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Abstract

This paper proposes a new approach for incorporating theoretical con-
straints on return forecasting models such as non-negativity of the condi-
tional equity premium and sign restrictions on the coeffi cients linking state
variables to the equity premium. Our approach makes use of Bayesian
methods that update the estimated parameters at each point in time in
a way that optimally exploits information in these constraints. Using a
variety of predictor variables from the literature on predictability of stock
returns, we find that theoretical constraints have an important effect on
the coeffi cient estimates and can significantly reduce biases and estima-
tion errors in these. In out-of-sample forecasting experiments we find that
models that exploit the theoretical restrictions produce better forecasts
than unconstrained models.

Keywords: return predictability, constraints, out-of-sample forecasts
JEL Classifications: G12, G14, C22

1 Introduction

Over the last twenty years, the stock return predictability literature has influ-
enced a broad range of areas such as performance evaluation, asset pricing and
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asset allocation.1 This influence is largely due to studies by Campbell (1987),
Campbell and Shiller (1988), Fama and French (1988, 1989), Ferson and Harvey
(1991), and Keim and Stambaugh (1986) who provided convincing economic ar-
guments and in-sample empirical results that some of the fluctuations in returns
are predictable because of persistent time variation in expected returns. The
in-sample evidence for predictability is accumulating as various new variables
have been suggested as predictors of excess returns (Hodrick (1992), Pontiff
and Schall (1998), Lamont (1998), Baker and Wurgler (2000), Lettau and Lud-
vigson (2001), Polk, Thompson, and Vuolteenaho (2006), among others). The
out-of-sample predictability evidence, however, has been much less conclusive.
Recent studies by Paye and Timmermann (2006) and Lettau and Van Nieuwer-
burgh (2007) argued that predictability weakened or disappeared during the
1990s. Bossaerts and Hillion (1999) and Goyal and Welch (2003, 2007) provide
an even sharper critique by arguing that predictability was largely an in-sample
or ex-post phenomenon which disappears once the forecasting models are used
to guide forecasts on new, out-of-sample, data.
A shortcoming of the forecasting models used throughout the finance lit-

erature is that, while the common state variables are broadly guided by the-
oretical considerations, finance theory provides little guidance for the choice
of functional form of the forecasting model. Largely as a consequence, linear
forecasting models are used almost exclusively. As pointed out by Campbell
and Thompson (2007, CT henceforth), a problem with these models is that
the implied conditional equity premium often turns negative. It is diffi cult to
imagine an equilibrium setting where risk-averse investors would hold stocks if
their expected compensations were negative. CT argue that the out-of-sample
or ex-ante forecasting performance of return prediction models can be improved
by imposing theoretical constraints such as non-negativity of the conditional eq-
uity premium or a sign constraint on the coeffi cient of a given predictor variable.
Whenever any of these constraints is violated, CT impose their constraints by
truncating the return forecast at the unconditional estimate of the equity pre-
mium, i.e. the prevailing mean. While this can be viewed as a first approxima-
tion to imposing moment or parameter constraints, the approach fails to make
full use of the information in the theoretical constraints.
In this paper we propose a new method that optimally incorporates theo-

retical constraints including, but not limited to, those proposed by CT. Our
approach is based on Bayesian techniques which make imposing an arbitrary
number of constraints computationally feasible. We show how to effi ciently
update the estimates of the restricted forecasting model every time new ob-
servations on returns and the predictor variable become available. Theoretical

1Papers on time-series predictability of stock returns include Campbell (1987), Campbell
and Shiller (1988), Fama and French (1988, 1989), Ferson and Harvey (1991), Keim and
Stambaugh (1986) and Pesaran and Timmermann (1995). Examples of asset allocation studies
under return predictability include Ait-Sahalia and Brandt (2001), Barberis (2000), Brennan,
Schwartz and Lagnado (1997), Campbell and Viceira (1999), Kandel and Stambaugh (1996)
and Xia (2001). Avramov and Wermers (2006) and Ferson and Schadt (1996) consider mutual
fund performance under time-varying investment opportunities.
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constraints on the conditional equity premium can indeed have a big impact
on parameter estimates of the return forecasting model. To see this, suppose,
for example, that a new observation on returns and the predictor variable be-
comes available that, under the previous parameter estimates, imply a negative
conditional equity premium at some point in the sample. Since our approach
makes use of this observation to inform the updated parameter estimate, the
old parameter estimates would need to be revised so as to ensure that the con-
ditional equity premium is always positive. The theoretical constraint therefore
allow investors to more effi ciently update their beliefs about the parameters
of the forecasting model. We argue that this is a highly attractive feature of
our method since the constraints proposed by Campbell and Thompson−such
as non-negativity of the conditional equity premium−are overwhelmingly sup-
ported by equilibrium arguments and hence should be fully exploited.
When implemented along the lines proposed in our paper, the economically

motivated constraints turn out to be highly informative and lead to far more
precise estimates of the parameters of the return forecasting model. Intuition
for this surprising finding is that every time a new pair of observations on the
predictor variable and returns becomes available, the non-negativity constraint
on the conditional equity premium is used to rule out values of the parameter
that are infeasible given the sign constraint. Since the conditional equity pre-
mium must be non-negative at each point in time, in a sample of T observations,
we have T constraints rather than just a single constraint.
Through a set of Monte Carlo simulations we show that the better perfor-

mance of our new forecasting approach can be understood in terms of a reduction
in the bias of the slope coeffi cient known as the Stambaugh bias (Stambaugh
(1986, 1999)) as well as smaller parameter estimation errors, i.e. a reduction in
estimation uncertainty. The bias shifts estimates of the coeffi cient on variables
such as the dividend yield away from zero. To see how this bias will be reduced
(and eventually removed as the sample size increases) in our context, suppose
that the true coeffi cient on the dividend yield is zero but that the bias is such
that the coeffi cient estimate is positive in the absence of any constraints on the
equity premium. As new observations of the dividend yield below its sample
average emerge, the effect of imposing a sign constraint on the conditional eq-
uity premium is to shrink the distribution of the estimated coeffi cient towards
zero - otherwise the predicted value would become negative. The smaller the
value of the dividend yield, the stronger this effect is likely to be and so the
approach ensures faster learning in the sense that the dispersion of the distribu-
tion of the estimated parameter gets reduced more rapidly than in the absence
of any constraints. Individual observations−particularly those at odds with the
theoretical constraints−can therefore lead to large (and instantaneous) shifts
in the entire distribution of the parameter estimates. In contrast, approaches
that ignore theoretical constraints when updating the parameter estimates will
repeatedly make the same mistakes (i.e. predict negative stock returns).2

2The reduced bias associated with the constrained forecasting models also means that our
approach also provides a new way to handle spurious predictability, a phenomenon that could
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Predictability from individual forecasting variables in monthly return re-
gressions is likely to be relatively weak and the literature on predictability of
asset returns has documented predictability from several regressors. We there-
fore next consider making use of multivariate forecasting models. Return pre-
dictability in the context of multivariate regressions poses complications since
it is diffi cult to impose sign restrictions on the coeffi cients of the individual pre-
dictor variables. Yet, this is often the type of restriction that economic theory
implies. To simultaneously deal with sign restrictions on the individual predic-
tor variables and incorporate information from several predictor variables, we
propose to use combination methods that combine forecasts from several uni-
variate return forecasting models each of which imposes such sign restrictions
and also do not allow the conditional equity premium to be negative. We im-
plement this strategy using Bayesian Model Averaging, a technique that has
also been used in the return forecasting literature by Avramov (2004). This
approach succeeds in both preserving the individual sign restrictions and in
imposing that the conditional equity premium be non-negative. We find that
there are considerable gains from forecast combinations that satisfy these sign
constraints and use multivariate information.
The plan of the paper is as follows. Section 2 shows how to effi ciently

incorporate theoretical constraints on the forecasting models and outlines our
proposed methodology. Section 3 presents empirical estimation results for a
range of predictor variables while Section 4 studies the forecasting performance
of both unconstrained and constrained return models. Section 5 considers the
effect of the constraints on the bias and estimation error in the model parameters
while Section 6 concludes.

