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Abstract

Policy analysis has long been a main interest of Clive Granger’s. Here, we present a
framework for economic policy analysis that provides a novel integration of several funda-
mental concepts at the heart of Granger’s contributions to time-series analysis. We work
with a dynamic structural system analyzed by White and Lu (2010) with well defined causal
meaning; under suitable conditional exogeneity restrictions, Granger causality coincides with
this structural notion. The system contains target and control subsystems, with possibly in-
tegrated or cointegrated behavior. We ensure the invariance of the target subsystem to
policy interventions using an explicitly causal partial equilibrium recursivity condition. Pol-
icy effectiveness is ensured by another explicit causality condition. These properties only
involve the data generating process; models play a subsidiary role. Our framework thus
complements that of of Ericsson, Hendry, and Mizon (1998) (EHM) by providing conditions
for policy analysis alternative to weak, strong, and super-exogeneity. This makes possible
policy analysis for systems that may fail EHM’s conditions. It also facilitates analysis of the
cointegrating properties of systems subject to policymaker control. We discuss a variety of
practical procedures useful for analyzing such systems and illustrate with an application to
a simple model of the U.S. macroeconomy.
Acknowledgements: The authors thank Peter Boswijk, Jim Hamilton, David Hendry,

Peter Phillips, Sophocles Mavroeidis, and the participants of the 2010 Nottingham Sir Clive
Granger Memorial Conference for helpful comments and suggestions. We thank Meng Huang
of Bates White, LLC for excellent research assistance. Any errors are solely the authors’s
responsibility.

1 Introduction

Although just three of Clive Granger’s many papers explicitly focus on aspects of policy analysis

(Granger, 1973; Granger, 1988; and Granger and Deutsch, 1992), a central and long-standing

concern evident throughout his work is that econometric theory and practice should be infor-

mative and useful to policymakers. In this paper, we further this objective by providing a novel
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framework for economic policy analysis that blends together a number of concepts at the heart

of Granger’s contributions to time-series econometrics: causality, exogeneity, cointegration, and

model specification.

Our starting point is a dynamic structural system with potentially cointegrated variables

analyzed by White and Lu (2010) (WL) within which causal meanings are well defined. This

system contains target and control subsystems, with possibly integrated or cointegrated behav-

ior. We ensure the invariance of the target subsystem to policy interventions, obviating the

Lucas critique, using an explicitly causal partial equilibrium recursivity condition. Policy effec-

tiveness is ensured by another explicit causality requirement. Causal effects are identified by

a conditional form of exogeneity. These effects can be consistently estimated with a correctly

specified model.

Following WL, we show that, given conditional exogeneity, Granger causality is equivalent

to structural causality. On the other hand, given structural non-causality, Granger causality

is equivalent to failure of conditional exogeneity. In this sense, Granger causality is not a

fundamental system property requisite for reliable policy analysis, but an important consequence

of necessary underlying structural properties.

By relying only on correct model specification and not weak exogeneity or its extensions

(strong and superexogeneity), our framework complements the policy analytic framework of

Ericsson, Hendry, and Mizon (1998) (EHM). Although giving up weak exogeneity may lead to

loss of estimator effi ciency, it also makes possible policy analysis for systems that may fail EHM’s

conditions (see Fisher, 1993). As we also show, our approach readily lends itself to analysis of the

structural consequences of a variety of control rules that the policymaker may employ. Among

other things, we find that proportional (P) control cannot modify the cointegrating properties

of a target system, whereas proportional-integral (PI) control can. In fact, PI control can

introduce, eliminate, or broadly modify the cointegrating properties of the uncontrolled target

system. Whereas cointegration between target variables and policy instruments is possible but

unusual with P control, PI control can easily induce causal cointegration between the target

variables (Yt) and the policy instruments (∆Zt).

The control mode also has interesting implications for estimation, inference, and specification

testing in controlled systems. P control or a certain mode of PI control yields ∆Zt ∼ I(0),

resulting in standard inference. Other modes of PI control yield ∆Zt ∼ I(1); the theory of Park

and Phillips (1988, 1989) may be applied to these cases.

The plan of the paper is as follows. In Section 2, we introduce the data generating process

(DGP) for the controlled system we study here, together with notions of structural causality

and policy interventions natural in these systems. Our causal notions enable us to formulate
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causal restrictions, essential for reliable policy analysis, that obviate the Lucas critique and that

ensure policy effectiveness. Section 3 discusses a conditional form of exogeneity that serves to

identify causal effects of interest and that forges links between structural causality and Granger

causality. Section 4 reviews properties of cointegrated systems relevant here, with particular

attention to their structural and causal content.

In Section 5, we give an explicit comparison of our framework with that of EHM, summarizing

their similarities and differences and commenting on their relative merits. Section 6 analyzes

the structural consequences of various rules that may be employed by policymakers to control

potentially cointegrated systems. We pay particular attention there to how the policy rules

may introduce, modify, or eliminate cointegration within the target system and to the possible

cointegrating relations that may hold between policy instruments and target variables, or among

the policy instruments. Section 7 discusses econometric considerations that arise in empirically

analyzing potentially cointegrated controlled systems and offers useful practical procedures and

diagnostics. Section 8 illustrates these methods with an application to a simple model of the

U.S. macroeconomy, and Section 9 contains a summary and concluding remarks.

In what follows, we often refer to processes "integrated of order d," I(d) processes for short.

By this we mean a stochastic process that becomes I(0) when differenced d times, where an I(0)

process is one that obeys the functional central limit theorem.

2 The DGP, Structural Causality, Policy Interventions, and Recursivity

2.1 The DGP and Structural Causality

We begin by specifying the data generating process (DGP). For concreteness, clarity, and to

afford maximum comparability to EHM, we mainly work with a linear N−variate structural
vector autoregression (VAR) with two lags:

Xt ≡
[
Yt
Zt

]
= δ0 +A1Xt−1 +A2Xt−2 + εt, t = 1, 2, ..., (1)

where Yt represents observable "target" or "non-policy" variables1 and Zt represents observable

"policy instruments" or "control variables" that may be useful for controlling Yt. Both Yt and

Zt are vectors, N1 × 1 and N2 × 1 respectively. Thus, N = N1 +N2. The vector δ0 ≡ (δ′10, δ
′
20)′

includes intercepts and any deterministic trend components. (See EHM, eq.(4).) We partition

1We follow EHM in referring to Yt as "target" variables. This should not be confused with similar nomenclature
appearing elsewhere in the literature, where "target series" means a sequence of desired values Y ∗

t for Yt or "policy
target" means a desired value for E(Yt) or some other aspect of Yt or its distribution. When, for convenience, we
refer simply to "targets" we always mean "target variables."
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the nonrandom coeffi cient matrices A1 and A2 as

A1 =

[
A11

A21

]
=

[
A111 A112

A211 A212

]
and A2 =

[
A12

A22

]
=

[
A121 A122

A221 A222

]
.

As econometricians, we do not know the A’s, nor do we observe the random "shocks" εt =

(ε′1t, ε
′
2t)
′. Although δ0, A1, and A2 may depend deterministically on t, we leave this implicit to

avoid further complicating the notation. We allow δ0, A1, and A2 to generate unit root or other

nonstationary processes, with or without cointegration. It is convenient to think of {Xt} being
(at most) I(1) as EHM do, but this is not essential.

By specifying that this is a structural system, we mean that it causally relates variables

on the right to variables on the left. For example, consider an intervention to Xt−1, denoted

xt−1 → x∗t−1 and defined as the pair (xt−1, x
∗
t−1). Then the direct effect on Yt of the intervention

xt−1 → x∗t−1 at (xt−1, xt−2, et) is defined as the difference

y∗t − yt = (δ10 +A11x
∗
t−1 +A12xt−2 + et)− (δ10 +A11xt−1 +A12xt−2 + et)

= A11(x∗t−1 − xt−1).

We see that A11 fully determines the direct effects on Yt of interventions to Xt−1. Indeed, its

elements represent the direct effects of a one unit intervention to any given element of Xt−1,

say xjt−1 → xjt−1 + 1. Similarly, A12 fully determines the direct effects of interventions to

Xt−2.We may therefore call A11 and A12 "matrices of effects." These concepts accord well with

intuition, and they are especially straightforward because of the linear structure. Similar notions

hold generally. See White and Chalak (2009) and WL for discussion of settable systems, which

provide causal foundations, relied on here, for the general case.

Using this notion of causality, we can say that if A112 = 0, then Zt−1 does not structurally

cause2 Yt. Otherwise, Zt−1 structurally causes Yt. If A112 = 0 and A122 = 0 then Zt−1
t−2 ≡

(Zt−2, Zt−1) does not structurally cause Yt. Without structural causality from policy variables

to target variables (i.e., without A112 6= 0 or A122 6= 0), policy cannot be effective. EHM (p.375)

make a parallel observation, but stated in terms of Granger causality. We provide further

comments below, when we relate structural causality to Granger causality, using the framework

of WL. Here, structural causality is the operating prerequisite.

2.2 Policy Interventions and Recursivity

For economic policy analysis, we need the concept of a policy intervention. The rough idea,

consistent with EHM, is that this is a change in the structure determining Zt. To be suffi ciently

2This causality is direct causality, but we will leave this implicit.
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clear about how this works here, we posit an underlying "partial equilibrium" structure, com-

patible with the system (1). Although this leads us through some seemingly familiar territory,

there are some perhaps subtle, but nevertheless important twists along the way.

We write the partial equilibrium structure as

Ỹt = b1 +B10Zt +B11Xt−1 +B12Xt−2 + υ1t

Z̃t = b2 +B20Yt +B21Xt−1 +B22Xt−2 + υ2t, t = 1, 2, ... . (2)

This resembles a familiar system of simultaneous equations, but, in line with conventions of

settable systems founded on the prescriptions of Strotz and Wold (1960), the right-hand side

(RHS) and left-hand side (LHS) variables are distinct, as "responses" Ỹt and Z̃t appear on the

left, whereas "settings" Yt and Zt (and their lags) appear on the right.

This seemingly minor notational difference reflects an important feature of such structures:

they are not simultaneous, and thus avoid paradoxes associated with instantaneous causality

and feedback. Nevertheless, just as in classical simultaneous equations, each equation represents

the partial equilibrium and/or optimal joint response of the LHS variables to any admissible

configuration of the RHS variables. Thus, Ỹt represents the (joint) outcome from whatever

subsystem determines Ỹt, when faced with variables outside that subsystem set to admissible

values Zt, Xt−1, Xt−2, and υ1t. The meaning of Z̃t is similar. These responses are determined

in isolation, without permitting full equilibrium3, hence our designation "partial equilibrium."

Let B1 ≡ [b1, B10, B11, B12] and B2 ≡ [b2, B20, B21, B22]. We now define a structural change,

denoted Bj → B∗j (j = 1 or 2) as a pair (Bj , B
∗
j ) of structural coeffi cients representing "old"

(Bj) and "new" (B∗j ) regimes. We also call structural changes "structural shifts." A policy

intervention, B2 → B∗2 , is a structural change in the policy equation, i.e., that determining Z̃t.

Our nomenclature is broadly consistent with that of Hendry and Massman (2006).

To specify the system’s response when all LHS variables are determined jointly, rather than

in isolation, we must specify how this joint determination is achieved. For this, we apply the

fundamental requirement of mutual consistency, necessary for equilibrium. In equilibrium, the

structure (2) satisfies

Ỹt = b1 +B10Z̃t +B11Xt−1 +B12Xt−2 + υ1t

Z̃t = b2 +B20Ỹt +B21Xt−1 +B22Xt−2 + υ2t, t = 1, 2, ... . (3)

Although this resembles a classical system of structural equations, we explicitly do not view

this as structural, because in the settable systems framework adopted here, structural rela-
3 In settable systems language, partial equilibrium corresponds to the "agent partition," and full equilibrium

corresponds to the "global partition." The partitions specify mutually exclusive subsystems, each of whose vari-
ables respond freely and jointly to variables outside that subsystem. See White and Chalak (2009) for details.
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tions necessarily embody causality. Interpreting eq.(3) causally requires instantaneous feedback

(causality), and, consistent with Granger and Newbold’s (1986, p.221) position on instantaneous

feedback, settable systems do not allow this. Thus, eqs.(3) are not structural equations; instead

they only represent the mutual consistency conditions necessary for equilibrium. Eq.(2) is the

governing structural equation system.

If instantaneous feedback is ruled out, one must explain how mutual consistency can never-

theless be achieved. A standard approach is that taken in game theory, where each player has

suffi cient information to compute the equilibrium. Let "player" 1 (the public) determine Ỹt and

"player" 2 (the policy authority) determine Z̃t. Using (3), the full equilibrium, Xt, is given by

the reduced form structural VAR:

Xt = δ0 +A1Xt−1 +A2Xt−2 + εt, t = 1, 2, ...,

i.e., eq.(1), where

δ0 = ∆

[
b1
b2

]
∆ ≡

[
I −B10

−B20 I

]−1

A1 = ∆

[
B11

B21

]
A2 = ∆

[
B12

B22

]
, and

εt = ∆

[
υ1t

υ2t

]
. (4)

In this framework, it suffi ces for each player to know B1, B2, and υt ≡ (υ′1t, υ
′
2t)
′.

We now have suffi cient foundation to embark on policy analysis, that is, the study of the

consequences of changes to the policymaker’s subsystem of the DGP. A crucial requirement for

traditional policy analysis is that the full equilibrium structural VAR for Yt is invariant to the

policy intervention. Otherwise, even without an explicit rational expectations framework, the

Lucas critique (Lucas, 1976) operates with full force, with the implication that policies ignoring

strategic behavior by the public are doomed to fail. In the EHM framework, superexogeneity

ensures this invariance. EHM (section 3) also give compelling evidence that this invariance does

hold in practice.

