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Abstract

Inflation targeting —the central bank practice of attempting to keep inflation
levels within fixed bounds around a quantitative target — has been adopted by
more than twenty economies. Such practice has an important impact on the sto-
chastic nature of inflation and, consequently, on the pricing of inflation derivatives.
We develop a flexible model of inflation targeting in which the central bank’s in-
tervention to steer inflation towards the target depends on past deviations and the
policymaker’s ability or will to enforce the target. We use our model to price in-
flation derivatives and demonstrate the impact of inflation targeting on derivative
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1 Introduction

The global inflation-indexed bond market has grown significantly over the past decade as more

governments and corporations have issued inflation-indexed debt. As of 2011, the value of the

global inflation-linked bond market reached a total of $1.8 trillion.1 Most of these bonds, such

as those making up the US Treasury inflation protected securities (TIPS) and French OATi

market, guarantee a redemption payoff which is equal to the nominal par value and therefore

include inflation derivatives in the form of a put option. In addition, a separate market for

inflation derivatives has developed in the US, UK, and the Euro area. The payoffs to these

derivatives are linked to measures of realized inflation, such as the US consumer price index

(CPI) or the UK retail-price-index (RPI).

In this paper we propose a model for pricing inflation derivatives that builds on the intuition

of inflation target regimes and that has the flexibility to capture different types of target

regimes. Inflation derivative prices depend on the expected future path of inflation, which

in turn will be affected by the presence of a target regime. Our model specifically considers

how the dynamics of the inflation process depend on specific aspects of target regimes such as

speed and aggressiveness of central bank reaction to deviations of inflation from the target. We

extend the existing models of inflation derivative pricing, which assume a standard geometric

Brownian motion process for inflation (following Black and Scholes, 1973), or assume a mean-

reverting process (following Vasicek, 1977) and find that our model produces substantially

lower pricing errors than either model.

Developing a model for the stochastic process of inflation in the presence of inflation tar-

geting is important given that such policy regimes have been adopted by more than twenty

advanced and emerging economies (Roger and Stone, 2005; Heenan et al., 2006). Policy regimes

are characterized by an explicit quantitative inflation target, which may be determined by the

central bank or given to it in the form of a mandate. The central bank attempts to steer actual

inflation towards the target through the use of interest rate changes and other monetary policy

1See “Inflation-linked bonds: Blossoming markets”(André de Silva, Global Fixed income research,
HSBC, 24 November 2011). The inflation derivatives market had a size of $100bn in 2011 (Christopher
Whittall, International Financing Review, http://www.ifre.com/, 8 March 2012).
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tools. The center of the interval or the specific inflation rate targeted currently varies across

countries from 1.5 to 2.5 percent per year. The target tends to be a constant yearly yield of

the price index (target point) together with a target zone with fixed upper and lower bound-

aries between which yearly inflation is targeted to remain. Some countries, such as the US,

are claimed to be “covert inflation targeters,”who unoffi cially try to target inflation within

certain boundaries (Mankiw, 2002).2

Inflation targeting has important implications for the pricing of inflation derivatives. We

illustrate this point by the following example: a European put option on the CPI, with one

year to maturity and a strike price that is equal to the current CPI level, will never be

exercised if the lower boundary of the target zone is equal to 1% and the target boundary

is perfectly credible. Its price should therefore be equal to zero. In contrast, the price of an

at-the-money put option evaluated using a standard Gaussian model, e.g. Black and Scholes

(1973), is positive.

As the example illustrates, the degree of credibility of the target zone has important effects

on inflation dynamics. Inflation may deviate from the target or lie outside the zone for several

reasons. First, there are lags between deviations from the target, resulting changes in monetary

policy, and realization of the full impact of policy on the economy (Svensson, 1997). Second,

most central banks tend not to choose aggressive attempts to steer actual inflation towards

the target since they are trying to avoid reductions in growth and employment (Taylor, 1993).

Third, the exchange rate, which may be hit by shocks, affects domestic currency prices of

imported goods, which enter into the CPI (Svensson, 2000). It is indeed well documented

that deviations from the target are not unusual from an international perspective. Roger and

Stone (2005) find that advanced economies miss the target 52 percent of the time on average,

and that the average length of inflation exceeding the upper target zone limit is longer than

the average time of deviations below the lower limit (8.8 and 7.3 months respectively).3

2In January 2012 the US Federal Reserve announced an offi cial inflation target of 2% (see press
release from 25 January 2012, http://www.federalreserve.gov). Previous to this announcement, the
Federal Reserve’s policy setting committee stated a desired target range for inflation (usually around
1.5-2%).

3There is also substantial cross-country variation in the average time of deviation from the target.
While in Thailand and South Korea the rate of inflation deviates from its target only 2% and 5% of
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We develop a general continuous time model for the inflation process in which the central

bank intervenes to keep inflation close to the target. Central bank intervention depends on

the economy’s record of past deviations from the target. This record is captured by a state

variable that accumulates the weighted average of past deviations. As the absolute value

of this state variable increases, its effect on the drift term and the diffusion coeffi cient of

the CPI process increases. The effect of each past deviation from the target zone on the

inflation state variable is a function of its distance from the present as well as the size of

the deviation. The model can incorporate both strong and less aggressive policy reactions to

inflation deviations, and therefore different levels of inflation target credibility. The model can

capture different empirical aspects of the inflation process that are typical for target regimes,

where the credibility of interventions may be limited and deviations from the boundaries can

occur.

We illustrate the effect of our model on inflation derivative prices and formalize the intuition

of why inflation dynamics in a target regime produce option prices that are different from those

predicted by the Black and Scholes (1973) model. Numerical examples are provided in order

to evaluate how the maturity of the contract, moneyness of the option, volatility of the CPI,

and parameters of the model affect the value of inflation derivatives. We consider differences

in the speed with which policy reacts to inflation deviations as well as policy effectiveness.

Furthermore, we show that our model can match the volatility skew that is common in most

inflation derivative markets (that is, implied volatility is not constant across different strike

prices).

Finally, we fit our model to market prices of long-dated US inflation caps and show that

the target model has lower pricing errors than the Black and Scholes (1973), mean-reverting

(Vasicek, 1977), and two-factor stochastic volatility (Hull and White, 1988; Heston, 1993)

models. Target model absolute pricing errors are low across different strike prices and for

different maturities. Relative to Black and Scholes, our model cuts the total absolute pricing

error almost in half. Implementing a simple mean reverting (Vasicek) model does not improve

the time respectively, in Israel and in the Czech Republic deviations account for 94.4% and 76.2% of
the time respectively (Roger and Stone, 2005).
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pricing relative to Black and Scholes, while a stochastic volatility model results in a total

pricing error that is similar to (though slightly larger than) the target model pricing error.

