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Abstract

What deters individuals from reporting sexual misconduct, and what are the effects
of #MeToo for reporting? We show that individuals under-report sexual misconduct if
and only if a manager’s misconduct is widespread. The reason is that individuals face
a coordination problem and strategic uncertainty over whether others will also report
misconduct. The coordination problem occurs because reports from multiple individ-
uals corroborate a pattern of behavior and mitigate the chances of retaliation. We
then study three unintended and intended consequences of #MeToo. First, managers
may avoid mentoring individuals due to possible reporting. This selection effect spills
over into individuals’ willingness to report and can reduce the effectiveness of policies
intended to encourage reporting. Second, heightened public awareness of misconduct
encourages individuals to report otherwise-hidden misconduct by coordinating beliefs.
Finally, whistleblower rewards mitigate this coordination problem when appropriately
calibrated.
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The #MeToo movement has brought the question of whether individuals under-report

sexual misconduct to the fore of public attention. Major organizations, including Google

and the American Economics Association, are under growing pressure from stakeholders to

re-evaluate procedures for handling and encouraging the reporting of misconduct (Griffin et

al., 2018; The Economist, 2018). Reporting is the impetus for any investigation or action, yet

evidence suggests that individuals are reluctant to report (U.S. Equal Employment Opportu-

nity Commission, 2016; Hersch, 2010; Cortina and Berdahl, 2008). What deters individuals

from reporting misconduct, and how might #MeToo and broader policy changes affect re-

porting? A lack of a clear theoretical framework for why individuals might under-report has

made it difficult for economists to provide compelling answers.

This paper first shows that economic agents under-report sexual misconduct if and only if

a manager’s misconduct is widespread before studying the implications of #MeToo. The rea-

son for under-reporting is that agents face a coordination problem and strategic uncertainty

over whether others will also report misconduct. The coordination problem occurs because

reports from multiple individuals corroborate a pattern of behavior. Corroboration provides

“safety in numbers”: It increases the chances that relevant outside parties will act on an

agent’s report and reduces the chances that a reporting agent will face costly retaliation,

stigma, or reprisal.

This coordination problem lies at the heart of an agent’s reporting decision. In practice,

corroboration is critical because disputes over misconduct often come down to “he-said/she-

said” situations (Fitzgerald et al., 1995; Ayres and Unkovic, 2012) and because organizations

may have cultures that “look the other way” when claims can be dismissed as isolated

incidents (see, e.g., Chira and Einhorn, 2017, Creswell, Draper and Abrams, 2018, and

Isaac, 2017 for allegations at Ford, Nike, and Uber). Worry about reprisal and retaliation

are leading reasons for why individuals do not report harassment (Cortina and Magley, 2003;

McDonald, 2012; for accounts of the Harvey Weinstein case and others, see Engel, 2018;

Farrow, 2017; Rikleen, 2018) and even criminal misconduct (U.S. Department of Justice,

2013). “What if I’m not believed?” is a common refrain in accounts of individuals who weigh

whether to report misconduct (see, e.g., Forde, 2018; Willingham and Maxouris, 2018).

In the absence of frictions, theory makes ambiguous predictions about whether agents

report misconduct in the presence of a coordination problem. The reason is that beliefs about

other agents’ actions are self-fulfilling. If agents are certain that other agents will report a
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manager’s misconduct, they will report misconduct themselves. This situation precipitates

an “all-report” equilibrium where all agents report a manager’s misconduct. However, there

is also a self-fulfilling ”no-report” equilibrium where no agents report misconduct because

agents are certain that no other agents will report. One may conjecture that the no-report

equilibrium is unlikely in the real world because it is Pareto-dominated by the all-report

equilibrium where all agents are better off. However, theory makes no concrete prediction.

We introduce an information friction that is realistic in the context of sexual misconduct:

Agents have imperfect knowledge of other agents’ private experiences with a manager. In

our model, agents receive heterogeneous private experiences from a manager of unknown

type. The manager’s type determines the distribution of experiences across agents. An

agent’s experience need not be bad, and an agent and manager may interpret the same

interaction differently. An agent has an intrinsic motive to report a bad experience to an

outside party (e.g., human resources, law enforcement, or other authorities).1 However, if

the outside party resolves the case in the manager’s favor, the agent incurs a retaliatory cost.

The coordination problem exists because the outside party is more likely to resolve a case

in favor of a reporting agent and sanction the manager if other agents also report.

The information friction generates strategic uncertainty for an agent about whether other

agents will report misconduct, and we derive agents’ endogenous beliefs about how many

other agents will report in the unique equilibrium of the baseline model. In the equilibrium,

agents employ “threshold strategies” and report if and only if their experience is worse

than a unique reporting threshold. Our technique draws from work on global games and

coordination problems in finance and macroeconomics (for early work, see Carlsson and van

Damme, 1993a,b and Morris and Shin, 1998; for reviews, see Morris and Shin, 2003 and

Angeletos and Lian, 2016).

Due to strategic uncertainty, the coordination problem leads to under-reporting if and

only if misconduct is widespread. We define under-reporting as occurring whenever a lower

reporting threshold Pareto-improves agents’ payoffs over the equilibrium threshold, given

the true distribution of agent experiences. We say misconduct is widespread when the

average experience is severe misconduct or when most agents experience misconduct. In

1As a matter of convention, we denote an agent as “she” and the manager as “he”. Most reports of
workplace harassment originate from women, and women form the bulk of victims of sexual assault (U.S.
Department of Justice, 2002; U.S. Equal Employment Opportunity Commission, 2019b). However, our model
does not assume any genders and we do not preclude other misconduct.
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a stark example, a manager’s misconduct can be an “open secret”: all agents can have

nearly identical bad experiences, know that all other agents have bad experiences, and know

that the best outcome would be for all agents to report, but almost no agents report in

equilibrium. The reason is that, despite knowing that almost all experiences are identically

bad, agents remain uninformed over how many other agents will report. As a result, all

agents would be better off playing a lower threshold. More broadly, we characterize when

under-reporting occurs and establish the Pareto-optimal threshold for agents.

The key applied insight is that one cannot presume that agents report misconduct even

when misconduct is so widespread that reporting is in their broader interests as a group.

This insight is a robust consequence of the model’s core feature: The information friction

in the coordination problem makes agents less willing to report due to strategic uncertainty

and the possibility of retaliation. We show this insight holds when we relax simplifying

assumptions over the distribution of experiences, agent priors, and the actions of the outside

party, even when multiple threshold strategy equilibria may occur.

Despite under-reporting, the consequences of encouraging reporting are not well un-

derstood, in practice and theory. Our subsequent analysis considers the implications of

encouraging reporting surrounding the #MeToo movement.

First, we ask: Does #MeToo reduce opportunities for mentorship from senior managers,

and does any reduction affect reporting of misconduct? Anecdotal and survey evidence

suggests that men in senior positions have become more reluctant to mentor or meet alone

with women in junior positions due to the possibility of subsequent accusations of improper

behavior (Miller, 2017; Smith, 2018; Atwater et al., 2018). Concerns about reluctance to

mentor have reached the highest levels of business leadership (Bower, 2019).

We show that managers’ reluctance to mentor is theoretically grounded and that this

reluctance has strategic spillovers onto agents’ reporting strategies. We extend the model

to allow the manager an ex-ante choice over whether to mentor. Agents then form report-

ing strategies and beliefs over strategic uncertainty based on the set of manager types who

mentor. If types with a high propensity for misconduct opt out of mentoring, this has a

trade-off. Agents become more reluctant to report any misconduct that does occur because

corroboration is less likely when most other agents are not experiencing misconduct. Con-

versely, if low-misconduct types opt out, agents become more likely to report any misconduct

that occurs, but mentorship from low-misconduct types is now lower. Either case can occur,
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and which case prevails depends on whether managerial utility from mentoring decreases

or increases with the propensity for misconduct. These strategic spillovers can reduce the

effectiveness of policies intended to encourage reporting.

Second, we ask: Can publicizing broader awareness of misconduct encourage reporting?

Another popular narrative is that #MeToo helped “give people a sense of the magnitude

of the problem” (Khomami, 2017) and precipitated a cascade of credible allegations against

prominent figures (Griffin et al., 2018). Our model provides a theoretical basis for how

heightened public awareness of misconduct increases reporting of otherwise-hidden miscon-

duct by coordinating beliefs over strategic uncertainty. If public beliefs about the experi-

ences of women become worse than previously thought, any given agent will believe that

other agents are more likely to have bad experiences. The public nature of this shift in

beliefs is crucial because the agent also knows that other agents share this shift. The agent

is then more willing to report, even keeping her own experience constant, resulting in a lower

equilibrium reporting threshold and more reporting.

Finally, we consider the effect of rewarding reports that result in sanction, commonly

known as rewards for whistleblowers. Such a reward could be monetary, but could also be

a sense of vindication or public recognition. In our model, whistleblower rewards mitigate

the coordination problem induced by retaliation, which imposes a cost on reports that do

not result in a sanction. Such rewards can be calibrated to a benchmark level where agents

report as if this coordination problem did not exist. Rewards greater than this calibrated

level incentivize agents to report a broader range of behaviors than in this benchmark.

Overall, our theory provides a rationale for why individuals do not report misconduct

and a study of both unintended and intended consequences of #MeToo. Our contribution

is to organize thinking about agents’ reporting decisions and the effects of #MeToo around

coordination and strategic uncertainty due to information frictions. Existing work on mis-

conduct often focuses on its ramifications without addressing the role of these issues (e.g.,

Basu, 2003; Chen and Sethi, 2018; Hersch, 2018). Chassang and Miquel (2019) study how

to optimally elicit reports from a single whistleblower and do not consider a coordination

problem.

Our focus on strategic uncertainty draws on work from global games and “capture[s] the

idea that economic agents may be pushed into taking a particular action because of a belief

that others are taking such actions” (Morris and Shin, 2000, 2003). The information friction

4



at the center of global games is realistic in the context of reporting sexual misconduct, and the

approach leads to a tractable yet rich analysis of agents’ reporting decisions and the effects

of #MeToo. Pei and Strulovici (2019) consider a setting where principals with an incentive

to commit crime strategically choose how many crimes to commit. Our model differs by

taking the perspective that differences in the propensity to commit sexual misconduct among

managers in the real world largely reflect differences in fixed manager types. Lee and Suen

(2019) focus on the credibility of early versus late reporting when some accusers might be

lying. Daughety and Reinganum (2011) also study a timing problem where agents have a

stronger incentive to file a lawsuit if they corroborate previous lawsuits. While frictions

in timing can generate coordination problems, neither of these two papers investigates how

agents endogenously form beliefs about other agents’ actions. Our focus on coordination and

strategic uncertainty complements these approaches.

We conclude with discussion of implications for future research on #MeToo, workplace

misconduct, and broader contexts where strategic uncertainty may chill speech, reporting,

or otherwise create a “culture of silence” where agents do not speak up or express concerns.

1 An Agent’s Reporting Decision

1.1 Model setup

Agents in our model receive private experiences from a manager of an unobserved type.

Specifically, a continuum of risk-neutral agents with mass 1 indexed by i ∈ (0, 1) work for

a manager at a firm. The manager has a type θ ∈ R, a fixed characteristic that generates

heterogeneous private experiences {xi ∈ R}, for which θ is the average agent experience:

xi = θ + σεi for εi ∼ N(0, 1), where εi is i.i.d. across agents. We assume the manager

exogenously generates experiences, which focuses attention on agents’ reporting decisions

taking their experiences as given.

Each experience xi reflects agent i’s interpretation of an interaction with the manager. We

do not model the manager’s experience, but the manager may interpret the same interaction

differently, and agent i may truthfully disagree. For example, a large body of evidence

suggests there are gender differences in the perception of sexual harassment (McDonald,

2012), with women perceiving a wider range of behaviors as harassing (Rotundo et al.,
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2001); Bénabou, Falk and Tirole (2019) propose a model of why different groups, such as

men and women, may interpret the same behavior according to different moral standards.

The key friction in our model is that agents’ experiences are private information, which is

realistic in the context of sexual misconduct. Experiences are heterogeneous (σ > 0), and a

larger σ reflects a wider range of heterogeneity. Agents do not know the average experience θ

but learn about it through their own xi. To start, we assume agents have improper uniform

priors over θ. This assumption is a simplification but reflects a plausible belief that, ex ante,

an agent is completely uninformed and “never knows” how a person behaves in private.

Several assumptions above and introduced below are simplifications that provide tractabil-

ity and transparency to the workings of the model, but are also plausible and can often be

relaxed. The assumption that agent experiences are exogenously generated reflects the real-

istic observation embedded in the advice to professors to “always keep the office door open”:

Agents’ interpretations of interactions with a manager are not entirely under that manager’s

control, with some possibility that a manager and agent interpret an interaction in extremely

different ways. As Section 1.1 notes, the assumption of normality of xi and thus unbounded

experience support also reflects this observation. However, Section 1.6 shows that unbounded

support, as well as the improper prior assumption, can be relaxed, and Section 2 allows the

manager a choice to invoke the “Pence rule” and avoid interacting with agents at all.2

1.1.1 Misconduct and the coordination problem in reporting

Before turning to the agent’s payoffs to reporting misconduct, we review what we mean by

misconduct and discuss the coordination problem in reporting misconduct.

Misconduct. Sexual misconduct generally refers to unwelcome and unreasonable sex-

related conduct and includes a broad category of behavior not limited to legal definitions of

harassment and assault (Hersch, 2010; Cortina and Berdahl, 2008). For example, organiza-

tions often implement policies that prohibit a broad category of sexually-related behavior in

the workplace (e.g., Dartmouth College, 2019; Brandeis University, 2019).

Sexual misconduct may also violate civil or criminal law. In the United States, sexual

harassment as defined by federal civil law includes acts such as unwelcome sexual advances

and verbal or physical conduct that creates a hostile work environment. Sexual assault, a

2U.S. Vice President Michael Pence famously does not dine with women alone arguably because of the
possibility that the interaction is taken the “wrong way,” among other reasons.
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category that includes rape, is a crime that the U.S. Department of Justice defines as “any

nonconsensual sexual act proscribed by Federal, tribal, or State law, including when the

victim lacks capacity to consent” (U.S. Department of Justice, 2019b).

As a matter of terminology, we say an agent experiences sexual misconduct if his or her

experience xi weakly exceeds a normalized value of zero, with higher values of xi correspond-

ing with progressively worse acts in terms of agent utility. Negative values of xi correspond

to good experiences. Very high-θ manager types frequently generate experiences of miscon-

duct. As a modeling device, one can interpret managers who never commit misconduct in

the real world within the model as θ � 0 manager types who generate xi > 0 with arbitrarily

small probability.

However, due to unbounded support, normality of xi implies that some fraction of agents

in the model interpret interactions as misconduct for every manager type. As noted above

and in Section 1.6, the normality assumption yields tractability, particularly for later appli-

cations, and can be relaxed to distributions with bounded support. However, the assumption

does reflect the aforementioned realistic observation that professors should “always keep the

office door open” due to the possibility that two parties interpret an interaction extremely

differently. The experience xi reflects the agent’s interpretation of the interaction, and it

is plausible that, even for θ � 0 types, an arbitrarily small number of agents interpret

interactions as misconduct. This is particularly true with ambiguous issues involving harass-

ment and consent, as different views about whether consent was given drastically change the

interpretation of sexual behavior.

The coordination problem in reporting misconduct. Individuals face a coordina-

tion problem when deciding whether to report misconduct: Agents would like to report if

other agents are reporting. The reason is that the cost of reporting misconduct is higher if

others do not provide corroborating reports of misconduct, and lower if others do. Because

sexual misconduct usually happens in private, reports of misconduct are often unlikely to be

acted upon unless other agents also come forward and corroborate a pattern of behavior.

Examples of the importance of corroboration in individuals’ decisions to report are abun-

dant. Victims of Harvey Weinstein repeatedly weighed the possibility that their claims would

not be taken seriously in the absence of corroboration (Farrow, 2017). Bill Cosby’s initial

trial included the testimony from only one other accuser and resulted in a mistrial due to

jury deadlock. He was convicted upon retrial, when five additional accusers provided similar
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accounts of sexual assault. Commentary from legal experts indicates that the corroboration

from other accusers likely significantly bolstered the primary accuser’s credibility (Bowley,

2018), and press accounts suggest these concerns are not limited to high-profile cases (Weiser

et al., 2012). As The Economist (2020) writes, “Numbers Matter.”

Corroboration is important because accusations often come down to “he-said/she-said”

situations around ambiguous behaviors. For example, women often have different views as to

what constitutes harassment and consent than men have (Jozkowski et al., 2014; Rotundo et

al., 2001). Such issues occur even when authorities think all parties are reporting what they

believe to be the truth and even when there is physical evidence of a sexual act (Anderson,

2004; Tracy et al., 2012). Accusers also face skepticism because of suspicion that they may

be fabricating outright lies, although the incidence of deceitful fabrication appears to be

relatively low in practice, and lower than common conception. For criminal cases, the rate

of rape cases deemed “unfounded” in the FBI Uniform Crime Report (UCR) statistics was

6% in 2008, but likely exceeds the true fabrication rate, as it includes cases that authorities

deem truthful yet do not meet the criteria of assault (Lisak et al., 2010; Lonsway, 2010; for

similar evidence in Europe, see Kelly, Lovett and Regan, 2005; Lovett and Kelly, 2009).

Corroboration is also important because it makes it more likely for relevant parties to

act by raising the costs of not dealing with reported misconduct, especially in organizational

cultures that tend to “look the other way.” Management may easily ignore or dismiss claims

of harassment from a few employees as isolated incidents, particularly if the accused manager

is powerful or a key person in the firm (Cooper, 2017; Gino, 2018). However, a large group

of allegations may make it more costly for an organization to not act on the claims, even

for such a person. For example, according to press accounts, CBS was resistant to ousting

CEO Les Moonves in response to an initial set of reports of sexual misconduct; however, after

complaints increased, the board ousted him (Koblin, 2018; Stewart, 2018; see also allegations

at Ford, Nike, and Uber: Chira and Einhorn, 2017; Creswell et al., 2018; Isaac, 2017).