Our use of settable systems permits ensuring the required invariance using an approach

alternative to superexogeneity. First, observe that because the structural reduced form A’s

depend on all the underlying "deep parameters" B, a policy intervention B2 → B∗2 generally

leads to a structural shift (δ10, A11, A12) → (δ∗10, A
∗
11, A

∗
12) in the full equilibrium structural

VAR for Yt, violating invariance. The desired invariance is impossible without some further
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restriction. Here, the restriction analogous to superexogeneity is that B10 = 0. We call this

partial equilibrium recursivity, or, more simply, just recursivity. With recursivity,

Ỹt = b1 +B11Xt−1 +B12Xt−2 + υ1t

Z̃t = b2 +B20Yt +B21Xt−1 +B22Xt−2 + υ2t t = 1, 2, ... (5)

This condition is suffi cient for invariance to policy interventions of the reduced form structural

VAR for Yt, as B10 = 0 implies δ10 = b1, A11 = B11 and A12 = B12. Recursivity is also necessary

for invariance to policy interventions of the reduced form VAR for Yt, in the sense formally given

by the next result.

Proposition 2.1 Suppose B10 and B20 are such that ∆ exists and that equations (4) hold.

Then B10 = 0 if and only if for all [b1, B11, B12], we have [δ10, A11, A12] = [b1, B11, B12].

Recursivity is informationally plausible, as it allows the public to be ignorant of the poli-

cymaker’s response function and shock. Instead, the public only has to know its own optimal

response coeffi cients, B1. Although υ1t may include components known only to the public, it

may also contain an "implementation error" or "tremble" that the public has no control over or

immediate knowledge of.

Recursivity is also behaviorally plausible. Indeed, experimental evidence in economics does

not support the hypothesis that interacting agents arrive at fully rational Nash equilibria. In-

stead, the evidence supports a "level−k" hierarchy of agents, who adopt strategies of varying
sophistication (Stahl and Wilson, 1994; see also Crawford and Iriberri, 2007). Recursivity is

consistent with viewing the public as a level k player and the policy authority as a level k + 1

player. This ordering is supported by the fact that the public is not a single monolithic rational

agent, but an aggregate of agents of varying objectives and sophistication. On the other hand,

the policymaker is typically a well-defined government entity with more or less coherent objec-

tives and with resources suffi cient to know or learn player 1’s coeffi cients B1, which it may use

to determine its coeffi cients B2.

Thus, there are both informational and behavioral factors supporting recursivity. In what

follows, then, we take partial equilibrium recursivity to be a maintained assumption, analogous

to superexogeneity in the EHM framework.

3 Conditional Exogeneity and Granger Causality

Our discussion so far specifies structural causality as a property of the DGP. Particular causal

properties of the DGP ensure necessary invariance and policy effectiveness conditions for policy
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analysis. So far, models, as distinct from the DGP, have played no role. We view this as an

advantage, as delaying the introduction of models until absolutely necessary not only accords

with Occam’s principle, but also yields a theory with broader potential applicability. We now

discuss two further concepts, conditional exogeneity and Granger causality, that bear directly

on policy analysis and that are also properties solely of the DGP.

3.1 Conditional Exogeneity

In the settable systems approach, exogeneity plays a crucial role in identifying causal effects.

Here, identification means the notion of "correspondence to the desired entity" as discussed by

Hendry (1995) and Hendry, Lu, and Mizon (2009), based on notions of Wright (1915). The

particular correspondence relevant here is that between aspects (e.g., functions of moments)

of the joint distribution of observable variables, e.g., {(Yt, Zt)}, and the structural information
embodied in δ0, A1, and A2.

WL give results implying that structural coeffi cients (δ0, A1, A2) can be identified when data

are generated as in (1), provided that (Xt−1, Xt−2) is independent of εt given covariates4 Wt,

or, in Dawid’s (1979) notation,

(Xt−1, Xt−2) ⊥ εt |Wt. (6)

This is a time-series analog of the selection on observables condition (Barnow, Cain, and Gold-

berger, 1980).

When (6) holds, we say that (Xt−1, Xt−2) is conditionally exogenous with respect to εt given

Wt, or just conditionally exogenous. This is a conditional form of the strict exogeneity relation,

(Xt−1, Xt−2) ⊥ εt. (7)

In this case, Wt has zero dimension. For example, (7) holds for the structure in (1) when {εt} is
independent and identically distributed (IID), as in EHM, and {εt} is independent of (X0, X−1),

a standard assumption in this context.

When strict exogeneity fails, conditional exogeneity can nevertheless hold, as WL discuss

in detail; see also White (2006a). Suitable choices for Wt are proxies for εt, including not only

current and lagged values of variables that may also be driven by εt but also their leads (see

White and Kennedy, 2009). Wt should not be driven by lagged Xt’s.

Observe that conditional exogeneity is distinct from weak, strong, or superexogeneity (Engle,

Hendry, and Richard, 1983), as these concepts are defined strictly with respect to a model. In

contrast, conditional exogeneity is a property solely of the DGP.
4Covariates are sometimes called "control variables," as they "control for" the influence of otherwise omitted

variables. Here, we avoid confusion by reserving the designation "control variables" for those variables Zt that
control the target variables Yt.
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To see how conditional exogeneity ensures identification of structural coeffi cients, we write

E(Xt | Xt−1, Xt−2,Wt) = E(δ0 +A1Xt−1 +A2Xt−2 + εt | Xt−1, Xt−2,Wt)

= δ0 +A1Xt−1 +A2Xt−2 + E(εt | Xt−1, Xt−2,Wt)

= δ0 +A1Xt−1 +A2Xt−2 + E(εt |Wt)

= δ0 +A1Xt−1 +A2Xt−2 + C0Wt. (8)

The third equality uses (6), as this implies E(εt | Xt−1, Xt−2,Wt) = E(εt | Wt). The final

equality invokes a simplifying linearity assumption, E(εt | Wt) = c0 + C0Wt, with c0 = 0.

Linearity is by no means essential, but it keeps our notation and discussion simple. When c0

differs from zero, then the structural intercept (i.e., the non-trend component of δ0) becomes

unidentified; this need not be a serious diffi culty, however.

Thus, regressing Xt on Xt−1, Xt−2, and Wt will yield consistent estimates of δ0, A1, A2,

and C0, under suitable conditions. These conditions can even permit structural shifts. As the

details are somewhat involved, we leave this aside for now. The regression model implicitly

referenced here must be correctly specified for the sequence of conditional expectations {E(Xt |
Xt−1, Xt−2,Wt)}, in keeping with the discussion of White (1994, pp.141-147, especially p.144).

Note that models have just appeared for the first time and that weak exogeneity plays no role.

The only model condition we explicitly require is correct specification for the conditional mean

sequence {E(Xt | Xt−1, Xt−2,Wt)}. This condition does not apply directly to the structural
system (1). Nevertheless, knowledge of important features of the DGP (1) plays a key role in

achieving correct specification. This knowledge includes (i) which variables are economically

meaningful choices for Yt and Zt; and (ii) which variables Wt, driven by unobservable drivers of

Yt and Zt, may plausibly suffi ce for (6), conditional exogeneity. Specification issues of functional

form, numbers of lags, cointegration (discussed later), and even structural shift locations, among

others, may be resolved from the data.

It is especially noteworthy that some, but not all, of the regression coeffi cients in (8) have

structural meaning. Specifically, δ0, A1, and A2 are structural coeffi cients directly relevant for

policy analysis, whereas C0 has no structural meaning. Instead, C0 yields optimal predictions.

Policy analysis may be conducted without full knowledge of δ0, A1, and A2. For example,

interest may attach just to A112 and A122 in

Yt = δ10 +A111Yt−1 +A112Zt−1 +A121Yt−2 +A122Zt−2 + ε1t, t = 1, 2, ...,

as A112 and A122 determine whether policy is effective or not. A milder exogeneity condition

identifying just A112 and A122 is

(Zt−1, Zt−2) ⊥ ε1t | (Yt−1, Yt−2,Wt). (9)
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Now we only require a correctly specified model for the sequence {E(Yt |Xt−1, Xt−2,Wt)}; again,
weak exogeneity is not required.

3.2 Granger Causality

WL give results implying that given (1) and conditional exogeneity, Granger causality is equiv-

alent to structural causality. WL also give results implying that given (1) and in the absence of

structural causality, Granger causality is equivalent to the failure of conditional exogeneity. We

now make these claims precise and discuss their implications for policy analysis.

The relevant equivalence of structural and Granger causality is as follows:

Proposition 3.1 Suppose that {(Wt, Xt, εt)} is a stochastic process satisfying (1) and (9),

and that (Zt−1, Zt−2) is not solely a function of (Yt−1, Yt−2,Wt). Then (Zt−1, Zt−2) does not

structurally cause Yt (i.e., A112 = 0 and A122 = 0) if and only if

Yt ⊥ (Zt−1, Zt−2) | (Yt−1, Yt−2,Wt),

that is, (Zt−1, Zt−2) does not finite-order G−cause Yt with respect to (Yt−1, Yt−2,Wt).

The finite-order Granger non-causality condition Yt ⊥ (Zt−1, Zt−2) | (Yt−1, Yt−2,Wt) is not

classical G non-causality. In the notation here, the classical condition is

Yt ⊥ Zt−1 | Y t−1,W t−1,

where Zt−1 ≡ (Zt−1, Zt−2, ...) is the "t − 1 history" of {Zt} and Wt contains no leads. As WL

explain in detail, finite-order G non-causality is the extension of the classical condition most

directly relevant for "Markov" structures such as (1), in the sense that this is the condition

equivalent to structural non-causality, given conditional exogeneity. The classical condition

corresponds to more general structures under different but related exogeneity conditions. As

WL also explain, the covariates Wt can contain both lags and leads relative to time t, without

violating the causal direction of time. Thus, the presence of Wt in the finite-order definition

does not conflict with the spirit (or causal content) of the classical definition.

Without further conditions, neither G−causality property is necessary nor suffi cient for the
other. As WL note, the finite-order condition is that usually tested in the literature.

Thus, in the presence of the conditional exogeneity required to identify specific causal ef-

fects, statements about G−causality (specifically, the applicable finite-order G−causality) are
essentially statements about structural causality. Given conditional exogeneity, it may therefore

be possible to determine whether the policy and target variables have genuine causal links (as
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required by Granger and Deutsch, 1992; see also EHM, p.375), by testing whether (Zt−1, Zt−2)

(or some other suitable finite history) finite-order G−causes Yt (with respect to (Yt−1, Yt−2,Wt)).

We qualify this statement by saying that this determination "may" be possible to signal that

certain control scenarios can interfere with use of G−causality for this purpose (see Sargent,
1976; Buiter, 1984; Granger, 1988; and Ermini, 1992), namely that (Yt−1, Yt−2,Wt) completely

determines (Zt−1, Zt−2). We provide further discussion in Section 7, where we discuss estimating

and testing controlled systems. For the time being, we treat such cases as special.

Similarly, one can test whether the policy variables (Yt−1, Yt−2) (or some other suitable finite

history) structurally cause Zt (i.e., A211 6= 0 or A221 6= 0) by testing whether (Yt−1, Yt−2) finite-

order G−causes Zt (with respect to (Zt−1, Zt−2,Wt)). As EHM (p.375) comment, "actual policy

simulations may or may not assume such feedback," although past values of target variables

typically do influence policy-making behavior. Nevertheless, as we see in Section 6, feedback is

not necessary for policy effectiveness.

By itself, however, Granger causality is not enough to ensure the presence of the genuine

causal links required for policy effectiveness. The reason is that when structural causality is ab-

sent, Granger causality can still appear, as a consequence of the failure of conditional exogeneity.

In fact, the two properties are equivalent in this case:

Proposition 3.2 Suppose that {(Wt, Xt, εt)} is a stochastic process satisfying (1) and that

(Zt−1, Zt−2) is not solely a function of (Yt−1, Yt−2,Wt).

(i) Suppose (Zt−1, Zt−2) does not structurally cause Yt (i.e., A112 = 0 and A122 = 0). Then

(Zt−1, Zt−2) does not finite-order G−cause Yt with respect to (Yt−1, Yt−2,Wt) if and only if

(Zt−1, Zt−2) ⊥ ε1t | (Yt−1, Yt−2,Wt).

(ii) Suppose (Xt−1, Xt−2) does not structurally cause Yt (i.e., A11 = 0 and A12 = 0). Then

(Xt−1, Xt−2) does not finite-order G−cause Yt with respect to Wt if and only if

(Xt−1, Xt−2) ⊥ ε1t |Wt.

Thus, when EHM (p.375) state, "Without Granger causality from instruments to targets, policy

is unlikely to be effective," one must recognize that, in the present context, the accuracy of this

statement rests on the strict exogeneity (Xt−1, Xt−2) ⊥ ε1t ensured by their specification of the

DGP (that {εt} is IID in (1); see EHM, p.373). Otherwise, the presence of Granger causality

has nothing necessarily to say about policy effectiveness, because it has nothing necessarily to

say about the structural causality required for policy effectiveness. Instead, G−causality may
simply be signalling exogeneity failure.
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4 System Estimation With and Without Cointegration

Consider a generic structural VAR (i.e., we permit but do not require Xt = (Y ′t , Z
′
t)
′):

Xt = δ0 +A1Xt−1 +A2Xt−2 + εt, t = 1, 2, ...,

and suppose that ∆Xt is I(0) and that there exist r < N cointegrating relations such that

β′Xt is also I(0), where β is an N × r matrix with full column rank. We emphasize that here
the cointegrating relations are dynamic properties of the data generating process. They are

explicitly not causal, as also emphasized by EHM, p.378. When β′Xt is I(0), there also exists

an N × r matrix α with full column rank such that

αβ′ = A1 +A2 − I.

