td>
<td>26</td>
<td>19</td>
<td>Princeton Survey Research Assoc.</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>Politics</td>
<td>63</td>
<td>45</td>
<td>University Affiliated</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Social Life</td>
<td>14</td>
<td>10</td>
<td>SRBI</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Other</td>
<td>37</td>
<td>26</td>
<td>TNS Research</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Major Poll / News Poll</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other Private Survey Group</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

| Survey Sponsor                   |                   |                    |                                                    |                   |                    |
| Pew                              | 48                | 34                 |                                                    |                   |                    |
| News and Other Polls             | 56                | 40                 |                                                    |                   |                    |
| University                       | 30                | 21                 | Kish                                              | 17                | 12                 |
| Other                            | 6                 | 4                  | Last Birthday                                     |                   |                    |
|                                   |                   |                    | Youngest Male / Youngest Female                   | 42                | 30                 |
|                                   |                   |                    | Youngest Male / Oldest Female                     | 24                | 17                 |
|                                   |                   |                    | Youngest Male / Youngest Female                   |                   |                    |
| Question Wording                 |                   |                    |                                                    |                   |                    |
| Open-ended                       | 34                | 24                 | Proportional Selection                            | 23                | 16                 |
| Closed-ended                     | 106               | 76                 | Last Birthday - Unspecified                       | 12                | 9                  |
|                                   |                   |                    | “Random” Adult                                    | 8                 | 6                  |
|                                   |                   |                    | Other                                              | 7                 | 5                  |
| Response Rates                   |                   |                    |                                                    |                   |                    |
| AAPOR 3 (mean %, SD)             | 31%               | st.dev(14)         |                                                    |                   |                    |
| Greater than 40%                 | 14                | 10                 |                                                    |                   |                    |
| Sample Sizes                     |                   |                    | < 3,000                                             | 124               | 88                 |
| Valid Response to Religion       |                   |                    | 3,000-5,000                                        | 11                | 8                  |
| Mean                             | 97%               |                    | > 5,000                                             | 5                 | 4                  |

Combining Data Across Surveys

In traditional design-based survey analysis, weights are used to account for the factors associated with the sample design, including adjustments to those weights, such as post-stratification and non-response. Each survey often has its own unique methods of sampling and weighting. In many cases, the sample sizes are designed for estimation of the U.S. population as a whole, rather than specific subgroups. This limits adjustments that can be made based on geographic and demographic distributions of respondents. For example, although there is
tremendous variation in the Jewish population across U.S. states and across metropolitan areas, many surveys have only a sufficient number of cases to adjust for broad geographic regions, such as the Northeast, Midwest, South, and West. Weighting procedures that do not take into account the particular factors associated with Jewish population estimation will be biased; that is, they will either over- or under-estimate the population depending on how the sample that was obtained compares to the Jewish population as a whole.

Rather than relying solely on design-based analysis weights provided by the original researchers which were developed for purposes other than Jewish population estimation, the present approach is model-based, and sampling variables and their effect, if any, on Jewish population estimates are examined directly. Due to the substantial variability within geographic regions, Jewish population clusters in metropolitan areas, and lack of surveys with sufficient number of respondents for reliable estimates of smaller geographic areas down to the state level, we employ a method that is better suited to estimation of small cell sizes such as this (i.e., Hierarchical Bayesian analysis). Results from the Bayesian analysis are then used to obtain estimates post-stratified to the U.S. population totals for sampling variables such as age, education, state and metropolitan status that are included in the model.

For the set of surveys from 2000 to 2008, once variables associated with sampling are included, there is very little variability associated with the surveys themselves. Survey variance is .01 which corresponds to an intra-class correlation of .003 and a Median Odds Ratio (MOR) of 1.1. The MOR indicates that given any two randomly chosen surveys, the odds of a respondent identifying as Jewish in the survey with the highest likelihood are nearly equivalent to (or 1.1 times) the odds of identifying as Jewish in the survey with the lowest likelihood. So, although surveys may have varied in the specifics of how the particular question used to assess Jewish
identity was asked, or the purpose for which the survey was conducted, or the type of organization that collected the survey, taking into account the different distributions of age, race, education, and geographic composition (by state and metropolitan area) that are achieved in each independent sample, the surveys yield highly similar estimates.