The remainder of the paper is organized as follows: Section 2 relates the target model to

the literature on optimal monetary policy, inflation derivative pricing, valuation models for

currency derivatives under target zone regimes, and macroeconomic factor models. Section

3 introduces the model and discusses how it can incorporate several different aspects of the

stochastic process of inflation under a target regime. Section 4 implements the target model

numerically, compares target model and Black and Scholes (1973) prices, and discusses the

intuition of patterns in model prices. We also analyze the ability of the model to explain

variation in market prices. Section 5 concludes.

2 Related literature

Our target model is related to the wider literature on the reasons for the desirability of inflation

targeting. The seminal work by Kydland and Prescott (1977) points out the “time inconsis-

tency”problem. In the context of monetary policy, the central bank may want to choose policy

that results in a higher level of inflation than expected by economic agents. This diffi culty is a

primary motivation for the appointment of an independent central bank (Rogoff, 1985). How-

ever, even an independent monetary authority may have a suboptimally high level of discretion

and may be subject to political pressure (e.g. Meltzer, 2010). An inflation targeting regime

may enhance credibility and reduce uncertainty about future policy, thus anchoring inflation

expectations (Svensson, 1997). In our model we assume that the central bank has a certain

level of credibility: it may respond strongly and quickly or implement less aggressive policy

with longer delays (for example because of differing relative weights on output stabilization

and hitting the inflation target). However, the model does not account for the case where

the central bank’s policy response function itself is time varying, for example due to increased

political pressure during times of crisis, or the case where the central bank’s inflation target

changes over time.
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2.1 Inflation derivative pricing

We next briefly review how our target model builds on and differs from the existing literature on

inflation derivative pricing. Bodie (1990) first applies the standard Black and Scholes (1973)

formula to price CPI-linked options by using a foreign exchange analogy as introduced by

Garman and Kohlhagen (1983). Real prices (inflation adjusted) correspond to prices in foreign

currency, whereas nominal prices correspond to domestic prices in local currency, and the CPI

corresponds to the spot exchange rate and follows a lognormal process. Jarrow and Yildirim

(2003) compute the price of CPI options when both the real and nominal term structures are

stochastic by using a three factor model following Heath, Jarrow, and Morton (1992). In their

model, the price level process is exogenous and follows a log-normal distribution.

The assumption of log-normality for the dynamics of the inflation index, though technically

convenient, does not find justification in markets (e.g. Mercurio and Moreni, 2006; Kenyon,

2008). In fact, markets for inflation derivatives exhibit a strong volatility skew or smile,

implying that log index returns deviate from normality and suggesting the use of skewed and

fat-tailed distributions. Ways to relax the assumption of log-normality include introducing

stochastic volatility (Haastrecht and Pelsser, 2011; Mercurio 2005) or jump diffusion processes

(Hinnerich, 2008). While such models provide an elegant and computationally effective way

for pricing inflation derivatives, they lack a deeper economic underpinning. In contrast, our

model reflects the common practice of inflation targeting while also capturing the volatility

skew observed in the data.

2.2 Exchange rate targeting versus inflation targeting

The approach of the foreign exchange derivatives pricing literature is also related to our target

model. Specifically, inflation targeting has parallels to foreign exchange target zones. To given

an example, under the European Monetary System (EMS), a system of fixed exchange rates in

effect between 1979 and 1999 (previous to the introduction of the common currency), exchange

rates could fluctuate freely only between a lower and an upper threshold. Such targets affect

the pricing of derivatives, in particular if their strike price was close to the boundary of the
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target zone.

We can classify exchange rate targeting models into two main categories and characterize

their differences by comparing the assumptions they make about the dynamics of exchange

rates through assumptions about the drift (trend) and the diffusion (volatility) of the process.

The first, based on the seminal contribution of Krugman (1991), assumes that the target zone

is perfectly credible; as the exchange rate approaches the boundary, the diffusion coeffi cient be-

comes small and the drift drives the process away from the boundary (see Larsen and Sorensen,

2007; Avriel, Bar Shavit, and Reisman, 1998; and Dumas, Jennergren, and Näslund, 1993).

The second group of models incorporate the possibility of stochastic realignments of the ex-

change rate target zone, where the probability of realignment increases when the exchange

rate is near a boundary (see Dumas, Jennergren, and Näslund, 1995; Svensson, 1993; Ball and

Roma, 1993; Christensen, Lando, and Miltersen, 1999; and De Jong, Drost, and Werker, 2001).

Although the models for pricing currency derivatives under target zone regimes may serve as

a starting point for pricing inflation derivatives, there are important differences and thus these

models cannot be applied directly. Deviations from the inflation target are common (Roger

and Stone, 2005) and therefore models with fully credible targets may not be appropriate. In

addition, using a pricing model with the opportunity of realignments of the target does not

reflect the behavior of a central bank, since a deviation of inflation from its target does not

generally result in a change of the inflation target itself.

2.3 Macroeconomic factors and derivative pricing

The paper also adds to the literature relating macroeconomic factors to inflation derivatives

pricing. Lioui and Poncet (2004) build a general equilibrium model of a continuous time

monetary economy with an endogenous price level that is affected by both real and nominal

shocks. Belgrade, Benhamou, and Koehler (2004) examine the effect on inflation derivatives of

developing a model that reflects the empirical seasonality of the CPI. Bhansali, Dorsten, and

Wise (2009) propose a nominal interest rate model in which the interest rate depends on the

process of the output gap and inflation, both following mean reverting processes around differ-

ent target levels. They do not, however, use their framework for pricing inflation derivatives;
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moreover, unlike our paper, their model does not take deviations from the target inflation rate

into account.

3 The target model

In this section we introduce our general pricing model for inflation derivatives under an inflation

target regime. Our pricing model can account for different central bank reactions to deviations

from the target as well as different degrees of control of monetary policy over inflation. We can

thereby capture the following common features that are typical to inflation target regimes:

1. The existence of a “soft”floor or ceiling. According to our model inflation can breach

the offi cially declared boundaries of the target zone.

2. Policymakers can respond to inflation within the target zone and respond more aggres-

sively if inflation lies outside the target zone.

3. More recent and repeated deviations of inflation from the target can result in more

aggressive responses of policymakers.

4. More severe deviations from the target can lead to more aggressive policy responses.

5. The dynamics of inflation can be mean reverting around the target.

6. The reaction functions below and above the target zone can be different (similar to

Bhansali, Dorsten, and Wise, 2009).

As we present the model we refer back to the different aspects of the inflation targeting

regimes that our model is able to capture.

Our approach is to specify the stochastic process of the CPI and model the intervention

policy of the central bank implicitly, similar to the approach followed by models for foreign

exchange derivatives pricing (discussed in the previous section). Our model represents exten-

sions of previously proposed models, which we now discuss briefly in order to show why they

do not capture specific unique characteristics of the inflation process resulting from inflation

targeting.
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3.1 Geometric Brownian Motion (Black and Scholes, 1973)

The standard method for pricing derivatives on the CPI is to use the foreign currency analogy

and to assume that the stochastic process followed by the foreign currency is the same as that

of a stock providing a known dividend yield (Garman and Kohlhagen, 1983). The drift of the

foreign currency under the risk neutral measure is equal to the difference between the nominal

domestic and foreign risk-free interest rates. When modeling the evolution of the CPI, real

prices (inflation adjusted) correspond to prices in foreign currency, nominal prices correspond

to domestic prices in local currency, and the CPI corresponds to the spot exchange rate.