2 Methodology

This section describes our new methodology to estimate the return forecast-
ing model subject to a set of constraints motivated by finance theory. These
take the form of inequality constraints on the conditional equity premium or
constraints on the sign of coeffi cients relating state variables to the equity pre-
mium. Constraints on the signs of state variables are best understood in a
univariate context since many of the predictor variables proposed in the lit-
erature are strongly correlated with each other and their signs can change in
multivariate regressions.

2.1 Constraints on the Return Forecasting Model

The literature on predictability of stock returns is extensive. Early studies
such as Campbell and Shiller (1988) and Fama and French (1988) found evi-
dence that stock returns could be predicted by means of valuation ratios, while
Fama and Schwert (1977), Keim and Stambaugh (1986) and Campbell (1987)

well explain the difference between the apparently strong in-sample predictability and weak
out-of-sample predictability of returns (see Ferson et al. (2003))
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found predictability from the T-bill rate or yields on long-term corporate and
government bonds. Subsequent studies have explored information in corporate
financing (Baker and Wurgler (2000)), consumption-wealth ratios (Lettau and
Ludvigsson (2001)) and the value of high versus low beta stocks (Polk, Thomp-
son and Vuolteenaho (2006)).
Almost invariably, return predictability has been explored in the context of

the following simple unconstrained linear forecasting model for the stock return
at time t, rt, measured in excess of a risk-free rate:

rt = µ+ βxt−1 + εt. (1)

Here xt−1 is the lagged value of the predictor variable and εt has zero mean and
variance σ2.
This model is attractive since it is simple to interpret and only requires

estimating two mean parameters, µ and β. Finance theory generally does not
restrict the functional form of the mapping from the state variable, xt−1, to the
excess return, rt, so the use of the linear specification in (1) should be viewed as
an approximation. Campbell and Thompson (2007) argue that finance theory
can be used to improve on the model. In particular, the conditional equity
premium should be non-negative since it is diffi cult to imagine that markets
for stocks can clear while the conditional equity premium is negative. They
implement this insight by proposing a truncated forecast which is simply the
largest of the unconstrained OLS forecast and zero:

r̂t = max(0, µ̂+ β̂xt−1), (2)

where µ̂ and β̂ are the OLS estimates from (1). While this truncation prevents
the predicted equity premium from becoming negative, the theoretical constraint
is not used to obtain improved estimates of µ and β. While potentially an
improvement over the simple unconstrained model, this approach therefore does
not make effi cient use of the theoretical constraints.
To effi ciently exploit the information embedded in the constraint that the

conditional equity premium is non-negative, the parameters µ and β should be
estimated subject to the conditional equity premium constraint that µ+βxτ−1 ≥
0 for τ = 1, ..., t :

rτ = µ+ βxτ−1 + ετ µ+ βxτ−1 ≥ 0 (τ = 1, ..., t) . (3)

Although the conditional equity premium constraint is not directly a constraint
on the model parameters, θ = (µ, β), it clearly affects these parameters which
have to be selected so as to be consistent with µ + βxτ -1 ≥ 0 for τ = 1, ..., t .
Note that the conditional equity premium constraint has to hold at each point
in time, so the number of constraints grows in proportion with the length of
the sample size. The seemingly simple equity premium constraint therefore
potentially yields a very powerful way to tie down the parameters of the return
forecasting model and obtain more precise estimates.
In many situations finance theory is informative about the sign of the slope

coeffi cient, β, relating returns to the state variable, x. To cover such cases, we
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also consider a specification that estimates the forecasting model by first impos-
ing a sign constraint on β and then imposing the conditional equity premium
constraint:

rτ = µ+ βxτ−1 + ετ βIx ≥ 0, µ+ βxτ−1 ≥ 0 (τ = 1, ..., t) , (4)

here Ix is an indicator function that is either +1 or -1, depending on the sign
of the constraint.
We next explain how the models are estimated and how the constraints are

imposed.

2.2 Accounting For Constraints through Investors’Prior
Beliefs

The theoretical constraints incorporated in the models (3) and (4) are naturally
interpreted as reflecting the forecaster’s prior beliefs on return predictability.
Viewed this way, they can best be imposed using Bayesian techniques. Estima-
tion of return forecasting models subject to these constraints therefore requires
specifying priors for the regression coeffi cients and introducing inequality con-
straints on the model parameters as specified by models (3) and (4) through
the priors. To this end we study two sets of priors: a set of Normal-Gamma
priors and a set of conditional Normal-Jeffreys’priors. We consider both types
of priors to establish the robustness of our results. In what follows we first intro-
duce the priors without constraints and then demonstrate how to incorporate
the constraints.

2.2.1 Basic Priors

The first prior we consider for the unconstrained univariate return prediction
models is the standard Normal-Gamma prior. Under this prior the parameters
of the return model, i.e. the mean parameters θ ≡ (µ, β) and the precision
parameter h = σ−2, follow independent Normal-Gamma distributions:

θ ∼ N(θ, V ) (5)

h ∼ G(v, s2).

The first two moments of the parameters of interest are: E(θ) = θ, var(θ) = V ,
E[h] = v× s−2 and var(h) = v× s−4 and so the parameters θ, V , s2 and v fully
characterize the priors. Moreover, it follows from the independence assumption
that the joint prior distribution is simply the product of each part

P (θ, h) = P (θ)P (h). (6)

Following Wachter and Warusawitharana (2007), the second prior is a condi-
tional Normal-Jeffreys prior. We assume the investor holds non-informative
(Jeffreys prior) beliefs on the intercept and precision parameter, while the prior
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concerning return predictability, measured by the slope coeffi cient, β, is allowed
to depend on the other parameters:

β|µ, h ∼ N(β, ϕ/h). (7)

Letting P (µ, h) be the prior probability density on (µ, h), the joint prior distri-
bution on the whole set of parameters is

P (θ, h) = P (β|µ, h)P (µ, h). (8)

We start by deriving a limiting Jeffreys prior on the full set of parameters (θ, h).
Following Stambaugh (1999),

P (θ, h) ∝ (det I(θ, h))1/2

where I(θ, h) is the Fisher information matrix. Lastly, combining this part with
the conditional Normal density, we get

P (θ, h) ∝ (ϕ)−1/2h1/2 exp(−
h(β − β)2

2ϕ
)h−1/2 = ϕ−1/2 exp(−

(β − β)2

2ϕ
h). (9)

Next we show how to incorporate constraints on these priors.