Results from the model are used to calculate the proportion of the U.S. adult population that identifies as Jewish for all of the demographic groups represented in the model. These estimates are then post-stratified to the U.S. adult population totals for the corresponding groups. To obtain estimates within single years of data, models were fit separately by year for surveys conducted in the years 2000, 2004, and 2008 and post-stratified to the Current Population Survey March Supplement for that year. Fitting multiple years of data improves estimation of some of the smaller groups. Accounting for all of the factors that can change by year (e.g., demographic composition by state), however, along with the interactions of these yearly changes by survey, pushes the limits of the current sample of surveys. Thus, to simplify, we focus here on single-year estimates that are based on separate models for each year. These estimates can be improved by including more surveys within these years, particularly to obtain better state-level estimates for some of the low-frequency states. It is clear, however, based on the current sample of surveys, that once distributions by age, race, education, state, and metropolitan status are accounted for across surveys, estimates converge on an estimated proportion of the U.S. adult population that identifies by religion as Jewish as close to 1.9% (see Table 3).
Distributions by state and metropolitan area based on 2008 data are displayed in Figure 3. As expected, the Jewish population is more highly concentrated in metropolitan areas and in areas in the Northeast, in particular New York, New Jersey, Connecticut, Maryland, and Massachusetts. In New York State, 5.6% of the metropolitan population self-identifies as Jewish when asked about religious identity.35

<table>
<thead>
<tr>
<th>Year</th>
<th>Percent (95% CI)</th>
<th>Number (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1.89 (1.7 - 2.1)</td>
<td>3,780,000 (3,416,378 – 4,216,721)</td>
</tr>
<tr>
<td>2004</td>
<td>1.89 (1.77 – 1.95)</td>
<td>3,964,000 (3,779,851 – 4,154,069)</td>
</tr>
<tr>
<td>2008</td>
<td>1.86 (1.68 – 2.04)</td>
<td>4,153,000 (3,760,689 – 4,563,542)</td>
</tr>
</tbody>
</table>
The development of population models is an on-going process. Nevertheless, the estimates—when one adjusts for distributions by state, metropolitan area, race, age, education, and the interaction of age and education—appear to have remained consistent over the past two decades. As with any approach to the study of the Jewish population in the United States, it is based on survey estimates, not actual census data. There will continue to be developments and advancements in how best to estimate and describe the population at the national level. In the present “information age,” drawing on as much data as is available, and making use of the analytical methods and tools for synthesizing large amounts of data, greatly improves our ability
to examine basic questions concerning the demographic composition of the U.S. Jewish population.

**Using Estimates**

The application of these cross-survey synthesis methods yields a consistent c. 1% annual growth rate in the U.S. adult Jewish population between 1990 and 2000. This translates to a 2010 estimate of 4.2 million adult American Jews by religion, a significantly higher estimate than that provided by NJPS—which estimated 3.4 million adult Jews in 1990 and 3.1 million in 2000. As discussed earlier, \(^{36}\) we believe that the NJPS 2000 estimate is incorrect and a function of the unique methodology of the study, including the fact that religion was asked as an open-ended question. The 1990 estimate is consistent with our findings from the cross-survey analysis and, although it is difficult to verify the reason for the increase, there are several plausible explanations. First, there was substantial immigration during this period. \(^{37}\) Second, the Reform movement’s decision in 1983 changed liberal Jewish attitudes concerning Jewish identity. \(^{38}\) Finally, there may have been a substantial increase in the proportion of intermarried families who raise Jewish children. \(^{39}\). Understanding the factors contributing to changes in the population is a goal of future research and will be facilitated by the availability of estimates that can be updated on an annual basis.