Therefore, by analogy, the CPI has a drift rate of (rft − rrt), where rft is the instantaneous

nominal forward rate and rrt is the instantaneous real forward rate.

Making the standard geometric Brownian motion assumption, the process for Pt —the price

at time t of one unit of the CPI —is of the form:

dPt
Pt

= (rft − rrt) dt+ σpdWp (1)

where σp is the volatility of the CPI return and dWp is a standard Wiener process. Black and

Scholes (1973) consider the pricing of derivatives for the special case where interest rates are

assumed to be constant.

3.2 Mean reverting (Vasicek, 1977)

The standard process in (1) does not consider the existence of an inflation target zone, in which

the central bank establishes an explicit quantitative target. Under such a target regime the

change of the CPI over a period τ should be located between a lower and an upper boundary.

These boundaries are usually defined symmetrically around a central target (M), such that

inflation over the specified period τ (usually one year) does not deviate from the target by

more than a certain percentage z. Denoting the accumulated inflation rate as Xt =
Pt
Pt−τ

− 1

we can write the target zone condition as:

M − z 6 Xt 6M + z.
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If the central bank policy has a simple mean reverting effect on the CPI, its stochastic process

can be depicted by some version of the Vasicek (1977) model:

dPt
Pt

= [M + γ (M −Xt)] dt+ σpdWp (2)

where the parameter γ > 0 governs the speed of adjustment and is positive to ensure stability

around the target. However, such a mean reverting process does not ensure that inflation stays

within the upper and lower boundaries of the target zone.

3.3 Perfectly credible boundaries

In the context of perfectly credible fixed exchange rate regimes, De Jong, Drost, and Werker

(2001), Larsen and Sorensen (2007), and Avriel, Bar Shavit, and Reisman (1998) assume that

when the exchange rate (or in our case the accumulated inflation, Xt) is close to the boundaries

(M − z,M + z), the diffusion coeffi cient becomes small and the drift drives the process away

from these boundaries. Integrating the Avriel et al. (1998) diffusion coeffi cient into the mean

reverting process from (2) implies the following process for the CPI:

dPt
Pt

= [M + γ (M −Xt)] dt+ σpY (Xt) dWp (3)

where

Y (Xt) =


[Xt−(M−z)][(M+z)−X]

z2
(M − z) 6 Xt 6 (M + z)

0 Otherwise

 .

The diffusion term reaches its maximum when accumulated inflation is at the midpoint of the

target zone (if Xt =M , Y (Xt) = 1, the process is the same as the mean reverting case). When

the process gets near the target zone boundaries the diffusion coeffi cient becomes negligible

compared to the drift and thus the boundaries are perfectly credible.

An important assumption of the currency target zone models is the fixed range of the

exchange rate resulting from the credible and predetermined boundaries: the exchange rate

cannot lie above the upper or below the lower threshold. We next relax this assumption.
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3.4 Inflation target zone model

We introduce the inflation state variable F (t,X (t) ,M, z) which accumulates the history of

deviations of inflation from the mid-point of the target zone, M . The state variable affects

the drift of the inflation process, which we assume to be equal to (rft − rrt) + F (t,Xt,M, z).

When inflation is above M , the state variable accumulates negative values and the drift is

decreased, while the opposite is true if inflation lies below M . This adjustment means that

the CPI process reverts to the mid-point of the target zone. Specifically, the state variable is

defined as:

F (t,Xt,M, z) =

∫ t
0 e
−β2(t−s)g (Xs) ds∫ t
0 e
−β2(t−s)ds

−
∫ t
0 e
−β1(t−s)f (Xs) ds∫ t
0 e
−β1(t−s)

. (4)

Deviations of inflation from the target are captured by the functions f (Xt) and g (Xt), which

depend on the inflation rate. The parameters β1 > 0 and β2 > 0 govern the relative weight of

recent and past deviations from the target. The functions f (Xt) and g (Xt) are defined as:

f (Xt) =


γ1z + γ2 (Xt −M + z) Xt > M + z

γ1 (X1 −M) z +M > Xt > M

0 M > Xt

 (5)

g (Xt) =


0 Xt >M

δ1 (M −Xt) M > Xt >M − z

δ1z + δ2 (M − z −Xt) M − z > Xt

 .

where γ2 > γ1 > 0 and δ2 > δ1 > 0 determine the relative impact on the inflation state variable

of deviations above (γ) and below (δ) as well as inside (1) and outside (2) of the target zone.

By defining two distinct functions for positive and negative deviations from the target, we

allow for the possibility of different reaction functions of the central bank in response to ‘too

high’and ‘too low’levels of inflation.

The severity or aggressiveness of the central bank’s reaction to a unit increase in the devi-

ation above and below the target M is represented by the parameters γ1 and δ1 respectively.

As γ1 and δ1 increase, the functions f (Xt) and g (Xt) become more sensitive to differences

between Xt (inflation) and M (target). The marginal effect of deviations outside of the target
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zone is represented by the parameters γ2 and δ2. If γ2 > γ1 and δ2 > δ1, deviations outside

of the target zone have a higher marginal effect on the state variable than deviations inside

the target zone, i.e. the central bank acts more aggressively to influence the CPI process in

cases where inflation has crossed the target zone boundaries than in situations where inflation

is within the target zone. When these parameters are set equal (γ1 = γ2, δ1 = δ2), the central

bank takes into account only deviations from the center of the target (M) but does not take

into account the target zone boundaries.

The inflation state variable depends not only on the most recent inflation rate but also on

past levels of inflation. The economic rationale for this assumption is that there may be lags

between deviations of inflation from the target and changes in central bank policy, both because

it takes time for the central bank to change its policy in response to news about inflation and

because there is a lag between policy changes and effects on inflation. The effect of inflation

deviations on the inflation state variable can capture these dynamics: as the number of positive

deviations increases the state variable decreases, while a series of negative deviations results

in an increase of the state variable. Consequently, accumulated deviations result in a more

pronounced change in policy and a subsequently larger change in inflation through an increased

speed of reversion to the target M .

The relative impact of recent and past deviations depends on β1 and β2. Since both are

assumed to be positive, recent deviations from the target zone have a greater impact on the

drift than do remote deviations. However, when these parameters are set to zero, each past

deviation has the same effect on the inflation target state variable; β1 and β2 are therefore

decay factors that govern the relative weight of previous deviations of inflation from the target.

High levels of β mean that the inflation process depends mainly on the most recent inflation

rate, while a low level of β results in a close to equal weight of past deviations.