2.2.2 Prior Beliefs under Constraints

Both the constraint on the sign of the slope coeffi cient, β, and the conditional
equity premium constraint restricts the mean parameters θ = (µ, β) and hence
take the following form:

θ ∼ F0 × I(θ ∈ A), (10)

where F0 is the prior distribution of θ without constraints. In the context of
this paper, under the Normal-Gamma prior, F0 = N(θ, V ), while under the
Normal-Jeffreys prior, F0 = N(0, ϕ/h). I(θ ∈ A) is an indicator function that
equals unity if θ ∈ A and is zero otherwise. A is the admissible region for the
regression coeffi cients as reflected in the theoretical constraints on the models
(3) and (4). Specifically, under (3) A is the set of parameter values satisfying
that the predicted return, r̂τ ≥ 0, τ = 1, ..., t. Hence the conditional equity
premium constraint is equivalent to restricting θ to lie in the set A :

A = {µ+ xτ−1 · β > 0, for τ = 1, 2, ..., t}
= {Λθ > 0}, (11)

where Λ =

(
1 max(Xτ−1)
1 min(Xτ−1)

)
, τ = 1, 2, ..., t

Similarly, letting sign(β) = ±1 denote the prior belief on the sign of the slope
coeffi cient, for the model that imposes constraints on both the sign of β and on
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the conditional equity premium, we have:

A = {µ+ xτ−1 · β > 0, for τ = 1, 2, ..., t; and sign(β) · β > 0}
= {Ψθ > 0}, (12)

where Ψ =

(
1 f(X)
0 sign(β)

)
,

and f(X) =

{
min(Xτ−1) if sign(β) = 1

max(Xτ−1) if sign(β) = −1
, τ = 1, 2, ..., t.

2.3 Choice of Priors

So far we have explained how we impose the constraints implied by the priors
that the conditional equity premium is non-negative and/or the sign of the slope
coeffi cient . We next explain our specific choice of prior parameters (θ, V , v, s2)
in the Normal-Gamma case and (β, ϕ) in the Normal-Jeffreys case. We assume,
first, that investors hold prior beliefs that stock returns are not predictable and,
second, that investors hold diffuse priors about the remaining parameters.
Starting with the Normal-Gamma case, our prior reflects the “no predictabil-

ity”view that the best predictor of the stock return is the historical average. At
each point in time t, we therefore center the prior intercept, µ, on the prevailing
mean of historical excess returns, while the prior slope coeffi cient is centered on
zero, β = 0. The prior precision for the mean parameters is V = ψ×Ik where Ik
denotes the k-dimensional identity matrix (we only consider univariate models
so k = 2) and ψ is a scaling factor that controls the tightness of the prior. We
consider values ψ = 0.1 and ψ = 1. For the prior belief on h, we set v = 1 and
s2 = 4 so the Gamma distribution reduces to an exponential distribution which
has a significant probability mass near zero and reflects a diffuse view.3

Turning to the Normal-Jeffreys prior, we continue to assume “no predictabil-
ity”, i.e. β = 0. Besides, it is reasonable to let investors’ priors on β depend
on the variation in the predictor variable (x): A high variance of the predictor
variable (captured by σx ) might lower the spread of the prior on β. Thus, we
rewrite ϕ in terms of σx and a prior scale parameter σβ , that is common across
all predictor variables irrespective of their variance: ϕ ≡ σ2β×σ−2x . We consider
values σβ = 0.02 and σβ = 0.2 and, at each point in time, set σx equal to the his-
torical standard deviation of the explanatory variable, x. This conditional prior
on β also reflects a prior on the population R2, since R2 = β2σ2x/(β

2σ2x + σ2µ),
see Wachter and Warusawitharana (2007).

3To see this, consider the probability density function (pdf) of the gamma distribution:

f (x ;v, s2) = xv−1 s
2v exp(−s2x)

Γ(v)
, for x > 0. In general, this pdf has a hump shape, but for

v = 1 it reduces to f (x ;s2) = s2 exp(−s2x), which is the pdf of an exponential distribution.
The value of this function at zero is infinite and it exhibits an exponential decay thereafter.
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2.4 Posterior Distributions

We next derive the posterior distributions under the two priors considered so
far. Assuming that returns are normally distributed, we can use standard results
from Bayesian analysis to obtain formulas for the posterior distribution of the
mean and precision parameters.
First we introduce some notations needed for our analysis. Note that the

return model can be written in matrix notations

Y t = Xtθ + εt,

where

Y t = [r1, r2, ..., rt]
′

Xt =

[
1, 1, 1, ..., 1

x0, x1, x2, ..., xt−1

]′
Zt = {Y t, Xt}
εt = [e1, e2, e3, ..., et]

′ ∼ N(0, σ2It)

In the following, for simplicity we ignore the subscript t.
Under the Normal-Gamma prior, conditional on h and the data up to time

t, the posterior density of θ is given by:

θ|h, Z ∼ N(θ,H
−1

)× I(θ ∈ A), (13)

where θ and H
−1
is the posterior mean and covariance of the parameters. These

moments of the posterior distribution are given by H = H + hX ′X and θ =

H
−1

(Hθ + hX ′Y ) = H
−1
hX ′Y .4

Conditional on θ and the data, Z, the posterior density of h is given by:

h|θ, Z ∼ G(v, S2) (14)

where v = T + 2 and S2 = s2 + (Y −Xθ)′(Y −Xθ). The unconstrained model
(1) is nested as a special case when A = R2. Analytical results are available
for the unconstrained model (1) which does not impose any restrictions on the
parameter estimates and thus preserves the full (non-truncated) distribution so
that I(θ ∈ A) is always Identity.
To derive similar results under the Normal-Jeffreys prior, we start from the

joint kernel of the posterior distribution:

P (θ, h|Z) ∝ P (Z|θ, h)P (θ, h)× I(θ ∈ A). (15)

∝ hT/2 exp{−h
2

(Y −Xθ)′(Y −Xθ)}ϕ−1/2 exp(−β
2

2ϕ
h)× I(θ ∈ A).

4The priors are, as discussed earlier, θ = (Ȳ , 0) and H = ψI2.
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If we interpret the above formula as a function of h only, then it is a posterior
kernel for h conditional on θ:

P (h|θ, Z) ∝ hT/2 exp{−h
2

(Y −Xθ)′(Y −Xθ)} exp(−β
2

2ϕ
h)

= h((T+2)−2)/2 exp{−h
2

[
β2

ϕ
+ (Y −Xθ)′(Y −Xθ)]}.

This is the kernel of a Gamma distribution:

h|θ, Z ∼ G(v, S2),

where v = T + 2 and S2 = β2

ϕ + (Y −Xθ)′(Y −Xθ).
Conversely, if (15) is interpreted as a function of θ only, then it is a posterior

kernel for θ conditional on h:

P (θ|h, Z) ∝ hT/2 exp{−h
2

(Y −Xθ)′(Y −Xθ)} exp(−β
2

2ϕ
h)× I(θ ∈ A).

= hT/2 exp{−1

2
[(θ − θ)′H(θ − θ) + h(Y −Xθ)′(Y −Xθ)]} · I(θ ∈ A),

This is the kernel of a Normal distribution:

θ|(h, Z) ∼ N(θ,H
−1

),

whose posterior moments are H = H + hX ′X and θ = H
−1

(Hθ + hX ′Y ) =

H
−1
hX ′Y .5

Comparing the posterior distributions under the two sets of priors, we see
that they could be unified under a single Normal-Gamma prior framework, but
with different specifications of the priors [θ,H].