See, e.g., Johansen (1988). Letting Γ ≡ −A2 then gives the standard error-correction cointe-

grating representation

∆Xt = δ0 + αΨt−1 + Γ∆Xt−1 + εt, (10)

where ∆Xt ≡ Xt − Xt−1 and Ψt−1 ≡ β′Xt−1. This also has a structural interpretation, repre-

senting the causal relation holding between the response ∆Xt and any admissible settings of

RHS variables Ψt−1, ∆Xt−1, and εt. Thus, the matrices α and Γ embody the effects on ∆Xt of

interventions to Ψt−1 (long-run equilibrium departures) and ∆Xt−1, respectively. On the other

hand, β does not embody causal effects between elements of Xt.

When cointegration is present, the relevant exogeneity conditions permit estimation along

standard lines. Specifically, suppose (6) holds. It follows from Dawid (1979, lemma 4.2(i)) that

(Xt−1,∆Xt−1) ⊥ εt |Wt and (Ψt−1,∆Xt−1) ⊥ εt |Wt.

Thus, for example, we have

E(∆Xt | Ψt−1,∆Xt−1,Wt) = δ0 + αΨt−1 + Γ∆Xt−1 + E(εt | Ψt−1,∆Xt−1,Wt)

= δ0 + αΨt−1 + Γ∆Xt−1 + E(εt |Wt)

= δ0 + αΨt−1 + Γ∆Xt−1 + C0Wt.

As for the Engle-Granger estimator (Engle and Granger, 1987), one can apply a two-stage

procedure, estimating β in a first stage by least squares (Stock, 1987), forming an estimate Ψ̂t−1

of Ψt−1, and then regressing ∆Xt on an intercept and Ψ̂t−1, ∆Xt−1, Wt to obtain standard

estimators of δ0, α, Γ, and C0. An interesting feature of this regression is that conditional

exogeneity justifies the inclusion of covariates Wt, as above, which may include both lags and
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leads with respect to time t. To the best of our knowledge, this possibility has not previously

been noted. As above, C0 has no structural meaning, whereas the remaining coeffi cients have

the desired structural interpretation.

Similarly, one can apply methods of Johansen (1988, 1995), but also including covariates Wt

as regressors along with Xt−1 and ∆Xt−1.

When cointegration does not hold, quasi-maximum likelihood methods nevertheless apply to

deliver useful estimators of coeffi cients of interest. We saw above that

E(Xt | Xt−1, Xt−2,Wt) = δ0 +A1Xt−1 +A2Xt−2 + C0Wt.

Further, observe that with ηt ≡ Xt − E(Xt | Xt−1, Xt−2,Wt) = εt − E(εt | Wt), the exogeneity

condition (Xt−1, Xt−2) ⊥ εt |Wt implies (Xt−1, Xt−2) ⊥ ηt |Wt, so that

E(ηtη
′
t | Xt−1, Xt−2,Wt) = E(ηtη

′
t |Wt).

It is plausible that this conditional heteroskedasticity can be exploited to yield a relatively

effi cient GLS-like estimator, based on a suitable specification for E(ηtη
′
t | Wt). Observe that

conditional exogeneity simplifies the modeling, as Xt−1 and Xt−2 do not contribute to the

conditional variance. On the other hand, since Wt is explicitly chosen to predict εt, we should

generally expect it to predict ηtη
′
t as well, affording the opportunity for possible effi ciency gains.

For completeness, we record the normal quasi-maximum likelihood estimator (QMLE) as the

solution to the problem

max
θ∈Θ

LT (θ) ≡ T−1
T∑
t=1

−.5 ln det(Σ(Wt; θ2))

−.5(Xt − µ(Xt−1, Xt−2,Wt; θ1))′[Σ(Wt; θ2)]−1(Xt − µ(Xt−1, Xt−2,Wt; θ1)),

where θ ≡ (θ′1, θ
′
2), Σ(Wt; θ2) is a parametrization for E(ηtη

′
t |Wt), and µ(Xt−1, Xt−2,Wt; θ1) is

a parametrization (e.g., linear) of E(Xt | Xt−1, Xt−2,Wt).

Although this is the usual normal QMLE, its asymptotic properties will vary, depending on

those of {Xt}, which may contain trends, unit roots, and possible unsuspected cointegration.
Generally, the QMLE will be consistent, but its asymptotic distribution need not be normal.

Asymptotic theory suffi ciently general to handle this QMLE for the strictly exogenous case (Wt

absent) can be found in Park and Phillips (1988, 1989), Ahn and Reinsel (1990), Li, Ling, and

Wong (2001), and Sin (2004). Developing theory for the fully general conditionally exogenous

case in the absence of cointegration is an interesting topic for future research.
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5 A Comparison with EHM

The settable systems-based policy analysis framework laid out above contains a variety of ele-

ments in common with the framework set forth by EHM. Nevertheless, the relation and roles

of these elements differ between the two approaches. There are also elements in each that are

not shared by the other. In this section, we briefly summarize the similarities and differences of

these systems and comment on their relative merits.

The goal of both our approach and EHM’s is to specify conditions under which one can

analyze the effects of policy interventions through the use of an econometric model. Both

approaches start by specifying the DGP. For clarity and concreteness, both we and EHM work

with a linear N−variate structural VAR with two lags, eq.(1). For expositional convenience,

EHM restrict {Xt} to be (at most) I(1). We emphasize that this is just for convenience; in the

next section we see how an I(2) process for Zt can arise naturally.

As EHM note, a necessary condition for policy analysis is that the policy instruments and

targets have genuine causal links (EHM, p.375, condition 1). In our framework, this requirement

is literally enforced by a structural causality condition: the causal effects B112 and B122 of

policy instruments Zt−1 and Zt−2 on the partial equilibrium response Ỹt must not both be zero.

Otherwise, the policy instruments have no causal effect on the target variable. In contrast, EHM

(p.375) link this requirement to Granger causality: "Without Granger causality from instruments

to targets, policy is unlikely to be effective." The qualification "unlikely" properly reflects the

lack of perfect correspondence between structural causality and Granger causality. The two

are not the same, and the present framework draws the needed distinction, based on work of

WL, who show that G−causality and structural causality are equivalent, provided a suitable
conditional form of exogeneity holds. In this sense, G−causality is a derivative requirement that
may be useful for testing the structural causality of policy instruments, which is the fundamental

requirement here.

Another necessary condition is that the policy intervention "does not alter the economet-

ric model in a self-contradictory way," ensuring that the Lucas (1976) critique does not hold

(EHM, p.375, condition 3). EHM enforce this requirement by imposing superexogeneity to

ensure the necessary invariance (Engle, Hendry, and Richard, 1983, definition 2.9). Superexo-

geneity combines the properties of weak exogeneity and invariance to a specified set of parameter

interventions. Thus, superexogeneity is undefined without weak exogeneity. Weak exogeneity,

however, is a property of a correctly specified model relative to a DGP that acts primarily to

ensure estimator effi ciency (see White, 1994, pp. 141-147). A significant concern is that im-

posing weak exogeneity can rule out important structures directly relevant for policy analysis.
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For example, Fisher (1993) shows that weak exogeneity is violated when dynamic stability is

imposed in cointegrated structural VAR models.

As a simplified version of Fisher’s (1993) example, let both Yt and Zt be scalars, and consider

the integrated structural VAR[
∆Yt
∆Zt

]
=

[
δ10

δ20

]
+

[
Γ11 Γ12

Γ21 Γ22

] [
∆Yt−1

∆Zt−1

]
+

[
ε1t

ε2t

]
. (11)

Central to the EHM approach is the reparametrization of (11) in terms of conditional (∆Yt | ∆Zt)
and marginal (∆Zt) distributions. Here this yields

∆Yt = θ0 + θ1∆Zt + θ2∆Yt−1 + θ3∆Zt−1 + ζt (12)

∆Zt = δ02 + Γ21∆Yt−1 + Γ22∆Zt−1 + ε2t, (13)

with

ζt ≡ ε1t − θ1ε2t ∼ N (0,Ω) ,

where Ω = Σ11 − Σ12Σ−1
22 Σ21 and

θ1 = Σ12Σ−1
22 θ0 = δ01 − θ1δ02

θ2 = Γ11 − θ1Γ21 θ3 = Γ21 − θ1Γ22.

(14)

Without dynamic stability restrictions, the parameters of the conditional and marginal distrib-

utions, λ1 = (θ0, θ1, θ2, θ3,Ω) and λ2 = (δ02,Γ21,Γ22,Σ22), define a sequential cut between the

conditional model (12) and the marginal model (13). The cross restrictions stemming from (14)

impose no specific restrictions on the elements of either λ1 or λ2. Hence, weak exogeneity holds.

However, if short-run dynamic stability is imposed in (12), then we require |θ2| < 1. This,

together with (14), implies |Γ11 − θ1Γ21| < 1. Now λ1 and λ2 are no longer variation free, and

weak exogeneity of Yt−1 no longer holds. EHM policy analysis is not possible in this system.

In contrast, our approach enforces the needed invariance by imposing the partial equilibrium

recursivity restriction B10 = 0, i.e., Zt does not structurally cause Ỹt in partial equilibrium.

This ensures that the coeffi cients of the full equilibrium reduced form data generating process

for Yt are invariant to policy interventions. This is not a property of the model, so we are not

imposing invariance on the econometric model, as in condition 3 of EHM. But our requirement

does imply that an invariant model for Yt can be correctly specified, since recursivity ensures

that invariance holds for the DGP. We view the transparency and plausibility of the partial

equilibrium recursivity condition B10 = 0 as a further advantage.

As we do not require weak exogeneity, our approach applies to the structurally stable VAR

above or to Fisher’s (1993) more elaborate example with cointegration. Although effi ciency
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may not be achieved without weak exogeneity, in our view this sacrifice is worth the gain of

permitting the analysis of important policy-relevant DGPs. Even without full effi ciency, relative

effi ciency gains are often possible. And if weak exogeneity does hold, then nothing is lost.

Although we do not require estimator effi ciency, adept policy analysis minimally requires

consistent coeffi cient estimation. This is required for policymakers seeking to implement effective

policy, as these policies typically depend on the coeffi cients of the structural VAR for the target.

This is also required for econometricians seeking to understand how the components of the

controlled system behave, both individually and jointly. To ensure consistent estimation, the

coeffi cients of interest must be identified in the sense previously described. Otherwise, no model

can inform us about these. Given identification, we then require a correctly specified model for

certain aspects of the distribution of observables (e.g., specific conditional expectations). To

ensure identification of the various effects of interest in our framework, we rely on conditional

exogeneity requirements. Thus, whereas EHM rely on weak exogeneity in a correctly specified

model to arrive at effi cient estimates of weakly exogenous parameters, we rely on conditional

exogeneity to identify structural effects (coeffi cients) of interest and a correctly specified model

to consistently estimate these. In this way, our approach satisfies EHM’s condition 2 for a policy

analytic framework to be of value, namely that "the model represents the economy closely enough

that its policy predictions reasonably match outcomes."

EHM additionally require that "the policy experiment is feasible" (condition 4) and that

"the policy instruments are manipulable" (condition 5). These conditions are also in force here,

but with the difference that because policy interventions (experiments) here are structural shifts

to the policy subsystem of the DGP, the model is not directly involved, as it is for EHM.

(Note that with settable systems, a suffi ciently flexible DGP can readily accommodate policy

interventions; one need not posit a separate DGP for each policy intervention.) Feasibility here

means that the contemplated intervention to the policy subsystem is itself compatible with

the DGP. Manipulability means that the policy instruments can in fact be set by the policy

authority to the value specified by the policy rule. In the discussion of Section 6, where we

study implications of various policy rules, we take feasibility and manipulability for granted

throughout.

Thus, EHM work with the DGP-based properties of Granger causality and cointegration,

together with the model properties of weak exogeneity and superexogeneity to pursue policy

analysis. Here, we pursue policy analysis using the DGP-based properties of structural causality,

conditional exogeneity, and cointegration, together with the model property of correct specifi-

cation. There are two causal requirements: (i) causality of lagged policy instruments for the

partial equilibrium target response and (ii) recursivity, i.e., non-causality of current policy in-
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struments for the partial equilibrium target response. Invariance is a consequence of recursivity;

Granger causality is an implication of structural causality and conditional exogeneity.

6 Some Structural Implications of Policy Control Rules

So far, we have taken as given the dynamics of the control subsystem determining Zt, that is,

the policymaker’s behavior. But policymakers may follow specific rules to attain their policy

objectives; these rules generally have implications for the integration and cointegration properties

of the system and its components. We now demonstrate the utility of the present framework

by examining the consequences of various policymaker behaviors, all directed toward achieving

the goal of a desired long-run expected value for the target variable. Despite its simplicity, this

case usefully illustrates a variety of interesting features of the controlled system. The analysis

is facilitated by not having to account for a priori considerations of weak exogeneity.

We begin by recalling the recursive partial equilibrium structural system specified earlier,

Ỹt = b1 +B11Xt−1 +B12Xt−2 + υ1t,

Z̃t = b2 +B20Yt +B21Xt−1 +B22Xt−2 + υ2t t = 1, 2, ...

Next, we translate this system to a form called the canonical recursive representation. For this,

we equate settings with responses, i.e., Yt = Ỹt and Zt = Z̃t, so that

Yt = b1 +B11Xt−1 +B12Xt−2 + υ1t,

Zt = b2 +B20Yt +B21Xt−1 +B22Xt−2 + υ2t t = 1, 2, ... (15)

We explicitly rule out instantaneous causation by requiring that υ1t is realized prior to Yt, and

that Yt and υ2t are realized prior to Zt. These realizations can be viewed as occurring within

the period, that is, after t− 1 and before t. We emphasize this requirement by referring to this

as contemporaneous rather than instantaneous causation. These equations now represent the

natural system evolution in a form making it particularly suitable for describing policymaker

behavior and for studying the implications of this behavior.