In addition to its effect on the drift, the inflation state variable also affects the diffusion of

the process, as described in the following equation for the stochastic process:

dPt
Pt

= [rft − rrt + F (t,Xt,M, z)] dt+ σpe
−α|F (t,Xt,M,z)|dWp. (6)

The process allows for a higher absolute value of accumulated inflation deviations (above or
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below the target) resulting in lower volatility. This ensures that large and extended deviations

from the target result in more direct reversion back to the target. The parameter α determines

the magnitude of the effect of the inflation state variable on volatility. Higher levels of α result

in lower levels of volatility: that is, a higher level of effectiveness of central bank intervention

policy.

3.4.1 Summary of target model parameters

We now summarize the different target model parameters:

γ1, γ2, δ1, δ2: Strength of reaction to inflation deviations. Higher levels of these parameters

imply a higher likelihood of inflation lying within the target zone or close to the target. Effects

of inflation deviations may be different within (γ1, δ1) and outside (γ2, δ2) of the target zone

as well as for inflation deviations above (γ1, γ2) and below (δ1, δ2) the target.

σ: Volatility of inflation close to the target.

β1, β2: Decay of reaction that depends on past inflation deviations. Low levels of β mean

that the inflation process depends on several recent deviations, implying a lag between past

deviations and current levels of inflation. High levels of β mean that the process depends

primarily on recent inflation deviations. There may be differences between deviations above

(β1) and below (β2) the target.

α: Effectiveness of reaction to inflation deviations. High levels of α imply that the volatility

of inflation declines with large past deviations of inflation from the target. In this case reactions

to past deviations of inflation, in the form of changes in the inflation drift, are more effective

at bringing inflation back to the target.

3.4.2 Special cases

Our model can incorporate several previous contributions of the literature as special cases.

CASE 1: When δ1 = δ2 = 0 and γ1 = γ2 = 0 the inflation state variable is equal to

zero. The inflation process is therefore no longer mean reverting. The model is reduced to the

currency derivative pricing model of Garman and Kohlhagen (1983), discussed above as the

case of Black and Scholes (1973).
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CASE 2: When α = 0 there is no effect of the inflation state variable on the diffusion

and if β1 = β2 ≈ ∞ the past inflation history does not enter the inflation state variable.

Instead, only the most recent level of inflation is taken into account and the process is thus

mean reverting. However, the mean reversion speed may be different within and outside of the

target zone as well as for deviations above and below the target.

CASE 2a: A special case of the mean reverting process is if, in addition to the CASE 2

restrictions, δ1 = δ2 = γ1 = γ2. In this case the target model is the same as Vasicek (1977).

CASE 3: When α ≈ ∞, and all the other model parameters are positive, the diffusion

term is negligible and the process is governed only by the drift term.

4 Pricing inflation derivatives

In this section we use the target model to price inflation options. We analyze prices of caplet

and floorlet (European call and put options) in the presence of central bank involvement and a

soft target zone (as described in the previous section). We calculate option prices in the target

model and analyze the effect on option prices of changing different model parameters. We

demonstrate that our model produces different patterns in option prices than the Black and

Scholes (1973) model and discuss the intuition underlying these differences. We also compare

the ability of our model to match market prices and find that target model pricing errors are

lower than in the Black and Scholes (1973) and Vasicek (1977) models and similar to pricing

errors in a stochastic volatility model (Hull and White, 1988; Heston, 1993).

4.1 Caplet and floorlet prices

We consider caplet and floorlet prices with varying strikes and maturities. A caplet is an option

that provides a positive payoff if inflation is higher than a pre-determined level, while a floorlet

pays off if at maturity inflation is lower than a pre-determined level. The standard payoff of

caplets and floorlets is in terms of the relative change of the price index from a reference date

to maturity (inflation over the life of the contract), compared to the level given by a fixed rate

(strike price). At maturity of the option the payoffs to inflation caplets and floorlets are equal
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to:

Caplet =

(
CPIT
CPIT0

− (1 +K)(T−T0)
)+

Floorlet =

(
(1 +K)(T−T0) − CPIT

CPIT0

)+
where CPIT0 is the value of the CPI at time T0, CPIT is the value of the CPI at expiration

T , and K is the strike price. The prices of the options are equal to the expected discounted

cash flows under the risk-neutral probability measure Q:

Caplet (t) = EQt

(
CPIT
CPIT0

− (1 +K)(T−T0)
)+

e−
∫ T
t rfsds

Floorlet (t) = EQt

(
(1 +K)(T−T0) − CPIT

CPIT0

)+
e−

∫ T
t rfsds.

4.2 Calibration of target model prices and sensitivity analysis

In order to illustrate the different features of our model we present numerical examples of

option prices. We compare target model prices using our model process for inflation from (6)

to Black and Scholes (1973) prices, which assumes the inflation process from (1). Since there

is in general no analytical solution for option prices in the target model we solve for prices

numerically by calculating option prices based on Monte-Carlo simulations.4

We assume that the inflation rate before the valuation date was constant and equal to the

target M , which we assume to be 2%. We assume that the distance between the center of

the target zone (M) and its boundaries is z = 1% so that the width of the target zone is

2%. This target zone is typical for advanced economies and exists in Canada, the UK, Israel,

and Sweden. The volatility of the CPI yield is equal to 2%, based on the average rate of

advanced and emerging economies. Options on the CPI are embedded in many long-term

swap contracts; we therefore consider one and three year maturities, significantly longer than

the typical stock option. The risk-free rate is set equal to rf = 5%, the real rate is rr = 3%

4For each valuation of the CPI we use 40,000 sample paths. We have checked that this number of
simulations produces stable prices.
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and both are assumed to be constant. The target zone parameters are set to: γ1 = δ1 = 0.3,

γ2 = δ2 = 0.6. We assume that α = 40 (the effectiveness of policy reactions to past inflation

deviations) and that β1 = β2. We consider different levels of β (the decay parameter governing

the reaction to past deviations of inflation from the target). Specifically we choose the case of

equal weights (β = 0), an intermediate level (β = 3), which we refer to as the “base case,”and

the case where only the most recent observation is taken into account (β ≈∞).

The parameters imply the following effects: (1) The reaction of the central bank to a

marginal increase in inflation is twice as large for inflation deviations outside the target zone

than it is for deviations of inflation located inside the target zone. (2) The reaction function

is identical for overshooting and undershooting of the target. (3) The effect of past deviations

on the reaction function is constant across recent and past deviations (β = 0), is decreased as

we go backward in time (β > 0), or focuses only on the most recent deviation (β ≈ ∞). (4)

The diffusion term decreases as the inflation target state variable increases (α > 0). The CPI

value is normalized at time T0 to one (Pt = 1).