The effects of skepticism and organizational culture potentially manifest in the relatively

low rates of reporting and resolution of cases in favor of accusers. For sexual harassment,

the EEOC reports that 23% of charges result in resolutions favorable to accusers (U.S. Equal

Employment Opportunity Commission, 2019a). For criminal cases of rape and sexual assault,

the rate of reporting equaled 25% compared to 45% for other types of violent crime in 2018

(U.S. Department of Justice, 2019a), and the rate of cases solved by police was also lower
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for sex crimes than other violent crime (U.S. Department of Justice, 2017; for a review, see

Kruttschnitt et al., 2014). Statistics for misconduct outside of a legal context are rarer. As

one example, The Association of American Universities (2020) reports that, among female

undergraduates who experienced misconduct, 59% thought campus officials would take a

report “somewhat”, “a little”, or “not at all” seriously, as opposed to “very” or “extremely.”

If victims’ claims are dismissed because of insufficient corroboration or other reasons,

they often face additional costs, such as social stigma or retaliation from managers and co-

workers (Cortina and Magley, 2003; McDonald, 2012; for popular accounts, see Engel, 2018;

Farrow, 2017; Rikleen, 2018; Sheiber and Creswell, 2017). Although federal law prohibits

workplace retaliation, allegations of retaliation are among the most common filed to the

EEOC (U.S. Equal Employment Opportunity Commission, 2016) and continue to rise in the

wake of #MeToo (Weber, 2018). In criminal misconduct cases, fear of reprisal in particular

is the most-cited concern for why victims do not report (U.S. Department of Justice, 2013).

Overall, corroboration provides “safety in numbers” by increasing the chances that rele-

vant parties act on a report of sexual misconduct and by mitigating the chances of retaliation.

1.1.2 Agent strategies and payoffs

In the model, an agent can report her experience xi to an outside party, who can potentially

sanction the manager. To keep the model flexible, we do not take a strong stand on the

identity of the outside party, other than that they have an incentive to sanction managers

for misconduct. The outside party could be an internal committee charged with evaluating

claims of harassment, human resources, law enforcement, or even the court of public opinion.

Motivated by our discussion of the coordination problem in the real world, we focus on

the central reduced form feature we wish to capture: outside parties are more likely to act if

more agents report and provide corroboration of a pattern of behavior. Formally, a strategy

for an agent is s(xi) = 1 if an agent reports their experience and reveals their xi to the

outside party, and s(xi) = 0 if an agent does not report. If r agents report misconduct

(play s (xi) = 1 for xi ≥ 0; r ≡
∫∞

0
s(xi) di), the outside party sanctions the manager with

probability Γ(r).

The function Γ(r) reflects the reduced form mapping from the outside party’s objective

function to their actions. Taking this mapping in reduced form allows us to abstract away

from an outside party’s specific objective function, which may vary widely across institu-
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tional settings, yet still retain the feature that agents take Γ(r) as given. For example, legal

standards of proof depend on whether allegations are criminal or civil; alternatively, organi-

zations may have different tolerance levels for misconduct depending on workplace culture.

We allow for (but do not require) sanction to be probabilistic conditional on r and thus for

residual uncertainty about whether an outside party will act.

The key assumption regarding Γ(r) is that it increases in r. While real-world sanction

functions depend on reported xi’s, the key economic feature that derives from these functions

is that the probability of sanction still increases in the number of agents r who report. Indeed,

we show in Section 1.6 that a general sanction function that weakly increases in reported xi’s

can be re-formulated in equilibrium as a function of both which xi’s agents choose to report

and the number of agents that report. Since such a function is still weakly increasing in

r, our main insights are unchanged. Section 1.6 also discusses the outside party’s posterior

beliefs upon observing reports and alternative interpretations of Γ(r).

In our baseline formulation, we assume for tractability that Γ(r) = γr, where γ ∈ [0, 1]

is the sensitivity of sanction to reporting. In Section 1.6, we show our main insights are

unchanged when considering other Γ functions that increase in r, including non-linear or

even discontinuous step functions.

We assume that agents truthfully reveal their xi to the outside party if they report. Our

model thus takes the perspective of an agent who faces a coordination problem in reporting

what she believes to be the truth, as faced by many victims in the real world. Importantly,

we allow for the manager to view a reported experience quite differently and for the manager

and agent to believe that the other is instead lying or exaggerating. This would leave the

outside party in precisely the “he-said/she-said” situation that can motivate the need for

corroboration in the first place, as we expand on in Section 1.6. For simplicity, the model

does not include deceitful fabrication, or for agents to know xi but strategically represent a

different x to the outside party. The incidence of outright fabrication appears to be low (as

Section 1.1.1 notes), and thus would not meaningfully unravel the coordination problem.

We specify payoffs as follows. Agents have an intrinsic motivation to report misconduct

that provides payoff ωxi for reporting experience xi, and reporting incurs a fixed cost c. In

the event the outside party does not sanction the manager based on the report, agents incur

a retaliatory cost equal to βxi if xi ≥ 0. On net, the agent receives ωxi − c from reporting

and incurs additional cost βxi if the outside party does not sanction the manager. Because
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Table 1: Agent’s Payoffs. Sanction occurs with probability Γ(r) = γr, where r is the number of agents
reporting xi ≥ 0. The parameter ω is the intrinsic motivation to report experience xi, while β is the
retaliatory disincentive, and ω > β. The parameter c is a fixed cost of reporting. 1[xi≥0] is an indicator
function that equals one if xi ≥ 0.

Sanction No Sanction

Report xiω − c xi(ω − 1[xi≥0]β)− c
No Report 0 0

the outside party is more likely to sanction when more agents report, an agent is less likely

to incur the retaliatory cost when others also come forward. An agent who does not report

receives a normalized payoff of zero, as the direct effect of the experience on her utility is

sunk. Table 1 summarizes.

Our payoff specification appeals to the following intuitions. The intrinsic motivation

ω > 0 can be driven by moral obligation, a sense of justice, or civic duty.3 The retaliatory

cost β > 0 can be driven by outright retaliation by the manager, public humiliation, or other

costs (Section 1.1.1). We assume that ω > β: even if an agent knew an outside party would

not sanction the manager, her incentive to report increases as her experience becomes worse

(xi increases). We also assume that the an agent incurs a retaliatory cost only for reports

of misconduct (xi > 0). We assume that both benefit ω and cost β are proportional to xi:

Agents are intrinsically more motivated to report progressively worse experiences, but the

retaliation is larger when agents report worse experiences that do not result in sanction.

A key quantity we consider is the payoff gain π(r, xi) from reporting, defined as the

expected utility from reporting experience xi given r agents reporting, minus the expected

utility from not reporting: π(r, xi) = Eu(Report, r, xi) − Eu(No Report, r, xi), where the

expectation is taken over the possibility of sanction given r. Because sanction occurs with

probability Γ(r) = γr, based on Table 1 we have:

π (r, x) =

x (ω − (1− γr) β)− c if x ≥ 0,

xω − c if x < 0.

Figure 1 plots π(r, x). Several observations are noteworthy.

First, note that the payoff gain is monotone: It strictly increases in x and weakly increases

3We assume agents incur ωxi even if xi < 0; one could alternatively assume ω = 0 for x < 0 and results
would be identical. We also assume that agents receive intrinsic utility from reporting instead of intrinsic
disutility from non-reporting; the two formulations are identical.
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Figure 1: Payoff gain function π (r, x). This figure plots π (r, x) for r ∈
{

0, 1
2 , 1
}

and γ < 1. The slope
for x < 0 equals ω. The slope for x > 0 equals ω − (1− γr)β. The y-intercept equals −c.

r=0
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r=0.5

x x
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π

in r (strictly increases in r for x > 0). Worse experiences strengthen the incentive to report,

and more reporting by other agents strengthens the incentive to report bad experiences.

Second, there are dominance regions. If xi < x ≡ c
ω−β(1−γ)

, it is strictly dominant for

agent i to not report because π(r, xi) < 0 for any r, even r = 1. Intuitively, the agent’s

experience is sufficiently good that there is no reason to report even she knew all other

agents were reporting their experiences. Likewise, if xi > x ≡ c
ω−β , it is strictly dominant

for agent i to report because π(r, xi) > 0 for any r, even r = 0. Intuitively, the agent’s

experience is sufficiently bad that she wants to report even if she knew no other agents were

reporting their experiences. Clearly, 0 < x < x, although x can be arbitrarily large.

Finally, there is a coordination problem. For any xi ∈ (x, x), the payoff gain can be either

positive or negative, depending on the number of reporting agents r, due to the existence of

the retaliatory cost β > 0. If no agents report, then π(0, x) < 0; if all agents report, then

π(1, x) > 0. A higher retaliatory cost β widens the region of experiences (x, x) where there

is a coordination problem, and also worsens the experiences by increasing both x and x. The

coordination problem distinguishes this game from games such as the prisoner’s dilemma

that feature only dominant strategies, and motivates the analysis in the rest of the paper.

1.2 Self-fulfilling beliefs in the absence of information frictions

Without frictions, theory makes ambiguous predictions about whether agents report mis-

conduct in the presence of a coordination problem. The reason is that beliefs about other

agents’ actions are self-fulfilling. To illustrate, consider the following thought exercise. Sup-
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pose that the manager engages in misconduct so widespread that every agent experiences

identical misconduct: σ = 0 so that xi = θ ∈ (x, x) ∀i and all agents learn θ and every

other agents’ experience for certain. The best outcome for agents is for all agents to report

because the outside party is most likely to act. These facts are common knowledge among

all agents. What does standard analysis say will happen?

No concrete prediction emerges. If an agent expects all other agents to report (r = 1), it is

optimal to report because the payoff gain of reporting is positive: π(1, x) > 0 for x ∈ (x, x),

as Figure 1 illustrates. If all agents share this belief, then all agents report, vindicating

agents’ initial beliefs in an “all-report” equilibrium. Conversely, if an agent expects no other

agents to report (r = 0), then it is optimal to not report because π(0, x) < 0, precipitating

a self-fulfilling “no-report” equilibrium.4 The all-report equilibrium payoff-dominates the

no-report equilibrium for any θ > xE ≡ x because π(1, x) > π(0, x) for any such θ.

Despite this ordering of equilibrium payoffs, however, whether reporting occurs is due to

a “sunspot” that determines whether agents believe r = 1 or r = 0. The model without

frictions is thus unable to answer questions about whether reporting is likely in the real

world and about the effects of #MeToo. The fundamental reason is that, whenever σ = 0,

all experiences xi = θ are common knowledge among all agents, and beliefs about other

agents’ actions are self-fulfilling.

1.3 Equilibrium with information frictions

Our model introduces the realistic information friction where agents receive heterogeneous

(σ > 0) experiences xi that are private information. Agents are uncertain about θ but learn

about it through their own experience. This approach provides structure for how expecta-

tions of other agents’ actions are determined in equilibrium, which ultimately determines

agents’ actions. We start by stating the unique equilibrium in the baseline game where

agents have improper uniform priors over θ.

Proposition 1 (Baseline Equilibrium). Suppose agents have improper uniform priors over

θ.

4There is also a third mixed strategy equilibrium where all agents report with probability p = c−(ω−β)xi
γxiβ

,

where p solves π(p, x) = 0. This equilibrium suffers from counter-intuitive comparative statics that often
occur in mixed strategy equilibria more broadly. For example, agents in this mixed strategy equilibrium are
more likely to report when the cost of reporting increases or when retaliation increases.
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1. Existence: There exists a unique symmetric threshold strategy equilibrium where all

agents play a threshold strategy and report if and only if xi ≥ x∗:

s(xi) =

{
1 if xi ≥ x∗

0 if xi < x∗,

where:

x∗ =
c

ω − β
(
1− γ

2

) , (1)

and x∗ > x > 0.

2. Uniqueness: This threshold strategy is the unique strategy that survives the iterated

deletion of strictly dominated strategies. In particular, the threshold equilibrium is

the globally unique equilibrium, where uniqueness is defined up to either reporting or

not-reporting when xi = x∗.

3. Beliefs over r: In this equilibrium, the belief of the marginal agent who draws xi = x∗

over the number of agents reporting r is uniformly distributed over [0, 1].

The result is a standard application of “global games” techniques, due to Carlsson and

van Damme (1993a,b), and advanced by Morris and Shin (1998), Heinemann (2000), Morris

and Shin (2000), Morris and Shin (2002), Frankel, Morris and Pauzner (2003), Morris and

Shin (2004a,b), Goldstein and Pauzner (2005), Angeletos and Werning (2006), Angeletos,

Hellwig and Pavan (2006, 2007), Goldstein and Huang (2018), and several others in finance

and macroeconomics (see Morris and Shin, 2003 and Angeletos and Lian, 2016 for detailed

reviews). We sketch a heuristic derivation here and provide the key details in Appendix A

and Online Appendix B.1. Both heuristics and proofs follow Morris and Shin (2003).

The role of strategic uncertainty and beliefs about how many other agents will report

play a central role in the intuition. Each agent must ask herself: Given my x, what is

the probability that a proportion less than r of other agents have experiences worse than

mine? If agents are playing threshold strategies around x, then the proportion of agents

receiving experiences worse than x is given by 1−Φ ((x− θ)/σ) given the true θ, where Φ(.)

is the normal cumulative distribution function. Re-arranging, the proportion is less than r

if θ < x− σΦ−1(1− r). If the agent has no idea what θ equals ex-ante, her posterior belief

over θ after experiencing x is normally distributed with mean x and standard deviation σ.

Then, the probability the proportion falls below r equals Φ ((x− σΦ−1(1− r)− x) /σ) = r.

Thus, in any equilibrium, the marginal agent whose experience is just at the threshold
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xi = x∗ has a Uniform[0, 1] belief over r (Part 3 of Proposition 1). Intuitively, at the

threshold where she is indifferent between reporting and not reporting, the marginal agent is

effectively uninformed about the actions of others. Given this belief, one can solve the unique

threshold x∗ by taking expectations of Equation 1 over r (Part 1). Given the monotonicity

and the dominance regions of π(r, x), one can further show the threshold equilibrium is

dominance-solvable and thus globally unique (Part 2).

1.4 Under-reporting

We say there is under-reporting in equilibrium if a lower reporting threshold x̃ < x∗ would

Pareto-improve agent payoffs, given the true distribution of experiences among agents as

determined by θ. Below, we show that under-reporting occurs if and only if misconduct is

widespread because of strategic uncertainty stemming from the information friction in the

model. We first illustrate this principle with a special case in Corollary 1.1 before turning

to the general result in Proposition 2, where we define “widespread” precisely.

Corollary 1.1 revisits whether the payoff-dominant all-report or dominated no-report

equilibrium emerges when agents have (nearly) identical experiences. The outcome contrasts

starkly with the analysis without information frictions in Section 1.2.

Corollary 1.1 (Open-secret equilibrium). Let σ → 0. There is under-reporting for any

manager with θ ∈ (x, x∗): r → 0 in the unique equilibrium, even though π(1, x) > 0 > π(0, x)

for all but an arbitrarily small mass of agents.

Corollary 1.1 describes what we call an open secret equilibrium, an extreme form of

under-reporting. All agents have nearly identically bad experiences (σ is vanishingly small

and θ > xE = x). Furthermore, all agents know that all other agents have nearly identical

experiences (agents know σ is small), know that all other agents share nearly identical beliefs

about θ (the manager’s type is an “open secret”), and know that all-reporting is the best

outcome for all agents (π(1, x) > 0 > π(0, x) for almost all agents). Yet virtually no agents

report because almost all xi < x∗, leading to r ≈ 0 as the unique outcome. In contrast, every

agent would be weakly better off, with some agents strictly better off, if they had played a

threshold strategy around a lower threshold of x̃ = xE < x∗, as this would achieve r ≈ 1.

The open-secret equilibrium persists because strategic uncertainty persists whenever σ >

0, however small. If σ = 0 as in Section 1.2, every agent learns θ for certain: the manager’s

type is not an open secret, it is simply “out in the open.” In that case, all agents are
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also certain of other agent’s actions. In contrast, in the presence of information frictions,

Part 3 of Proposition 1 says that the marginal agent is uninformed about how many other

agents are reporting, even when all experiences are nearly identical, and agents know that

all experiences are nearly identical. The key issue is that the experiences themselves are not

common knowledge, creating “reverberant doubt” (Morris and Shin, 2002) and uncertainty

over other agents’ actions, even though there is little uncertainty over θ and agents anticipate

all other agents’ strategy functions s(·) in equilibrium.

More broadly, Proposition 2 shows that under-reporting occurs if and only if misconduct is

widespread, as defined by either agents experiencing severe misconduct on average (condition

1) or most agents experiencing misconduct (condition 2). The Proposition characterizes when

under-reporting occurs and the existence and uniqueness of the Pareto-optimal threshold

x̃ < x∗ that generates the maximal Pareto improvement. Corollary 1.1 is an application of

condition (2).

Proposition 2 (Under-reporting with widespread misconduct). Given θ, there exists an

x̃ < x∗ such that playing a threshold strategy around x̃ generates a Pareto improvement in

agent payoffs if and only if misconduct is widespread in that one of the following conditions

are satisfied:

1. θ > x∗, or

2. θ ∈ (x, x∗] and σ ≤ σ(θ), where σ(θ) is given in the proof of this Proposition.