We first consider a system of the particular form

∆Yt = b1 + α1β
′
1Yt−1 +B11∆Yt−1 +B12∆Zt−1 + υ1t,

∆Zt = b2 +B20∆Yt t = 1, 2, ... (16)

For simplicity, we assume here that the shocks {υ1t} are IID with mean zero. Also just for

simplicity, we take υ2t = 0, so the policymaker is able to precisely implement their policy. Thus,

υ1t is independent of (Xt−1, Xt−2) and estimation is standard (e.g., Ahn and Reinsel, 1990).
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Where convenient, we take N1 ≤ N2; this helps ensure that there are enough policy variables to

control all the targets. In the appendix we explicitly treat the case where N2 < N1.

With no control (∆Zt = 0), we observe the "open-loop" target dynamics,

∆Yt = b1 + α1β
′
1Yt−1 +B11∆Yt−1 + υ1t.

When β1 = 0, we have an integrated open-loop system for Yt without cointegration. Otherwise,

with 0 < r ≡ rk(β1) < N1, the open-loop target system exhibits cointegration.

We suppose the policymaker seeks to attain E(∆Yt) = γo in the long run, as, for example,

when the policymaker targets an inflation rate or a GDP growth rate. The question of how to

adjust ∆Zt to achieve a desired long-run policy goal or even a series of desired target values

{∆Y ∗t } in dynamic systems is the subject of the theory of optimal control. There is a vast
literature in this area; the classical theory developed in engineering and related fields, was

adopted early into economics (Simon, 1952), and has transformed in ways relevant to specific

challenges in economics. See Ermini (1992) and Pagan (1997) for a discussion of this evolution.

Despite its potential importance for policy analysis, the study of control of cointegrated

systems has only received modest attention so far. Besides Ermini (1992) and EHM, works

considering various aspects of this topic are those of Granger (1988), Karunaratne (1996), Jo-

hansen and Juselius (2001) (JJ), and Monti (2003). JJ and Monti (2003) in particular give

sophisticated treatments of control in cointegrated systems. For conciseness, we do not reiterate

the foundations of this theory. Instead, we just note that under suitable conditions, one feasible

optimal policy for targeting γo has the form above,

∆Zt = b2 +B20∆Yt,

where b2 and B20 are properly chosen. The famous Taylor rule (Taylor, 1993) is of this form.

In the engineering literature, this is known as proportional (P) control of ∆Yt. More sophis-

ticated control methods are also common, especially the class of proportional-integral-derivative

(PID) methods, which can also be expressed as a constrained version of eq.(15). We first consider

P control, as this keeps the analysis relatively simple and delivers useful insights; later in this

section, we consider a form of proportional-integral (PI) control. In discussing our empirical

example, we discuss a form of PID control. Throughout, our analysis is fairly elementary. We

refer the interested reader to JJ or Monti (2003) for deeper analysis.

The P-controlled "closed-loop" target system, obtained by substitution in (16), is

∆Yt = (b1 +B12b2) + α1β
′
1Yt−1 + (B11 +B12B20)∆Yt−1 + υ1t.

As long as ∆Zt−1 structurally causes ∆Yt (B12 6= 0), the dynamics of the open-loop and closed-

loop systems can be very different. Because of partial equilibrium recursivity, the open-loop
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deep parameters (b1, B11, B12) and dynamics are invariant to policy interventions. On the other

hand, the closed-loop coeffi cients and dynamics are not invariant to policy interventions, as the

policymaker’s coeffi cients (b2, B20) determine the closed-loop dynamics.

In what follows, we pay particular attention to comparing target system properties with and

without control, that is, to comparing the closed- and open-loop dynamics. We develop our

analysis by starting with simple cases and considering progressively more complex possibilities.

6.1 P Control without Open-Loop Cointegration

With P control and in the absence of cointegration, the closed-loop target system is

∆Yt = (b1 +B12b2) + (B11 +B12B20)∆Yt−1 + υ1t. (17)

Closed-loop target system stability is determined by the roots of the characteristic equation

det[ I z − (B11 +B12B20)] = 0,

where z is a complex number. The closed-loop target system is stable if these roots lie inside

the unit circle. To attain E(∆Yt) = γo, we require that ∆Yt is I(0), so we assume that the

policymaker chooses B20 such that the roots of the characteristic equation lie inside the unit

circle. Interestingly, the open-loop target system can have roots on or outside the unit circle;

proper choice of B20 can therefore change the order of integration between open- and closed-loop

systems. On the other hand,

Proposition 6.1 With P control, when the open-loop target system is integrated but not coin-

tegrated, no choice of (b2, B20) can initiate cointegration in the closed-loop target system.

For brevity in this section, we leave implicit the other conditions imposed above.

Further, with P control, ∆Zt is an affi ne function of an I(0) process, so ∆Zt is I(0) and Zt

is generally I(1).When Zt is I(1), we can ask whether Zt can be cointegrated. For this, we seek

non-zero θ such that θ′Zt is I(0). We have

θ′Zt = θ′Zt−1 + θ′b2 + θ′B20∆Yt.

This is I(0) if and only if θ′b2 + θ′B20∆Yt = 0, in which case θ′Zt is constant. Thus,

Proposition 6.2 With P control, when the open-loop target system is integrated but not cointe-

grated, the control system exhibits cointegration if and only if there exists non-zero θ in the null

space of B′20 such that θ
′b2 = 0.
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We thus view cointegration within the P control system as possible but unusual. To support

this, we now examine the choice of (b2, B20) in more detail. As noted above, we choose (b2, B20)

to achieve the policy objective, E(Yt) = γo. To find a solution to this policy problem, we assume

dynamic equilibrium at γo and take expectations on both sides of (17) to obtain

γo = (b1 +B12b2) + (B11 +B12B20)γo.

Collecting terms and solving for b2 gives

b2 = B−1
12 {(I − [B11 +B12B20])γo − b1}, (18)

where B−1
12 denotes the right inverse, B−1

12 ≡ B′12(B12B
′
12)−1, provided B12 has full row rank

("full structural causality" of ∆Zt−1). If B12 has less than full rank, then either γo cannot be

attained or there are multiple solutions. Here, we take B12 to be of full rank, ensuring a unique

solution. The appendix treats the case where B−1
12 need not exist.

From (18), we see that with this long-run objective the policymaker has a fair degree of

latitude, as both b2 and B20 are subject to policymaker choice. Eq.(18) gives the required value

for b2 given any choice for B20, even a choice with deficient rank or with B20 = 0, the no

feedback rule. In the latter case, however, we require b2 6= 0 for control to be present, in which

case cointegration in the control system cannot hold.

We also note that the closer the roots of the characteristic equation are to the unit circle,

the slower is convergence to dynamic equilibrium; the closer to zero, the quicker. As can be seen

from eq.(17), the policy goal can be attained as quickly as possible by choosing, if feasible, B20

to fully offset the open-loop dynamics, such that

B20 = −B12
−1B11.

Another consequence of (18) is that when γo is fixed, a structural shift in the open-loop target

process generally results in a policy intervention (b2, B20)→ (b∗2, B
∗
20). Although the closed-loop

process may then undergo a further structural shift, the long-run behavior remains unchanged

as long as the policy goal γo remains constant. We can thus distinguish several distinct kinds

of policy interventions: changes to the policy goal γo (a "policy regime change," resulting, for

example, from a change in political regime); changes to the proportional gain B20, resulting

from "tuning exercises" undertaken by the policymaker to change the speed of convergence to

equilibrium, with consequent adjustment to b2; and changes to b2 and B20 due to policymaker

responses to structural shifts in the open-loop target system.

So far, we have seen that with P control and in the absence of open-loop target system

cointegration, there can be no cointegration within the closed-loop target system and that coin-

tegration within the control system is possible but very special. As Yt and Zt are generally both
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I(1), it also makes sense to ask whether there is or can be cointegration between the closed-loop

target and control systems.

For this, we seek θ = (θ′1, θ
′
2)′ such that θ′1Yt + θ′2Zt is I(0). P control implies

θ′1Yt + θ′2Zt = θ′1Yt + θ′2(Zt−1 + b2 +B20∆Yt)

= (θ′1Yt−1 + θ′2Zt−1) + (θ′1 + θ′2B20)∆Yt + θ′2b2.

As ∆Yt is I(0), it is easily verified that cointegration holds (with θ′1Yt + θ′2Zt = const) if and

only if θ′2b2 = 0, with θ′1 = −θ′2B20.

Proposition 6.3 With P control, when the open-loop target system is integrated but not coin-

tegrated, there is cointegration between the control and the controlled target if and only if there

exists non-zero θ2 such that

θ′2B
−1
12 {(I − [B11 +B12B20])γo − b1} = 0.

This places very stringent conditions on the relation between γo and B20.

Thus, even though there is no cointegration in the open-loop target system, P control can

induce cointegration between target and control. But this is a quite special circumstance that

need not be consistent with policymaker behavior, as the policymaker may choose a speed of

convergence to the long-run policy goal γo incompatible with this condition.

We also see that policy interventions may create or destroy cointegration between control

and target. Specifically, interventions to γo but not B20 (policy regime change) or to (b2, B20)

but not γo (tuning exercises) will destroy cointegration if it exists and may (but are not likely

to) initiate cointegration if it does not. Interventions to (b2, B20) resulting from structural shifts

in the target subsystem may (but are not likely to) create or can easily destroy cointegration

between target and control.

6.2 P and PI Control with Open-Loop Cointegration

6.2.1 P Control

Now consider a system that implements P control of a target exhibiting cointegration in the

open-loop target dynamics:

∆Yt = b1 + α1β
′
1Yt−1 +B11∆Yt−1 +B12∆Zt−1 + υ1t,

∆Zt = b2 +B20∆Yt t = 1, 2, ... (19)

We again suppose the policymaker seeks to attain E(∆Yt) = γo. Our discussion parallels that

for the pure integrated case, but now we must take proper account of the cointegrating terms.
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The closed-loop representation for the target system is now

∆Yt = (b1 +B12b2) + α1β
′
1Yt−1 + (B11 +B12B20)∆Yt−1 + υ1t. (20)

From this, we see that

Proposition 6.4 With P control, when the open-loop target system is cointegrated, no choice

of (b2, B20) can remove cointegration from the closed-loop target system.

Analysis for the control system identical to that for the pure integrated case gives

Proposition 6.5 With P control, when the open-loop target system is cointegrated, the control

system exhibits cointegration if and only if there exists non-zero θ in the null space of B′20 such

that θ′b2 = 0.

To see how policy can achieve a long-run policy goal, take expectations on both sides of (20)

at the steady state, which gives

γo = (b1 +B12b2) + α1µ1 + (B11 +B12B20)γo, (21)

where µ1 ≡ β′1E(Yt−1). To determine µ1, observe that

β′1E(Yt) = β′1E(Yt−1) + β′1E(∆Yt),

so that in the steady state

β′1γo = 0.

This restriction defines the feasible long-run policy targets. We call these "cointegration feasi-

ble." Any policy goal not satisfying this condition is unattainable in this system. Essentially,

the cointegrating relations remove r < N1 degrees of freedom from the policymaker’s discretion.

This may enable the policymaker to focus on controlling a linear combination of ∆Yt using a

smaller set of policy control variables. We discuss this case in the appendix.

To solve for µ1, multiply both sides of (21) by β
′
1. This gives

β′1(b1 +B12b2) + β′1α1µ1 + β′1(B11 +B12B20)γo = 0 so that

µ1 = −(β′1α1)−1β′1[(B11 +B12B20)γo + (b1 +B12b2)],

where we use the fact that α1 and β1 have full column rank, ensuring that β
′
1α1 is nonsingular.

Substituting this into (21) gives

γo = (b1 +B12b2)− α1(β′1α1)−1β′1[(B11 +B12B20)γo + (b1 +B12b2)] + (B11 +B12B20)γo.
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Collecting terms, we get

{I − J1(B11 +B12B20)}γo = J1(b1 +B12b2), (22)

where J1 ≡ I − α1(β′1α1)−1β′1 is the "long-run impact matrix" (see JJ, eq.(4)). Observe that

J1(B11 + B12B20) plays the role of a "first order autocorrelation" in this system. This deter-

mines the speed of convergence to the policy steady state, provided the roots of the associated

characteristic equation are inside the unit circle. With P control, the policymaker can influence

this speed of convergence by choice of B20.

Generally, J1 is singular, so when we express b2 in terms of B20, we obtain

J1B12b2 = [I − J1(B11 +B12B20)]γo − J1b1.

Compare this to (18) above: the pure integrated case results when J1 = I. This is an under-

determined system of equations, so there are generally many ways to choose b2 satisfying these

equations for given B20 and γo. One way to proceed in such cases is to minimize a convex

function of b2 (for example, b′2b2) subject to (22).

We emphasize that only choices for γo satisfying β
′
1γo = 0 give valid choices for B20 and b2.

As for the pure integrated case, we ask whether cointegration can hold between the target

and control subsystems. Now we seek θ = (θ′1, θ
′
2)′ such that θ′1Yt + θ′2Zt is I(0). The analysis is

essentially identical to the pure integrated case, as both involve P control. We obtain

θ′1Yt + θ′2Zt = θ′1Yt + θ′2(Zt−1 + b2 +B20∆Yt)

= (θ′1Yt−1 + θ′2Zt−1) + (θ′1 + θ′2B20)(Yt − Yt−1) + θ′2b2.