4.2.1 Caplet prices

Table I reports caplet prices according to the target model. We consider five strike prices

chosen to be symmetric around the midpoint of the target (2%), 0.99, 1.01, 1.02, 1.03, 1.05 for

a maturity of 1 year (Panel A) and 1.01, 1.03, 1.06, 1.09, 1.11 for a maturity of 3 years (Panel

B). Since inflation has a positive average drift we choose a higher set of strike prices for the

three year maturity (if we assume that the drift is equal to 2%, we expect the price index to

increase from 1 to 1.02 over 1 year and from 1 to 1.023 = 1.06 over 3 years). The strike prices

in the table thus allow us to observe the effect of our model on inflation realizations within and

outside of the target zone. We also consider two levels of volatility, 2% and 6%. In addition

to prices calculated using the target zone model, for each strike price, volatility, and maturity

combination we also report Black and Scholes (B&S) option premia.

The main difference between the target model and the B&S model is the relative likelihood

of extremely high and extremely low realizations of inflation, in particular inflation levels that

lie outside of the target zone. Such levels of inflation will prompt central bank action resulting
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in inflation moving back toward the target and back within the target zone.

Consequently, in the target model realizations of inflation close to the target are relatively

more likely than they are for B&S. In particular, the probability of high realizations of inflation

are lower in the target model, reducing the expected payoff of the caplet at maturity (and de-

creasing the price relative to B&S). Consistent with this intuition, B&S prices are significantly

larger for caplets with strike prices that are above the target. For example, the target model

price of a caplet with strike price of 1.03 (and maturity of 1 year and volatility of 2%) is 0.18,

far below the B&S price of 0.40. The lower target model caplet price reflects the reduced

probability of inflation realizations above the upper limit of the target zone (1.03).

Caplet prices also depend on low realizations of inflation, which are less likely under the

target model. This effect means that as the strike price decreases below the midpoint of the

target, the difference between target model caplet and B&S prices declines. The price of a

caplet with a strike price of 0.99 is 2.84 (target zone), almost equal to the B&S price of 2.93.

Effects are similar for 3-year maturity options. The target model price is 4.40 for a caplet

with a strike price of 1.01 and a 2% volatility, very close to the B&S price of 4.56. For a strike

price of 1.09, for which realizations of inflation above the target are important, the target

model price is 0.05, much smaller than the B&S price of 0.42.

We also consider the effect of a higher level of volatility. In both panels we report target

model and B&S prices assuming that σ = 6%. As before, model prices lie below B&S prices and

differences are larger for high strike prices since, relative to B&S, the target model continues

to result in lower probabilities of extremely high levels of inflation. For low strike prices we

now also see large differences in price. The reason for this is the much higher probability of

high (and above target zone) levels of inflation in the case of B&S.

The inflation deviation decay parameter (β) also affects caplet prices. We expect β to have

the strongest effect on central bank policy for inflation rates outside of the target since it is

for these deviations that shifting the relative weights placed on different inflation lags has the

largest impact. Consistent with this intuition, caplet prices vary most across different levels

of β when the strike price is high, volatility is high, or maturity is long; that is, when caplet

prices depend on the likelihood of extreme realizations of inflation. Caplet prices tend to be
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low for the intermediate level of β while they are higher for extreme levels. We will analyze

and discuss this U-shaped pattern of caplet prices with respect to β further in section 4.2.3.

4.2.2 Floorlet prices

As in the case of caplet prices, differences in target model and B&S floorlet prices result from

different probabilities of extreme realizations of inflation. Table II reports floorlet prices for

the same strike prices, levels of volatility, and maturities as in Table I. Since very low levels of

inflation are relatively less likely under the target model, target model floorlet prices for low

strike prices are much lower than B&S prices. For example, for a strike price of 1.01 the target

model 1-year price (σ = 2%) is 0.18 compared to a B&S price of 0.38. For a 3-year floorlet

with a strike price of 1.01 and σ = 2% the target model price is close to zero compared to a

B&S price of 0.10.

Another difference between target model and B&S prices can be the effect that maturity

has on floorlet prices. The effect of maturity can be ambiguous since there are two opposing

effects at work when maturity increases. First, if the CPI is expected to increase over the

life of the contract (if inflation has a positive drift), a longer maturity reduces the probability

of the CPI lying below the strike price at maturity, thus reducing the floorlet price. Second,

as maturity increases, the volatility of CPI realizations at maturity increases, resulting in a

higher probability of lying below the target and increasing the floorlet price. The ambiguity

in the overall effect is reflected in the B&S prices for a strike price of 1.01. If volatility is low

(positive drift dominates), the floorlet price decreases with maturity (0.38 and 0.10), while the

price increases with maturity (1.86 and 1.88) if volatility is high (higher long-term volatility

dominates).

In contrast, in the target model floorlet prices decrease with maturity for both low and high

levels of volatility. The reason is that inflation targeting results in lower levels of long-term

CPI volatility, making extremely low realizations of inflation less likely than they are in the

B&S model. Even if instantaneous volatility is high, central bank policy interventions will

make it very unlikely that the CPI will lie far below the target zone boundary. For a strike

price of 1.01 floorlet prices decrease with maturity even for high levels of volatility, for which
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target model prices are equal to 0.77 (1 year) and 0.16 (3 years).

Valuation of floorlets is important since most inflation linked bonds include a capital pro-

tection guarantee so that the payoff at maturity is at least equal to the nominal face value

of the bond. This is true in particular for long-dated floorlets with low strike prices that are

embedded in e.g. US TIPS, making differences in out-of-the-money floorlet prices across mod-

els significant. A nominal guarantee translates into a floorlet with a strike price of 1.00. In

the target zone model it is extremely unlikely for the CPI to lie below this level after several

years. For example, for a strike price of 1.01 the 3-year floorlet price (σ = 6%) is 0.16 while

the B&S price is equal to 1.88.

We also find an effect of β, the parameter governing the decay of the effect of past deviations

of inflation on current policy. As in the case of caplets, relative differences in prices are larger

for options that derive value from more extreme inflation outcomes. The effect of β is thus

larger for lower strike prices and for longer maturities.

To summarize, we find important differences between model prices and B&S prices and

intuitive effects of target model parameters on model prices. We demonstrate that model

prices better predict market prices in section 4.3.

4.2.3 The effects of α and β

The effectiveness of the central bank’s policy in response to deviations from the target (α)

and decay of the effect of past inflation deviations on current policy (β) are both important

determinants of the inflation process and are both innovations of our model compared to

previous studies. We therefore briefly examine their effects on prices. We consider 1-year

maturity caplet and floorlet prices. The strike price is set equal to 1.02 (equal to the midpoint

of the target zone) and the volatility is 6%. The other parameters (γ and δ) are set equal to

their base case values.

Figures 1 and 2 plot caplet and floorlet prices for different values of α and β (as before

β1 = β2). Option premia are substantially lower for higher levels of α. As the parameter

increases, volatility outside of the target zone decreases. A high α therefore reduces the

probability of extreme and extended levels of inflation outside of the target zone and option
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prices are lower.