2.5 The Gibbs Sampler

Unfortunately, closed-form expressions are not available for the constrained
models (3) and (4). Estimating the parameters of these models requires eval-
uating the posterior distribution of the parameters given the data up to time
t, Z, denoted π

(
θ, σ−2

∣∣Z). This in turn requires repeatedly drawing from the
distribution π which is not always feasible in our context. Hence we cannot use
Monte Carlo integration methods to simulate posterior moments of functions of
the parameters. Instead we implement the Gibbs sampler and use importance
sampling techniques which we next describe.
To implement the Gibbs sampler, we partition the parameters δ = (θ, σ−2)

into two blocks:
δ(1) = σ−2, δ(2) = θ. (16)

5For this case the priors areθ = [0, 0] and H = [
0 0
0 hϕ−1 ].
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Given an initial draw δ(0) = (δ
(0)
(1), δ

(0)
(2)) from π (δ|Z), we successively draw new

parameters

δ
(s)
(b) ∼ π

(
δ(b)
∣∣ δ(s)<(b), δ(s−1)>(b) , Z

)
, b = 1, 2; s = 1, 2, ..., . (17)

The resulting sequence, {δ(s)}, is a realization of a Markov chain. Under well-
known conditions the Markov chain converges (Roberts and Smith (1994)) and
any single iterate δ(s) retains the property that it is draw from the joint density
π
(
θ, σ−2

∣∣Z).
The Markov chain (17) requires sampling from the two conditional densities

(13) and (14). Drawing from (14) is straightforward and can be carried out by
many statistical packages. Drawing from (13), however, is non-standard and
requires using importance sampling techniques. Suppose that random draws
θs, s = 1, ..., S can be generated from a density, q(θ), the so-called importance
function. By appropriately weighting the random draws from q(θ), the mo-
ments computed from the draws of the importance function, θs, converge to the
moments obtained from the (unknown) posterior distribution π (θ|Zt).6
For importance sampling to work, q (θ) needs to approximate π (θ|Zt) quite

well. Otherwise cases can be found where ω (θs) is equal to zero for virtually
every draw and the weighted average involves very few draws. Thus, importance
sampling may become inaccurate unless q (θ) is chosen carefully. Fortunately,
the problem of finding an accurate importance function is easily resolved for
the linear regression model that is subject to inequality constraints. By setting
the importance function equal to the unconstrained posterior distribution, the
weights can be computed as

ω (θs) = I (θs ∈ A) . (18)

Hence the weights are either one (if θs ∈ A) or zero (if θs /∈ A) and this
strategy simply involves drawing from the unrestricted posterior distribution
and discarding draws that violate the relevant inequality restrictions. Hence
our approach is very simple to implement in practice.

3 Empirical Results

In this section we present empirical results from applying the methods described
in the previous section to forecast stock returns.

6This property makes use of the result in Geweke (1989) that if θs, s = 1, ..., S is a random
sample from q(θ), then under weak conditions∑S

s=1 ω(θs)g(θs)∑S
s=1 ω(θs)

→ E[g(θ)|Ft],

where the weights of the importance function, ω(θs), are given by

ω(θs) =
π(θ = θs|Ft)
q(θ = θs)

.
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3.1 Data

Our empirical analysis uses the data on monthly stock returns along with a
set of sixteen predictor variables analyzed in Goyal and Welch (2007).7 Stock
returns are measured by the S&P500 index and include dividends. A short
T-bill rate is subtracted from stock returns in order to capture excess returns.
Data samples vary considerably across the individual predictor variables. To be
able to compare [[−and later combine−]](delete) results across the individual
predictor variables, we use the longest common sample which goes from 1940-
2005.8

The identity of the predictor variables is listed in Table 1. Most variables fall
into three broad categories, namely (i) valuation ratios capturing some measure
of ‘fundamentals’to market value such as the dividend price ratio, the dividend
yield, the earnings-price ratio, the 10-year earnings-price ratio or the book-to-
market ratio; (ii) measures of bond yields capturing level effects (the three-
month T-bill rate and the yield on long term government bonds), slope effects
(the term spread), and default risk effects (the default yield spread defined as
the yield spread between BAA and AAA rated corporate bonds, and the default
return spread defined as the difference between the yield on long-term corporate
and government bonds); (iii) estimates of equity risk such as the cross-sectional
equity premium (the relative valuations of high- and low-beta stocks), long
term return and stock variance (a volatility estimate based on daily squared
returns). Finally, two corporate finance variables, namely the dividend payout
ratio (the log of the dividend-earnings ratio), and net equity expansion (the
ratio of 12-month net issues by NYSE-listed stocks over the year-end market
capitalization) and a macroeconomic variable, inflation (the rate of change in
the consumer price index) are considered.

3.2 Effect of Constraints on coeffi cient estimates

Before turning to the forecasts of stock returns, we consider the posterior dis-
tribution of the coeffi cient estimates based on the full data sample available
at the end of 2005. These contain interesting information about the economic
significance of the various predictor variables.
Towards this end, the first two columns of Table 1 report OLS estimates of

the slope coeffi cient β along with the associated t-statistics for the unconstrained
model. Roughly half of the predictor variables generate coeffi cient estimates that
are significant at the 5% level. However, the t−statistics for the valuation ratios
should not be taken at face value given the well-known biases in their estimates
(see, e.g., Stambaugh (1999)).
Columns 3-10 of Table 1 report the posterior means of β under the uncon-

strained and constrained Bayesian models using four combinations of uninfor-
mative Normal-Gamma priors with ψ = 0.1 or ψ = 1 and Normal-Jeffreys’
priors with σβ = 0.02 or σβ = 0.2. Since the results are very similar under

7We are grateful to Amit Goyal for providing this data.
8One variable, the cross-sectional premium, only has data up to the end of 2003.
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the two constrained models (3) and (4), we only report estimates for the latter.
First consider the results for the unconstrained models. Under Normal-Gamma
priors the posterior means of the slope coeffi cient tend to be very similar to
the OLS estimates−more so as ψ is increased from 0.1 to 1 and less weight is
put on the prior. Under the Jeffreys’priors, the posterior means of the slope
coeffi cients remain quite close to the OLS estimates−although of course slightly
closer to zero, the center of the priors−when σβ is set to 0.2. Lowering σβ to
0.02, and thus using a prior more strongly concentrated on zero, has the effect of
shrinking the posterior mean of β more towards zero and so the absolute value
of the posterior means are generally much smaller under this prior.
Turning to the constrained models, under either set of priors, the constraints

have a clearly identifiable effect on the posterior means of the coeffi cients which
tend to fall between the OLS estimates and the posterior means under the cor-
responding unconstrained models. The posterior means of the slope coeffi cients
can vary significantly depending on whether the unconstrained or constrained
model is adopted and on the choice of prior. For example, in the case of the net
equity expansion variable, the OLS coeffi cient is -0.197 which is very close to the
posterior mean of the unconstrained model under Jeffreys priors with σβ = 0.2,
but is somewhat smaller than the value (-0.12) obtained under the constrained
model with σβ = 0.2 and the values (-0.05 to -0.06) obtained when σβ = 0.02.
One of the advantages of our methodology is that it treats the coeffi cients

on the predictor variables as random variables. Hence we can study the entire
distribution of the coeffi cients of the predictor variables (β) conditional on the
data and any restrictions that may have been imposed on the forecasting model.
This provides insights into the effect on the forecasting model of imposing con-
straints on the equity premium or on the sign of β. Figure 1 plots the posterior
distribution of β under Normal-Gamma prior with ϕ = 0.1 for each of the mod-
els described in section 2 (i.e. the unconstrained model (1), the model (3) that
imposes non-negative equity premia, r̂1, ...r̂t ≥ 0 and the model (4) that further
imposes a sign constraint on the slope coeffi cient).
Several points stand out from these plots. First, in many cases, imposing

the constraint that the conditional equity premium cannot be negative has a
very significant impact on the distribution of the slope coeffi cients in the return
equation. In comparison, the sign constraint on β generally tends to have a
much smaller additional effect on the posterior distribution of β.