As in the previous case, we obtain cointegration if and only if θ′2b2 = 0, with θ′1 = −θ′2B20. Thus,

Proposition 6.6 With P control, when the open-loop target system is cointegrated, there is

cointegration between the control and the controlled target if and only if there exists non-zero θ2

such that  −J1B12 [I − J1(B11 +B12B20)]
θ′2 0
0 β′1

( b2
γo

)
=

 J1b1
0
0

 . (23)

In contrast to the pure integrated case, there may be no such solution γo. Thus, this possibility

is even more exceptional than the pure integrated case. Although P control can sometimes

induce cointegration between target and control, this is a very special circumstance, depending

on exact policymaker choices that may be incompatible with policymaker objectives.
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6.2.2 PI Control

A potential drawback of P control is that it cannot achieve policies violating β′1γo = 0. If the

policymaker’s desired γo is not compatible with this restriction, it would be useful to alter β1,

say to β̃1, for which β̃
′
1γo = 0 does hold. This cannot be done with P control. Accordingly,

consider a system with a cointegrated open-loop target as above, but with the control system

augmented by the inclusion of a term depending on Yt:

∆Yt = b1 + α1β
′
1Yt−1 +B11∆Yt−1 +B12∆Zt−1 + υ1t,

∆Zt = b2 +B20∆Yt +B−1
12 α1λ

′
1Yt t = 1, 2, ...,

where λ1 is N1 × r. This control system has a form known as proportional-integral (PI) control

in the engineering literature. The presence of Yt implements the "integral" aspect of the control.

We denote this particular implementation PI1.

The closed-loop target behavior for this system is given by

∆Yt = b1 + α1β
′
1Yt−1 +B11∆Yt−1 +B12(b2 +B20∆Yt−1 +B−1

12 α1λ
′
1Yt−1) + υ1t

= b1 +B12b2 + (α1β
′
1 + α1λ

′
1)Yt−1 + (B11 +B12B20)∆Yt−1 + υ1t

= b1 +B12b2 + α1(β1 + λ1)′Yt−1 + (B11 +B12B20)∆Yt−1 + υ1t.

We see that this system is cointegrated, but now with cointegration parameters (α1, β̃1), with

β̃1 ≡ β1 + λ1. PI1 control permits the policymaker to modify the cointegration-feasible policies.

By suitable choice of λ1, the policymaker can reduce the cointegrating rank or even remove

cointegration entirely from the closed-loop target system (set λ1 = −β1). We have

Proposition 6.7 When the open-loop target system is cointegrated, PI 1 control can modify or

remove the closed-loop target system cointegrating vector, β1 + λ1.

We also see that with PI1 control, since Yt is I(1), ∆Zt = b2 + B20∆Yt + B−1
12 α1λ

′
1Yt is

generally I(1), so Zt is I(2). There could be linear combinations of Zt that are I(1), but as the

details are involved and the circumstances special, we do not pursue this. Although the target

and control are generally of different orders, we can see immediately from the control equations

that ∆Zt −B−1
12 α1λ

′
1Yt is I(0), so ∆Zt and Yt are cointegrated. Interestingly, this cointegration

is generated by the causal control relation between ∆Zt and Yt, rather than simply reflecting

aspects of system dynamics.

With PI1, the policymaker can attain γo for which β̃
′
1γo = 0, choosing b2 and B20 such that

{I − J̃1(B11 +B12B20)}γo = J̃1(b1 +B12b2),
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where J̃1 ≡ I − α1(β̃
′
1α1)−1β̃

′
1.

PI1 control is limited in the sense that it cannot initiate cointegration in the closed loop

target system if cointegration is absent in the open-loop target system. Also, PI1 control does

not allow the policymaker to alter the effect α1 of equilibrium departures on the target variable.

Nevertheless, a straightforward elaboration of PI1 does permit these possibilities. Specifically,

consider PI2 control, where, with κ1 an N1 × r matrix,

∆Zt = b2 +B20∆Yt +B−1
12 [α1λ

′
1 + κ1(β1 + λ1)′]Yt t = 1, 2, ...

A little algebra shows that the closed-loop target system has the form

∆Yt = b1 +B12b2 + α̃′1β̃
′
1Yt−1 + (B11 +B12B20)∆Yt−1 + υ1t.

Here, the cointegration vector is β̃1 ≡ β1 + λ1 and the effect of equilibrium departures is

α̃1 ≡ α1 + κ1. Not only does PI2 control permit the policymaker to modify the cointegration-

feasible policies, it permits the policymaker to adjust the response to equilibrium departures

or even introduce cointegration into the closed-loop target system, despite its absence in the

open-loop target system. We have

Proposition 6.8 When the open-loop target system is integrated or cointegrated, PI 2 control

can modify the closed-loop target system cointegrating coeffi cients (α1 + κ1), (β1 + λ1).

As for PI1 control, Zt is generally I(2). We do not pursue an analysis of the possible coin-

tegrating properties of Zt as these can arise only under very special circumstances. Also, as for

PI1, we see immediately from the control equations that ∆Zt − B−1
12 [α1λ

′
1 + κ1(β1 + λ1)′]Yt is

I(0), so ∆Zt and Yt are again causally cointegrated.

Parallel to PI1, with PI2 the policymaker can attain γo for which β̃
′
1γo = 0, where β̃1 =

β1 + λ1. Again we chose b2 and B20 such that

{I − J̃1(B11 +B12B20)}γo = J̃1(b1 +B12b2),

where now J̃1 ≡ I − α̃1(β̃
′
1α̃1)−1β̃

′
1.

Another case of PI control fixes λ1 at zero, with κ1 6= 0. We call this PI3 control. This is

the special case of PI2 where the policymaker only modifies the speed of error correction. Its

properties can be inferred from our discussion of PI2, so we do not discuss this further here.

7 Estimating and Testing Controlled Systems

We now consider some econometric issues that arise in estimating and testing controlled systems.

Our discussion here is mainly pragmatic, in the spirit Granger (2009) compellingly advocated.
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Thus, we will not be concerned so much with regularity conditions or asymptotic properties, but

rather with describing practical methods that can offer useful insight while preventing us from

going too far astray with any particular line of investigation.

7.1 A Controlled System for Estimation and Testing

For concreteness, we consider a DGP accommodating PI control of the target first differences,

∆Yt = b1 +D1Yt−1 +B11∆Yt−1 +B12∆Zt−1 + υ1t, (24)

∆Zt = b2 +B20∆Yt +D2Yt + υ2t t = 1, 2, ... (25)

When D1 = α1β
′
1 and D2 = B−1

12 [α̃1β̃
′
1 −D1], we have the system with open-loop cointegration

and PI2 control considered in the last section. This system is a special case of eq.(1) with possible

cointegration in the open-loop target subsystem, and, consistent with this form of PI control,

also possibly between Yt and ∆Zt. Observe that we now permit policy implementation to be

noisy, as an implementation error υ2t appears in the control subsystem. This does not affect

any of the results of the previous section, as this noise just introduces a mean zero component

B12υ2,t−1 into the closed-loop target system.

In what follows, it is often convenient to take N2 ≥ N1, but we do not always require this.

The appendix provides further discussion of the N2 < N1 case.

The associated closed-loop target system is

∆Yt = c1 + α̃1β̃
′
1Yt−1 + C11∆Yt−1 + η1t, (26)

where c1 ≡ b1 + B12b2, α̃1β̃
′
1 = D1 + B12D2, C11 ≡ B11 + B12B20, and η1t ≡ υ1t + B12υ2,t−1.

Observe that even if D1 has full rank, the closed-loop system can be cointegrated. That is, PI2

control can induce a cointegrated closed-loop target system, even when the open-loop system is

not cointegrated. For what follows, we assume that D1 + B12D2 has non-zero rank r̃ < N1, so

that the closed-loop system is in fact cointegrated.

An important aspect of these structures is that they are subject to structural shifts. The

target system (24) is subject to "exogenous" shifts, that is, shifts arising outside the controlled

system. The policy system (25) is subject to policy interventions associated with policy regime

changes, tuning exercises, or exogenous shifts in the target system. Endogenous shifts in the

target system (24) represent a failure of invariance, in which case the Lucas critique operates.

For now, we assume recursivity, ruling out endogenous shifts. Below, we discuss testing this.

Because the closed-loop target system contains coeffi cients from both the target and control

structures, the coeffi cients of (26) can shift for any of the reasons just given. It is also in principle

possible for the policy authority to undertake policy interventions that precisely offset exogenous
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structural changes to (24), leaving (26) unchanged. Nevertheless, this requires a suffi cient degree

of knowledge and flexibility that exogenous structural shifts in (24) are likely in practice to be

reflected in structural shifts in (26).

It is of course possible that the target subsystem experiences no exogenous shifts. This

is the simplest and most favorable case for estimation and inference, so we begin with this.

Correspondingly, we suppose for now that there are no policy regime changes or tuning exercises

in the control system. It follows that the closed-loop target system coeffi cients also do not shift.

We first focus on whether policy can be effective; that is, we wish to know whether B12 = 0

in (24), or, when relevant, whether B12 has full row rank. For simplicity, we take {υ′1t, υ′2t} to
be IID, with (Y1,∆Y0,∆Z0) independent of (υ′11, υ

′
21). This ensures strict exogeneity and makes

estimation relatively straightforward.

Although we maintain the assumption of structural stability, to avoid going astray at the

outset, it is helpful to begin by estimating the closed-loop system (26) and examining its stability.

As (26) is a standard cointegrated system, one can apply standard methods, such as the Engle-

Granger (1987) estimator or the methods of Johansen (1995). One can test for stability using

the methods of Bai and Perron (1998) or Juselius (2006), or the indicator saturation methods

of Hendry, Johansen, and Santos (2008) (HJS); see also Johansen and Nielsen (2009). If one

finds evidence of a stable sample or subsample, one can proceed by analyzing that data, as

this evidence is consistent with stability of both the target and control systems. For now, we

suppose we have such a subsample. Estimating c1, C11, α̃1, and β̃1 in (26) provides complete

information about the closed-loop target dynamics under the governing policy regime in the

absence of exogenous structural change in (24) and even when policy is ineffective.

Examining (24) and (25) with a view to estimating (24) and noting that (26) ensures that

Yt is I(1), we see that there are two main possibilities for ∆Zt. The first is that ∆Zt is I(0);

the second is that ∆Zt is I(1). The first possibility arises in either of two cases. It is easily

checked that ∆Zt is I(0) with open loop cointegration (D1 = α1β
′
1) and either (i) P control

(α̃1β̃
′
1 = α1β

′
1) or (ii) PI3 control (β̃1 = β1, but α̃1 6= α1). On the other hand, regardless of

open loop cointegration, we have ∆Zt ∼ I(1) with either PI1 or PI2 control. Thus, a test of the

null hypothesis that ∆Zt is I(1) vs. the I(0) alternative is a test for PI1 or PI2 control vs. P or

PI3 control, assuming correct specification of (24) and (25).

Different considerations arise in estimating (24), depending on whether ∆Zt is I(1) or I(0).

We take these up below. In either case, however, one must check whether ∆Zt−1 is perfectly

collinear with Yt−1,∆Yt−1. The possibility of this collinearity underlies claims that Granger

causality testing (here, structural causality testing) is useless for policy analysis (Sargent, 1976;

Buiter, 1984). As Granger (1988) pointed out, however, as long as there is any noise in the policy
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rule, this objection falls. We saw in Section 6 that noiseless control is effective for achieving

policy goals; here we see that this can hinder policy analysis by making it impossible to identify

B12. Thus, noisy control is helpful for learning about B12, and, in this regard, the noisier the

better, as near multi-collinearity is almost as much a prohibitive obstacle as is perfect collinearity.

To assess potential diffi culties in identifying B12, that is, to see how great a problem collinear-

ity may be, one should investigate the relation between∆Zt and (Yt,∆Yt) before estimating (24).

An immediate simple diagnostic is the R2 from the regression of ∆Zt on a constant, Yt and ∆Yt,

i.e., (25). We would ideally like to find a good but not perfect fit. Too loose a fit suggests that

the policy instrument is not actually being used to manipulate the supposed target or that some

control rule other than P or PI is in use. A good fit suggests at least that the policymaker

believes B12 is not zero. We return to this regression below, but for now we suppose that we

are in the typical situation in which the fit is reasonably good but not perfect.

7.2 The ∆Zt ∼ I(0) Case

Suppose now that ∆Zt is I(0). Then we can estimate (24) by standard methods for cointegrated

systems. In fact, ∆Zt ∼ I(0) implies β̃1 = β1, so we can estimate (24) by least-squares regression

of ∆Yt on a constant, Ψ̃t−1 ≡ β̃
′
1Yt−1 = Ψt−1, ∆Yt−1, and ∆Zt−1, where Ψ̃t−1 is estimated using

the estimate of β̃1 obtained from (26). When ∆Zt is I(0), the estimator of B12, say B̂12, has

standard properties, so we can immediately check policy effectiveness by testing B12 = 0. One

can also use convenient methods recently given by Camba-Méndez and Kapetanios (2008) to

estimate and test the rank of B12.

If we do not impose the constraint that β̃1 = β1 in estimating (24), we expect that the

estimates obtained from (24) and (26) will be similar. A specification test can be performed

by formally testing the hypothesis β̃1 = β1. If we reject, this indicates that either or both (24)

or (26) are misspecified. This test can be conveniently performed by estimating a version of

(24) modified by including Ψ̃t−1 as well as Yt−1, using the Johansen procedure to estimate and

test the cointegrating rank. Under the null hypothesis, the cointegrating rank will be zero,

as cointegration is already captured by Ψ̃t−1. If the Johansen procedure rejects the null of no

cointegration, one must reject β̃1 = β1.