Consistent with the patterns in Tables I and II there is a U-shaped relationship between

option prices and β. Initially, as β increases, the option price decreases since for a low level

of β the inflation state variable depends on several observations in the past. In this case there

is a significant lag between inflation deviations from the target and changes in the inflation

process. For example, even if the current observed inflation is above the target, previous low

levels of inflation may mean that the central bank continues to pursue a loose policy that

increases inflation. As β increases, the speed of the reaction increases and the process becomes

more mean reverting due to a faster policy response. Correspondingly, option prices decrease.

For high levels of β option values start to increase again since the inflation state variable

depends mainly on the most recent deviation from the target. In this case the likelihood of

several deviations above the target is higher than if the central bank becomes more aggressive

in response to continued deviations from the target.

4.3 Fitting the target model to data

We now examine the ability of our model to match market prices of inflation options. We

use the target model to price US inflation caps with different maturities and strike prices. An

inflation cap, the standard inflation contract, is a portfolio of year-on-year (YoY) caplets, each

of which is relevant for a different 1-year period over the life of the contract. For example, if

the maturity of the cap is equal to 5 years and the strike price is 1.02, then at the end of each

year during which the yearly inflation rate lies above two percent the cap pays the difference.

The price of the cap is thus equal to

Cap (t) = EQt

[
τ∑
s=1

e−
∫ s
t rfudu

(
CPIs
CPIs−1

− (1 +K)
)+]

where τ is the maturity of the cap.5

We fit the target model to market data and then illustrate its ability to capture variation in

5We note that the contract is not a long-dated cap, as we analyzed in Table I, but rather a portfolio
of year-on-year caplets.

19



cap prices by comparing inflation cap market prices (from Bloomberg) to target model prices.

We consider cap prices for three maturities (5, 7, and 10 years) and five strike prices (1.00,

1.01, 1.02, 1.03, and 1.04). The set of strike prices is close to symmetric around the mid-point

of the target and therefore represents the most liquid contracts. Cap premia are reported in

Table III (Panel A). Option premia increase with maturity; a longer maturity means that the

cap includes more individual caplets. For example, as a percentage of par, a 5-year cap with a

strike price of 1.02 has a premium of 6.28% while a 10-year cap with the same strike price has

a premium of 14.93%.

Two other inputs necessary to calculate target model prices are nominal interest rates (swap

rates) and zero coupon inflation swap rates; we collect both data series from Bloomberg. We

report the term structures of nominal swap rates and zero coupon inflation rates in Table IV.

From the nominal swap rates we calculate spot rates (zero coupon rates), which we use to

discount the caplet prices. From the zero coupon inflation swap rates we calculate forward

inflation drifts (the difference between the forward nominal and real rates), which we need in

order to simulate paths for inflation under the model assumptions.

The final input needed to calculate predicted prices in the target model are data on past

inflation rates, which are needed since the inflation state variable depends on the weighted

deviations from the target. We collect data on inflation (changes in the CPI) from the Bureau

of Labor Statistics (BLS) and set the target equal to M = 1.75% (according to the Federal

Open Market Committee, the implicit target zone is limited to the range between 1.5% and

2%). Figure 3 plots the annual inflation rate from May 2008 to April 2010, the 24 months

previous to the date at which we price the options, along with the mid-point of the target.

We choose a period of 24 months over which to measure past deviations from the target since

the conventional assumption is that there is a 2 year lag between the enactment of monetary

policy and the realization of the full effect on the economy. We assume that the inflation state

variable is constructed using a weighted average of inflation deviations over this period.6

6We assume that inflation is observed instantaneously. We note, however, that in practice there is a
2-month reporting lag in the US. This leads to institutional consequences regarding option prices: for
example, the payoff of a 1-year option is based on realized inflation over the 12-month period beginning
two month previous to the start of the contract and ending two months before maturity. Given the
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In the US there are no explicitly boundaries for the inflation target zone. This means that

δ1 = δ2 and γ1 = γ2. In order to make the parameter space more manageable we also assume

that β1 = β2. The parameter space is thus given by (α, β, γ, δ, σ). We note that, assuming

no difference in the marginal effect of inflation deviations inside and outside the target zone

means that the parameter z (the distance between the target and the boundary of the target

zone) has no effect.

We find model parameters that best fit the observed data. We implement a numerical

search over a large parameter space using the sampling method proposed by Sobol (1967). For

each market price, we calculate the pricing error as the difference between the market price

and the model price, PModel−PMarket. For each set of parameters we then calculate the total

absolute error:

TAE =

N∑
i=1

∣∣∣PModel − PMarket
∣∣∣ .

The parameter combination that minimizes the total absolute error is: α = 204, β = 23,

γ = 0.015, δ = 1.34, and σ = 3.63%.

Given that our model reflects central bank behavior we can interpret the parameters: Infla-

tion below the target results in stronger central bank reaction than inflation above the target

(δ > γ), consistent with a preference for a low probability of deflation by the Federal Reserve.7

These parameters are also consistent with forward inflation drift levels above 2%, which are

present in the inflation swap data reported in Table IV. Also, inflation is expected to be quite

variable close to the target (σ = 3.63%), but deviations from the target result in policy that

ensures a return to the target (α is large). Lastly, since β is large (the pricing error does not

increase with β), the inflation state variable depends mainly on recent deviations from the

target.

longer maturities of the contracts we consider, the effect of abstracting from this effect will be small.
7Williams (2009) points out that “Forecasters appear to be convinced that the Federal Reserve

would not be content with sustained deflation and would take policy actions to restore a positive rate
of inflation.”
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4.3.1 Comparing market, target model, and Black-Scholes option prices

Table III reports market prices (Panel A), differences between target model and market prices

(Panel B), and differences between Black and Scholes (1973) and market prices (Panel C).

We report pricing errors (PModel − PMarket) for each of the 15 options, and total absolute

pricing errors for each strike price and maturity. The total absolute error of the target model

is 4.1%, while the total absolute error for the B&S model is 7.7%, which means that using the

target model results in a 47% decline in pricing error relative to B&S. We can also calculate

the percentage absolute error by normalizing by the average option market price. The average

absolute error is equal to 2.4%, while the B&S error is equal to 4.5%.8

We report total pricing errors across different strike prices and different maturities. For

each strike price and for each maturity the target model outperforms B&S. Given the intuition

of inflation targeting, we expect the target model to be important in particular for option prices

that derive value from levels of inflation with large differences relative to the target. It is these

prices that in the calibration analysis (Section 4.2) we found to have the largest differences from

B&S model prices. Consistent with those patterns, we find that the target model performs

well relative to B&S specifically for caps with extreme strike prices: the average total pricing

error is 0.65% for strike prices equal to 1.00 and 1.04 compared to a pricing error of 2.04%

for B&S. As expected, the outperformance of the target model is smaller for strike prices that

are closer to the target of 1.75%: Total target model absolute errors for options with strike

prices equal to 1.01, 1.02, and 1.03 is 0.94%, closer to the level of 1.21% for B&S. The target

model also performs better relative to B&S for longer-dated options: For 5-year options the

difference in error between the two models is 0.59% while it is equal to 1.82% for 10-year caps.