Imposing the constraints on the forecasting model has separate effects on
the location and dispersion of the slope parameter, β. First, the distribution
of the slope coeffi cient, β, tends to be less dispersed with higher peaks under
the constrained models. For example, whereas the distribution of β in the
unconstrained return model based on the dividend-price ratio is concentrated
between -0.01 and 0.025, it lies in a much more narrow band between zero and
0.01 under the constrained model. Even larger effects of imposing the constraints
can be observed for the slope coeffi cients of variables such as the T-bill rate,
long-term return, stock variance and inflation.
The second effect is related to the location or center of the distribution

of the slope coeffi cient, β. For most variables (with the possible exception of
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the default yield spread), Figure 1 shows that the distribution of β is shifted
towards zero. For example, in the case of the dividend-price ratio, the mean
of β changes from 0.008 under the unconstrained model to 0.004 under the
constrained model. In general, predictor variables whose coeffi cient estimates
are predominantly positive (such as the valuation ratios) therefore see their
distributions shift to the left, while conversely variables such as the T-bill rate
or the rate of inflation whose unconstrained coeffi cient estimates are centered
on negative values are shifted to the right when the conditional equity premium
is required to be non-negative.
Finally, Figure 1 shows the effect of imposing the double constraint that

the conditional equity premium at each point in time is non-negative and that
the sign of β must be positive for the valuation ratios, spread and interest rate
variables and negative for inflation and the T-bill rate. The result of the sign
constraint is to further narrow the distribution of the slope coeffi cients. Unsur-
prisingly the effect of the additional constraint is largest for those models whose
slope coeffi cient has a distribution that is centered near zero with considerable
probability mass on both positive and negative values. In practice the constraint
has a much smaller effect for variables such as the T-bill rate or the dividend
yield whose unconstrained slope coeffi cients are largely distributed on one side
of zero. Because of the asymmetric nature of the slope restriction, imposing
sign constraints on β generally pushes the mean of β further away from zero
compared to when only the conditional equity premium is constrained to be
non-negative.

4 Out-of-sample Forecasts of Stock Returns

The key question in the literature on return predictability is whether stock
returns can be predicted ex ante. To address this issue, we next study the
out-of-sample forecasting performance of the models under consideration here.
Some studies (e.g. Pesaran and Timmermann (1995), Bossaerts and Hillion
(1999), Goyal and Welch (2003, 2007)) have addressed out-of-sample or ex-
ante predictability by accounting for the effect of parameter estimation error
associated with investors’updating of their models based only on historically
available (“real time”) data.
Our analysis uses the first 10 years of data (1940-49) to obtain initial pa-

rameter estimates so the forecasts begin in 1950. More specifically, we use our
approach to compute recursive parameter estimates both for the unconstrained
model (1) and the constrained model (4). In order to avoid look-ahead bias in
the parameter estimates we only use data up to the month prior to that for
which return is being predicted.9 For example, the forecast of returns in Janu-
ary 1950 is based on an estimate that uses data up to and including December
1949. To forecast excess returns for February 1950, we extend the data set by

9Forecasts from the model that only constrains the equity premium (3) are very similar to
those from the model (4) that constrains both the equity premium and the sign of the slope
coeffi cient β and are thus not reported separately.
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one observation (i.e. up to January 1950), re-estimate the parameters of the
forecasting model subject to any constraints and then compute a new forecast.
We continue recursively with this estimation and forecasting procedure up to
the end of the sample in 2005:12.
Figure 2 plots the out-of-sample forecasts associated with the unconstrained

and constrained forecasting models over the period from 1950-2005. To preserve
space we only show the prevailing mean and the forecasts based on the dividend
yield and the T-bill rate. The unconstrained and constrained forecasts from
the prevailing mean model are almost identical since the sample estimate of
the prevailing mean is always positive so the equity premium constraint has
the rather modest effect of truncating a very small part of the left tail of the
distribution of the parameter µ that controls mean excess returns, .
In contrast, the sequence of return forecasts based on the T-bill rate (shown

in the middle window) is an example where imposing constraints on the equity
premium makes a very big difference. The unconstrained forecasts based on
this model are very volatile and negative most of the time from 1970-1985,
whereas the constrained forecasts are far smoother and, by construction, never
take negative values. The constrained forecasts are mostly higher than the
unconstrained values although this is not the case during the last three years of
the sample.
The unconstrained and constrained forecasts based on the model that uses

the dividend yield as a predictor variable (shown in the bottom window) clearly
share a common trend. This is a reflecting of the persistent movements in
the dividend yield. However, the unconstrained forecasts are generally smaller
than those based on the constrained model and, moreover, turn negative in
1987 and from 1992 onwards. As we shall later see, this explains the poor
forecasting performance of this model since on average stock returns were quite
high during this period. Imposing that the equity premium is non-negative
leads the dividend yield model to perform much better as the restricted model
predicts large and positive excess returns that even drift slightly upwards after
the mid-1990s.
We conclude from these findings that imposing basic equilibrium restric-

tions on the conditional equity premium can have large effects on the ex-ante
predicted return. Comparing the forecasts from the unconstrained and con-
strained models, the predicted returns can in some cases differ by more than
200 basis points per month.

4.1 Evaluation of Forecasts

From the substantial difference in the time series of forecasts shown in Figure 2,
we would expect that the unconstrained and constrained models produce quite
different out-of-sample forecasting performance. Table 2 confirms that this is
indeed the case. Following Campbell and Thompson (2007) this table reports
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out-of-sample R2−values computed as

R2oos,i = 1−
∑T
t=1 e

2
t,i∑T

t=1 ē
2
t

, (19)

where et,i = rt − r̂t,i is the forecast error from the ith forecasting model,
ēt = rt − r̄t is the forecast error from the prevailing mean model (which as-
sumes no predictability) and t = 1, .., T is the out-of-sample period. The out-
of-sample R2−value is one minus the (squared) ratio of the root mean squared
error (RMSE) of the ith forecasting model measured relative to that of the no
predictability (prevailing mean) model with recursively updated parameter es-
timates. Forecasting models with smaller out-of-sample RMSE-values than the
prevailing mean model generate positive values of R2oos,i, while conversely mod-
els with greater out-of-sample RMSE-values produce negative values of R2oos,i.
Because of this one-to-one mapping between RMSE and out-of-sample R2, there
is no need for us to separately report the RMSE values.
As a benchmark the first column in the table shows the full-sample R2−value

obtained under the simple least-squares model. This varies significantly across
predictor variables and is quite high (0.6%) for the dividend-price ratio, the
dividend yield, the smoothed earnings price ratio, the T-bill rate and long-term
return. It is even higher in the case of inflation (1.5%) and the cross-sectional
premium (1.14%), but is quite low for many of the remaining predictor variables.
The rest of the table reports out-of-sample R2 value under different meth-

ods. Consistent with the findings reported by Campbell and Thompson (2007)
and Goyal and Welch (2007), the OLS results in Panel A show that there is
only weak evidence of out-of-sample predictability based on the unconstrained
forecasting models. In fact, nine of the sixteen forecasting models produce neg-
ative R2−values and the average R2−value (computed across all 16 models) is
also negative. More troubling, perhaps, is that for many predictor variables the
out-of-sample R2 is quite large with negative values that exceed the correspond-
ing positive in-sample R2−values listed in the first column. Basing investment
strategies on such forecasts would therefore in all likelihood lead to underper-
formance compared to a simple model with no predictability.
Similar findings hold for the unconstrained Bayesian models. Across all

priors, close to half of these models produce negative out-of-sample R2−values.
Following Campbell and Thompson (2007) we also considered the trun-

cated OLS forecasts (2). The results are listed in the first column under "Con-
strained Models". For 14 of the 16 models under consideration, the out-of-sample
R2−value is improved by imposing the equity premium constraints. This is
consistent with Campbell and Thompson’s finding that such constraints can
improve forecasting performance.
The truncated OLS forecasts proposed by Campbell and Thompson (2007)