Furthermore, if such an x̃ exists, there exists a unique Pareto-optimal threshold x̃ < x∗

(characterized in the proof) that generates the maximum improvement, with ∂x̃
∂σ

> 0 and

limσ→0 x̃ = x.

With condition (1), misconduct is widespread in that agents experience severe misconduct

on average (θ > x∗). Intuitively, severe average misconduct will result in r realizing higher

than 1/2, the marginal agent’s expectation of r. Some agents with xi below x∗ would then be

better off by reporting despite their lower xi because the level of corroboration r is high. The

additional reporting by these agents would also make agents with xi > x∗ better off through

a higher r. A lower reporting threshold of x̃ < x∗ thus results in a Pareto improvement.

With condition (2), misconduct is widespread in that most agents experience misconduct.

Experiences are not as severe as in condition (1) on average but are still severe enough

that a lower reporting threshold generates a Pareto improvement when most agents receive

experiences close to the average. Intuitively, when the average experience θ is in (x, x∗],
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the number of agents reporting r will realize (weakly) less than 1/2, the marginal agent’s

expectation of r. Thus, the argument for a Pareto improvement is distinct from that in

condition (1). A lower threshold can only make agents with xi < x∗ better off if it significantly

increases aggregate reporting r. A small σ makes this large increase in r, and thus a Pareto

improvement, possible. Indeed, whenever a Pareto improvement exists, a smaller σ leads to

a smaller value of the threshold x̃ achieving the maximum Pareto improvement.

When misconduct is not widespread, no Pareto improvement is possible. If θ ∈ (x, x∗]

and σ is large, or θ < x, a lower threshold makes some agents with xi < x∗ worse off

because it makes them report experiences they previously did not want to report but does

not significantly increase r. This observation provides the “only if” in Proposition 2.

Proposition 2 is a general statement that applies whenever agents play threshold strate-

gies, not just to the baseline model. Section 1.6 considers variations of the model that lead

to multiplicity, and Proposition 2 applies to every threshold strategy equilibrium whenever

such multiplicity occurs.

Overall, Proposition 2 shows that under-reporting occurs precisely when misconduct is

widespread, as the “open secret” equilibrium in Corollary 1.1 starkly illustrates. In both cases

considered by the Proposition, agents fail to achieve the Pareto-higher payoffs in equilibrium

due to the information friction whereby private experiences generate strategic uncertainty.

Information frictions thus provide a rationale for why the under-reporting of misconduct can

persist even when large payoff gains for agents are possible from more reporting.

1.5 Comparative statics

We next consider the implications of encouraging reporting through the lens of the #MeToo

movement. The first column of Table 2 reports comparative statics for the threshold x∗.

The #MeToo movement actively encourages people to “believe women.” In the model,

this most closely correponds with increasing γ, the outside party’s sensitivity of sanction to

reporting. One can also interpret increasing γ as an organization decreasing their tolerance

for misconduct. Raising γ lowers the equilibrium reporting threshold through two effects.

First, an agent’s direct payoff from reporting increases because the agent is less likely to

face retaliation. Second, she anticipates that others are more likely to report in equilibrium.

Both of these effects increase her willingness to report, decreasing x∗.

Lowering β also lowers x∗, but in practice retaliation has proven difficult for policymakers

17



Table 2: Comparative statics.

Parameter

(1)
Reporting
Threshold

x∗

(2)
Aggregate
Reporting

r̂(θ)

ω: Intrinsic motive - +

c: Fixed reporting cost + -

γ: Sanction sensitivity - +

β: Retaliation cost + -

σ: Experience dispersion 0
+ if θ < x∗

− if θ > x∗

0 if θ = x∗

to reduce. Although federal law prohibits workplace retaliation, there is ample evidence that

various forms of retaliation are prevalent (Cortina and Magley, 2003; McDonald, 2012; U.S.

Equal Employment Opportunity Commission, 2016). Increasing ω or lowering c also lower

x∗. However, changing these values may prove difficult since these parameters more closely

reflect agents’ preferences rather than the outside party (γ) or the manager and firm (β).

To see how effects on x∗ translate into the amount of equilibrium reporting, the second

column of Table 2 considers the effect of changing parameters on aggregate reporting r̂ (θ) ≡∫∞
0
s (x) f (x | θ) dx = Φ

(
θ−x∗
σ

)
, where φ(·) and Φ(·) are the normal density and cumulative

distribution functions. Aggregate reporting r̂ equals the total number of agents that report

experiences for manager type θ in equilibrium.

To continue our discussion of the sanction sensitivity γ, note that increasing γ increases

the aggregate number of agents reporting r̂ for every type θ, precisely because it lowers the

reporting threshold x∗. Policymakers who encourage reporting should then not be surprised

if the marginal reported behavior becomes relatively less severe (x∗ falls) and the reporting

rate for all manager types rises (r̂(θ) increases). These effects increase payoffs among agents

within the model, although it is important to note that we have not modeled the manager’s

utility. In Section 2, we consider a setting where managers can avoid sanction by avoiding

agents, but first we re-visit several simplifying assumptions.
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1.6 Robustness and further discussion

1.6.1 How important is the assumption of unbounded support?

Online Appendix B.2 shows that the Proposition 1 admits continuous densities with (pos-

sibly asymmetric) bounded support. The assumption of normality and unbounded support

simplifies not only the proof of the Proposition itself, but makes the applications we consider

in later sections tractable. Proposition 2 changes only in accounting for the bounds of εi in

its two conditions.

1.6.2 How important are improper uniform priors?

A setting with improper uniform priors reflects a setting where, ex ante, agents have no

idea about how the manager behaves in private. In Section 3, we consider a setting where

agents begin with proper (or “informed”) priors about θ to provide additional implications

around the publicity effect of #MeToo. The section shows that the main insights about

under-reporting remain unchanged with proper priors.

1.6.3 The outside party

As noted earlier, Γ(r) reflects the reduced form objective function of an outside party with

an incentive to discipline misconduct, and the property that it is increasing in r captures

the core real-world feature that the outside party is more likely to act if more agents report.

What are the beliefs of the outside party? Despite the reduced form, the model pins

down beliefs in that the outside party learns the average agent experience θ with certainty

ex-post. This is because the ex-post aggregate reporting r̂(θ) = Φ
(
θ−x∗
σ

)
is a sufficient

statistic for θ. In effect, one can think of a higher r resulting in a higher probability of

sanction Γ(r) because the outside party learns θ is higher.

The value of θ reflects the average of all xi, which are agents’ interpretations of their

interactions with the manager, and the manager may interpret such interactions quite differ-

ently without loss of generality. For example, the manager may perceive experience x′i with

agent i, with xi−x′i reflecting the difference between the agent and manager’s interpretations

and θ′ reflecting the average experience as interpreted by the manager.

One can therefore interpret Γ(r) as follows. After a mass of r agents report their xi,

the outside party learns θ. The manager may counter with x′i, or more simply, θ′. Absent
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further consideration, this precisely reflects a “he-said/she-said” situation of θ versus θ′.

The outside party then uses its objective function to resolve the dispute in a manner that is

more favorable to agents if θ is higher. For example, the outside party may determine that

higher r and thus higher θ are stronger evidence of a credible pattern of misconduct; in an

employment context, it may be costly for principals to employ high-θ managers, leading in

both cases to a higher probability of sanction. Indeed, an alternative interpretation of Γ(r) is

that employers simply find it too costly to employ managers with high reported misconduct

r and thus high θ. Although these two interpretations involve different types of objectives

by the firm, they both have the same economic effect of providing a coordination incentive

from the agent’s perspective.

What about other Γ(r) functions? Our analysis generalizes to broader sanction

functions Γ(r), so long as Γ(r) is an increasing function. Because the marginal agent has a

uniform belief over r, one would replace γ/2 in Equation 1 with
∫ 1

0
Γ(r) dr, and all implica-

tions follow. Examples include power functions such as Γ(r) = rn for n ≥ 0, step functions

such as Γ(r) = 0 for r < r̄ and 1 for r ≥ r̄ for r̄ ∈ (0, 1), or continuous non-differentiable

functions such as Γ(r) = γr for r < 1/γ and 1 for r > 1/γ for γ > 1.

What if reported xi’s directly affect the probability of sanction? On the one

hand, Γ(r) incorporates information about reported xi through the outside party’s inference

about θ because r is a sufficient statistic for θ. On the other hand, the outside party may

care disproportionately about some values of reported xi beyond their inference of θ.

Online Appendix B.3 writes down a general sanction function incorporating this pos-

sibility and shows that under-reporting occurs—that is, an analogous form of Proposition

2 holds—within any of the possibly-multiple threshold strategy equilibria. We sketch the

outline here. Suppose the outside party, upon observing n(x) number of each reported x

(and learning θ, as before), aggregates the reported xi according to
∫
x
ϕ(x)n(x)dx where

ϕ(x) ≥ 0 is a weakly increasing penalty function. The outside party then proceeds to sanc-

tion with probability Ξ ({n(x), x}) ≡ B
(∫

x
ϕ(x)n(x)dx

)
, where B(.) is a weakly increasing

sanction function (possibly discontinuous) mapping into [0, 1]. This formulation generalizes

our previous sanction function: if ϕ(x) ≡ 1, then Ξ ({n(x), x)}) = B(r) = Γ(r); for more

general ϕ(x), we show that there is under-reporting in every threshold strategy equilibrium.

The key insight that we use is that one can always reformulate Ξ ({n(x), x}) in terms of an

equivalent sanction function Γ(x∗, r) that is increasing in r whenever agents play threshold
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strategies. This analysis illustrates that the feature of the sanction function driving our

results is that the likelihood of sanction is increasing in r. As discussed in Section 1.1, this

feature is both realistic and plausible.

1.6.4 What about over-reporting?

Analogous to our definition of under-reporting, we say there is over-reporting in equilibrium

if a higher reporting threshold x̃ > x∗ would Pareto-improve agent payoffs, given θ. This

never occurs in the model because a higher reporting threshold always leads to less reporting,

lower probability of sanction, and less expected utility for agents who report with xi > x̄.

1.6.5 What about other definitions of over/under-reporting?

Consider an alternative definition of over-/under-reporting that focuses on agents’ willingness

to report each xi. Because we define misconduct as xi > 0, a natural benchmark is for agents

to report all xi > 0 and not report xi ≤ 0. Because agents report if and only if xi ≥ x∗,

agents then under-report any xi ∈ (0, x∗).

From the manager’s perspective, over-reporting may occur for an experience he interprets

as x′i < 0 but that the agent interprets as xi > x∗ and reports. To the extent that #MeToo

may have led to a lower x∗, this insight provides a basis for understanding disagreement

between managers and agents about the impact of #MeToo.

Separately, Corollary 1.1 supports the notion that equilibrium outcomes are constrained-

inefficient for agents (Angeletos and Pavan, 2007; Angeletos and Lian, 2016). The reason is

that, for σ → 0, a planner without knowledge of θ could improve total agent payoffs without

transferring information across agents by directing all agents to play threshold strategies

around xE. Our definition of under-reporting is related but distinct: it conditions on θ

and thus the ex-post distribution of experiences, and requires that more reporting create a

Pareto-improvement in agent payoffs, not just an improvement in the sum of payoffs.

1.6.6 What if agents knew θ?

One can also ask how the model compares to a benchmark with no information friction where

agents know θ ex-ante but σ > 0. The Pareto-optimal threshold of x̃ from Proposition 2

equals the threshold used in an equilibrium of this benchmark game where agents know θ.
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Therefore, whenever under-reporting occurs, the model with information frictions features a

Pareto-dominated threshold relative to the model without frictions.

1.6.7 What about social welfare?

While the existence of under-reporting in the model is a high bar to cross due to our re-

quirement of a Pareto improvement, the impact of under-reporting on broader social welfare

is ambiguous because we have not included manager utility. (One can analogously think

of analyses of consumer surplus as important but insufficient for full welfare statements.)

Social welfare analysis requires several inputs beyond the scope of our model that have little

empirical guidance; how to weight agent and manager utility is just one example, as we

explain more in Section 2.3 after having discussed the role of managers.

1.6.8 How general is the uniqueness of equilibrium?

Our baseline model features a unique equilibrium as it falls within a class of static global

games featuring dominance regions, payoff monotonicity (in x and r), diffuse priors, and

unidimensional uncertainty. Uniqueness is a bonus of a parsimonious applied model that

captures the core features of the specific first-order real-world problem we study. Indeed,

the main reason we employ global games is that the core mechanism of private experiences

leading to strategic uncertainty is realistic in the context of reporting sexual misconduct.

Uniqueness is not a general property of global game models. As Angeletos and Lian (2016,

p.1071) write, global game methods do not “offer a panacea for equilibrium uniqueness” but

“helps open the black box of expectations and coordination,” leading to “useful applied

lessons . . . not possible in the context of the earlier [literature].” Multiple equilibria may

occur in global games more broadly (see, e.g., Angeletos et al., 2006, 2007). Morris, Shin

and Yildiz (2016), building on insights from Weinstein and Yildiz (2007), extends the global

games framework to higher-dimensional uncertainty and cases where monotonicity fails. In

general, multiplicity may occur, but they provide sufficient conditions for uniqueness and

emphasize that the key property of the global games method is its emphasis on strategic

uncertainty and higher-order beliefs.

In our context, the key applied lesson is that, due to strategic uncertainty and the co-

ordination problem, one should not maintain a presumption that agents report misconduct

even when it is widespread. This lesson holds even within two leading sources of multiplicity.
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First, as we discuss in Section 3, while uniqueness holds in the realistic case where priors are

less precise than the informativeness of experiences, multiplicity occurs if priors are highly

precise. Even if multiplicity occurs, however, Proposition 2 holds within every threshold

strategy equilibrium. Second, as we discuss in Section 1.6.3, multiple equilibria may occur if

sanction is a function of reported xi’s. However, an analogous version of Proposition 2 holds

in every threshold strategy equilibrium.

2 The Effects of Endogenous Mentorship

One popular narrative suggests that in the wake of the #MeToo movement, men in positions

of authority have expressed increasing reluctance to work closely with, network with, or

mentor female colleagues (Bennhold, 2019; Tan and Porzecanski, 2018; Smith, 2018; Ortiz,

2018). A decline in “soft opportunities” for networking and mentorship may be detrimental

for the career trajectories of women (Kreiss, forthcoming). For brevity, we refer to such soft

interactions under the umbrella term of mentorship.

We show a manager may avoid mentoring agents in order to avoid sanction, and that

the mentoring decision has strategic spillovers onto agents’ reporting strategies. Suppose a

manager knows his own type θ, and chooses whether or not to mentor agents, a ∈ {0, 1}.5 If

a = 1, he mentors all agents, after which all agents realize experiences xi and then make their

reporting decisions. An agent who is mentored plays strategy s(xi, a), where s(xi, 1) = 1

if the agent reports and s(xi, 1) = 0 if the agent does not report. If a = 0, the manager

mentors no agents, and no agents report: s(xi, 0) = 0.6 As in Section 1, the manager’s type

θ determines the average agent experience. We maintain the assumption that agents have

improper uniform priors over θ for tractability.

We continue to assume that experiences are not entirely under a manager’s control, so

that conditional on a = 1, agent experiences are exogenously realized. For example, a

manager may take as given that, should he choose to mentor, agents may interpret the

manager’s behavior in the “wrong way” as viewed from the manager’s perspective, and this

5The manager adjusts only his quantity of mentoring rather than the price of mentorship. This fits well
within our context, because soft interactions and opportunities often occur outside of explicit markets.

6If the manager can choose a ∈ [0, 1], our main insights that a manager may select out to avoid sanction
and that selection generates a trade-off between mentoring and reporting still hold, though there can exist
multiple separating equilibria with the same essential features.

23



may deter the manager from mentoring. This scenario seems plausible in light of the real-

world concerns outlined above; U.S. Vice President Michael Pence famously does not dine

with women alone (the “Pence rule”) arguably for this reason.

We assume the manager’s payoff from mentoring (playing a = 1) equals M(θ) − γrS,

where M(θ) is a function that captures the manager’s utility from mentoring, γr is the

probability of sanction conditional on the number of agents reporting r, and S ≥ 0 is a fixed

penalty of sanction. The manager’s payoff from not mentoring (playing a = 0) is zero. We

motivate the components of the manager’s payoffs as follows.

The function M(θ) captures the manager’s utility from mentoring, which may depend on

his propensity for misconduct. This utility could come from a combination of organizational

pressure, explicit incentives, and intrinsic personality characteristics. For example, many

firms have made explicit efforts to incentivize the recruitment, retention, and advancement

of women and minorities (Kwoh, 2012; Roose, 2012; Koenig, 2018); all else equal, these efforts

increase M . Mentorship utility may also vary by θ. For example, low-θ types may include

managers who derive utility from mentoring women because they believe there are altruistic

benefits from doing so, while high-θ types may include managers who derive utility from

sexual misconduct. We allow for different M(θ) and explore the implications of different

properties of M on equilibrium behavior.

Finally, we assume the penalty S is fixed irrespective of θ. Although there are notable

high-profile exceptions (Griffin et al., 2018), organizations commonly choose sanctions that

do not vary with respect to the degree of substantiated misconduct (U.S. Equal Employment

Opportunity Commission, 2016; Timmerman and Bajema, 1998).

2.1 Strategic spillovers

The manager mentors in equilibrium if and only if M(θ)−γrS > 0, given agents’ equilibrium

reporting strategies. Of course, if every manager type has mentorship utility that exceeds

the expected penalty even when all agents report (M(θ) > γS ∀θ), then all types mentor

and there are no selection effects. Otherwise, some types θ may opt out of mentoring in

equilibrium. This feeds back into reporting because agents’ beliefs over strategic uncertainty

and hence equilibrium reporting are based on the set of types θ who mentor.