The estimates of α1 and α̃1 may or may not differ, depending on whether the system is

subject to P or PI3 control By testing the hypothesis α̃1 = α1, we can test the null that P

control is in effect, against the alternative of PI3 control. An easier test of the P control null

can be accomplished using (25). With either P or PI3 control, this relation can be estimated

by regressing ∆Zt on a constant, ∆Yt, and Ψ̃t. Under P control, the coeffi cients on Ψ̃t are

zero; under PI3 control they are not. Thus, one can test P control vs. PI3 control by applying
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standard tests for zero values of these coeffi cients.

Usually, we expect that the estimates of b1 and c1 will differ and that the estimates of B11

and C11 will differ. When N1 = N2, we can use estimates of b1, B11, B12, c1, and C11 to estimate

b2 and B20, as

b2 = −B−1
12 (c1 − b1) B20 = −B−1

12 (C11 −B11).

Generally, however, it is simplest to estimate b2 and B20 using a modified version of (25),

∆Zt = b2 +B20∆Yt +D∗2Ψ̃t + υ2t t = 1, 2, ...,

taking advantage of the P or PI3 structure.

Even if ∆Zt and (Yt,∆Yt) are perfectly collinear, identification of B12 is not a lost cause, as

policy interventions can also identify B12. This can also improve the precision of estimation even

in the absence of perfect collinearity. For this, we require a subsample in which (24) is stable

and in which (25) exhibits one or more shifts. For simplicity, suppose there is a single policy

intervention (b2, B20)→ (b∗2, B
∗
20), and define c∗1 = b1 +B12b

∗
2 and C

∗
11 = B11 +B12B

∗
20. Then

[
b1 B11 B12

]  1 0 1 0
0 I 0 I
b2 B20 b∗2 B∗20

 =
[
c1 C11 c∗1 C∗11

]
.

Provided that

B ≡

 1 0 1 0
0 I 0 I
b2 B20 b∗2 B∗20


has full row rank, it follows that[

b1 B11 B12

]
=
[
c1 C11 c∗1 C∗11

]
B′(BB′)−1.

We can identify and consistently estimate
[
c1 C11 c∗1 C∗11

]
from (26) and B from (25) (if B

is unknown), permitting us to identify and consistently estimate
[
b1 B11 B12

]
. Conducting

inference is then straightforward, although computationally somewhat involved.

The methods just discussed suffi ce to identify and estimate all structural coeffi cients for the

P or PI3 cases, so we now turn our attention to the case in which ∆Zt ∼ I(1).

7.3 The ∆Zt ∼ I(1) Case

The ∆Zt ∼ I(1) case arises with PI1 or PI2 control. From (25), we see that the I(1) variable Yt

appears on the RHS multiplied by D2, which, in the case of PI1 or PI2 control, does not give an

I(0) product D2Yt. Since b2 +B20∆Yt−1 + υ2t is I(0), ∆Zt ∼ I(1) follows.

29



Inspecting the target system

∆Yt = b1 +D1Yt−1 +B11∆Yt−1 +B12∆Zt−1 + υ1t,

we see that the LHS ∆Yt is I(0) (as ensured by (26)), but that two I(1) variables appear on the

RHS, Yt−1 and ∆Zt−1. In the absence of other structure, this would prevent estimating D1 and

B12. But here we have that Yt−1 and ∆Zt−1 are cointegrated by (25) and in just the right way

to permit consistent estimation of (b1, D1, B11, B12) by least squares. Note that D1 may or may

not have full rank, but even when D1 = α1β
′
1, standard estimation methods for cointegrated

systems will not apply, as the relevant cointegrating vector here is β̃1, not β1.

Two possibilities for conducting inference about B12 suggest themselves. The first is to

directly apply the results of Park and Phillips (1988, 1989). The resulting inference for B12 may

be non-standard, however. An apparently simpler possibility is to use a modified version of (26)

to estimate B12, namely

∆Yt = c1 + α̃1β̃
′
1Yt−1 + C11∆Yt−1 +B12υ2,t−1 + υ1t, (27)

where we replace υ2,t−1 with an estimate from (25), say υ̂2t−1. Using the estimator for B12

from this two-stage procedure, say B̃12, should only involve standard
√
T inference, although

adjustment for the effects of the first-stage estimation may be required. Note that estimating

the policy equation (25) involves a regression of an I(1) variable (∆Zt) on an I(1) variable (Yt)

with cointegration between them, as in Stock (1987). In fact, one can identify and consistently

estimate b2 and B20 from (25) with a variety of standard procedures, plausibly with standard
√
T asymptotics.

So far, the methods described for the ∆Zt ∼ I(1) case cover identification and consistent

estimation of all system parameters except α1 and β1 when D1 = α1β
′
1. But the singular value

decomposition applies to represent D1 as

D1 = UΛV ′ = UΛ1/2 Λ1/2V ′

= UΛ1/2S S′Λ1/2V ′

≡ α1β
′
1,

where U and V are N1 × N1 orthogonal matrices, Λ is an N1 × N1 diagonal matrix with r =

rk(D1) non-zero eigenvalues on the diagonal, S is the N1 × r selection matrix, S′ ≡ [Ir, 0],

and α1 ≡ UΛ1/2S, β′1 ≡ VΛ1/2S. When r < N1, this decomposition permits us to identify and

estimate the open-loop cointegrating parameters.

Because the details appear somewhat involved, we leave a formal analysis of inference for

B12 based on the results of Park and Phillips (1988, 1989) to future research.
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7.4 Model Diagnostics

Regardless of whether ∆Zt is I(0) or I(1), there is a variety of model diagnostics that both

the policymaker and the econometrician should examine. For the I(0) case, these can be used

to conduct formal specification tests, as inference is standard; accordingly we omit the details.

In the discussion to follow, any references to tests apply to just the I(0) case. Nevertheless,

these diagnostics can be also be computed for the I(1) case and may be informative. They

also plausibly can form the basis for formal specification tests, but this will require proper

development of the relevant asymptotic distributions.

A particularly important diagnostic task is to examine the exogeneity of (Yt−1,∆Yt−1,∆Zt−1).

If this fails, the estimator of B12 is not informative about the effect of ∆Zt−1 on Yt. Here, ex-

ogeneity is ensured by the assumption that {υ′1t, υ′2t} is an independent sequence. A simple

diagnostic for this can be based on estimates of η1t ≡ υ1t+B12υ2,t−1 from (26), say η̂1t. One can

form the analog of Durbin’s (1970) h−test from the regression of η̂1t on η̂1,t−1. The estimated

matrix ρ̂ of first-order autocorrelations can then be used to check or test whether the true au-

tocorrelations are zero. This test will not have power against all possible alternatives, so one

should also test autocorrelation using estimates of υ1t and υ2t from (24) and (25).

It is important to examine whether linear models based on (24) are correctly specified, that

is, whether the DGP for ∆Yt is indeed the assumed linear structure analyzed here. If not, the

estimator of B12 is not fully informative about the effect of ∆Zt−1 on ∆Yt, and the policy rules

discussed here may not be adequate for the desired control. There is an extensive literature on

testing for neglected nonlinearity in regression analysis, ranging from Ramsey’s (1969) classic

RESET procedure to modern neural network or random field tests. (See, for example, Lee,

White and Granger, 1993; Hamilton, 2001; and Dahl and Gonzalez-Rivera, 2003.) The methods

of WL for testing linearity (CI test regression 1 and 2) are quite convenient. One can also test

for encompassing (e.g., Hendry and Mizon, 1982), the information matrix equality (White, 1982)

and other indicia of misspecification, as detailed, for example, in White (1990). These methods

can be straightforwardly applied to (24), (25), or (26). In our illustrative application in Section

8, we give details of a neural network-based method for testing neglected nonlinearity.

The policymaker and the econometrician must also check whether recursivity holds. If not,

the needed invariance is absent, and traditional policy control is unworkable. For this, one can

apply methods of Engle and Hendry (1993), who describe testing invariance without imposing

weak exogeneity. See also Hendry (1988) and Hendry and Santos (2009). Hendry and Massman

(2006) survey and extend the concept of co-breaking, directly relevant here. A particularly

straightforward procedure for testing invariance, related to methods of Hendry and Mizon (1998)
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and Krolzig and Toro (2002), can be implemented using data spanning at least one policy

intervention (b2, B20) → (b∗2, B
∗
20), where one is willing to maintain the assumption of target

structure stability. The idea is to estimate a version of (24) augmented by including a vector

of dummy variables, say d0t, whose ith element d0it is zero prior to policy intervention i and

is one thereafter. The dates of policy interventions can be specified a priori on theoretical

or institutional grounds or can be determined empirically from estimation of (25), using, for

example, methods of Bai and Perron (1998). This augmented structure has the form

∆Yt = b1 +D1Yt−1 +B11∆Yt−1 +B12∆Zt−1 + Π1d0t + υ1t.

Under the null of recursivity, Π1 = 0; evidence of departures from zero is evidence against

recursivity. When ∆Zt is I(0), one can apply standard methods to test Π1 = 0.

A drawback of this test is that unsuspected exogenous structural shifts in the target system

could confound its results, leading to false rejections. A procedure not subject to this diffi culty

involves constructing a sequence of dummies {(d1t, d2t)} such that d1t = 1 if there is a structural

shift in period t in the target system (24) and d1t = 0 otherwise; and d2t = 1 if there is

a structural shift in in period t in the policy system (25) and d2t = 0 otherwise. One then

regresses (d1t, d2t) on its lags and tests whether d1t is structurally caused by lags of d2t. Under

the null of recursivity, there can be no such causality; otherwise, causality will be present. The

challenge for this test is that it may require a relatively long data history with many breaks in

order to have power.

As we further discuss below, it is important to rule out neglected nonlinearity when testing

for recursivity, as neglected nonlinearity can manifest as one or more structural shifts.

7.5 Policy Implementation and Operation

Once the policy authority has determined that its policy instruments are indeed effective (re-

cursivity holds and B12 is non-zero or, better, of full rank) and has gained reliable knowledge

of b1, D1, B11, and B12, it can determine whether its desired policy goal γo is feasible for some

set of policy parameters b2, B20, and D2. If there are multiple feasible implementations, the

policymaker can select a preferred implementation and begin policy operations.

Once policy operations begin, a main activity for the policymaker, besides manipulating

the policy instruments, is to monitor the target system to detect exogenous shifts that will

require policy interventions to keep the system on track. This raises some important practical

issues that have not been addressed here or, to our knowledge, elsewhere in the cointegration

literature. The first of these is how the policymaker detects shifts. In our earlier discussion, we

implicitly assumed the policymaker could detect these immediately. But this is unrealistic. More
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realistically, the policymaker could apply statistical techniques for real-time structural change

monitoring in either (24) or (26). Standard monitoring methods (e.g., Chu, Stinchcombe, and

White, 1996; Hornik, Leisch, Kleiber, and Zeileis, 2005) do not necessarily allow detecting

changes in a cointegrated structure; this is an interesting topic for future research. The second

is the even more diffi cult question of how the policymaker learns the new structure, once a shift

has been detected. In practice, this also will take some time; how much will depend on the

nature of the shift. Meanwhile, the show must go on; policy must continue.

This suggests that a realistic framework for policy analysis is one with adaptive learning by

the policy authority in a context that permits cointegration and exogenous structural breaks.

Such a framework could possibly be based on the recursive learning framework of Chen and

White (1998), although this would need modification to accommodate recursive learning of

cointegrated structures. Handling exogenous breaks could be accommodated by keeping the

learning rate constant or bounded away from zero, rather than declining to zero with the sample

size, as Chen and White (1998) require. The form of policy rules emerging from such a frame-

work could well be of the form (25), but with all the policy parameters adjusting through time,

based on convenient recursive estimation strategies. Another possibility is that the policymaker

behaves according to a recursive Bayesian procedure, such as that proposed by Pesaran, Pet-

tenuzzo, and Timmermann (2006). As analyzing such frameworks is beyond the scope of the

present analysis, we leave this for future research.

7.6 Questions for the Econometrician

Questions of interest to the econometrician but not the policymaker involve extracting informa-

tion known only to the policymaker. For example, the econometrician should be interested in

whether the system is in fact under PI or P control, or whether some other rule operates. We

saw above that given correct specification, the econometrician can draw inferences about P or

PI control from the integration properties of ∆Zt. We have also seen that the econometrician

can identify and consistently estimate (α̃1, β̃1), (b1, B11, B12, α1, β1), and (b2, B20, D2).

The econometrician may also want to know γo. For this, (26) may provide suffi cient infor-

mation, as γo must satisfy

C γo ≡
[

β̃
′
1

[I − J̃1C11]

]
γo =

[
0

J̃1c1

]
.

Provided that the (r̃ +N1)×N1 matrix C has full column rank, we can solve for γo as

γo = (C′C)−1C′
[

0

J̃1c1

]
.
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To determine whether P or PI control correctly describes policymaker behavior, the econo-

metrician can use the modified version of (25),

∆Zt −D2Yt = b2 +B20∆Yt + υ2t t = 1, 2, ...,

where, for estimation, we replace unknown LHS coeffi cients with their (first-stage) estimates.

One can then conduct specification tests on this regression. If misspecification is found, this

indicates that the policy rule is not P or PI control of ∆Yt by ∆Zt or that the policy goal

differs from long run targeting of E(∆Yt) = γo, or both. Conducting these specification tests

will require properly accounting for the joint distribution of the first-stage estimators of D2 and

the second-stage estimators of b2, B20. It is plausible that the asymptotic distribution for the

second-stage estimator will be affected by the distribution of the first-stage estimators of D2.