The new paradigm represented by the cross-survey analysis is based on synthesizing dozens of high-quality national surveys. The presumption is that the quantity and quality of the pooled information, which far exceeds that available from any individual survey (in particular, those conducted/sponsored by Jewish communal organizations), yields more reliable estimates than that of a single study. Over time, the synthesis and comparison of multiple surveys also allows one to identify the type of questions, sampling designs, and response rates that yield
different rates. In addition, the synthesis procedure permits the comparison of rates over time and formal trend analysis. This approach substitutes for census data and, given the unlikely change in policy with respect to the U.S. census and the collection of data about religion, represents the best alternative.

Synthesis of national surveys that include questions about religion and ethnicity does, nevertheless, involve limitations. Three problems, in particular, limit our ability to use the data to develop a comprehensive portrait of U.S. Jewry and make the data available for policy purposes: First, many national surveys fail to collect data about household composition, making it difficult to estimate the number of adults and children. Second, the standard questions about religion may not capture those Jews who identify culturally. Finally, and perhaps most importantly, using extant surveys not designed to assess Jewish identity and engagement does not allow one to draw a portrait of contemporary Jewish life. These limitations are potentially resolvable, however, as we outline below.

*Counting children.* The surveys used in the synthesis procedure do not, typically, ask about children in a respondent’s household and, thus, the estimates derived from the meta-analysis do not directly translate to an estimate of the total Jewish population. There are two potential ways to resolve this. One, which we have used as an interim step, is to track the trajectory of population growth, in particular focusing on those who are ages 18-25. In an era of growth, it perhaps underestimates the population and does not account for dramatic changes in birthrates, but over time should provide relatively good estimates. The second method, which will be increasingly possible as the database expands, is to use the subset of surveys that include household counts and/or specifically ask about respondents’ children.
Including cultural Jews. Socio-demographic studies, including local and national studies that include non-probabilistic samples, often report the proportion of respondents who consider their religion to be Judaism, along with those who consider themselves Jewish for other reasons. The estimates of the total population that is Jewish not by religion are as high as 30%. Thus, for example, NJPS 1990 included in its total count of adult Jews, 20% who were Jewish but did not identify in terms of religion. The finding from NJPS 2000 was even higher, 22%, and the figure from AJIS 2000 was 28%. Any estimate that is based solely on responses to a question about religion will, therefore, underestimate the population. Two approaches can be used to improve the cross-survey estimate based on religious identification. One is to try to integrate these data to estimate the increase. The other (described below in more detail) is to conduct a non-probabilistic national survey, weighted by the meta-analytic findings. The advantage of this approach is that it allows one to ask the cultural/ethnic identity question in a variety of ways and enables more direct comparison with the results of the synthesis.

Jewish-specific attitudes and behavior. As noted above, the key limitation associated with using a synthesis of secular studies of the U.S. population is that it does not provide data on Jewish-specific behavior and attitudes. Although the goal of a socio-demographic study is to estimate the population, understanding its characteristics is essential. To do so, the results of the cross-survey meta-analysis can be used to weight focused surveys of Jewish respondents, including local studies and surveys based on opt-in panels. Because the synthesis yields detailed information about the geographic, educational, and socio-economic status of the Jewish population, it is possible to use this information to correct biases in an achieved sample and to simulate the findings in the Jewish population. In that way, the results of the cross-survey meta-analysis will serve as a proxy for census information. In some cases, for example religious
service attendance, it may also be possible to synthesize measures directly from the surveys included in the database.

**Understanding Jewish Life**

Any survey of American Jews can, potentially, be weighted by the results of the cross-survey synthesis. Doing so effectively, however, is dependent on the survey having adequate demographic information (e.g., geographic, educational background, socio-economic status) and, to some extent, on the quality of the sample. Weighting can correct some, but not all, of the problems associated with having a non-representative sample. Thus, an important strategy for understanding the socio-demography of U.S. Jewry is to use the weights in conjunction with surveys of the population that cover the population reasonably well and provide information that can be used to reduce any sample bias.