Another way to capture the ability of the model to match market prices is to calculate

Black and Scholes (1973) implied volatility. Table V reports implied volatilities for market

prices (Panel A) and for target model prices (Panel B). For all three maturities, levels of

implied volatility for market prices are different across strike prices and are lower for lower

strike prices. Option market prices thus exhibit the common pattern of a volatility ‘smile’or

8A lower pricing error may not be surprising given that the target model is more flexible and contains
the Black and Scholes (1973) model as a special case.
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‘skew.’We find that the target model captures the observed pattern in implied volatility.

4.3.2 Model prices when inflation is mean-reverting Vasicek (1977) or when

volatility is stochastic (Hull and White, 1988; Heston, 1993)

We compare target model pricing errors to two additional models. First we consider, a mean-

reverting (Vasicek, 1977) model, which is a special case of our target model when imposing

the restrictions that δ1 = δ2 = γ1 = γ2, α = 0, and β1 = β2 ≈∞. In this case the parameter

space is reduced to (γ, σ). A search for parameters that best fit the market data (Table III)

results in a level of γ = 0, which reduces the model to the Black and Scholes (1973) case of

no mean reversion. Thus absolute pricing errors are not reduced by allowing the possibility of

Vasicek model mean reversion.

Second, we implement a model with stochastic volatility. Following Hull and White (1988)

and Heston (1993) we calculate model prices in a model where volatility is stochastic. In

contrast to our model, the Hull and White (1988) and Heston (1993) stochastic volatility

models are two factor models in which one stochastic process is used for the dynamics of

the underlying asset (inflation) and the second for the volatility of volatility. Specifically, the

processes of the inflation index and its return volatility are given by:

dPt
Pt

= (rf − rr) dt+
√
νtdWP

dνt
νt

= η (θ − νt) dt+ ξ
√
νtdZP

where dWP and dZP are two standard Wiener processes with correlation ρ, ξ is the instanta-

neous standard deviation of dνtνt , and the mean reversion speed of the volatility to its long run

mean, θ, is denoted by η.

We implement the model assuming that the current level of volatility is equal to its long

run mean. We then search for parameters that minimize the total absolute pricing error, which

we find to be equal to 4.74%. The stochastic volatility model thus results in a substantially

lower pricing error than the Black and Scholes (1973) and Vasicek (1977) models (both 7.7%)
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and is only slightly larger than the target model pricing error of 4.1%.9 Our proposed target

model therefore has the benefit of incorporating the intuition of inflation targeting while not

suffering from a decline in pricing accuracy compared to other models.

5 Conclusion

In this paper we present a flexible model for the valuation of inflation derivatives under an

inflation target regime. The central bank may choose to intervene to keep inflation realizations

within a fixed target zone. However, the effectiveness of such intervention may be imperfect,

allowing deviations of inflation from the target zone.

In each period the intervention of the central bank to steer inflation towards the target

depends on the economy’s past record of deviations from the target. This record is captured

by a state variable that accumulates the weighted past deviations from the target. Large devi-

ations, recent deviations, and ongoing deviations lead to more aggressive central bank action

and a stronger tendency of inflation to revert back to the target. Our model can accommodate

a large number of inflation target regimes: it can capture different reactions to previous devi-

ations, different responses to deviations inside and outside the target zone, different responses

to inflation above and below the target, and different levels of policy effectiveness.

We use our model to price inflation options. Differences between target model and Black and

Scholes (1973) prices are high in particular for options that are sensitive to extreme realizations

of inflation. For example, prices of high strike price caplets are significantly smaller than B&S

prices because the probability of very high levels of inflation is much lower when taking into

account the reaction of the central bank. Long-dated floorlet prices with low strike prices

have lower prices in the target model (as compared to B&S), since continued levels of low

inflation are less likely given central bank intervention. Since low-strike long-dated floorlets

9We implement the stochastic volatility model as follows: Following Broadie and Kaya (2006) we
simulate a path for volatility and then use the Hull and White (1988) approximation to calculate the
value of each forward starting caplet that is part of the cap. We note that several other authors including
Van Haastrecht and Pelsser (2010) and Kahl and Jackel (2006) have also contributed towards developing
effi cient discretization schemes for the Heston (1993) model.
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are embedded in e.g. TIPS, the price differences take on added importance.

Fitting our model to US inflation caps we find that the target model is able to reduce the

pricing error of the B&S model by close to 50%. Predicted prices are more accurate for all

strike prices and maturities. Consistent with the target model being better able to predict

extreme events, the outperformance of the model relative to B&S is largest for longer-dated

options and for options with strike prices outside of the target zone.
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TABLE I 
Caplet valuation for different strikes, maturities, and model parameters 

 
Panel A: Maturity is equal to one year 

   Strike price 

 Model  0.99 1.01 1.02 1.03 1.05 

 
 

Target 
Model 

 2.85 1.14 0.57 0.20 0.00 

=2% 

=3.0 2.84 1.12 0.54 0.18 0.00 

 2.85 1.16 0.59 0.22 0.00 

B&S   2.93 1.35 0.78 0.40 0.07 

=6% 
 

 
Target 
Model 

 3.02 1.80 1.30 0.87 0.23 

=3.0 2.94 1.66 1.16 0.73 0.14 

 3.10 1.89 1.40 0.96 0.31 

B&S   4.01 2.83 2.33 1.90 1.21 

 
Panel B: Maturity is equal to three years 

 Model 
Strike price 

1.01 1.03 1.06 1.09 1.11 

 
 

Target 
Model 

 4.40 2.70 0.74 0.05 0.00 

=2% 

=3.0 4.40 2.71 0.72 0.05 0.00 

 4.41 2.76 0.86 0.11 0.01 

B&S   4.56 3.07 1.34 0.42 0.15 

=6% 
 

 
Target 
Model 

 4.46 3.07 1.48 0.53 0.21 

=3.0 4.46 3.03 1.41 0.48 0.19 

 4.68 3.36 1.82 0.83 0.43 

B&S   6.35 5.26 3.86 2.75 2.15 

 
Note.  This table presents the value of caplets (as percentage of notional amount) for various strike prices. The CPI 
is normalized to 1 and the time to maturity is equal to one year (Panel A) and three years (Panel B). The nominal 
interest rate  is  fixed and equal to rf =5%, the real rate  is set equal to rr =3%, the volatility of the CPI  is equal to 
σ=2% or σ=6%. The midpoint of the inflation target zone is 2%, the target zone is symmetric around the midpoint 
with a range between the midpoint and the boundary of z=1%, and inflation is equal to the target previous to the 

valuation  date.  Inflation  state  variable  parameters  are  given  by:  =40,  γ1=δ1=0.3,  γ2=δ2=0.6.  The  time  decay 
parameters β1 and β2 are set equal to 0, 3, and ∞. 