do not revise the parameter estimates in view of the constraints. In contrast,
the Bayesian methodology which we propose in this paper incorporates this
information in the parameter estimates. Table 2 shows that there are clearly
considerable gains from adopting our methodology. For example, under the
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Normal-Gamma prior with ψ = 0.1, the average R2−value from the univariate
forecasting models more than doubles from 0.15 under the constrained OLS
forecasts to 0.33. This increase reflects improved forecasting performance under
the Bayesian method for 11 of the 16 models.
Similar results are obtained under the Jeffreys priors. Imposing the con-

straints lead to an improvement in out-of-sample forecasting performance for
13 or 14 out of 16 models, depending on whether σβ = 0.02 or σβ = 0.2. This
reflects an increase in the average R2−value of 0.10 when σβ = 0.02 and an
increase in this statistic close to 0.40 when σβ = 0.2. Clearly the constraints
matter significantly to forecasting performance. Moreover, under the Jeffreys
priors on average the constrained Bayesian models continue to outperform the
truncated OLS forecasts.
We conclude from these results that imposing constraints on the equity pre-

mium leads to substantial improvements in the out-of-sample forecasting per-
formance of the majority of univariate forecasting models with only four of 16
variables being unable to predict returns. Imposing such constraints cuts the
number of cases with negative R2−values roughly in half from 27 to 15 cases
across all priors and univariate forecasting models (i.e. out of a total of 64 cases)
and raises the R2−value for twelve of the sixteen variables. In addition, we find
significant improvements in the precision of the forecasts by exploiting these
constraints to inform the posterior distribution of the coeffi cients by using our
Bayesian methodology as opposed to simply truncating the forecasts at zero.

5 Stambaugh Bias

Many of the predictor variables used in the return forecasting literature are
known to be highly persistent. Moreover, innovations to such variables and
innovations to returns are in some cases strongly correlated. Such conditions
are known to introduce a significant bias in the coeffi cient estimates and a
resulting bias in the forecast. This phenomenon, which is generally known as
the Stambaugh bias (Stambaugh (1986, 1999)) is particularly important for
valuation ratios such as the dividend yield or the price-earnings ratio. These
variables are highly persistent with innovations that are strongly negatively
correlated with returns.
A large literature has attempted to address the small-sample bias problem

by developing refined econometric estimators and bias-reduction methods. Ex-
amples include Ang and Bekaert (2007), Campbell and Yogo (2006), Cavanagh,
Elliott and Stock (1995), Jansson and Moreira (2006), Lewellen (2004), Polk,
Thompson and Vuolteenaho (2006) and Torous, Valkanov and Yan (2004).
Our approach provides an effective way to reduce the Stambaugh bias and,

as a result, improve on the precision of the forecasts. A feature of our approach
which distinguishes it from the more statistically-based methods for dealing with
the problem is that it uses an estimator that is economically motivated by a
constraint that holds as a consequence of simple equilibrium arguments. Impos-
ing this constraint on the forecast in every period is particularly appropriate for
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the simple forecasting models which, as pointed out by Ang and Bekaert (2007),
can reasonably be viewed as representing approximations rather than an exact
relationship.
Along with most studies in the literature, we consider the following simple

model for returns (rt+1) and the predictor variable (xt+1):

rt+1 = µr + βrxt + ut+1

xt+1 = µx + βxxt + vt+1. (20)

Returns are predictable by means of past values of x whenever βr 6= 0. More-
over, the predictor variable follows a first-order autoregressive process whose
persistence is measured by βx ∈ [0, 1]. Another key parameter is the correlation
between shocks to returns and shocks to the state variable, ρuv = σuv/(σvσu).
As noted by Stambaugh (1999), OLS estimates of βr, denoted by β̂r, are biased
by approximately

E[β̂r − βr] ≈ −
σuv
σ2v

(
1 + 3βx

T

)
, (21)

where T is the sample size, σuv is the covariance between u and v and βx is the
persistence parameter for the predictor variable. Valuation ratios such as the
earnings-price ratio or the dividend yield are highly persistent with estimates
of βx close to one and a correlation between u and v that is large and negative.
This introduces a large upwards bias in the estimate of the slope coeffi cient
βr in (20) given σuv < 0. This has the dual effect of making inference on β̂r
very diffi cult and also leads to worse forecasting performance since the return
forecasts become too sensitive to the value of x.
Figure 3 shows how the equity premium constraint works when x ≥ 0 (top

window) or x < 0 (bottom window). For a given value of x, µ + βx ≥ 0 is a
joint constraint on both µ and β. When plotted against µ and β, the boundary
of this constraint always goes through zero and has a slope µ/β = −x (for
β 6= 0) that reflects the value of the predictor variable, x: The intercept-slope
ratio µ/β must lie between −max(x) and min(x). Together with the objective
of obtaining the "best fit" by trading off the intercept and the slope coeffi cient,
the equity premium constraint tends to drag β towards zero.

5.1 Simulation Results

To see how the bias in the slope coeffi cient and the forecasting performance is
affected by the equilibrium constraints, we conduct a series of simulation experi-
ments. We simulate returns under the model (20) fitted to stock returns and the
dividend yield, using OLS estimates of the coeffi cients {µ̂r, β̂r, σ̂r, µ̂x, β̂x, σ̂x, σ̂rx}
in place of their unknown values. In particular, we generate 5,000 random draws
of time series of returns using sample sizes similar to those studied by Stam-
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baugh (1999), namely T = 200, 500, 800.10

For each draw of returns and the predictor variable, we next obtain esti-
mates of the slope coeffi cient, βr, using OLS estimation as well as Bayesian
estimates based on the unconstrained model (1), the model that constrains the
equity premium (3) and the double-constrained model that restricts both the
conditional equity premium and the sign (4).
Table 3 reports the outcome of these simulations.The true parameters for

the simulation are set as:

rt+1 = 0.033 + 0.008xt + ut+1

xt+1 = −0.014 + 0.996xt + vt+1

var(ut+1) = 0.0018, var(vt+1) = 0.0019, cov(ut+1, vt+1)− 0.0018

The table shows the mean, skewness and kurtosis of the coeffi cient estimates
as well as the root mean squared error (RMSE) of the one-step-ahead forecast.
In common with other researchers we find that the OLS estimates are heavily
biased. In the smallest sample, T = 200, the bias amounts to more than 100% of
the true parameter value (0.8) assumed in the simulations. This bias is shared
also with the unconstrained Bayesian estimates, which is perhaps unsurprising
since we are using uninformative priors in the analysis. As the sample size
increases to 500 observations, as expected the bias declines but is still quite
substantial. Even in the largest sample with 800 observations some bias remains.
Very different results emerge for the constrained models. Imposing the con-

straints cuts the bias by more than half in the smallest sample, T = 200, and
largely eliminates the bias in the two largest samples with 500 or 800 observa-
tions. Moreover, both the skewness and the kurtosis of the distribution of the
coeffi cient estimates are significantly reduced under the constrained models.
Turning to the forecasting performance listed in the final column of Table 3,

this is also significantly improved under the constrained models. In the smallest
sample with 200 observations, the root mean squared forecast error gets reduced
from 1.6% (using OLS) or 1.9 (using unconstrained Bayesian estimates) to 1.2
under the equity premium constraint and only 1.0 under the sign- and equity
premium constrained model. Even in the largest samples with 500 or 800 ob-
servations, the constraints on the forecasting model continue to lead to a large
reduction in RMSE-values both in relative and absolute terms.
10To simulate returns, we use the Cholesky decomposition

ut+1 = σ̂rεrt+1

vt+1 =

(
σ̂2
xσ̂

2
r − σ̂2

xr

σ̂2
r

)1/2

εxt+1 +
σ̂xr

σ̂r
εrt+1,

where εrt+1, εxt+1 are IID and mutually uncorrelated random variables.
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5.2 Forecasts Based on Valuation Ratios: Results from
Longer Samples