A cost-effective strategy for developing such a “reasonably representative” Jewish-focused sample is to use an existing panel. In parallel with conducting cross-survey syntheses, we have been experimenting with using phone and web-based panels that are created for other purposes, but allow identification of Jews, both by religion and other criteria. One such panel has been developed by Knowledge Networks, a national opinion research firm. The sampling frame for their largest panel includes 50,000 U.S. households, of which nearly 1,500 have some Jewish connection. The Knowledge Networks panel was recruited using traditional, high-quality methods: random digit dialing supplemented with a cell phone frame and address-based sampling. According to a review conducted by a panel of the American Association of Public Opinion Research, the methods used by Knowledge Networks are the most effective of available techniques in reducing bias. It is not a perfect sample because those willing to participate in an on-going panel may be different than the population at large, particularly on
socio-economic criteria, but weighting based on the cross-survey synthesis addresses, in part, this difficulty. Taking into account response rates for panel recruitment are estimated around 30%, response rates within individual surveys that are administered on the panel are c. 15%.  

We have used this panel in several recent studies, including our recent investigation, the American Jewish Survey (AJS). In the AJS, the Jewish sub-sample was asked a full battery of questions about their Jewish backgrounds and identity. The questions paralleled items used on multiple national and local population studies. Jewish respondents were identified both by a question about whether they considered them themselves Jewish by religion; in addition, they were asked whether they considered themselves Jewish for any reason and whether they had a Jewish mother or father. In total, 1,400 panelists were identified as Jewish by religion or some other criterion.

Preliminary weights have been applied to the AJS dataset and allow us to use the population estimate to weight outcome measures regarding Jewish attitudes and behavior. Non-response weights accounted for known differences between survey respondents and non-respondents by age, geographic region, and household size. Post-stratification weights were then applied to adjust for any differences between the distribution of known characteristics of the achieved sample and known characteristics of the overall population derived from the meta-analysis (c. 18%). For respondents who were Jewish but not did not identify by religion, we used the Knowledge Networks base weight; for respondents who were Jewish by religion, we accounted for differences in age, whether or not the respondent was a college graduate, race, and geographic region based to our cross-survey estimates of the distribution of the U.S. adult Jewish population on the factors.
One problem is how to estimate the number of children. A conservative approach has been adopted, focused on using the proportion of 18-25 year olds as a proxy to indicate the size of the child/adolescent population. It is conservative because the young adult population is growing and this does not account for changes in the birth rates. Eventually, it will be possible to use surveys that include information about children to estimate more accurately the child population.

Using the youngest adults as the basis for estimating the size of the under 18 population, along with a similarly conservative estimate of Jewish by criteria other than religion, and combining this with our cross-survey estimates, translates to a 2010 total Jewish population estimate in the United States of 6.5 million. This number is significantly higher than suggested by NJPS and other Jewish-focused studies, but is likely an underestimate of the number of Americans who regard themselves as Jewish. This proportion translates to the U.S. Jewish population being slightly over 2% of the total population. The proportion has remained steady, even as the overall U.S. population has grown.

**Future Prospects**

The theme of the present discussion of methods to measure the U.S. Jewish population -- our proposed “new paradigm” -- is that we need to shift our focus from RDD-type population studies that seek to identify Jews to synthesizing the large quantity of survey data that includes data about Jews, along with focused studies of Jewish populations. The tradition of one-off national decennial studies is no longer a practical approach. The measurement and sampling problems are inherent in understanding the contemporary U.S. Jewish community are too complex to be resolved by single studies, and we do not, as yet, know enough about their sensitivity to question types and sampling strategies. What we do know is that the synthesis of
multiple studies, along with allowing greater statistical precision, also allows comparison of findings over time, critical to answering key questions about the state of the American Jewish community.

