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Introduction

Inspired by the needs of the Brandeis Office of
Investment Management, this work aims to implement
LLMs in academic administrative offices. This raises
three key challenges:

® Privacy: Institutional data cannot be exposed to
external APls.

e Resources: Limited computational power restricts
models to < 7B parameters.

e Efficiency: Large context windows lead to long
inference times.

Goal: Build a local, privacy-preserving system that
remains cost-efficient while enabling analytical tasks
such as information retrieval and document search.

Methods

1. VectorRAG (Baseline): A traditional RAG pipeline
retrieves document chunks from a vector database
using semantic similarity. Chunks are embedded,
indexed, and passed with the query to the LLM for
context-grounded responses.

2. GraphRAG (Proposed): Extends RAG by introducing
a knowledge graph (KG) representation using
networkx and spaCy.

3. Evaluation Strategy: We replace expensive
LLM-based evaluation with a relevance-based
metric derived from labeled datasets like Natural
Questions (NQ).

4. Metric: Recall, we measure how many relevant
answer sentences were retrieved for each query. A
high Recall indicates effective retrieval, even if
some retrieved chunks are less relevant.

Results

e VectorRAG achieves the highest recall at all levels.

e GraphRAG preprocessing time: 1 hour vs. 2 hours for VectorRAG.

While VectorRAG vyields better recall, GraphRAG remains more efficient and
interpretable.
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Conclusions

GraphRAG demonstrates that retrieval
frameworks can be optimized for efficiency,
transparency, and low hardware requirements.

Although VectorRAG excels in recall, GraphRAG’s
faster preprocessing and semantic structure
make it ideal for real-time or rapidly changing
datasets.

Insights

e Efficiency trade-off: GraphRAG achieves 3x
faster setup without costly embeddings.

e Practical deployment: can run locally without
cloud APIs or high-end clusters.

e Ideal for privacy-sensitive domains: education,
finance, administration.

Retrieval can thrive even in resource-limited
environments, showing it does not always require
massive infrastructure.
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