When ∆Zt is I(0), adjusting for this is straightforward; the distribution of the estimator of β̃1

(= β1) will typically not play a role, due to its superconsistency.

Once one has estimated the system coeffi cients, one can investigate system impulse responses

by perturbing υ2,t−1 in (27) and simulating. One can also investigate the effects of policy

interventions by studying the effects of changes to the elements of (b2, B20, D2).

8 Illustrative application

The effectiveness of U.S. Federal Reserve policy has been the focus of many previous theoretical

and empirical studies. See, e.g., Bernanke and Blinder (1992), Christiano, Eichenbaum, and

Evans (1996), Leeper, Sims, and Zha (1996), and Hamilton (2008), as well as the references

given there. Here, we apply the framework described above to illustrate how one could examine

this issue. We emphasize that because our goal here is only to illustrate useful methods, we

will not push this investigation as far as would be required to arrive at a model suffi ciently

well specified to deliver definitive insights about Fed policy. Thus, we will pay attention to

indicators of model shortcomings without necessarily resolving the issues identified. As will

become apparent, resolving the issues uncovered will in fact require an extensive modeling effort

well beyond what we can feasibly undertake here.

For our illustration, we examine the impact of Fed policy on macroeconomic variables Yt

(inflation, unemployment, output, and oil prices) through the Federal Funds rate, Zt.While the

Fed does not directly control this rate, it sets its target value; daily open market operations

then align the Fed Funds rate closely to the target value. This corresponds exactly to the case

of imperfect control examined above.

Specifically, we let Zt be the natural logarithm of the effective Federal Funds rate (taken from

the Board of Governors of the Federal Reserve System), and we let Yt include (i) the natural
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logarithm of the total US industrial production index, seasonally adjusted (taken from the Board

of Governors of the Federal Reserve System); (ii) the natural logarithm of the seasonally adjusted

US total unemployment rate for all individuals aged 16 and over (taken from the Bureau of

Labor Statistics); (iii) the US inflation rate, computed as the 12-month difference of the natural

logarithm of the consumer price index for all urban consumers (taken from the Bureau of Labor

Statistics); and (iv) the natural logarithm of the Cushing, OK WTI Spot Price FOB (taken

from the Energy Information Administration). The data are monthly, covering January, 1986

through December, 2007, a total of T = 262, observations adjusting for lags and differencing.

We begin by examining whether the closed loop target system (26) is stable. For this, we use

the recursive log-likelihood test described in Juselius (2006). While there are several different

tests that could be used, we focus on the Juselius (2006) test, as it accommodates cointegration

and it permits us to examine both the short-run and long-run components of the DGP.

The test statistic is computed recursively, starting from a baseline period and extending

backward or forward in time by adding observations to the baseline. Here we apply the backward

recursion. Let T1 index the first observation in the baseline sample considered in the recursion.

We set T1 to December 2002, ensuring five years of the data in the baseline period, T1, ..., T.

The statistic for subsamples including observations t1, ..., T, with t1 = T1, T1 − 1, ..., 1 is

QT (t1) =
t1
T

√
T

2p

[
log
∣∣∣Ω̂t1

∣∣∣− log
∣∣∣Ω̂T

∣∣∣+
1

T
(0.5p (p+ 1) + r + p (k − 1) + 1)

(
1− t1

T

)]
,

where p (= 4) is the number of equations in the system and r is the cointegrating rank, as

estimated by the Johansen (1995) procedure. Here, we find r = 1 cointegrating relation. The

estimated variance-covariance matrices for the sub-sample including observations t1, ..., T and

the full sample are Ω̂t1 and Ω̂T , respectively.

Under the null hypothesis of DGP stability, the 95% quantile for the test is 1.36. We display

two versions of the test in Figure 1. The first, labelled X(t), is based on the full model, whereas

the second, R1(t), is based on the long-run concentrated model, where the short-term variables

have been concentrated out. This latter version is based on the model obtained after the first

stage of the Johansen (1995) procedure.

As the graph shows, we do not reject stability for the closed-loop system using the R1 form

of the test. The statistic for the X version crosses the critical value in April, 1996, but by a

small amount. In line with our illustrative intent, we take these results as largely consistent

with stability for the closed-loop system and proceed with our analysis; but we keep in mind

that there could be some short-term instability.

Next, we apply an augmented Dickey-Fuller test to Zt, the Federal Funds rate variable. We

do not reject the unit root null, whereas the same test run on the first differences does reject
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Figure 1: Recursive log likelihood function. The baseline sample is 2002:12 - 2007:12

the unit root null at the 1% level. Taken at face value, these results suggest that ∆Zt ∼ I(0)

and that we are in the world of either P control or PI3 control.

We now investigate whether ∆Zt is collinear with ∆Yt and Yt. The R2 of this regression is

0.151, so we conclude that collinearity of the policy instrument with ∆Yt and Yt is not an issue.

On the other hand, this somewhat low R2 suggests that the control equation may not be fully

capturing the Fed’s behavior. Below, we investigate this further. By running the ∆Zt regression

with Ψ̃t in place of Yt, we can easily test P control vs. PI3 control. The coeffi cient on Ψ̃t is

strongly significant (p < .001), so we reject the P control hypothesis.

Following the process described in section 7.2, we next test policy effectiveness by testing

whether B12 is significantly different from zero. We proceed in two different ways. First, we

estimate the open-loop target system (24) using the method of Johansen (1995). Table 2 reports

the relevant results based on White (1980) robust standard errors. As the table shows, the

estimates of B12 are significantly different from zero for both the IPI and the unemployment

variables, and are borderline significant for the oil price variable. On the other hand, altering

the Fed Funds rate in an attempt to directly affect the change in the inflation rate would appear

to be ineffective, as the insignificant coeffi cient in the inflation equation implies. Nevertheless,

indirect effects arise from the various feedforward channels, i.e., through unemployment and IPI.
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Target variable Coeff Std Err t-stat p-value
IPI total 0.025 0.006 4.279 0.000
Inflation 0.215 0.363 0.591 0.555
Unemployment -0.147 0.029 -5.035 0.000
Cushing oil price 0.186 0.107 1.733 0.084

Table 1: Open loop estimates for the matrix B12. Results are obtained by applying the Johansen
(1995) procedure. The computed standard errors are White (1980) robust standard errors.

Target variable Coeff Std Err t-stat p-value
IPI total 0.024 0.006 4.275 0.000
Inflation 0.214 0.363 0.590 0.556
Unemployment -0.147 0.029 -5.034 0.000
Cushing oil price 0.186 0.107 1.737 0.084

Table 2: Open loop estimates for the matrix B12. Results are obtained by OLS regression of
∆Yt on a constant, Ψ̃t−1 ≡ β̃

′
1Yt−1 = Ψt−1, ∆Yt−1, and ∆Zt−1, where Ψ̃t−1 is estimated using

the estimate of β̃1 obtained from (26). The computed standard errors are White (1980) robust
standard errors.

Alternatively, we estimate B12 by OLS regression of ∆Yt on a constant, Ψ̃t−1 ≡ β̃
′
1Yt−1 =

Ψt−1, ∆Yt−1, and ∆Zt−1, where Ψ̃t−1 is estimated using the estimate of β̃1 obtained from the

closed loop equation (26). As is immediately apparent from the tables, the results from this

second estimation strategy are substantially the same as before.

Next, we test β̃1 = β1. As described above, we can test this hypothesis by applying the

Johansen (1995) procedure to reestimate the target system (24) with the RHS variables aug-

mented to include Ψ̃t−1 ≡ β̃
′
1Yt−1. We test whether the cointegrating rank in this augmented

regression is zero using Johansen’s (1995) trace statistic test. We cannot reject the zero-rank

hypothesis at the 10% level, so there is no evidence of misspecification on this basis.

We also examine the estimated residual first-order autocorrelations of the closed-loop system

(26) and the open-loop target system (24), as a diagnostic for exogeneity of (Yt−1,∆Yt−1,∆Zt−1).

Overall, these do not indicate any obvious problems. For the closed-loop system these coeffi cients

are −0.0152 (IPI), 0.0659 (inflation), −0.0304 (unemployment), and −0.0062 (oil). For the open-

loop target system, these are −0.0018 (IPI), 0.0667 (inflation), −0.0546 (unemployment), and

−0.0044 (oil).

On the other hand, the estimated autocorrelation coeffi cient for the control equation is

.340, suggesting some form of misspecification, dynamic or otherwise. To see whether a simple

autocorrelation adjustment can resolve matters, we apply the Cochrane-Orcutt technique to

(25). The result is an estimated autocorrelation coeffi cient of .527 and very different coeffi cient

estimates. As there is no lagged dependent variable in the control equation, this outcome
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suggests that more than simple autocorrelation may be at work. Plausibly, there may be one or

more omitted variables.

To keep the scope of our example manageable, we just examine the possibility that instead

of PI3 control, the policymaker is executing PI3-derivative (PI3D) control, in which case a

previously omitted term ∆2Yt appears in the control equations5, so that (25) is modified to

∆Zt = b2 +B20∆Yt +B21∆2Yt +D2Yt + υ2t t = 1, 2, ... (28)

When we estimate the PI3D control equation, we find that the R2 increases from .151 to .298.

This marked increase is due mainly to ∆2Yt terms associated with inflation and unemployment;

at face value, these terms have a clear role to play. On the other hand, residual autocorrelation

drops to .289. This is a move in the right direction, but clearly PI3D control is not the whole

story. Applying Cochrane-Orcutt to (28), we find an estimated autocorrelation coeffi cient of

.380. Encouragingly, the signs and magnitudes of the estimated coeffi cients in this equation,

while differing somewhat from the OLS estimates, do not change nearly as much as they did when

considering only PI3 control. In particular, we reject the PD control hypothesis in favor of PI3D.

In line with our illustrative intent, we proceed by assuming PI3D control with autocorrelated

errors. We further investigate this equation below, however.

PI3D control also modifies the closed-loop system (26) to include a ∆2Yt term. We refer

to this as the "closed-loop PID system." Note that our prior omission of the ∆2Yt term could

explain the apparent short-term instability earlier found by the Juselius test. Indeed, when we

re-run the Juselius test on the closed-loop PID system, we find no evidence at all of instability;

the maximum value for the X version of the test is only about 1.06. That for the R1 form is

smaller. We also find a very similar value for the cointegrating vector.

Next, we perform tests to explore whether (24), (28), or the closed-loop PID system are linear

or whether there may be neglected nonlinearity. These tests are essentially those described in

WL, section 5. The idea is to augment the regressors in a given equation with neural network

terms, as in White’s (2006b) QuickNet procedure, and then test whether the coeffi cients of the

neural network terms are all zero. This class of tests has been found to have good power to

detect neglected nonlinearity. More specifically:

• for equation (24), we construct a Wald statistic for each equation h = IPI, inflation,

5As can be readily verified, the addition of D control has no impact on the cointegration results of the previous
section.
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unemployment, oil price, to test the joint hypothesis ζ11h = ζ12h = ... = ζ1kh = 0 in:

∆Yth = b1h +D∗1hβ
′
1Yt−1 +B11h∆Yt−1 +B12h∆Zt−1 (29)

+
k∑
j=1

G
(
γ10hj + γ11hjβ

′
1Yt−1 + γ12hj∆Yt−1 + γ13hj∆Zt−1

)
ζ1jh + ε1th

• for equation (28), we construct a Wald statistic to test the joint hypothesis ζ21 = ζ22 =

... = ζ2k = 0 in:

∆Zt = b2 +B20∆Yt +B21∆2Yt +D∗2β̃
′
1Yt + ρε̂2,t−1

+
k∑
j=1

G
(
γ20j + γ21j∆Yt + γ22j∆

2Yt + γ23j β̃
′
1Yt + γ24j ε̂2,t−1

)
ζ2j + ε2t (30)

• for the closed-loop PID system, we construct a Wald statistic for each equation h = IPI,

inflation, unemployment, oil price, to test the joint hypothesis ζ31h = ζ32h = ... = ζ3kh = 0

in:

∆Yth = c1h + α̃1hβ̃
′
1Yt−1 + C11h∆Yt−1 + C12h∆2Yt−1 (31)

+

k∑
j=1

G
(
γ30j + γ31j β̃

′
1Yt−1 + γ32j∆Yt−1 + γ33j∆

2Yt−1

)
ζ3jh + η1th.

In these regressions, β1 and β̃1 are replaced by their estimates. Estimated lagged errors

ε̂2,t−1 are included in (30) to accommodate the autocorrelation of the control equation error

terms.

The function G is an activation function from the class of generically comprehensively re-

vealing (GCR) functions (see Stinchcombe and White, 1998). We use a ridgelet function,

G (x) =
(
−x5 + 10x3 − 15x

)
exp

(
−x2/2

)
. Other examples of GCR functions include logistic

cdf, normal pdf, etc. We call terms involving G “hidden unit”terms, consistent with the artifi-

cial neural network literature. The integer k indicates the number of included hidden units and

controls the allowed degree of nonlinearity. We choose γ’s from a set of candidates, constructed

as in Huang and White (2009). The algorithm to select the γ’s follows the QuickNet procedure

described in White (2006b).

Tables 3-5 show the Wald statistic p−values for each equation and each k. BH denotes the
Bonferroni—Hochberg adjusted p−values (Hochberg 1988). The right lower corner element is the
BH p−value for the panel as a whole.