Proposition 3 formalizes this observation and shows that this strategic spillover creates

a trade-off between selection and reporting. If high-misconduct (high-θ) types opt out of
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mentorship, agents become less willing to report misconduct because corroboration is less

likely when most other agents are not experiencing misconduct; if low-misconduct types opt

out of mentorship, then agents become more willing to report misconduct. The proposition

also shows that which effect prevails depends on whether M(θ) increases or decreases in θ.

Proposition 3 (Selection and strategic spillovers). Let s(xi, a) denote an agent’s reporting

strategy:

s(xi, 1) =

{
1 if xi ≥ x∗S

0 if xi < x∗S.

1. In any equilibrium where the manager mentors if and only if θ ≤ θ̃ for a unique finite

θ̃, then x∗S > x∗.

(a) In any such equilibrium, the marginal agent’s belief over r is uniformly distributed

over [0, r̃] for r̃ < 1 determined in equilibrium.

(b) A sufficient condition for the existence of a unique equilibrium that exhibits this

effect is if M(θ) is a weakly decreasing function of θ with limθ→−∞M(θ) > 0 and

S > M
γ

, where M ≡ minM(θ). Then the manager chooses a = 1 if and only if

θ ≤ θ̃ for a unique finite θ̃ in the unique equilibrium.

2. In any equilibrium where the manager mentors if and only if θ ≥ θ̃ for a unique finite

θ̃, then x∗S < x∗.

(a) In any such equilibrium, the marginal agent’s belief over r is uniformly distributed

over [r̃, 1] for r̃ > 0 determined in equilibrium.

(b) A sufficient condition for the existence of a unique equilibrium that exhibits this

effect is as follows. Let M(θ) be a weakly increasing function that strictly increases

at a finite θ′ as follows:

M(θ) =

{
g(θ) if θ < θ′

h(θ) if θ ≥ θ′,

where g(θ′) < 0, h(θ′) > γS, and g(θ) and h(θ) are weakly increasing functions of

θ. Then the manager chooses a = 1 if and only if θ ≥ θ′ in the unique equilibrium.

For both Parts 1 and 2, r̃ is determined in equilibrium by r̃ ≡ r̂(θ̃|a = 1) = Φ
(
θ̃−x∗S
σ

)
.

Part 1 considers the case where high-misconduct manager types opt out of mentoring

and shows that reporting thresholds are lower than in the game without selection. Part 1(a)

provides the intuition by relating this effect to strategic uncertainty. Intuitively, because a
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mentored agent observes a = 1 and anticipates that types with θ > θ̃ are not mentoring, she

knows that, at most, the number of agents reporting is the number of agents who would report

type θ̃. This knowledge right-truncates her beliefs about how many agents are reporting.

As a result, the marginal agent is still effectively uninformed about how many agents are

reporting, but only over the limited range of reporting r consistent with θ < θ̃. As a result,

the equilibrium reporting threshold x∗S exceeds x∗, and the effect of selection is to depress

the motive to report misconduct.

Part 1(b) shows that high-misconduct types are likely to opt out when M(θ) is weakly

decreasing, which could happen if low-misconduct types derive significant altruistic benefits

from mentoring agents. If low-misconduct types receive positive utility from mentoring

(limθ→−∞M(θ) > 0) that is larger than the utility of high-misconduct types, and S is

sufficiently large, then only high-misconduct types opt out due to their small mentoring

utility and high expected sanction cost.

Part 2 provides the converse analysis: In any equilibrium in which only low-misconduct

types opt out, agents become more willing to report misconduct. Part 2(a) provides the

reason: mentored agents know that types θ < θ̃ are not mentoring, which left-truncates

their beliefs about how many agents are reporting, strengthening their motive to report.

Part 2(b) shows that low-misconduct types are likely to opt out when M(θ) is increasing,

which could happen because high-misconduct types are predatory and derive significant

utility from misconduct. The sufficient condition starkly illustrates with an M(θ) that

discontinuously jumps at θ′. In this case, low-misconduct types opt out as they do not receive

positive mentoring utility (M(θ) < 0 for θ < θ′), while high-misconduct types mentor as their

M(θ) is so high that it exceeds expected penalties even if all agents report (M(θ) > γS for

θ > θ′). More broadly, if M(θ) is continuous and increasing in θ, but there exists some θ′

such that M(θ) < 0 for θ < θ′, a set of intermediate-θ types may also opt out in addition to

the low-θ types.

Proposition 3 presents two starkly contrasting cases that illustrate the robust prediction

that a manager’s decision to mentor always generates a strategic spillover on reporting. In

reality, the true shape of the M(θ) function is an open empirical question beyond the scope

of this paper, but the strategic spillover is always present.7 The Proposition also provides

7Proposition 3 holds even if sanction S depends on the accusations x. The sanction function would affect
which types opt out, which affects reporting in the same way as Proposition 3.
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a theoretical basis for the popular concern, supported by survey evidence (Atwater et al.,

2018), that #MeToo could have the unintended effect of dampening the career prospects of

women through fewer networking and mentoring opportunities.

2.2 Unintended effects of tools intended to encourage reporting

We now examine how tools that are intended to encourage reporting or sanction misconduct

have unintended consequences on agents’ reporting decisions when managers can endoge-

nously choose whether to mentor. We study two interventions: increasing the sanction

penalty S, and increasing the sensitivity of sanction to reporting γ. To fix ideas, we analyze

the simplest case where mentorship utility does not change with manager types: M(θ) = m,

where m > 0 is constant. Proposition 4 characterizes the equilibrium of this environment.

Proposition 4 (Equilibrium when M(θ) = m). Suppose agents have improper uniform

priors over θ. If S > m/γ, there is a unique symmetric perfect Bayesian equilibrium in

which the manager mentors (a = 1) if θ ≤ θ̃ and does not mentor (a = 0) if θ > θ̃. The

marginal type θ̃ that mentors agents is given by:

θ̃ =
c

ω − β
(
1− m

2S

) + σΦ−1

(
m

γS

)
. (2)

Agent’s reporting strategies equal:

s(xi, 1) =

{
1 if xi ≥ x∗S

0 if xi < x∗S,
(3)

x∗S =
c

ω − β
(
1− m

2S

) , (4)

where x∗S > x > 0.

Uniqueness is up to either strategy being played by the manager with θ = θ̃ and the agent

with xi = x∗S. The marginal agent’s belief over r is uniformly distributed over [0, r̃] where

r̃ < 1.

In this unique equilibrium, high-misconduct types are reluctant to mentor agents, so Part

1 of Proposition 3 applies. Because agents realize they are mentored by a θ < θ̃ type, they

are more reluctant to report any misconduct because they are more pessimistic about how

many others will report due to the right-truncation in beliefs over r: x∗S > x∗. Table 3

summarizes comparative statics within the game considered by Proposition 4.
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Table 3: Comparative statics given manager selection.

Parameter
Reporting
Threshold

x∗S

Aggregate
Reporting

r̂(θ|θ < θ̃)

Marginal
Manager Type

θ̃

ω: Intrinsic motive - + -

c: Reporting cost + - +

γ: Sanction sensitivity 0 0 -

β: Retaliation + - +

σ: Experience dispersion 0
+ if θ < x∗S
− if θ > x∗S
0 if θ = x∗S

− if θ̃ < x∗S
+ if θ̃ > x∗S
0 if θ̃ = x∗S

S: Sanction + - - (unless medium S and low σ)

m: Mentorship utility - + + (unless medium S and low σ)

2.2.1 The effect of sanctions

Corollary 4.1 shows that increasing the sanction S depresses reporting and can have poten-

tially adverse effects for agents through several channels.

Corollary 4.1. The following hold with respect to S:

1. Increasing sanction S raises the reporting threshold and lowers the reporting of the

marginal type:
∂x∗S
∂S

> 0, and ∂r̃
∂S
< 0.

2. Increasing sanction S can lower θ̃: ∂θ̃
∂S

< 0 when S = m
γ

or as S → ∞. A sufficient

condition for ∂θ̃
∂S
< 0 is:

σ >
1√
2π

cγβ

2(ω − β)2
.

3. Increasing sanction S can raise θ̃: A sufficient condition for ∂θ̃
∂S
> 0 when r̃ = 1/2 is:

σ <
1√
2π

cγβ

2
(
ω − β + 1

4
γβ
)2 .

Part 1 says that increasing the size of sanction S raises the equilibrium reporting threshold

x∗S. The reason is that, with a higher sanction cost, the amount of reporting r̃ for the marginal

type θ̃ must fall to keep him indifferent between mentoring and not-mentoring agents. This

right-truncates agents’ beliefs over r even further, raising the reporting threshold x∗S.

Parts 2 and 3 together show that increasing sanctions have ambiguous effects on the

identity of the marginal type θ̃ that chooses to mentor. The intuition for the ambiguity is

because r̃ can fall in two ways when S rises: 1) directly because x∗S rises, and 2) indirectly
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Figure 2: Equilibrium θ̃. This figure plots a non-monotone example of equilibrium θ̃ as a function of S.
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because the marginal type θ̃ changes. In Part 2, the higher x∗S has a small effect on r̃, so θ̃

must fall to induce the required fall in r̃ that compensates for an increase in S. In Part 3,

the higher x∗S may have such a large effect on r̃ that θ̃ can increase. Figure 2 illustrates a

case where θ̃ is non-monotone with respect to S.8

This leads to the following striking conclusion: there can exist different levels of S that

result in the same amount of mentoring and the same level of expected sanction for the

marginal type, yet the lowest S among these leads to the lowest reporting threshold for

agents and the highest aggregate reporting of any given manager. One can see this by

drawing a horizontal line in Figure 2, as it can intersect the θ̃ curve at up to three points.

All three points correspond with identical amounts of mentoring. Because the expected

sanction is also the same for all three points, the point with the lowest S must correspond

with the highest probability of sanction and highest r̃.9

8In detail: For Part 2, r̃ is very large or very small when S is very small (m/γ) or large (∞), respectively.
Any change in x∗S thus has very small effect on r̃. Similarly, if S is intermediate and σ is large, then r̃ does
not fall by much because any given change in the reporting threshold x∗S does not have a large impact on

aggregate reporting. For Part 3, if S is intermediate and σ is small, θ̃ can rise and the marginal manager can
become more willing to mentor because he anticipates that the increase in x∗S will translate into a significant

decrease in (θ̃ − x∗S)/σ, leading to a large drop in r̃.
9Since the mentorship utility m has the opposite effect of sanction S, the inverse results apply to m.

Increasing m leads to more reporting but can have a non-monotonic effect on manager selection.
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2.2.2 The effect of sanction sensitivity

Corollary 4.2 highlights that selection effects blunt the effectiveness of tools intended to

encourage reporting through an increase in γ, the sensitivity of sanction to reporting.

Corollary 4.2. In the presence of selection, agents’ reporting strategies are less responsive

to increases in γ compared to the case without selection:
∂x∗S
∂γ

= 0 < ∂x∗

∂γ
.

Intuitively, without selection, an increase in γ increases an agent’s incentive to report

because it increases the probability of sanction for any given level of reporting r. However,

in the presence of selection with constant M(θ), agents expect a lower r because they expect

fewer agents will report in equilibrium (Part 1 of Proposition 3), weakening this effect. When

Γ(r) = γr, the selection effect is strong enough to reduce the effect of γ on reporting to zero.

One can show analogous results for a class of non-linear functions, Γ(r) = γr
1
n where n > 0.

2.3 Social welfare and takeaways

Overall, our results show that encouraging reporting or punishing misconduct interacts with

the manager’s mentorship decision in potentially adverse ways for agents. A social welfare

analysis in this environment is beyond the scope of this paper because it requires several

inputs beyond our model that have little guidance from empirical evidence. These inputs

include valuing any disutility from misconduct to agents, any positive utility from misconduct

for managers, the exact utility function M(θ) of mentorship for managers, the benefits of

mentorship for agents, and whether managerial sanctions are dead-weight loss. No less

important, such an analysis also requires distributional assumptions on θ and welfare weights

for agents and managers.

Instead, our theory offers guidance for how #MeToo and policies that encourage report-

ing affect agents and managers. First, policymakers should recognize that managers may

opt out of mentorship, consistent with popular concern. Second, this opt-out affects agents’

incentives to report misconduct. If high-misconduct managers opt out, fewer agents tend

to experience severe misconduct, but those who do are more reluctant to report it. If low-

misconduct managers opt out, then agents receive fewer positive mentoring opportunities,

but are more willing to report bad experiences. Finally, tools intended to encourage re-

porting or punish misconduct may be less effective than supposed, due to these strategic

spillovers. For example, as we show in the M(θ) = m case, increasing sanction penalties
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depresses reporting, and increasing the sensitivity of sanction to reporting may be ineffective

at changing agents’ reporting thresholds.

3 The Publicity Effect of #MeToo

The #MeToo movement was popularized by actress Alyssa Milano on Twitter, who wrote:

“If all the women who have been sexually harassed or assaulted wrote ‘Me too’ as a status,

we might give people a sense of the magnitude of the problem” (Khomami, 2017). Sur-

veys confirm that women believe that there is value to heightened awareness of widespread

problems (e.g., within the economics profession; see American Economic Association, 2019b;

Casselman and Tankersley, 2019).

We show that heightened public awareness of misconduct increases reporting of otherwise-

hidden misconduct by coordinating beliefs over strategic uncertainty. We associate changes

in public information with changes in agents’ common priors (Angeletos and Lian, 2016).

In Section 1.3, we assumed that agents had common improper uniform priors over θ. Now

suppose that agents share proper priors p(θ) that is normally distributed with mean y and

standard deviation τ . Such priors could be shaped by public information about a specific

manager or information about misconduct in the broader population of managers. Propo-

sition 5 characterizes behavior in this environment. The proof strategy follows Morris and

Shin (2004a); Appendix A provides all details.

Proposition 5 (Equilibrium with proper priors). Suppose agents have common proper priors

that θ is distributed normally with mean y and standard deviation τ .

1. Existence: There exists at least one symmetric threshold strategy equilibrium x∗I ∈ (x, x)

where agents report if and only if xi ≥ x∗I , where x∗I is implicitly defined by:

x∗I =
c

ω − β
(

1− γΦ
(
y−x∗I
κ

)) , (5)

for κ ≡ σ2+τ2

σ

√
σ2+2τ2

σ2+τ2
and where x∗I > x > 0.

2. Uniqueness (up to either reporting or not reporting when xi = x∗I):

(a) The equilibrium x∗I is a unique threshold equilibrium if κ > 1√
2π

cγβ

(ω−β)2
.
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(b) Whenever y = c

ω−β(1− γ
2 )

, a sufficient condition for non-unique equilibria is κ <

1√
2π

γβc

(ω−β(1− γ
2 ))

2 .

(c) For y →∞, there is a unique threshold equilibrium x∗I with x∗I → x. For y → −∞,

there is a unique threshold equilibrium x∗I with x∗I → x.

(d) If there is a unique equilibrium in threshold strategies, then the equilibrium strat-

egy is the only strategy that satisfies the iterated deletion of strictly dominated

strategies. In particular, the unique threshold strategy equilibrium is the globally

unique equilibrium.

3. Beliefs over r: The marginal agent, who has experience xi = x∗I , has a belief over the

incidence of reporting r characterized by the cumulative distribution function ΨI(.):

ΨI(r) ≡ Φ

(
σ

τ

1√
σ2 + τ 2

(x∗I − y) +
1

τ

√
σ2 + τ 2 Φ−1(r)

)
, (6)

and has expectation E∗I [r] = Φ
(
y−x∗I
κ

)
.

3.1 Equilibrium uniqueness and under-reporting

There is a unique equilibrium when priors are sufficiently diffuse or when private experiences

are informative for θ relative to priors. Specifically, Part 2(a) of Proposition 5 is satisfied for

high τ or when σ is low relative to to τ . The reason is that κ increases in τ ; furthermore, κ

decreases in σ when σ2/τ 2 <
√

2. Indeed, as τ → ∞ or σ → 0, we converge to the unique

equilibrium in Proposition 1, because κ→∞ and ΨI(r)→ r.

This observation comports with well-known results in the literature about global games:

precise public information induces coordination and multiple equilibria, while private in-

formation hinders coordination because signals are not common knowledge (Angeletos and

Lian, 2016; Morris and Shin, 2003, 2004a). Part 2(b) illustrates equilibrium multiplicity.

Suppose y = c

ω−β(1− γ
2 )

, so that y = x∗I and E∗I [r] = 1/2. Multiplicity occurs if τ ≈ 0 and σ

is not too large.10 We discuss the relevance of Part 2(c) below.

With proper priors, under-reporting still occurs if and only if misconduct is widespread.

The “open-secret” equilibrium of Corollary 1.1 is unchanged even when priors are proper.

Proposition 2 holds in the unique equilibrium or in any threshold strategy equilibrium of

10Small τ is insufficient to guarantee small κ and equilibrium multiplicity because limτ→0 κ = σ. If σ is
large, κ can be large, potentially satisfying the sufficient condition for uniqueness in Part 2(a). Part 2(b)
guarantees this does not happen.
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Table 4: Comparative statics with proper priors. Comparative statics for ω, c, γ, and β are identical
to those in Section 1.5. Note that y > x∗I if and only if y > c

ω−β(1− γ2 )
.

Parameter

(1)
Reporting
Threshold

x∗

(2)
Aggregate
Reporting

r̂(θ)

y: Public belief of average type - +

τ : Public belief of type dispersion

(for y > x∗I ; flip signs if >; 0 if “=”) + -

Proposition 5 (Appendix A.2.2). Condition (1) holds so long as θ > x∗I + σ
κ

(y − x∗I). Condi-

tion (2) holds for θ ∈
(
x+ σ

κ
(y − x∗I) , x∗I + σ

κ
(y − x∗I)

]
and σ sufficiently small.