TABLE II 
Floorlet valuation for different strikes, maturities, and model parameters 

 
Panel A: Maturity is equal to one year 

   Strike price 

 Model  0.99 1.01 1.02 1.03 1.05 

 
 

Target 
Model 

 0.00 0.20 0.58 1.17 2.86 

=2% 

=3.0 0.00 0.18 0.55 1.14 2.86 

 0.00 0.22 0.60 1.18 2.87 

B&S   0.06 0.38 0.76 1.33 2.90 

=6% 
 

 
Target 
Model 

 0.23 0.91 1.36 1.88 3.15 

=3.0 0.14 0.77 1.22 1.74 3.05 

 0.31 1.00 1.46 1.98 3.23 

B&S   1.13 1.86 2.31 2.83 4.04 

 

Panel B: Maturity is equal to three years 

   Strike price 

 Model  1.01 1.03 1.06 1.09 1.11 

 
 

Target 
Model 

 0.00 0.03 0.64 2.54 4.21 

=2% 

=3.0 0.00 0.03 0.62 2.53 4.21 

 0.00 0.08 0.76 2.59 4.21 

B&S   0.10 0.33 1.18 2.84 4.30 

=6% 
 

 
Target 
Model 

 0.18 0.51 1.50 3.14 4.53 

=3.0 0.16 0.46 1.41 3.07 4.50 

 0.39 0.80 1.83 3.42 4.75 

B&S   1.88 2.52 3.71 5.17 6.29 

 
Note.   This table reports floorlet prices for different maturities, strike prices, volatilities, and  levels of model 
parameters. The unreported model parameters are the same as in Table 1. 

 

  
 



Table III 
Market prices and model prices for US inflation caps 

 
Panel A: Market prices of US inflation caps 

 
 

Strike price 

Maturity  1.00 1.01 1.02 1.03 1.04 

5 13.24% 9.46% 6.28% 3.88% 2.30% 

7 19.63% 14.51% 10.09% 6.61% 4.15% 

10 27.88% 20.97% 14.93% 10.05% 6.47% 
 
 

Panel B: Differences between US inflation cap target model and market prices 
 

 Strike price  
Maturity 1.00 1.01 1.02 1.03 1.04 TAE 

5 0.44% 0.03% 0.29% 0.51% 0.47% 1.74% 

7 0.13% -0.43% -0.18% 0.11% 0.16% 1.00% 

10 0.07% -0.68% -0.46% -0.13% -0.02% 1.35% 

TAE 0.64% 1.14% 0.93% 0.74% 0.65% 4.10% 
 
 

Panel C: Differences between US inflation cap B&S and market prices 


 
Strike price 

 

Maturity 1.00 1.01 1.02 1.03 1.04 TAE 

5 -0.34% 0.11% 0.52% 0.71% 0.64% 2.33% 

7 -1.02% -0.52% -0.02% 0.29% 0.34% 2.20% 

10 -1.56% -1.02% -0.43% 0.00% 0.16% 3.17% 

TAE 2.92% 1.65% 0.97% 1.00% 1.15% 7.70% 

 
Note.   This  table  reports market prices  (Panel A) and differences between market prices and model prices 
(Panels B and C) for US CPI  inflation caps. Prices are reported as a percentage of notional, for various strike 
prices and maturities; prices are from April 30, 2010; the data source is Bloomberg. Panel B reports differences 
between target model and market prices��as well as total absolute errors (TAE) for each group of strike prices 

and maturities.  The  parameters  for  the  target model  are: , ,,   and 
Panel C reports differences between Black and Scholes (1973) model and market prices. Volatility 

is set equal to . Inflation and interest rate data are reported in Table 4 and Figure 3.  



Table IV  
US nominal interest rate and zero coupon inflation swap rates 

 

Years Nominal 
swap rates 

Inflation ZC 
swap rates 

1 1.02% 1.38% 

2 1.20% 1.74% 

3 1.73% 1.99% 

4 2.21% 2.17% 

5 2.61% 2.29% 

6 2.93% 2.44% 

7 3.18% 2.55% 

8 3.37% 2.65% 

9 3.53% 2.71% 

10 3.66% 2.77% 

 
Note.  This table reports the term structure of US nominal interest rate swap rates and the term structure of 
zero coupon  (ZC)  inflation swap  rates  for April 30, 2010. The data are used  to calculate option premia  (see 
Table 3). The data source is Bloomberg. 

 
 
 



TABLE V  
Black and Scholes implied volatilities for market prices and target model prices 

 
Panel A: Implied B&S volatility for market prices 

 
 

Strike price 

Maturity 1.00 1.01 1.02 1.03 1.04 

5 3.36% 3.06% 2.85% 2.74% 2.73% 

7 3.66% 3.36% 3.14% 3.01% 2.98% 

10 3.75% 3.47% 3.26% 3.13% 3.08% 

 
 

Panel B: Implied B&S volatility for the target model 
 

 
Strike price 

Maturity 1.00 1.01 1.02 1.03 1.04 

5 3.65% 3.08% 3.01% 3.02% 3.00% 

7 3.72% 3.17% 3.07% 3.06% 3.05% 

10 3.78% 3.24% 3.12% 3.09% 3.07% 

 
Note.  This table reports levels of Black and Scholes (1973) implied volatilities for market prices from April 30, 2010 
(Panel A) and target model prices (Panel B). The target model parameters are those reported in Table 3.  
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Figure 1  

Caplet valuation for different values of the model parameters and 
This figure graphs caplet prices for different levels of . The parameter determines the effect of past deviations from 
the target on the process of inflation (central bank memory). The parameter  determines the rate of decrease of the 

diffusion term with respect to an increase in the absolute value of the inflation target state variable (policy 
effectiveness). We set it equal to 0, 40, and 200. Inflation volatility is equal to 6%, the maturity is 1 year, and the 

strike price is 1.02. All other parameters are equal to their base case values. 
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Figure 2 

Floorlet valuation for different values of model parameters and 
This figure graphs floorlet prices for different levels of . The parameter determines the effect of past deviations 

from the target on the process of inflation (central bank memory). The parameter  determines the rate of decrease 
of the diffusion term with respect to an increase in the absolute value of the inflation target state variable (policy 
effectiveness). We set it equal to 0, 40, and 200. Inflation volatility is equal to 6%, the maturity is 1 year, and the 

strike price is 1.02. All other parameters are equal to their base case values. 
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Figure 3 
US inflation and inflation target 

This figure graphs the annual inflation rate for the US from May 2008. Annual inflation is calculated from the 
Bureau of Labor Statistics (BLS) data for the CPI. According to the FOMC (http://www.federalreserve.gov) the 

middle of inflation target zone (the target inflation rate) is equal to 1.75%. 
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