The stark message from these tests is that the target and control system equations are all

misspecified, with the apparent exception of the unemployment target equation. Not surpris-

ingly, then, the closed loop PID equations are also found to be misspecified. Clearly, simple
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k 1 2 3 4 5 Row BH
∆ IPIt 0.004823 0.000764 0.002111 0.003855 0.002843 0.003821
∆ Inflationt 0.231894 0.262284 0.099672 0.091767 0.010387 0.051933
∆ Unemploymentt 0.395854 0.514657 0.222053 0.235633 0.15057 0.514657
∆ Oil pricet 0.084189 0.053384 0.059099 0.039732 0.012985 0.064924

Col BH 0.019293 0.003057 0.008445 0.015419 0.011372 0.015284

Table 3: Misspecification tests for the target subsystem

k 1 2 3 4 5 Row BH
∆Zt 0.111215 0.004651 0.001902 0.001546 0.000225 0.001126

Table 4: Misspecification tests for the PID control equation

linear structures do not adequately capture important features of the data. Thus, research can

be productively directed toward examining the adequacy and implications of more flexible spec-

ifications, such as the neural network specifications forming the basis for these tests. We leave

this as a topic for future work.

Even though the Juselius (2006) tests accord with structural stability for our system with

PI3D control, it is possible that the nonlinearity tests are detecting shifts in the short-run

structure against which theX form of the Juselius test does not have power. Similarly, if one were

to test for and find structural shifts in the linear PI3D system using other methods, e.g., those

of Bai and Perron (1998) or HJS, one could well be detecting neglected nonlinearities. Thus,

only after disentangling these possibilities does it make sense to conduct tests for recursivity or

invariance, as discussed above.

To distinguish structural shifts from neglected nonlinearities, one promising approach is to

estimate neural networks of the form specified above using indicator saturation methods of

HJS. If only neglected nonlinearity were the issue, no structural shifts would be found. If only

structural shifts were the issue, then the ζ coeffi cients would be essentially zero. If there were

a mix of shifts and nonlinearities, this procedure would, in principle, permit their separate

identification and estimation. We leave investigation of such procedures and their application

k 1 2 3 4 5 Row BH
∆ IPIt 0.061583 0.006365 5.99E-05 1.42E-05 7.86E-06 3.93E-05
∆ Inflationt 0.009056 0.000503 0.000211 0.000478 3.94E-05 0.000197
∆ Unemploymentt 0.005372 0.006648 0.001038 0.000738 0.000939 0.003113
∆ Oil pricet 0.04323 0.046952 0.057542 0.030044 0.008714 0.043572
Col BH 0.021489 0.002011 0.000239 5.69E-05 3.14E-05 0.000157

Table 5: Misspecification tests for the closed-loop PID system
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Figure 2: Simulation results for the closed-loop PID system

to future research.

We close this section with a brief examination of the impacts of Fed policy implied by taking

the linear PI3D system estimated here at face value. Specifically, we conduct the experiment of

positively perturbing υ2,t−1 in the PID analog of the closed-loop system (27) by three standard

deviations for a single period. We choose a relatively large intervention in an attempt to make the

effects visually apparent. This amounts to a policy intervention increasing the rate of change of

the Fed Funds rate for a single period, somewhat more than doubling the intercept of the control

equation for that period. Even though the effect (B12) of the Fed Funds rate is statistically

significant, Figure 2 shows that the impacts of even this large shock are barely visible, apart

from some initial upward effects on unemployment. Inspection of the differences between the

series with and without the intervention show that except for oil, each series experiences an

initial upward impact, declining to an eventual small negative impact. For oil, the impact is

initially negative, but becomes less so, converging to a small negative impact.
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9 Summary and Conclusion

One of Clive Granger’s long-standing and central concerns was that econometric theory and

practice should have direct value to policymakers. Here, we present a framework for economic

policy analysis that provides a novel integration of several fundamental concepts at the heart

of Granger’s contributions to time-series analysis. We work with a dynamic structural system

analyzed by WL with well defined causal meaning. The system contains target and control

subsystems, with possibly integrated or cointegrated behavior. We ensure the invariance of

the target subsystem to policy interventions and thus obviate the Lucas critique using an ex-

plicitly causal partial equilibrium recursivity condition, plausible on informational, behavioral,

and empirical grounds. Policy effectiveness corresponds to another explicit causality condi-

tion. Identification of system coeffi cients holds given conditional exogeneity, an extension of

strict exogeneity distinct from weak exogeneity or its extensions. As we discuss, given condi-

tional exogeneity, Granger causality and structural causality are equivalent. Given structural

non-causality, Granger causality and the failure of conditional exogeneity are equivalent. In

this sense, Granger causality is not a fundamental system property requisite for reliable policy

analysis, but an important consequence of necessary underlying structural properties.

By relying only on correct model specification and not weak exogeneity, our framework

complements the policy analytic framework of Ericsson, Hendry, and Mizon (1998). As we

show, our approach readily lends itself to analysis of the structural consequences of a variety of

control rules that the policymaker may employ. Among other things, we find that proportional

(P) control cannot modify the cointegrating properties of a target system, whereas proportional-

integral (PI) control can. In fact, PI control can introduce, eliminate, or broadly modify the

cointegrating properties of the uncontrolled target system. Whereas cointegration between target

variables and policy instruments is possible but unusual with P control, PI control can easily

induce causal cointegration between the target (Yt) and the policy instruments (∆Zt). These

properties are preserved under PID control.

The control mode also has interesting implications for estimation, inference, and specification

testing in controlled systems. P, PI3, or PI3D control yield∆Zt ∼ I(0), which results in standard

inference. Other modes of PI or PID control yield ∆Zt ∼ I(1); the theory of Park and Phillips

(1988,1989) applies to these cases.

One of the hallmarks of Clive Granger’s work is that it has vigorously stimulated research,

often in an astonishing number of different productive directions. Putting a positive spin on

the fact that the analysis here leaves a potentially embarrassing number of questions asked but

not answered, we are hopeful that, like Clive’s work, these unanswered questions will stimulate
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interest in pursuing and resolving them. In addition to suggesting the relevance of new theory for

inference in partially nonstationary systems with covariates and conditional heteroskedasticity,

the analysis here suggests, among other things, opportunities for developing specification tests

distinguishing structural shifts and neglected nonlinearities, for studying control of nonlinear

systems with cointegration using a misspecified model, for studying covariates in control, for

developing methods useful for real-time monitoring of structural change in cointegrated systems,

and for analyzing recursive methods of adaptive policy control, robustly able to operate in

cointegrated systems subject to exogenous structural shifts. We hope, also, that the practical

methods described and illustrated here will, as Clive would have desired, have direct value to

policymakers.

10 Mathematical Appendix

Proof of Proposition 2.1 Suffi ciency of B10 = 0 is immediate.

For necessity, let Ã1 ≡ [δ10, A11, A12], Ã2 ≡ [δ20, A21, A22], B̃1 ≡ [b1, B11, B12], B̃2 ≡
[b2, B21, B22], and

B ≡
[
B̃1

B̃2

]
∆ ≡

[
∆1

∆2

]
.

Given (4), we have

Ã1 +B10Ã2 = B̃1.

Then Ã1 = B̃1 for all B̃1 implies that Ã1 = B̃1 for all B̃1 such that B̃ has full row rank.

For all such B̃1, Ã1 + B10Ã2 = B̃1 implies B10Ã2 = 0, or equivalently that B10∆2B̃ = 0.

Because B̃ has full row rank, it follows that B10∆2 = 0. The existence of ∆ ensures that ∆2 has

full row rank. It follows that B10 = 0. �

Proof of Proposition 3.1: This is an immediate corollary to theorem 4.3 of WL, with the

assignments Y1,t ⇔ Yt, Y 1,t−1 ⇔ (Yt−1, Yt−2), Y 2,t−1 ⇔ (Zt−1, Zt−2), Xt ⇔ Wt, and U1,t ⇔
ε1t. The assumption (9), i.e., (Zt−1, Zt−2) ⊥ ε2t | (Yt−1, Yt−2,Wt), is Assumption C.2 of WL.

We also use the fact that for structures separable in ε1t, such as (1), direct structural non-

causality (Y 2,t−1

d
6⇒S(Y 1,t−1,Xt) Y1,t in WL’s notation) is equivalent to A112 = 0 and A122 = 0

(ζt(Y t−1,Zt) = ζ̃t(Y 1,t−1,Zt)). See WL, p.219. �

Proof of Proposition 3.2: This is an immediate consequence of corollary 6.2 of WL. We

give the proof for (i). That for (ii) is similar. If (Zt−1, Zt−2) ⊥ ε1t | (Yt−1, Yt−2,Wt), then

(Zt−1, Zt−2) ⊥ (ε1t, Yt−1, Yt−2) | (Yt−1, Yt−2,Wt) by lemmas 4.1 and 4.2(i) of Dawid (1979)

(D79). If A112 = 0 and A212 = 0, then Yt = δ01 +A111Yt−1 +A121Yt−2 +ε1t. That (Zt−1, Zt−2) ⊥
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Yt | (Yt−1, Yt−2,Wt) now follows from D79 lemma 4.2(i). If (Zt−1, Zt−2) ⊥ Yt | (Yt−1, Yt−2,Wt),

then (Zt−1, Zt−2) ⊥ (Yt, Yt−1, Yt−2) | (Yt−1, Yt−2,Wt) by lemmas 4.1 and 4.2(i) of D79. If

A112 = 0 and A122 = 0, then ε1t = Yt − (δ01 + A111Yt−1 + A121Yt−2). That (Zt−1, Zt−2) ⊥ ε1t |
(Yt−1, Yt−2,Wt) now follows from D79 lemma 4.2(i). �

Attaining a composite policy objective with N1 > N2

Consider PI control of a system with open-loop cointegration when N1 > N2, i.e., there are more

targets than instruments:

∆Yt = b1 + α1β
′
1Yt−1 +B11∆Yt−1 +B12∆Zt−1 + υ1t

∆Zt = b2 +B20∆Yt +D2Yt t = 1, 2, ...,

where D2 is N2 ×N1. The closed-loop system is given by

∆Yt = b1 + α1β
′
1Yt−1 +B11∆Yt−1 +B12(b2 +B20∆Yt−1 +D2Yt−1) + υ1t

= b1 +B12b2 + (α1β
′
1 +B12D2)Yt−1 + (B11 +B12B20)∆Yt−1 + υ1t

= b1 +B12b2 + α̃1β̃
′
1Yt−1 + (B11 +B12B20)∆Yt−1 + υ1t,

where

α̃1β̃
′
1 = α1β

′
1 +B12D2 = UΛV ′

= UΛ1/2S S′Λ1/2V ′,

with α̃1 ≡ UΛ1/2S and β̃1 ≡ VΛ1/2S. Here, we apply the singular value decomposition as in the

main text.

This system is cointegrated, provided α1β
′
1 +B12D2 has rank less than N1. This is possible

but not guaranteed, as B12D2 has at most rank N2 < N1. The policymaker thus has some

latitude to modify the cointegrating properties of the open-loop target system, but because

N2 < N1 there is less freedom than in the N2 ≥ N1 case. We proceed under the assumption that

the policymaker can choose D2 to attain a cointegrated closed-loop system with cointegrating

rank r̃. P control obtains as the special case where D2 = 0.

The derivations of Section 6.2 apply directly to give β̃
′
1γo = 0 and

K γo = ko, (32)

where

K ≡ I − J̃1(B11 +B12B20) and ko ≡ J̃1(b1 +B12b2),
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with J̃1 ≡ I − α̃1(β̃
′
1α̃1)−1β̃

′
1, as these derivations do not depend on the relative dimensions of

N1 and N2.

Now suppose that the policymaker seeks to attain a composite goal of the form

H E(∆Yt) = H γo = ho,

where H (N2 × N1) and ho (N2 × 1) are chosen by the policymaker. This objective may be

feasible, as the goal has as many elements as there are policy instruments.

This approach represents the policymaker’s willingness to trade off different components of

its target goals. For example, it might be willing to accept higher unemployment to attain lower

inflation or vice-versa, recognizing that the available policy instruments do not permit achieving

both lower inflation and lower unemployment.

To see how this goal could be achieved, it is helpful to consider the rows Hi of H one at a

time. First, note that whenever Hi belongs to B̃1 = span(β̃1) (the set of all linear combinations

of β̃1, i.e., β̃1ξ, where ξ is r̃ × 1), then the only feasible value for the corresponding hoi is

zero. If Hi γo = 0 is indeed a goal for the policymaker, further control (beyond attaining β̃1)

is unnecessary, as the system will always tend to this value. The policymaker can influence the

speed of convergence to the goal by manipulating B20, but here this is a secondary consideration.

Instead, the policymaker can focus attention on achieving policy goals represented by choices

Hi belonging to B̃⊥1 , the subspace of RN1 containing vectors with a component orthogonal to
β̃1.With N2 instruments, the policymaker can specify N2 ≤ N1− r̃ such choices. To be feasible,
these must be consistent with (32), so Hi and hoi must satisfy

Hi = θ′iK and hoi = θ′iko

for some N1 × 1 vector θi. For such a θi to exist, it is necessary and suffi cient that

rk(K ′, H ′i) = rk(K ′),

(e.g., Hadley, 1961), which is straightforward to check. For simplicity, suppose that for a given

B20 there are N2 linearly independent such θi’s. Stacking the rows Hi gives

H = θ′K,

where θ is an N1×N2 matrix whose elements are functions of K and H. Because the policymaker

can also adjust B20 (modifyingK), there is typically suffi cient flexibility to ensure that this holds.

If there is no such combination of θ and B20, then the policy goal is not feasible for the given

choice of D2 (and the resulting value for β̃1). If the policymaker is willing to modify D2, even

this need not be an obstacle.
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Given θ, the policymaker can attain ho by solving ho = θ′ko for b2. The solution is

b2 = (θ′J̃1B12)−1(ho − θ′J̃1b1).

Note that J̃1 has rank N1−r̃, but because N2 ≤ N1−r̃, the nonsingularity of θ′J̃1B12 is plausible.
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