From here on, we assume the environment satisfies the condition for a unique threshold

equilibrium in Part 2(a); the equilibrium is then globally unique by Part 2(d). This assump-

tion seems plausible because public information about any prior misconduct by a specific

individual is often diffuse. Such information does not accumulate smoothly in public through

time, often because the accused and accusers settle claims using non-disclosure agreements

(NDAs). Information about whether such NDAs exist is disperse, and the threat of enforce-

ment is effective at keeping information about prior allegations hidden (Lobel, 2018). For

example, NDAs kept information about Harvey Weinstein’s misconduct hidden for many

years (for other anecdotes, see Benner, 2017, or the story of “LaDonna” in Episode #647 of

“This American Life”). Moreover, information about misconduct in the broader population

of managers is likely less informative about a specific manager’s type than experiences from

that manager, suggesting Part 2(a) is satisfied.

3.2 Implications for #MeToo

Table 4 summarizes how changes in the mean and standard deviation of the prior belief, y

and τ , affect equilibrium reporting. Corollary 5.1 highlights the key implication relevant for

the #MeToo movement.11

11The comparative statics for ω, c, γ, and β are identical to those in Section 1.5. For σ, distinct from the
improper prior case in Section 1.5, an increase in σ can either increase or decrease the reporting threshold
x∗I , because the change in σ has two effects on beliefs over r. First, it affects the marginal agent’s assessment
of how likely her experience was relative to what other agents might be experiencing based on her priors,
but it also affects how much she revises her belief about what experience she expects others to have when
forming her posteriors. Which effect dominates depends on σ2/τ2 and whether y is low or high. For brevity,
we omit details about σ as it seems less directly relevant to the #MeToo movement.
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Figure 3: Probability density function ψI(r). This figure plots the probability density function of the
marginal agent’s belief over the number of agents reporting for three different cases denoted in the figure.
The cumulative distribution function for this belief is ΨI(r) given in Proposition 5.
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Corollary 5.1 (Publicity effect of #MeToo). Agents become more willing to report (x∗I falls)

when y increases. When y is high, agents also become more willing to report when τ falls.

If y increases so that the public believes that managers as a whole are engaging in

worse misconduct on average than previously believed, the reporting threshold x∗I falls and

aggregate reporting r̂(θ) rises for every θ. The reason is that an increase in y makes agents

believe the average experience is worse and hence more agents are likely to report.

The intuition is easiest to see when we are starting from an equilibrium where y =
c

ω−β(1− γ
2 )

so that x∗I = y. The marginal agent believes E∗I [r] = 1
2
, and Figure 3 plots the

density of her belief over r. Note that, from Equation 6, the CDF of her belief shifts “to the

right” when y increases, as ΨI(r) decreases in y for all r ∈ (0, 1) and any fixed value of xi.

This implies that, in response to an increase in y, the marginal agent will think that more

agents will report because they are having worse experiences, making her willing to report

and no longer indifferent.

At the higher value of y, the marginal agent in the new equilibrium must be indifferent

at a less-bad experience; at the new indifference point, x∗I < y. Figure 3 plots the marginal

agent’s belief over r in this new equilibrium. When x∗I < y, the marginal agent believes

many other agents are reporting, giving her the confidence to come forward despite a less-

bad experience than the marginal agent in the previous equilibrium. Analogous logic applies

if y falls: at the new indifference point where x∗I > y, the marginal agent believes fewer other

agents are reporting, so she must have a worse experience to come forward.

How reporting responds to the reliability of the public signal τ depends on whether x∗I is
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greater or less than y. Suppose x∗I < y and the marginal agent believes many other agents

are reporting. In response to a lower τ , the marginal agent believes that she had an even

lower-than-expected draw of x, and therefore that even more agents are reporting. She thus

becomes more willing to report and is no longer indifferent, lowering the new equilibrium

threshold. Analogous logic applies if x∗I > y: when τ decreases, the marginal agent believes

she had an even higher-than-expected x and that even fewer agents are reporting, making

her less willing to report and raising the equilibrium threshold.

Corollary 5.1 is a robust first-order prediction irrespective of underlying parameters: Part

2(c) from Proposition 5 guarantees that the equilibrium is unique when y → ∞ and that

x∗I → x, irrespective of other parameters. Part 2(c) also shows that Corollary 5.1 has first-

order effects on the magnitudes of x∗I , as changes in y can move the equilibrium threshold

x∗I across the entire range of (x, x).

Overall, Corollary 5.1 is consistent with more agents coming forward with accusations in

the wake of #MeToo, which publicized several major incidents of misconduct and arguably

raised y (and perhaps decreased τ) by raising public awareness of sexual misconduct. Our

model suggests that heightened awareness led directly to more reporting even though: 1)

experiences may have remained unchanged, and 2) there was no direct impact on agent

payoffs π(r, x). In particular, agents with “hidden xi” who were previously not reporting

due to a low-y environment may come forward in a higher-y (possibly lower-τ) environment

purely from a change in beliefs about whether other agents are reporting.

4 Rewarding Whistleblowers

Eliminating retaliation (β = 0) would eliminate the coordination problem. In practice,

however, eliminating retaliation is difficult; despite federal law, various forms of retaliation

remain prevalent (Cortina and Magley, 2003; McDonald, 2012; U.S. Equal Employment

Opportunity Commission, 2016). Furthermore, an agent who considers reporting retaliation

suffers from the same coordination problem as from reporting harassment.

Given these difficulties, we next consider the effect of rewarding reports that result in

sanction. Such a “whistleblower reward” for coordination success is a natural counterweight

to a retaliatory cost for coordination failure. For example, in practice, victims of workplace

sexual harassment can win emotional distress damages in Title VII lawsuits. More broadly,
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Table 5: Agent’s Payoffs with Whistleblower Rewards. The parameter α is the whistleblower reward.
1[xi≥0] is an indicator function that equals one if xi ≥ 0.

Sanction No Sanction

Report xi(ω + 1[xi≥0]α)− c xi(ω − 1[xi≥0]β)− c
Not Report 0 0

when the outside party acts, agents may also gain utility through social recognition, a sense

of vindication, or less harassment going forward from the sanctioned manager.

We incorporate whistleblower rewards in the model by extending the payoff structure

so that an agent receives a proportional reward αxi if the third party acts on a claim of

xi ≥ 0. Table 5 summarizes an agent’s final payoffs. Given these payoffs, an agent’s payoff

gain function πR equals:

πR (r, x) =

x (ω + γrα− (1− γr) β)− c if x ≥ 0

xω − c if x < 0
. (7)

Note that the payoffs in Table 5 and the payoff gain function πR(r, x) nest the previous payoff

structure with α = 0. All previous results on existence, uniqueness, and comparative statics

of other parameters in Sections 1-3 continue to apply with straightforward modification, and

proofs of all results incorporate the extended payoff structure allowing for α ≥ 0. For brevity,

we provide the formulas for the reporting and selection thresholds when α > 0 in Appendix

A and omit them in the main text.

In this section, we focus on the role of α for equilibrium behavior. It is straightforward

to show that α mitigates the retaliatory cost β because agents are more willing to report for

higher α (∂x∗/∂α < 0 and ∂r̂(θ)/∂α > 0 ∀θ). The following Proposition captures our main

insight from implementing whistleblower rewards.

Proposition 6 (Required rewards). For every β ∈ (0, ω), there exists a unique required

reward αF > 0 such that the equilibrium reporting threshold equals the “no-retaliation bench-

mark,” xF = c/ω. If α < αF , the equilibrium threshold exceeds xF , so that there is less

reporting than in the no-retaliation benchmark. Conversely, if α > αF , the equilibrium

threshold is less than xF , so that there is more reporting.

1. In the reporting game with improper uniform priors (Section 1), αF = β
(

2−γ
γ

)
.

2. In the constant-m selection game with improper uniform priors (Section 2), αF =

β
(

2S−m
m

)
.
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3. In the reporting game with proper priors (Section 3), αF = β
(

1−γΦ(ωy−c
ωκ

)

γΦ(ωy−c
ωκ

)

)
.

Furthermore, in each of the above cases, there also exists an αE ∈ (0, αF ) such that the

equilbium reporting threshold equals xE = x = c/(ω − β(1− γ)).

Proposition 6 suggests that rewards for coordination success have the potential to signif-

icantly and even fully offset the retaliatory cost of coordination failure. A sufficiently high α

can induce each agent to report as though she were sure that others were all reporting: that

is, so that agents play the reporting threshold xE = x in equilibrium. Recall from the dis-

cussion of the open secret equilibrium in Corollary 1.1 that xE is the threshold that achieves

the highest payoff for agents when σ → 0 and α = 0, given all other parameters.12 Even at

such a threshold, however, an agent faces possible retaliation if γ < 1. An even higher α can

induce each agent to report as though she were sure she would not face retaliation: that is,

so that agents play the threshold xF = c/ω in equilibrium, where xF < xE.

The Proposition also suggests that a reward of α > αF leads to an equilibrium reporting

threshold that is lower than xF and hence to more reporting than in the no-retaliation

benchmark. In this case, α itself creates a coordination motive: agents report behavior that

they otherwise would not report even in a world where retaliation did not exist. To see this,

consider the extreme case where β = 0 so that αF = 0, but where α > 0. Agents in this case

are motivated to report when other agents report only due to the possibility of the reward,

which in this case mitigates the fixed cost of reporting c.13 With α = 0, changes in β or γ

cannot generate an equilibrium threshold less than xE, let alone xF .

We highlight three other observations from Proposition 6. Part 1 suggests that there is

a potential substitution across different policy tools: The required reward αF is lower when

γ is high or β is low. Part 2 suggests that a higher reward is needed to counteract the

strategic spillover effect of manager selection on reporting when M(θ) is constant. With the

same improper prior, αF is higher in the game with selection than without selection, since

S > m/γ. Likewise, the required reward increases with the size of the sanction and decreases

with the size of mentorship utility.

Finally, Part 3 suggests that a lower required reward αF is needed when public beliefs

shift toward a worse average experience through an increase in y. Higher y makes agents

12The threshold xE is also the greatest lower bound of all possible Pareto-optimal thresholds x̃ from
Proposition 2 and is plausibly relevant for a policymaker who does not know θ.

13Whether one interprets this as desirable depends on whether one views c as reflecting a friction (such as
fixed retaliation costs) or an agent’s personal preferences.
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more willing to report, thus the required reward decreases accordingly. This suggests that

as public awareness of widespread problems increases in the wake of #MeToo, the required

reward to induce reporting consistent with the no-retaliation benchmark falls.

5 Conclusion

This paper shows that, due to strategic uncertainty, the coordination problem leads agents

to under-report sexual misconduct if and only if misconduct is widespread. It builds on this

insight to highlight several unintended and intended effects of #MeToo.

Our model suggests that mitigating information frictions and strategic uncertainty is

central to reduce under-reporting. For example, ombudspeople may reduce the concern

of reporting when others do not, since they can aggregate reports confidentially and may

not release them until there are multiple reports about an individual (e.g., as in American

Economic Association, 2019a). In contrast, non-disclosure agreements impose a negative

externality by depressing public beliefs about the incidence of misconduct, making agents

more hesitant to report.

Within the context of #MeToo, our model suggests several lines of future empirical

research. First, empirical work could quantify several causal relationships in the model,

including the link from retaliation (β), the sensitivity of sanction to reports (γ), whistleblower

rewards (α), and public awareness of misconduct (y) to the frequency and severity of agents’

reports of misconduct. Furthermore, on the manager side, empirical work could quantify

whether managers systematically opt out of soft mentorship opportunities and how this

affects reports of misconduct for other managers.

The model also suggests future research in conceptually related areas, including not only

more general forms of workplace misconduct, but also contexts where strategic uncertainty

may chill speech, reporting, or otherwise create a “culture of silence” where agents do not

speak up or express concerns. A common feature of these environments is that agents

may fail to coordinate and achieve higher payoffs because any individual agent is uncertain

whether other agents will act and fears retaliation or reprisal if they act alone. Coordination

problems and strategic uncertainty in these contexts are promising areas for future research.
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Appendix A Proofs of Main Propositions

We prove all statements in the text including the possibility that payoffs include α, so that:

π (r, x) =

{
x (ω + γrα− (1− γr)β)− c if x ≥ 0

xω − c if x < 0
.

A.1 Proof of Proposition 1

Lemmas A1, A2, and A3 set the stage from which Proposition 1 follows. The latter two lemmas are a direct

application of Proposition 2.1 of Morris and Shin (2003) and Lemma A.2 of Morris and Shin (2004a), with

technical modification to account for the fact that r only includes the number of agents reporting xi > 0.

We spell out the Lemmas for completeness and because we will use Lemma A3 in proving Proposition 5,

which is not a direct application. We refer to the reader to Morris and Shin (2003) and Morris and Shin

(2004a) for their proofs but also provide step-by-step proofs with the appropriate technical modifications to

our setting in Online Appendix B.1.

Note that here we do not require ε is normally distributed, only that it has a continuous density with

support over the real line. We denote by F the cumulative distribution function associated with ε, and f its

probability density function.

A.1.1 Intermediate results

Lemma A1. The function π (r, x) satisfies the following:

P1. Action monotonicity. π (r, x) weakly increases in r, and strictly increases in r for x > 0.

P2. State monotonicity. π (r, x) strictly increases in x.

P3. Unique threshold solution. There exists a unique x∗ solving
∫ 1

0
π (r, x∗) dr = 0.

P4. Limit dominance. There exist x ∈ R and x ∈ R such that: [1] π (r, x) < 0 for all r ∈ [0, 1] and

x ≤ x− ε; and [2] π (r, x) > 0 for all r ∈ [0, 1] and x ≥ x+ ε, for any ε > 0.

P5. Continuity.
∫ 1

0
g (r)π (r, x) dr is continuous with respect to signal x and density g.

Proof. [P1]. Let x be given. If x ≤ 0, then ∂π/∂r = 0. If x > 0, ∂π/∂r = xγ (α+ β) > 0.

[P2]. Let r ∈ [0, 1] be given. We have:

∂π

∂x
(r, x) =

{
ω − β + γr (α+ β) if x ≥ 0

ω if x < 0
≥

{
ω − β if x ≥ 0

ω if x < 0
> 0.

[P3]. Conjecture that there exists a x∗ > 0 that solves
∫ 1

0
π (r, x∗) dr = 0. Using the definition of π over

the positive domain,∫ 1

0

x∗ (ω − β + γr (α+ β))− c dr = x∗
(
ω − β +

γ

2
(α+ β)

)
− c.

Evidently, x∗ = c
ω−β+ γ

2 (α+β) is the unique positive solution to
∫ 1

0
π (r, x∗) dr = 0.

To show that this is the unique solution, conjecture that there exists at least one other solution x− < 0

that solves
∫ 1

0
π (r, x−) dr = 0. Using the definition of π over its negative domain,∫ 1

0

xω − c dr = xω − c,

so x− = c
ω . But then x > 0, a contradiction.
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[P4]. Fix some ε > 0. Reporting is a dominant strategy if x ≥ x̄ + ε where x̄ ≡ c
ω−β since π (r, x) > 0

for all (r, x) ∈ [0, 1] × (x̄,∞). Not reporting is payoff dominant if x < x − ε where x ≡ c
ω+γα−(1−γ)β , since

π (r, x) < 0 for all (r, x) ∈ [0, 1]× (−∞, x) .

[P5]. To show continuity with respect to x, let probability density g (r) be given. π (r, x) is continuous

over both its positive and negative domain and is also continuous at x = 0 for any r, with limx↑0 π (r, x) =

limx↓0 π (r, x) = π (r, 0) = −c. This implies
∫ 1

0
g (r)π (r, x) dr is continuous in x.

To show continuity with respect to density g, fix x and let a sequence of cumulative distribution functions

Gn → G be given, i.e., Gn (r) → G (r) for every r at which G is continuous. Note that, fixing x, π (r, x)

is continuous and bounded in r. Then
∫ 1

0
gn (r)π (r, x) dr =

∫ 1

0
π (r, x) dGn (r) →

∫ 1

0
π (r, x) dG (r) =∫ 1

0
g (r)π (r, x) dr by the Portmanteau theorem. �

Let r (θ; k) equal the proportion of other agents drawing x > k for type θ for any k > 0, or r (θ; k) =∫∞
k

1
σf
(
x−θ
σ

)
dx = 1− F

(
k−θ
σ

)
. For any such k > 0, there is a one-to-one mapping from r into θ:

r (θ; k) = 1− F
(
k − θ
σ

)
⇔ θ (r; k) = k − σF−1 (1− r) . (A.1)

Recall that π (r, x) equals the payoff gain to reporting for an agent who draws experience x when r other

agents are reporting. Let π∗ (x, k) : R × [0,∞) → R be the expected payoff gain from reporting when a

player’s signal is x and other players are playing threshold strategies of k ≥ x. It suffices to consider k ≥ x

by iterated deletion of strictly dominated strategies: from the definition of π, not reporting strictly dominates

reporting for any x < x irrespective of what other agents play, so playing a cutoff of k = x strictly dominates

playing a cutoff strategy of k < x. The one-to-one mapping from r to θ for k ≥ x > 0 allows us to write:

π∗ (x, k) =

∫ ∞
−∞

1

σ
f

(
x− θ
σ

)
π

(
1− F

(
k − θ
σ

)
, x

)
dθ,

where 1
σf
(
x−θ
σ

)
is the posterior density of θ upon observing x for an agent with improper prior over θ.

Lemma A2. The following properties hold:

[1] π∗ (x, k) is strictly increasing in x, weakly decreasing in k (strictly decreasing for x > 0 and k > 0),

and continuous in x and k.

[2] The sequence
{
ξ1, ξ2...ξn...

}
defined as the solutions to the equations:

π∗
(
ξ1, 0

)
= 0

π∗
(
ξ2, ξ1

)
= 0 . . .