As mentioned previously, the Stambaugh bias is a particular concern for the
valuation ratios which are highly persistent with innovations that are strongly
correlated with returns. For three of these, namely the dividend price ratio,
the dividend yield and the earnings-price ratio we have particularly long data
samples spanning the period 1871-2005:12, while for a fourth, the smoothed
earnings price ratio, the data sample is 1881-2005:12. Recent results that have
questioned that these variables can predict stock returns ex-ante (e.g. Goyal and
Welch (2003, 2007)) have reported results going back to 1927. It is therefore of
interest to consider the forecasting performance of these variables in the longer
sample.
To this end, Table 4 reports the out-of-sample forecasting performance for

these four predictor variables using the longest-available sample to estimate the
parameters of the forecasting models. The out-of-sample forecast period begins
in 1927 and the parameters are updated recursively through time using only
data that was available prior to the date of the forecast. For each of the four
priors under consideration we report the RMSE and out-of-sample R2−values
for the unconstrained and constrained models.
The forecasting performance of the unconstrained models is quite similar

under the Normal-Gamma priors as well as under the Jeffreys prior with σβ =
0.2. Under these priors the out-of-sample R2 is negative for the forecasts based
on the dividend-price ratio or the dividend yield, while it is around 0.25 and
0.08 under the earnings-price ratio and smoothed earnings-price ratio models.
Forecasting performance improves for the dividend-based predictor variables
under the Jeffreys prior with σβ = 0.02, but it worsens for the earnings-price
ratio predictor variable.
Turning to the results under the constrained forecasting models, the forecast

precision improves significantly. The out-of-sample R2−value is now always
positive and it improves in 15 of 16 cases, in many cases more than doubling
the R2−value.

5.3 Parameter Estimation Error

Our results so far suggest that, for the valuation ratios, the improvement in
forecasting performance under the equilibrium restriction on the return fore-
casting models can be understood in terms of its ability to reduce the finite-
sample (Stambaugh) bias. For variables that are either less persistent or whose
innovations are less correlated with returns−including managerial decision vari-
ables such as the dividend payout ratio and net equity expansion (Baker et al
(2006))−this bias is less likely to be the explanation for the improved forecasting
performance of the constrained models. This is also an issue for variables such
as the T-bill rate or the inflation rate for which this bias is not a great concern.
To understand why the constraints work for these models, we turn to an-

other explanation, namely the effect of parameter estimation error. It is widely
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known that it is diffi cult to estimate the slope coeffi cients of the return fore-
casting models with much precision. As a result, the forecasting performance
is likely to be improved by estimation methods that reduce parameter uncer-
tainty. Imposing the constraint achieves this objective. As shown in Table 3,
the standard deviation−computed across the 5,000 Monte Carlo simulations−is
much lower for the constrained than for the unconstrained forecasting models.
Hence lower parameter estimation error is another way to understand why the
constrained return forecasting models work better than the unconstrained ones.

6 Conclusion

We presented a new approach to forecasting stock returns out-of-sample that
optimally incorporates information embedded in theoretical restrictions on the
conditional equity premium and on the sign of the coeffi cient of the predictor
variable. When implemented empirically, this approach was found to be highly
successful at improving the precision of out-of-sample forecasts of stock returns.
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Table 1: Full-sample estimates of slope coefficients for the individual return forecasting models

Variables OLS t-statistic
Unconstrained Model Constrained Model

Normal-Gamma Priors Jeffreys Priors Normal-Gamma Priors Jeffreys Priors
ψ=0.1 ψ=1 σβ=0.02 σβ=0.2 ψ=0.1 ψ=1 σβ=0.02 σβ=0.2

Dividend Price ratio 0.008 2.35 0.0080 0.0081 0.0019 0.0078 0.0039 0.0038 0.0022 0.0042
Dividend yield 0.008 2.37 0.0081 0.0081 0.0020 0.0078 0.0039 0.0039 0.0022 0.0041
Earnings Price ratio 0.008 2.17 0.0079 0.0080 0.0019 0.0076 0.0038 0.0038 0.0023 0.0040
Smooth Earnings Price ratio 0.011 2.40 0.0105 0.0104 0.0025 0.0101 0.0047 0.0048 0.0028 0.0051
Book-to-market 0.008 1.35 0.0086 0.0082 0.0019 0.0080 0.0074 0.0075 0.0032 0.0074
T-Bill rate -0.117 -2.42 -0.1107 -0.1168 -0.0280 -0.1117 -0.0375 -0.0371 -0.0274 -0.0402
Long term yield -0.082 -1.61 -0.0785 -0.0813 -0.0200 -0.0783 -0.0447 -0.0457 -0.0273 -0.0464
Term spread 0.256 2.16 0.2066 0.2488 0.0619 0.2516 0.0823 0.0837 0.0626 0.0875
Default yield spread -0.304 -0.85 -0.0984 -0.2362 -0.0767 -0.2936 -0.2442 -0.3993 -0.1707 -0.3957
Default return spread 0.091 0.65 0.0700 0.0879 0.0223 0.0918 0.0695 0.0693 0.0523 0.0687
cross-sectional premium 2.153 3.12 0.2221 1.1578 0.4793 2.0247 0.3324 0.9424 0.5280 1.3250
Long term return 0.146 2.35 0.1382 0.1444 0.0345 0.1404 0.0434 0.0435 0.0341 0.0457
Stock variance -0.391 -0.80 -0.0735 -0.2729 -0.0962 -0.3791 -0.0514 -0.0527 -0.0513 -0.0505
Dividend Payout ratio 0.006 0.75 0.0056 0.0058 0.0013 0.0056 0.0068 0.0067 0.0036 0.0064
Net equity expansion -0.197 -1.97 -0.1700 -0.1901 -0.0474 -0.1922 -0.1146 -0.1191 -0.0606 -0.1243
Inflation -1.311 -3.57 -0.3957 -1.0761 -0.3218 -1.2922 -0.2094 -0.2382 -0.2065 -0.2610

Note: This table presents estimates of the slope coefficients of the univariate forecasting models using monthly stock returns in excess of a 1-month T-
bill rate over the period 1940:1 – 2005:12. The first and second columns show the ordinary least squares (OLS) estimates and their t-statistics. The next 
four columns show the posterior means of the slope coefficients for unconstrained models estimated using Bayesian methods under different priors. The 
final four columns show the posterior means of the slope coefficients obtained using Bayesian methods that constrain the equity premium to be non-
negative and also constrain the sign of the slope coefficient. The parameters ψ and σβ reflect the weights on the priors: larger values indicating a smaller 
weight on the prior. 