Comparisons across studies will also help resolve a host of methodological issues. It will make it possible to answer questions about the impact of different sampling strategies, the effect of low and high response rates, and the use of different types of questions about Jewish identity. The availability of data over time will also allow one to conduct systematic trend analyses and track the growth and decline of populations and sub-groups. This chapter has summarized some of our recent findings. It is possible, as well, to do more extensive study of past data (in particular, 1990-2000) and to attempt to untangle the reasons for population change and growth.

Data synthesis, if taken full advantage of, requires that one combine data from different types of studies. Thus, while secular studies that include questions about religion can be used to develop a demographic portrait of American Jewry, they will have to be combined (through the use of weighting techniques) with Jewish-focused surveys. The process is undoubtedly complex, but the problem of measuring a rare population such as the American Jews is inherently difficult. Viewing the project as an on-going process, rather than a cross-sectional event, is essential.

Judaic scholar Simon Rawidowicz famously coined the term, “The Ever-Dying People” to describe the Jewish people. In every generation, he noted, there are concerns about Jewish survival. It was, Rawidowicz said, the concern about survivability which helped to ensure that the community would continue to live and thrive. The ability of social scientists to count American Jews, to understand their attitudes and behavior and be able to track the evolution of the people, is perhaps the modern expression of this concern. “Counting” American Jewry with
greater accuracy and fidelity—and applying cutting-edge methodologies—contributes both to our understanding of an ever more complex world and the survival of Jewish culture.
Notes

1 We are aware of no systematic studies of the investment in social research by the Jewish community, but the costs of demographic studies (e.g., the estimated $6 million spent on NJPS 2000-2001 – see Benjamin Phillips, "Numbering the Jews: Evaluating and Improving American Jewish Population Studies, Phd Dissertation" (Brandeis University, 2007) is an order of magnitude greater than any other study we know of in the Jewish world.

2 The North American Jewish Data Bank maintains a collection of such studies. Over the past few decades, communities such as Atlanta, Baltimore, Boston, Cleveland, Denver, Hartford, Las Vegas, Miami, Nashville, New York, Philadelphia, Pittsburgh, and Washington, DC have conducted studies roughly every ten years.

3 Although “America” also includes Canada and Mexico, the label will be used throughout this report to refer to the United States.


8 Two examples of efforts to address the problem of seasonal residents are Daniel Parmer, Benjamin Phillips, and Leonard Saxe, "The 2008 Berkshire Community Study: For the Jewish Federation of the Berkshires," (Waltham: 2009); Matthew Boxer and Benjamin Phillips, The 2010 Western North Carolina Jewish Demographic Study (Waltham: 2011). Each study focused on a community that includes a large proportion of seasonal residents.


18 Response rates were especially low for households identified in the screener as religiously mixed. A full discussion of this and other potential sources of bias is in Phillips, 2007.


24 Rao and Yu, Small Area Estimation, 2.


29 We include as a “buffer” around the year 2000 some surveys that were conducted in 1997, 1998, and 1999, as well as for comparison to NJPS 1990 a subset of surveys conducted around the year 1990. For present purposes, the results reported here focus only on those surveys conducted since 2000.

30 National samples are of the continental United States, including Washington DC. Some surveys include Alaska and Hawaii. Only the continental United States portion of their samples is included here. Surveys of specific populations, such as specific age groups or geographic areas such as NY state or NY metropolitan area were also identified. In the long run, data from these sources can be incorporated to contribute to estimation of those specific subgroups.


but note that Sheskin and Dashefsky’s estimates include cultural/secular Jews, whereas Saxe et al. include Jews by religion only.

36 See also Saxe et al., "Reconsidering the Size and Characteristics of the American Jewish Population: New Estimates of a Larger and More Diverse Community."

37 In particular from the Former Soviet Union, see, Larissa Remennick, Russian Jews on Three Continents: Identity, Integration and Conflict (New Brunswick: 2007).