. . . π∗
(
ξn+1, ξn

)
= 0 . . .

is a well-defined increasing sequence, with limn→∞ ξn = ξ, and with ξ being the smallest solution to π∗ (ξ, ξ) =

0. Analogously, the sequence
{
ξ̄1, ξ̄2...ξ̄n...

}
defined as the solutions to:

π∗
(
ξ̄1,∞

)
= 0

π∗
(
ξ̄2, ξ̄1

)
= 0 . . .

. . . π∗
(
ξ̄n+1, ξ̄n

)
= 0 . . .

is a well-defined decreasing sequence, with limn→∞ ξ̄n = ξ̄, and with ξ̄ being the largest solution to π∗ (ξ, ξ) =

0. Any such solution to π∗ (ξ, ξ) = 0 is a threshold equilibrium.

[3] There is a unique threshold strategy equilibrium where the threshold is given by the unique solution

to π∗ (ξ, ξ) = 0. Uniqueness is up to the action at the threshold ξ.
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Proof. We know π (r, x) satisfies Properties P1-P5 in Lemma A1. By Proposition 2.1 from Morris and Shin

(2003), the Lemma follows. Appendix B.1.1 contains the detailed step-by-step proof appropriately modified

for our setting. �

Lemma A3. If s is a strategy that survives n rounds of iterated deletion of interim-strictly dominated

strategies, then s (ξ) =

{
0 [do not report] if ξ < ξn

1 [report] if ξ > ξ̄n
.

Proof. This Lemma follows from Lemma A.2 of Morris and Shin (2004a) and is also subsumed in Proposition

2.1 of Morris and Shin (2003). Appendix B.1.2 contains the step-by-step proof appropriately modified for

our setting. �

A.1.2 Proposition 1

Proof. For Part 1, let ξ be the unique solution to π∗ (ξ, ξ) = 0 associated with the unique equilibrium in

threshold strategies from Lemma A2. From Property P3 in Lemma A1, x∗ = ξ.

For Part 2, note that, by Lemma A2, x∗ = ξ = limn→∞ ξn = limn→∞ ξ̄n, so by Lemma A3 the only

strategy which survives the iterated deletion of dominated strategies is the x∗-threshold strategy. This

implies that the x∗-threshold equilibrium is the globally unique equilibrium.

For Part 3, the proof of Lemma A2 Part 3 contains this derivation. �

A.2 Proof of Proposition 2

A.2.1 Main proof

Proof. Let H(x) ≡ x
(
ω − β + γΦ( θ−xσ )(α+ β)

)
−c. Then H(x) is the expected payoff of the marginal agent

given that all agents use reporting threshold x and given the true θ. First, note that there can never be

a Pareto improvement by selecting a threshold strategy around a reporting threshold that is greater than

x∗, since all agents with x ≥ x′′, where x′′ is defined by π(r(θ|x∗), x′′) = 0, would be worse off due to less

aggregate reporting with a higher reporting threshold than x∗.

1. Let θ > x∗. Note that H(x∗) > 0 if θ > x∗. Moreover,

∂H2

∂x2
= γ(α+ β)φ(

θ − x
σ

)(− 1

σ
)− (

1

σ
)γ(α+ β)φ(

θ − x
σ

)− (
1

σ
)γ(α+ β)(−θ − x

σ
)φ(

θ − x
σ

)(− 1

σ
)

= −γ(α+ β)

σ
φ(
θ − x
σ

)

(
2 +

x(θ − x)

σ
φ(
θ − x
σ

)

)
.

Since θ > x∗, then ∂H2

∂x2 < 0 for all x ∈ (x, x∗]. Since H(x) < 0 and H(x∗) > 0, then this implies that
∂H
∂x > 0 for all x ∈ (x, x∗].

Let x̃ be the threshold such that H(x̃) = 0. Given that H(x) < 0 and H(x∗) > 0, such a x̃ < x∗

exists. Since ∂H
∂x > 0 for all x ∈ (x, x∗], this x̃ is unique.

The above properties of H(x) imply that the maximal Pareto improvement would be achieved by

directing agents to play a threshold strategy around x̃. Let W (θ|x′) be total welfare for a given

reporting threshold x′: W (θ|x′) ≡
∫∞
x′

[x(ω−β+γr(θ|x′)(α+β))− c]f(x|ω)dx. Since ∂r(θ|x′)
∂x′ < 0 and
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∂
∂x [x(ω − β + γr(θ|x′)(α+ β))− c] > 0, then for any x′ ∈ [x̃, x∗),

W (θ|x′) =

∫ ∞
x′

[x(ω − β + γr(θ|x′)(α+ β))− c]f(x|θ)dx

=

∫ x∗

x′
[x(ω − β + γr(θ|x′)(α+ β))− c]f(x|ω)dx+

∫ ∞
x∗

[x(ω − β + γr(θ|x′)(α+ β))− c]f(x|θ)dx

>

∫ x∗

x′
[x(ω − β + γr(θ|x′)(α+ β))− c]f(x|ω)dx+

∫ ∞
x∗

[x(ω − β + γr(θ|x∗)(α+ β))− c]f(x|θ)dx

=

∫ x∗

x′
[x(ω − β + γr(θ|x′)(α+ β))− c]f(x|ω)dx+W (θ|x∗)

> W (θ|x∗),

and each agent with signal xi ∈ (x′, x∗) is strictly better off and an agent with signal xi = x′ is

equally well off. Since ∂H
∂x > 0 for all x ∈ (x, x∗], then clearly this Pareto improvement is maximized

by directing agents to play x′ = x̃.

Moreover, by the implicit function theorem, ∂x̃
∂σ > 0. By direct calculation, limσ→0 x̃ = x.

2. Let θ ≤ x. Note that H(θ) < 0 where ∂H
∂σ |x=θ = 0. Further, H(x∗) < 0 for all finite σ, with

limσ→∞H(x∗) = 0. Since limσ→∞
∂H
∂x = ω − β + γ(α + β) > 0, then this implies H(x) < 0 for all

x ∈ [θ, x∗) when σ →∞. Thus, there exists no x̃ ∈ (x, x∗) such that H(x̃) = 0 when σ →∞.

By direct differentiation, ∂H
∂σ > 0 for all x > θ. Thus, for all σ ∈ [0,∞) H(x) < 0. Thus, for all

σ ∈ [0,∞), there exists no x̃ ∈ (x, x∗) such that H(x̃) = 0.

3. Let θ ∈ (x, x∗]. Note that ∂H2

∂x2 < 0 for all x ∈ (x, θ] when σ > 0.

Also, limσ→∞
∂H
∂x = ω − β + γ(α+ β). By direct differentiation, ∂H∂σ > 0 for all x > θ. When θ ≤ x∗,

then H(x∗) ≤ 0 and H(θ) ≤ 0 with strict equality if and only if θ = x∗. This implies that H(x) < 0

for all x ∈ [θ, x∗] when θ < x∗, and H(x∗) = 0 if and only if θ = x∗. Thus there cannot exist a

x̃ ∈ [θ, x∗). This x̃ must lie in the interval [x, θ) and satisfy the following conditions:

x̃

(
ω − β + γΦ(

θ − x̃
σ

)(α+ β)

)
− c = 0 (A.2)

ω − β + γ(α+ β)Φ(
θ − x̃
σ

)−
x̃γ(α+ β)φ( θ−x̃σ )

σ
≥ 0. (A.3)

Since H(x) < 0, H(x∗) ≤ 0, ∂H
∂σ < 0 when x < θ, and ∂H2

∂x2 < 0 for all x ∈ (x, θ) when σ > 0, then

such a x̃ < x∗ exists and is unique when σ ≤ σ, where σ is determined by the value of σ at which

maxH(x) = 0 for x ∈ (x, θ]. This condition is satisfied for the pair (x̃, σ) that satisfy Equations A.4

and A.5:

x̃(ω − β + γ(α+ β)Φ(
θ − x̃
σ

))− c = 0 (A.4)

ω − β + γ(α+ β)Φ(
θ − x̃
σ

)−
x̃γ(α+ β)φ( θ−x̃σ )

σ
= 0, (A.5)

where Equation A.4 is the requirement that H(x′, σ) = 0 and Equation A.5 is the requirement that

H(x′, σ) is a local maximum. We know that a solution to (x̃, σ) exists for any θ ∈ (x, x∗] due

to the following. First, limσ→0H(x) = 0 and limσ→0
∂H
∂x > 0 for all x ∈ (x, θ), implying that

limσ→0H(x) > 0 for all x ∈ (x, θ). Second, limσ→∞H(x) < 0 for all x ∈ (x, θ). Since ∂H
∂σ < 0 and

∂H2

∂x2 < 0 when x < θ, then by continuity of H such a σ exists and is unique.
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Note that if θ = x∗, the explicit solution for σ is σ = cγ(α+β)√
2π(ω−β+ 1

2γ(α+β))
2 .

Let θ ≤ x∗ and σ < σ. Since H(x) < 0, H(x̃) = 0, and ∂H2

∂x2 < 0 when x < θ, then H(x) < 0 for

x ∈ (x, x̃) and we can apply the analogous argument for Pareto improvement using threshold x̃ as in

the above θ > x∗ case.

Moreover, by the implicit function theorem, when such an x̃ exists, then ∂x̃
∂σ > 0. By direct calculation,

limσ→0 x̃ = x.

�

A.2.2 Application to any threshold equilibrium, including Proposition 5

The proof of Proposition 2 applies to any equilibrium in which Γ(r) = γr and agents use symmetric threshold

strategies x∗.

The following Lemma establishes that, given payoff functions and any arbitrary sanction function, all

agents play the same strategy in equilibrium. The Lemma thus implies that we can drop the “symmetric”

qualifier and simply state that Proposition 2 applies to any equilibrium in which Γ(r) = γr and agents

use threshold strategies x∗. This includes any threshold strategy equilibrium of Proposition 5, not just the

unique equilibrium identified by Proposition 1. Section B.3 also uses this Lemma when discussing general

sanction functions.

Lemma A4. Let any sanction function be given. In any equilibrium, all agents use the same strategies.

Therefore, every equilibrium is symmetric across agents.

Proof. Suppose there is an equilibrium in which at least two agents i and j use different strategies, so there

exists some x′ such that agent i reports if xi = x′ but agent j does not report if xj = x′. Given a sanction

function and profile of equilibrium reporting strategies by all agents, this results in some equilibrium sanction

probability denoted p∗.

For any given agent with x ≥ 0, her expected payoff gain from reporting is then

E(π|x) = E (p∗(ωx− c) + (1− p∗)(ωx− βx− c))
= x(ω − (1− E(p∗|x))β)− c.

Suppose agents i and j receive signal x′. For agent i’s threshold strategy to hold in equilibrium, it must be

that E(π|xi = x′) > 0. For agent j’s threshold strategy to hold in equilibrium, it must be that E(π|xj =

x′) < 0. But E(p∗|xi = x′) = E(p∗|xj = x′), so E(π|xi = x′) = E(π|xj = x′). Thus agents i and j cannot

be using different equilibrium strategies in equilibrium. �

A.3 Proof of Proposition 3

[1] Suppose an M(θ) such that there is an equilibrium in which types θ ≤ θ̃ choose a = 1 and types θ > θ̃ all

choose a = 0. Once the manager has selected a, an agent’s decision only differs from that of Proposition 1

in her beliefs about r. All of the properties from Appendix A.1 therefore apply and we do not repeat their

analogous verification here.

We first construct the agent’s beliefs and reporting threshold x∗S . Since the agent’s belief about the

density of θ is uniform over (−∞, θ̃], then her improper prior must be

f(θ|θ < θ̃) =

{
1 for θ ∈ (−∞, θ̃]
0 for θ ∈ (θ̃,∞).
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Thus her posterior distribution f(θ|x, θ < θ̃) is f(θ|x, θ < θ̃) = f(x|θ)f(θ|θ<θ̃)∫∞
−∞ f(x|θ)f(θ|θ<θ̃)dθ = f(x|θ)∫ θ̃

−∞ f(x|θ)dθ
.

For an arbitrary r that corresponds to some θ where θ = k − σF−1(1− r), we have

Ψ(r;x, k, θ < θ̃) =

∫ θ

θ=−∞
f(θ|x, θ < θ̃)dθ

=

∫ k−σF−1(1−r)

θ=−∞

 f(x|θ)∫ θ̃
−∞ f(x|θ)dθ

 dθ

=

∫∞
z= x−k

σ +F−1(1−r) f(z)dz∫∞
z= x−k

σ +F−1(1−r̃) f(z)dz

=
1− F (x−kσ + F−1(1− r))
1− F (x−kσ + F−1(1− r̃))

where we define r̃ to be the reporting that corresponds to our upper bound θ̃ where θ̃ = k − σF−1(1 − r̃)
and we perform a change of variables z = x−θ

σ and dz = −dθ.
For the marginal agent who has x = k, we have

Ψ(r;x = k, k, θ < θ̃) =
1− F (F−1(1− r))
1− F (F−1(1− r̃))

=
r

r̃
.

Thus the marginal agent’s density function of r is ψ∗σ(r;x = k, k, θ < θ̃) = 1
r̃ over [0, r̃].

Because there is a one-to-one mapping of r and θ (because r(θ; k) = 1 − F (k−θσ )), then the agent’s

reporting threshold satisfies:

π∗(x, k, θ < θ̃) =

∫ θ̃

−∞

1

σ
f(
x− θ
σ

)π

(
1− F (

k − θ
σ

), x

)
dθ

=

∫ r̃

0

ψ∗σ(r;x, k, θ < θ̃)π(r, x)dr

For the marginal agent, this is π∗(x, k, θ < θ̃) =
∫ r̃

0
( 1
r̃ )π(r, x)dr = 0. To find the solution - denote the cutoff

xi = k ≡ x∗S . Given the marginal agent’s beliefs, x∗S is given by Equation A.6:

π∗(x, k, θ < θ̃) = 0∫ r̃

r=0

(
1

r̃
) (x∗S [ω + γrα− (1− γr)β]− c) dr = 0

x∗S =
c

ω − β + 1
2γ(α+ β)r̃

. (A.6)

Since x∗S is decreasing in r̃, then x∗S > x∗.

To characterize a sufficient condition for this form of separating equilibrium, we construct an M(θ) that

guarantees that types choose a = 1 if and only if θ ≤ θ̃. Let M(θ) be a weakly decreasing function of θ

with limθ→−∞M(θ) > 0 and S > M
γ . For any given threshold x∗S , −γSr̂(θ) strictly decreases in θ. Since

M(θ) is weakly decreasing in θ and S > M
γ , type θ →∞ receives a strictly negative payoff from mentoring

because he is sure that his r̂(θ) = 1. Since limθ→−∞M(θ) > 0, type θ →∞ receives a strictly positive payoff

from mentoring since he is sure that his r̂(θ) = 0. Since M(θ) weakly decreases in θ and −γSr̂(θ) strictly

decreases in θ, then there exists a unique θ̃ such that M(θ̃) − γSr̂(θ̃) = 0. Thus types choose a = 1 if and
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only if θ ≤ θ̃. The above arguments also clearly rule out pooling equilibria, so this separating equilibrium is

unique. As shown above, the equilibrium θ̃ and x∗S are thus given by Equations A.6 and M(θ̃)−γSr̂(θ̃) = 0.

[2] Suppose an M(θ) such that there is an equilibrium in which types θ ≤ θ̃ choose a = 1 and types θ > θ̃

choose a = 0. Once the manager has selected a, an agent’s decision only differs from that of Proposition 1

in her beliefs about r. All of the properties from Appendix A.1 therefore apply and we do not repeat their

analogous verification here. Since the construction is analogous to that of Part 1 above, we provide only the

key steps below for brevity.

We first construct the agent’s beliefs and reporting threshold x∗S . Since the agent’s belief about the

density of θ is uniform over (−∞, θ̃], then her improper prior must be

f(θ|θ < θ̃) =

{
0 for θ ∈ (−∞, θ̃]
1 for θ ∈ (θ̃,∞).

Thus her posterior distribution f(θ|x, θ < θ̃) is f(θ|x, θ > θ̃) = f(x|θ)∫∞
θ̃
f(x|θ)dθ .

For an arbitrary r that corresponds to some θ where θ = k − σF−1(1− r), we have

Ψ(r;x, k, θ > θ̃) =

∫ θ

θ=−∞
f(θ|x, θ > θ̃)dθ =

1− F (x−kσ + F−1(1− r))
F (x−kσ + F−1(1− r̃))

.

For the marginal agent who has x = k, we have Ψ(r;x = k, k, θ < θ̃) = r
1−r̃ . Thus the marginal agent’s

density function of r is ψ∗σ(r;x = k, k, θ < θ̃) = 1
1−r̃ over [r̃, 1].

Because there is a one-to-one mapping of r and θ, then the agent’s reporting threshold satisfies: π∗(x, k, θ >

θ̃) =
∫ 1

r̃
ψ∗σ(r;x, k, θ > θ̃)π(r, x)dr. For the marginal agent, this is π∗(x, k, θ > θ̃) =

∫ 1

r̃
( 1

1−r̃ )π(r, x)dr. To

find the solution - denote the cutoff xi = k ≡ x∗S . Given the marginal agent’s beliefs, x∗S is given by Equation

A.7:

π∗(x, k, θ > θ̃) = 0∫ 1

r=r̃

(
1

1− r̃
) (x∗S [ω + γrα− (1− γr)β]− c) dr = 0

x∗S =
c

ω − β + 1
2γ(α+ β)(1 + r̃)

. (A.7)

Since x∗S is decreasing in r̃, then x∗S < x∗.