Table 2: Forecasting performance of individual return forecasting models

Variables in-sample R²

out-of-sample R²
Unconstrained Models Constrained Models

OLS
Normal-Gamma Priors Jeffreys Priors

OLS
Normal-Gamma Priors Jeffreys Priors

ψ=0.1 ψ=1 σβ=0.02 σβ=0.2 ψ=0.1 ψ=1 σβ=0.02 σβ=0.2
Dividend Price ratio 0.569 0.208 0.234 0.104 0.200 0.258 0.424 0.972 0.960 0.3685 0.8834
Dividend yield 0.582 0.227 0.250 0.021 0.202 0.275 0.427 1.004 1.009 0.3796 0.9166
Earnings Price ratio 0.466 0.252 0.243 -0.005 0.135 0.275 0.197 0.454 0.435 0.278 0.4642
Smooth Earnings Price ratio 0.602 -0.724 -0.519 -1.325 0.231 -0.499 -0.108 0.689 0.702 0.3747 0.6484
Book-to-market 0.106 -1.418 -1.326 -1.438 0.018 -1.179 -1.231 -0.116 -0.115 0.1027 -0.2007
T-Bill rate 0.610 -0.089 0.315 0.295 0.363 0.099 0.675 0.863 0.465 0.5512 0.7156
Long term yield 0.202 -1.289 -0.142 -0.876 0.202 -0.965 0.557 0.777 0.498 0.3713 0.3482
Term spread 0.461 0.109 0.283 0.041 0.308 0.200 0.262 0.357 0.151 0.3332 0.3253
Default yield spread 0.092 -0.183 -0.023 -0.128 -0.028 -0.158 -0.088 0.030 -0.262 -0.004 -0.1224
Default return spread 0.053 -0.544 -0.142 -0.336 -0.046 -0.502 -0.279 -0.440 -0.664 -0.0981 -0.4041
cross-sectional premium 1.142 -0.028 0.131 0.585 0.322 0.231 0.491 0.398 0.816 0.4618 1.0801
Long term return 0.570 0.036 0.298 -0.273 0.325 0.212 0.196 0.393 0.381 0.4677 0.5182
Stock variance 0.081 -3.175 -0.108 -1.329 -0.418 -2.960 -0.205 -0.253 -1.160 -0.6857 -3.1138
Dividend Payout ratio 0.071 -0.293 -0.283 -0.357 -0.014 -0.275 -0.128 -0.158 -0.150 0.0584 -0.0068
Net equity expansion 0.365 0.032 0.193 -0.037 0.153 0.072 0.068 0.179 0.124 0.2541 0.229
Inflation 1.468 1.140 0.385 1.259 0.282 1.125 1.223 0.192 0.024 0.2674 0.2397

Note: This table presents forecasting results for monthly stock returns using univariate forecasting models. Column 1 shows in-sample R2-values while the 
other columns show out-of-sample R2-values computed over the period 1950:01 - 2005:12. The data goes back to 1940:01 and the first 10 years of 
observations are used to obtain initial estimates of the parameters. Subsequently an expanding window is used to estimate the models recursively over time. 
Positive R2-values show that a forecasting model produces more precise forecasts (lower root mean squared forecast errors) than the prevailing mean model. 
Columns 2-6 show results for the unconstrained forecasting models using either OLS or Bayesian estimation methods. Columns 7-11 show results using 
either truncated OLS or Bayesian estimation methods that constrain the equity premium to be non-negative and also constrain the sign of the slope coefficient



Table 3: Estimates of slope coefficient and root mean squared error performance for the dividend yield forecasting model with and without constraints.
σ_β=0.2 σ_β=2

Panel A: T=200 mean s.d. skewness kurtosis rmse mean s.d. skewness kurtosis rmse
OLS 2.092 1.659 1.979 9.601 4.303 2.092 1.659 1.979 9.601 4.303

Unconstrained 1.839 1.838 1.676 8.608 4.333 2.093 2.005 1.612 7.457 4.333
Equity Premium Constrained 1.281 1.181 0.646 4.410 4.309 1.348 1.189 0.512 4.426 4.305

Equity Premium and Sign Constrained 1.461 0.989 1.233 5.759 4.300 1.538 1.043 1.133 5.050 4.297

σ_β=0.2 σ_β=2
Panel B: T=500 mean s.d. skewness kurtosis rmse mean s.d. skewness kurtosis rmse

OLS 1.226 0.598 1.785 8.967 4.262 1.226 0.598 1.785 8.967 4.262
Unconstrained 1.176 0.724 1.616 9.271 4.271 1.230 0.755 1.564 8.225 4.275

Equity Premium Constrained 0.852 0.458 0.616 4.402 4.264 0.875 0.464 0.668 4.691 4.266
Equity Premium and Sign Constrained 0.879 0.440 0.945 4.976 4.262 0.893 0.445 0.868 4.626 4.264

σ_β=0.2 σ_β=2
Panel C: T=800 mean s.d. skewness kurtosis rmse mean s.d. skewness kurtosis rmse

OLS 1.071 0.394 1.619 7.625 4.177 1.071 0.394 1.619 7.625 4.177
Unconstrained 1.043 0.499 1.360 6.864 4.185 1.071 0.506 1.378 7.114 4.180

Equity Premium Constrained 0.725 0.303 0.612 4.334 4.183 0.734 0.302 0.720 4.668 4.178
Equity Premium and Sign Constrained 0.726 0.301 0.796 4.263 4.179 0.736 0.298 0.831 4.506 4.184

Note: This table shows the result of 5,000 Monte Carlo simulations for the dividend yield forecasting model with parameters set to match the full-sample 
estimates for US stock returns: rt =  μ + βxt-1 + εt, xt = μ + γxt-1 + ut. The (posterior) mean of the slope coefficient on the dividend yield in the return equation 
is shown in the first column followed by the skew and kurtosis of this coefficient. The fourth column shows the root mean squared forecast error based on 
forecasts of returns for the following period. In all cases an uninformative prior is used with psi = 0.1. 



Table 4: Out-of-sample R2 of individual return forecasting models

sample period
Normal-Gamma Priors Jeffreys Priors

Panel A: Unconstrained Models ψ=0.1 ψ=1 σβ=0.02 σβ=0.2
Dividend Price ratio 1871.2--2005.12 -0.332 -0.331 -0.036 -0.323

Dividend yield 1871.2--2005.12 -0.256 -0.242 0.048 -0.246
Earnings Price ratio 1871.2--2005.12 0.260 0.248 0.151 0.254

Smooth Earnings Price ratio 1881.1--2005.12 0.065 0.082 0.169 0.086

Panel B: Constrained Models (I)
Dividend Price ratio 1871.2--2005.12 0.034 0.138 0.091 0.067

Dividend yield 1871.2--2005.12 0.031 0.176 0.142 0.023
Earnings Price ratio 1871.2--2005.12 0.031 0.166 0.195 0.300

Smooth Earnings Price ratio 1881.1--2005.12 0.049 0.178 0.241 -0.601

Panel C: Constrained Models (II)
Dividend Price ratio 1871.2--2005.12 0.015 0.130 0.185 0.181

Dividend yield 1871.2--2005.12 0.062 0.242 0.350 0.349
Earnings Price ratio 1871.2--2005.12 0.070 0.273 0.364 0.371

Smooth Earnings Price ratio 1881.1--2005.12 0.065 0.267 0.191 0.189

Note: This table presents forecasting results for monthly stock returns using univariate forecasting models. 
Column 1 shows sample periods for each individual model. Columns 2-5 presents the forecasting performance in 
terms of out-of-sample R2 using Bayesian estimation methods under different prior specifications. Panel A 
contains results of models without any constraint. Panel B contains results of models with non-negative return 
premium constraint. Panel C contains results of models with both non-negative return premium constraint and 
sign constraint on the slope of forecasting equation. 



Figure1: Posterior distribution of slope coefficients in return prediction models 
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Figure 2: Out-of-sample forecasts of excess returns under unconstrained and constrained 
return prediction models (with uninformative priors and 
ψ=0.1)
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Figure 3.1: suppose x>0, shaded area stands for μ+βx >= 0 
 

 
 
 
 
Figure 3.2: suppose x<0, shaded area stands for μ+βx >= 0 
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