To characterize a sufficient condition for this form of separating equilibrium, we construct an M(θ) that

guarantees that types choose a = 1 if and only if θ ≥ θ̃. Let M(θ) be a weakly increasing function such that:

M(θ) =

{
g(θ) if θ < θ′

h(θ) if θ ≥ θ′,

where θ′ ∈ (−∞,∞), g(θ′) < 0, h(θ′) > γS, and g(θ) : R → R and h(θ) : R → R are weakly increasing

functions of θ. For any given threshold x∗S , −γSr̂(θ) strictly decreases in θ. Since g(θ) is weakly increasing

in θ and g(θ′) < 0, any θ < θ′ receives a strictly negative payoff from mentoring. Thus any type θ < θ′

would choose a = 0 in any equilibrium. Since h(θ′) > γS and h(θ) is weakly increasing in θ, any type θ ≥ θ′
receives a strictly positive payoff from mentoring, even if r̂(θ) = 1. Thus types θ ≥ θ′ would choose a = 1

in any equilibrium. Therefore the unique separating equilibrium is that equilibrium such that types choose

a = 1 if and only if θ ≥ θ′. As shown above, the equilibrium reporting threshold x∗S is thus given by Equation

A.7 where r̃ = Φ(
θ′−x∗S
σ ) and θ̃ = θ′.
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A.4 Proof of Proposition 4

We first show that the unique perfect Bayesian equilibrium is an equilibrium in which types θ ≤ θ̃ choose

a = 1 and types θ > θ̃ all choose a = 0.

[1] If m− γS ≥ 0, the unique equilibrium is a(θ) = 1 for all θ.

Since the probability of investigation is γr, the maximum expected sanction that a manager can pay is

γS. If m− γS ≥ 0, then no type has an incentive to select out. In this case, it is weakly better for any type

to mentor agents even if he were to incur the maximal expected sanction. Thus, the agents’ equilibrium

reporting strategy is given by s(xi, 1) using threshold x∗, as defined in Proposition 1.

[2] If m− γS < 0: we rule out all of the following forms of equilibria.

[a] No pooling on a(θ) = 0 for all θ: Suppose that all types pool on a = 0, so each types’s payoff is 0.

We know that it is strictly dominant for an agent to not report if π(r = 1) = xi(ω − β + γ(α+ β))− c < 0,

which is true whenever xi <
c

ω−β+γ(α+β) . This means that the maximal off-equilibrium reporting is if all

agents report when xi ≥ k′ where k′ = c
ω−β+γ(α+β) . Suppose a manager of type θ′ deviates to a = 1.

Then the highest probability of sanction is γr′ = γ(1 − Φ(k
′−θ′
σ )) = γΦ( θ

′−k′
σ ). So he will deviate if

m − γΦ( θ
′−k′
σ )(S) > 0, where r′ is increasing in θ′ and limθ′→−∞ r′ = 0. Thus, there exists some type θ′

sufficiently small that he would prefer to deviate to a = 1 rather than pool on a = 0. Intuitively, there always

exists a type good enough that he is quite sure he would not send high enough xi signals to be punished.

[b] No pooling on a(θ) = 1 for all θ: Suppose all types pool on a = 1, which implies that agents use

threshold x∗ as in Proposition 1. Since any type’s payoff is m − γr̂(θ)S and limθ→∞ r̂(θ) = 1, then there

must exist some type θ′ sufficiently large that he prefers to deviate to a = 0 rather than pool on a = 1 if

S < m
γ . Intuitively, there always exists a type bad enough that he is quite sure he would send high enough

xi signals to be punished. Thus if S is sufficiently high, this type does not mentor.

This leaves a unique equilibrium in which types θ ≤ θ̃ choose a = 1 and types θ > θ̃ all choose a = 0.

Given this selection, the proof of Part 1 of Proposition 3 applies. The equilibrium is the solution to Equations

A.8 and A.9, which are the indifference conditions for the marginal agent and manager, respectively:∫ r̃

r=0

(
1

r̃
) (x∗S [ω + γrα− (1− γr)β]− c) dr = 0 (A.8)

m− γΦ(
θ̃ − x∗S
σ

)S = 0. (A.9)

Note that Equation A.9 implies that r̃ = m
γS , where m − γS < 0 implies that m

γS < 1. Using r̃ = m
γS in

Equation A.8, we obtain x∗S = c
ω−β+( m2S )(α+β) and θ̃ = c

ω−β+( m2S )(α+β) + σΦ−1( mγS ). Clearly, there is no

incentive for any type to deviate given x∗S and θ̃.

A.4.1 Corollary 4.1

[1] By direct differentiation, ∂r̃
∂S = − m

γS2 < 0 and
∂x∗S
∂S =

−cγ(α+β) ∂r̃∂S
2(ω−β+ 1

2 r̃γ(α+β))
2 > 0.

[2] What is ∂θ̃
∂S ? ∂θ̃

∂S =
∂x∗S
∂S + ∂r̃

∂S
1

φ

(
θ̃−x∗

S
σ

) with ∂r̃
∂S = − m

γS2 < 0 and
∂x∗S
∂S =

−cγ(α+β) ∂r̃∂S
2(ω−β+ 1

2 r̃γ(α+β))
2 > 0. Combining:

∂θ̃

∂S
=

σ 1

φ
(
θ̃−x∗S
σ

) − cγ (α+ β) ∂r̃
∂S

2
(
ω − β + 1

2 r̃γ (α+ β)
)2
 ∂r̃

∂S
. (A.10)
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So ∂θ̃
∂S < 0 if and only if:

σ
1

φ
(
θ̃−x∗S
σ

) >
cγ (α+ β)

2
(
ω − β + 1

2 r̃γ (α+ β)
)2

σ > φ

(
θ̃ − x∗S
σ

)
cγ (α+ β)

2
(
ω − β + 1

2 r̃γ (α+ β)
)2

σ > φ
(
Φ−1 (r̃)

) c 1
2γ (α+ β)(

ω − β + 1
2 r̃γ (α+ β)

)2 . (A.11)

Thus a sufficient condition for ∂θ̃
∂S < 0 is σ > 1√

2π

c 1
2γ(α+β)

(ω−β)2
. When S = m

γ , r̃ = 1 so from Equation A.10

we have ∂θ̃
∂S < 0 when S = m

γ . As S → ∞, r̃ → 0 so x∗S → x and θ̃ → −∞. From Equation A.11, we have
∂θ̃
∂S < 0 as S →∞.

[3] A sufficient condition for ∂θ̃
∂S > 0 when r̃ = 1/2 is σ < 1√

2π

cγ(α+β)

2(ω−β+ 1
4γ(α+β))

2 .

A.5 Proof of Proposition 5

Suppose the prior belief of θ with density p (θ) is normally distributed with mean y and standard deviation

τ , and experiences are x = θ + σε where ε ∼ N (0, 1). Let t = 1/τ2 and u = 1/σ2 denote the precisions of

the prior and x. The posterior density f (θ | x) is a normal density with:

mean λ =
σ2y + τ2x

σ2 + τ2
=
ty + ux

t+ u
,

standard deviation v =

√
σ2τ2

σ2 + τ2
=

1√
t+ u

,

precision h = t+ u =
σ2 + τ2

σ2τ2
.

Define r (θ, k) as in the proof of Proposition 1. Recall that we can consider k ≥ 0 and that for such k there

is a one-to-one map of r into θ: r (θ; k) = 1−Φ
(
k−θ
σ

)
so θ (r; k) = k− σΦ−1 (1− r), where Φ(.) denotes the

normal CDF; let φ(.) denote the normal PDF. The expected payoff gain of reporting for agent drawing x

when other agents are playing threshold strategies around k ≥ 0 when x > 0 equals:

π∗ (x, k) =

∫ ∞
−∞

f (θ | x)π (r (θ; k) , x) dθ

= x

(
ω − β + γ (α+ β)

∫ ∞
−∞

f (θ | x)

(
1− Φ

(
k − θ
σ

))
dθ

)
− c. (A.12)

For x ≤ 0, the payoff gain equals π∗ (x, k) = xω − c < 0.

A.5.1 Intermediate results

Lemma A5. Any solution x∗ to π∗ (x, x) = 0 satisfies the implicit equation:

x∗ =
c

ω − β + γ (α+ β) Φ
(
y−x∗
κ

) ,
where we drop the I subscript on x∗I for notational brevity.
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Proof. We have f (θ | x) = 1
vφ
(
θ−λ
v

)
. Then Equation A.12 becomes:

π∗ (x, k) = x

(
ω − β + γ (α+ β)

∫ ∞
−∞

1

v
φ

(
θ − λ
v

)(
1− Φ

(
k − θ
σ

))
dθ

)
− c.

We know the following general relationship (Patel and Read, 1996, p.36):∫ ∞
−∞

Φ (a+ bz)φ (z) dx = Φ

(
a√

1 + b2

)
.

Letting z = θ−λ
v and a+ bz = k−λ

σ −
v
σ z, we have:∫ ∞

−∞

1

v
φ

(
θ − λ
v

)(
1− Φ

(
k − θ
σ

))
dθ = 1−

∫ ∞
−∞

φ (z) Φ

(
k − λ
σ
− v

σ
z

)
dz

= 1− Φ

 k−λ
σ√

1 + v2

σ2


= Φ

(
λ− k√
σ2 + v2

)
.

For any agent who draws x, the payoff gain is then:

π∗ (x, k) = x

(
ω − β + γ (α+ β) Φ

(
λ− k√
σ2 + v2

))
− c if x > 0, (A.13)

= xω − c if x ≤ 0.

For the marginal agent with x = k, we have λ− k = λ− x = v2

τ2 (y − x). Then:

Φ

(
λ− x√
σ2 + v2

)
= Φ

(
v2

τ2

y − x√
σ2 + v2

)
= Φ

(
y − x
κ

)
for κ ≡ τ2

v2

√
σ2 + v2.

The payoff gain for the marginal agent (assuming x > 0, which we verify) then equals:

π∗ (x, x) = 0 = x

(
ω − β + γ (α+ β) Φ

(
y − x
κ

))
− c,

which gives us the implicit equation for x∗. Note that any solution must be positive, as required. �

Lemma A6. There exists at least one symmetric threshold strategy equilibrium x∗I ∈ (x, x) where agents

report for x ≥ x∗I and do not report for x < x∗I .

Proof. From Lemma A5, any potential equilibria must solve G (x∗) = 0, where:

G (x) = π∗ (x, x) = x (ω − β + γE (x) (α+ β))− c,

E (x) = Φ

(
y − x
κ

)
.

For notational brevity, we drop the I subscript in x∗I .

First, we claim there exists a x∗ ∈ (x, x) that is a solution to G (x∗) = 0 where G (x∗) is increas-

ing. Observe that E (x) is continuous, which implies G (x) is continuous. Notice that G
(

c
ω−β

)
> 0, and
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G
(

c
ω+γα−(1−γ)β

)
< 0, and c

ω−β > c
ω+γα−(1−γ)β . By the intermediate value theorem, there exists at least

one solution G (x∗) = 0, where G (x∗) is increasing.

Second, we show that any such solution x∗ constitutes a symmetric threshold equilibrium. Recall from

Equation A.13 in Lemma A5 that the payoff from reporting when an agent’s signal is x > 0, conditional on

other players playing threshold strategies around k, equals:

π∗ (x, k) = x

(
ω − β + γ (α+ β) Φ

(
σ2y+τ2x
σ2+τ2 − k√
σ2 + v2

))
− c.

This is a strictly increasing function in x. Since G (x∗) = π∗ (x∗, x∗) = 0, we have π∗ (x, x∗) > 0 for x > x∗

and π∗ (x, x∗) < 0 for x < x∗, so that a threshold strategy around x∗ is a best response to other players

playing the same threshold strategy. If x < 0 < x∗, π∗ (x, x∗) < 0. �

Lemmas A7 and A8 substitute for Lemma A2 in the informed prior case.

Lemma A7. The following properties hold:

[1] π∗ (x, k) is strictly increasing in x, weakly decreasing in k (strictly decreasing for x > 0), and contin-

uous in both x and k. Furthermore, for any k ≥ 0, π∗ (x, k) maps onto R.

[2] Let ξ solve π∗ (ξ, ξ) = 0. The sequence
{
ξ1, ξ2...ξn...

}
defined as the solutions to the equations:

π∗
(
ξ1, 0

)
= 0

π∗
(
ξ2, ξ1

)
= 0 . . .

. . . π∗
(
ξn+1, ξn

)
= 0 . . .

is a well-defined increasing sequence, bounded from above by ξ and below by 0, with limn→∞ ξn = ξ, where ξ

is the smallest solution to π∗ (ξ, ξ). Analogously, the sequence
{
ξ̄1, ξ̄2...ξ̄n...

}
defined as the solutions to:

π∗
(
ξ̄1,∞

)
= 0

π∗
(
ξ̄2, ξ̄1

)
= 0 . . .

. . . π∗
(
ξ̄n+1, ξ̄n

)
= 0 . . .

is a well-defined decreasing sequence, bounded from below by ξ > 0, with limn→∞ ξ̄n = ξ̄, where ξ̄ is the

largest solution to π∗ (ξ, ξ).

Proof. [1] These properties are evident from Equation A.13 in Lemma A5.

[2] Property [1] implies that all ξn and ξ̄n are well-defined. We know that not reporting is dominant

for x < x, so π∗ (x, 0) < 0 for all x < x. But we also know that π∗ (x, 0) > 0 for all x > x̄. Define

ξ0 ≡ 0. By continuity in x, there exists at least one solution x with π∗
(
x, ξ0

)
= 0, where x ∈ [x, x̄]. Call

ξ1 the smallest such solution. Note that ξ̄1 > 0. Furthermore, note that ξ1 < ξ ∈ (x, x̄): if not, then

0 = π∗
(
ξ1, 0

)
≥ π∗ (ξ, 0) > π∗ (ξ, ξ) = 0, a contradiction.

To show that ξn is an increasing sequence, proceed by induction. Our starting point is to show that,

because π∗
(
ξ1, 0

)
= π∗

(
ξ2, ξ1

)
= 0, we have ξ1 < ξ2. To see why, proceed by contradiction. Suppose

ξ1 ≥ ξ2. Then π∗
(
ξ1, 0

)
≥ π∗

(
ξ2, 0

)
because π∗ is increasing in x, but π∗

(
ξ2, 0

)
> π∗

(
ξ2, ξ1

)
because

π∗ is decreasing in k. Thus, π∗
(
ξ1, 0

)
> π∗

(
ξ2, ξ1

)
, a contradiction. Note that ξ2 < ξ: if not, then

0 = π∗
(
ξ2, ξ1

)
≥ π∗

(
ξ, ξ1

)
> π∗ (ξ, ξ) = 0, a contradiction.

The inductive hypothesis is that ξn−1 < ξn with ξn < ξ; we claim ξn < ξn+1 with ξn+1 < ξ. Proceed

again by contradiction. By definition, π∗
(
ξn, ξn−1

)
= π∗

(
ξn+1, ξn

)
. Suppose that ξn ≥ ξn+1. Then

π∗
(
ξn, ξn−1

)
> π∗

(
ξn+1, ξn−1

)
because π∗ is increasing in x, but π∗

(
ξn+1, ξn−1

)
> π∗

(
ξn+1, ξn

)
because

π∗ is decreasing in k. Thus, π∗
(
ξn, ξn−1

)
> π∗

(
ξn+1, ξn

)
, a contradiction. Note that ξn+1 < ξ: if not, then

0 = π∗
(
ξn+1, ξn

)
≥ π∗ (ξ, ξn) > π∗ (ξ, ξ) = 0, a contradiction.
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Because {ξn} is a bounded increasing sequence, there exists a ξ with limn→∞ ξn = ξ. Note that

limn→∞ π∗
(
ξn+1, ξn

)
= 0 so by construction and continuity of π∗, we must have π∗ (ξ, ξ) = 0 and that ξ is

the smallest such solution to π∗ (ξ, ξ) = 0.

An analogous argument works identically to show that
{
ξ̄n
}

is a bounded decreasing sequence, that

there exists a ξ̄ with limn→∞ ξ̄n = ξ̄, and that ξ̄ is the largest such solution to π∗ (ξ, ξ) = 0. �

Lemma A8. Uniqueness of equilibrium (allowing for either strategy to be played at x∗):

[a] The equilibrium x∗ is a unique threshold equilibrium if:

κ >
1√
2π

cγ (α+ β)

(ω − β)
2 .

[b] Whenever y = c
ω−β+ 1

2γ(α+β)
, a sufficient condition for non-unique equilibria is:

κ <
1√
2π

γ (α+ β) c(
ω − β + 1

2γ (α+ β)
)2 .

[c] For y →∞, there is a unique threshold equilibrium x∗ with x∗ → x. For y → −∞, there is a unique

threshold equilibrium x∗ with x∗ → x̄.

[d] If there is a unique equilibrium in threshold strategies, then the equilibrium strategy is the only strategy

that satisfies the iterated deletion of strictly dominated strategies, and in particular, the unique threshold

strategy equilibrium is the globally unique equilibrium.

Proof. Because G (x) < G (x̄) with at least one solution in between where G is increasing from Lemma A6,

and because G is differentiable for all x, a necessary and sufficient condition for uniqueness is that G′ (x∗) > 0

for all x∗ ∈ (x, x̄) such that G (x∗) = 0. We have

G′ (x) = γ (α+ β)xE′ (x) + (ω − β + γ (α+ β)E (x)) (A.14)

= ω − β + γ (α+ β) (xE′ (x) + E (x)) , (A.15)

and also:

G′ (x) = γ (α+ β)xE′ (x) +
c

x
(A.16)

Substituting in E′ (x) = − 1
κφ
(
y−x
κ

)
into Equation A.16, a necessary and sufficient condition for uniqueness

is, for all solutions x∗:

γ (α+ β) (x∗)
2
φ

(
y − x∗

κ

)
1

κ
< c. (A.17)

Recall from Lemmas A5 and A6 that any solution to G(x) constitutes a symmetric threshold equilibrium and

that there exists at least one such equilibrium. We now provide conditions under which such an equilibrium

is unique or not unique.

[a] Using the fact that φ (z) < 1√
2π

and x∗ < x̄ = c
ω−β , a sufficient condition for uniqueness from

Equation A.17 is:

γ (α+ β)
1√
2π

c

(ω − β)
2

1

κ
< 1 ⇔ 1√

2π

cγ (α+ β)

(ω − β)
2 < κ.

[b] For y = c
ω−β+ 1

2γ(α+β)
, note that x∗ = y, E (y) = 1/2, E′ (y) = − 1

κ
1√
2π

, and we have the following
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expression for G′ (y) from Equation A.14:

G′ (y) = γ (α+ β) yE′ (y) + (ω − β + γ (α+ β)E (y))

But y = c
ω−β+ 1

2γ(α+β)
, so G′ (y) < 0 if and only if 1√

2π

γ(α+β)c

(ω−β+ 1
2γ(α+β))

2 > κ.

[c] For y → ∞, limy→∞E (x) = 1, so limy→∞G (x) = x (ω − β + γ (α+ β)) − c. By continuity, any

solutions x∗ are arbitrarily close to x.

For y → −∞, limy→−∞E (x) = 0, so limy→−∞G (x) = x (ω − β) − c. By continuity, any solutions x∗

are arbitrarily close to x.

To show uniqueness in both cases, observe from Equation A.15 that:

lim
y→∞

G′ (x) = ω − β + γ (α+ β) > 0,

lim
y→−∞

G′ (x) = ω − β > 0.

Continuity of G′ (x) in y and x implies G′ (x) > 0 for arbitrarily large (positive or negative) y, in particular

G′ (x∗) > 0 for any solution x∗.

[d] If G (x) has a unique solution x∗, then from Lemma A7 we have x∗ = ξ = ξ = ξ. By Lemma A3, the

only strategy which survives the iterated deletion of dominated strategies is the x∗-threshold strategy. This

implies that the x∗-threshold equilibrium is the globally unique equilibrium. �

Lemma A9. The marginal agent has beliefs over r summarized by the cumulative distribution function

Φ
(

t√
t+u

(x− y) +
√
t+u√
u

Φ−1 (r)
)

, with expectation E∗I [r] = Φ
(
y−x∗
κ

)
.

Proof. Given an agent’s signal x, what is her assessment of the cumulative distribution function of r when

others are playing cutoff strategies around k, Ψ (r̃;x, k)? We can follow the same logic as in Lemma A2.

For any r̃, the probability that r < r̃ equals the probability that θ < k − σF−1 (1− r̃). In words, the

probability Ψ (r̃;x, k) ≡ Pr (r < r̃ | x) that the true proportion of players reporting is less than r̃ equals the

probability that the true θ satisfies r (θ; k) = 1−F
(
k−θ
σ

)
< r̃, or equivalently that θ is such that fewer than

r̃ players observe a signal greater than k; in turn, this equals the probability that the true θ is less than

k − σF−1 (1− r̃), integrated against the conditional density f (θ | x). With some abuse of notation,

Ψ (r;x, k) =

∫ k−σΦ−1(1−r)

−∞
f (θ | x) dθ

=

∫ k−σΦ−1(1−r)

−∞

1

v
φ

(
θ − λ,
v

)
dθ

=

∫ z= k−λ
v −

σ
vΦ−1(1−r)

−∞
φ (z) dz for z =

θ − λ
v

, dz =
1

v
dθ

= Φ

(
k − λ
v
− σ

v
Φ−1 (1− r)

)
.

For the marginal agent with x = k,

k − λ
v

=
(t+ u)x− ty − ux√

t+ u
=

t√
t+ u

(x− y) .

Combining this insight with σ/v =
√
t+ u/

√
u yields:

Ψ (r;x, x) = Φ

(
t√
t+ u

(x− y) +

√
t+ u√
u

Φ−1 (r)

)
,
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where we use Φ−1 (r) = −Φ−1 (1− r) in the derivation.

Let ψ (r;x, x) denote the probability density function associated with Ψ (r;x, x). Because there is a

one-to-one mapping of r and θ, we can re-write π∗ (x, k) as π∗ (x, k) =
∫ 1

0
ψ (r;x, k)π (r, x) dr, so for the

marginal agent (assuming x > 0, which we verify):

π∗ (x, x) =

∫ 1

0

ψ (r;x, x) [x (ω − β + γr (α+ β))− c] dr.

Because the marginal agent must be indifferent between reporting and not reporting, the equilibrium condi-

tion is then π∗ (x, x) = 0. This gives the implicit function:

x∗ =
c

ω − β + γE∗I [r] (α+ β)
,

where E∗I [r] =
∫ 1

0
r ψ (r;x, x) dr. But then by Lemma A5, E∗I [r] = Φ

(
y−x∗
κ

)
. �

A.5.2 Proposition 5

Proof. Part 1 follows from Lemma A6. Part 2 follows from Lemma A8. Part 3 follows from Lemma A9. �

A.6 Proof of Proposition 6

[1] The αF such that x∗ = xF must satisfy ω + 1
2γα− (1− 1

2γ)β = ω. Thus αF = β
(

2−γ
γ

)
.

The αE such that x∗ = xE must satisfy ω + 1
2γα− (1− 1

2γ)β = ω − (1− γ)β. Thus αE = β.

[2] The αF such that x∗S = xF must satisfy ω − β +
(
m
2S

)
(α+ β) = ω. Thus αF = β

(
2S−m
m

)
.

The αE such that x∗S = xE must satisfy ω − β +
(
m
2S

)
(α+ β) = ω − (1− γ)β. Thus αE = β

(
2Sγ−m
m

)
.

[3] The αF such that x∗I,R = xF must satisfy ω − β + γ(α+ β)Φ(
y−x∗I,R

κ ) = ω. Thus αF = β
(

1−γΦ(ωy−cωκ )

γΦ(ωy−cωκ )

)
.

Clearly, αF and αE are unique and positive for any given β.

To obtain the comparative statics:

[a] By direct differentiation, ∂αF

∂y = −
(
β
γκ

)
φ
(
ωy−c
ωκ

) [
Φ
(
ωy−c
ωκ

)]−2
< 0.

[b] By direct differentiation:

∂αF

∂τ
=

(
β

γκ2

)
φ

(
ωy − c
ωκ

)[
Φ

(
ωy − c
ωκ

)]−2 (
y − c

ω

)(∂κ
∂τ

)
.

Since ∂κ
∂τ > 0, this implies that ∂αF

∂τ


> 0 if y > c

ω

= 0 if y = c
ω

< 0 if y < c
ω .

The αE such that x∗I,R = xE must satisfy ω − β + γ(α + β)Φ(
y−x∗I,R

κ ) = ω − (1 − γ)β. Thus αE =

β

(
1−Φ( y(ω−(1−γ)β)−c

κ(ω−(1−γ)β) )
Φ( y(ω−(1−γ)β)−c

κ(ω−(1−γ)β) )

)
.
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Appendix B Online Appendix

B.1 Supplemental detail for main proofs

We will need the following standard result. For any two densities g and h for a random variable z that

ranges over (−∞,∞), we say g stochastically dominates h (g � h) if G (z) =
∫ z
−∞ g (s) ds ≤

∫ z
−∞ h (s) ds =

H (z) ∀z. If g stochastically dominates h, then for any weakly increasing function u, the expected value of

u under the former weakly exceeds that of the latter.

Lemma B1. If g � h and u (z) is a weakly increasing differentiable function of z, then:∫ ∞
−∞

u (z) g (z) dz ≥
∫ ∞
−∞

u (z) h (z) dz.

If u (z) is a weakly decreasing function of z, then the inequality is reversed.

B.1.1 Proof of Lemma A2

Proof. We know π (r, x) satisfies Properties P1-P5 in Lemma A1.

[1] Stochastic dominance arguments and Property P2 implies π∗ (x, k) is strictly increasing in x. To

see this, implement a change of variables with z = −θ. Note that fz (z) = 1
σf
(
x+z
σ

)
, and Fz (z;x1) =∫ z

−∞
1
σf
(
x1+z
σ

)
dz <

∫ z
−∞

1
σf
(
x2+z
σ

)
dz = Fz (z;x2) for any z and x1 < x2. That is, z under x1 stochastically

dominates z under x2, because the former has more probability mass “shifted to the right.” Observe that:

π∗ (x, k) =

∫ ∞
θ=−∞

1

σ
f

(
x− θ
σ

)
π

(
1− F

(
k − θ
σ

)
, x

)
dθ

=

∫ ∞
z=−∞

1

σ
f

(
x+ z

σ

)
π

(
1− F

(
k + z

σ

)
, x

)
dz

Note that π
(
1− F

(
k+z
σ

)
, x1

)
is a differentiable weakly decreasing function of z, and increasing function of

x. Therefore, under Lemma B1, for x1 < x2,

π∗ (x1, k) =

∫ ∞
−∞

1

σ
f

(
x1 + z

σ

)[
π

(
1− F

(
k + z

σ

)
, x1

)]
dz

≤
∫ ∞
−∞

1

σ
f

(
x2 + z

σ

)[
π

(
1− F

(
k + z

σ

)
, x1

)]
dz

<

∫ ∞
−∞

1

σ
f

(
x2 + z

σ

)[
π

(
1− F

(
k + z

σ

)
, x2

)]
dz

= π∗ (x2, k) .

Property P1 implies π∗ (x, k) is weakly decreasing in k, and Property P5 implies π∗ (x, k) is continuous

in x and k. Note that for x > 0, π∗ (x, k) is strictly decreasing in k for k > 0.

[2] We show that {ξn} and
{
ξ̄n
}

are well-defined increasing and decreasing sequences, respectively,

through induction. From Property P4, we know that not reporting is dominant for x < x, so π∗ (x, 0) < 0

for all x < x. But we also know that π∗ (x, 0) > 0 for all x > x̄. Define ξ0 ≡ 0 and ξ̄0 ≡ ∞. By continuity

in x, there exists at least one solution x with π∗
(
x, ξ0

)
= 0, where x ∈ [x, x̄]. Call ξ1 the smallest such

solution. Define ξ̄1 ∈ [x, x̄] analogously to be the largest such solution with π∗
(
x, ξ̄0

)
= 0. Note that

ξ0 < ξ1 < ξ̄1 < ξ̄0; if the inside inequality did not hold, then 0 = π∗
(
ξ1, ξ0

)
≥ π∗

(
ξ̄1, ξ0

)
> π∗

(
ξ̄1, ξ̄0

)
= 0,

a contradiction.

Our starting point for the induction is as follows. Given ξ1 and ξ̄1 with ξ0 < ξ1 < ξ̄1 < ξ̄0, π∗
(
ξ1, ξ0

)
= 0,

and π∗
(
ξ̄1, ξ̄0

)
= 0, we claim there exists a smallest solution ξ2 of π

(
ξ2, ξ1

)
= 0 and a largest solution ξ̄2
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of π
(
ξ̄2, ξ̄1

)
= 0, and that ξ1 < ξ2 < ξ̄2 < ξ̄1. We know π∗

(
ξ1, ξ0

)
= 0 > π∗

(
ξ1, ξ1

)
, and π∗

(
ξ̄1, ξ̄0

)
= 0 <

π∗
(
ξ̄1, ξ1

)
. Note for the latter inequality that ξ̄0 > ξ̄1 > ξ1. By continuity, there exists a smallest solution

ξ2 ∈
(
ξ1, ξ̄1

)
with π∗

(
ξ2, ξ1

)
= 0. Analogously, we know π∗

(
ξ1, ξ0

)
= 0 > π∗

(
ξ1, ξ̄1

)
, and π∗

(
ξ̄1, ξ̄0

)
=

0 < π∗
(
ξ̄1, ξ̄1

)
; by continuity there exists a largest solution ξ̄2 ∈

(
ξ1, ξ̄1

)
with π∗

(
ξ̄2, ξ̄1

)
= 0. Note that

ξ1 < ξ2 < ξ̄2 < ξ̄1; if the inside inequality did not hold, then 0 = π∗
(
ξ2, ξ1

)
≥ π∗

(
ξ̄2, ξ1

)
> π∗

(
ξ̄2, ξ̄1

)
= 0,

a contradiction.

The inductive hypothesis is that, given ξn and ξ̄n with ξn−1 < ξn < ξ̄n < ξ̄n−1, π∗
(
ξn, ξn−1

)
= 0,

and π∗
(
ξ̄n, ξ̄n−1

)
= 0, there exists a smallest solution ξn+1 of π

(
ξn+1, ξn

)
= 0 and a largest solution ξ̄n+1

of π
(
ξ̄n+1, ξ̄n

)
= 0, and that ξn < ξn+1 < ξ̄n+1 < ξ̄n. We know π∗

(
ξn, ξn−1

)
= 0 > π∗ (ξn, ξn), and

π∗
(
ξ̄n, ξ̄n−1

)
= 0 < π∗

(
ξ̄n, ξn

)
. Note for the latter inequality that ξ̄n−1 > ξ̄n > ξn. By continuity, there

exists a smallest solution ξn+1 ∈
(
ξn, ξ̄n

)
with π∗

(
ξn+1, ξn

)
= 0. Similarly, we know π∗

(
ξn, ξn−1

)
= 0 >

π∗
(
ξn, ξ̄n

)
, and π∗

(
ξ̄n, ξ̄n−1

)
= 0 < π∗

(
ξ̄n, ξ̄n

)
; by continuity there exists a largest solution ξ̄n+1 ∈

(
ξn, ξ̄n

)
with π∗

(
ξ̄n+1, ξ̄n

)
= 0. Note that ξn < ξn+1 < ξ̄n+1 < ξ̄n; if the inside inequality did not hold, then

0 = π∗
(
ξn+1, ξn

)
≥ π∗

(
ξ̄n+1, ξn

)
> π∗

(
ξ̄n+1, ξ̄n

)
= 0, a contradiction.

Note that {ξn} is bounded from above by construction. Because it is also an increasing sequence, there

exists a ξ with limn→∞ ξn = ξ. Note that limn→∞ π∗
(
ξn+1, ξn

)
= 0 so by construction and continuity of

π∗, we must have π∗ (ξ, ξ) = 0 and that ξ is the smallest such solution to π∗ (ξ, ξ) = 0. Analogously, there

exists a ξ̄ with limn→∞ ξn = ξ and π∗
(
ξ̄, ξ̄
)

= 0 and that ξ̄ is the smallest such solution to π∗ (ξ, ξ) = 0.

This shows, among other things, that there exists at least one threshold equilibrium ξ. One can see that any

such solution ξ is an equilibrium because x1 < ξ < x2 implies π∗ (x1, ξ) < π∗ (ξ, ξ) = 0 < π∗ (x2, ξ).

[3] Note that we can write:

π∗ (x, k) =

∫ ∞
−∞

ψ (r;x, k)π (r, x) dr

Given the agent’s signal x, what is her assessment of the cumulative distribution function of r, Ψ (r̃;x, k)?

For any r̃, the probability that r < r̃ equals the probability that θ < k − σF−1 (1− r̃). In words, the

probability Ψ (r̃;x, k) ≡ Pr (r < r̃ | x) that the true proportion of players reporting is less than r̃ equals the

probability that the true θ satisfies r (θ; k) = 1−F
(
k−θ
σ

)
< r̃, or equivalently that θ is such that fewer than

r̃ players observe a signal greater than k; in turn, this equals the probability that the true θ is less than

k − σF−1 (1− r̃), integrated against the conditional density f (θ | x). With some slight abuse of notation,

we thus have:

Ψ (r;x, k) =

∫ k−σF−1(1−r)

−∞
f (θ | x) dθ

=

∫ k−σF−1(1−r)

−∞

1

σ
f

(
x− θ
σ

)
dθ

=

∫ ∞
z= x−k

σ +F−1(1−r)
f (z) dz for z =

x− θ
σ

, dz = − 1

σ
dθ

= 1− F
(
x− k
σ

+ F−1 (1− r)
)
.

For the marginal agent, x = k, so Ψ (r;x, x) = r. The density function of r is then ψ (r;x, x) = 1 over [0, 1].

But then π∗ (x, x) =
∫ 1

0
π (r, x) dr. By Property P3, there is exactly one such solution ξ. From [2], it

must be that ξ = ξ = ξ̄ and that this is the unique threshold equilibrium. �
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B.1.2 Proof of Lemma A3

Proof. Let Σ be the strategy profile used by all players other than i, and denote by π̃i (ξ,Σ) the payoff gain

of reporting for player i, conditional on ξ when other players play Σ. We proceed by induction.

If everyone with x > 0 reports, player i’s payoff is the highest, and if no one reports, player i’s payoff is

the lowest. Therefore:

π∗ (ξ,∞) ≤ π̃i (ξ,Σ) ≤ π∗ (ξ, 0) .

From the definition of ξ1 and monotonicity of π∗ (x, k) in x,

ξ < ξ1 ⇒ for any Σ, π̃iσ (ξ,Σ) ≤ π∗ (ξ, 0) < π∗
(
ξ1, 0

)
= 0.

In words, not-reporting strictly dominates reporting (π̃iσ (ξ,Σ) < 0) whenever ξ < ξ1, irrespective of other

players’ strategies. Similarly, from the definition of ξ̄1 and monotonicity,

ξ > ξ̄1 ⇒ for any Σ, π̃iσ (ξ,Σ) ≥ π∗ (ξ,∞) > π∗
(
ξ̄1,∞

)
= 0.

In words, reporting strictly dominates not reporting (π̃iσ (ξ,Σ) > 0) whenever ξ > ξ̄1, irrespective of other

players’ strategies. Thus, if s (ξ) survives the first round of deletion of dominated strategies, we must have:

s (ξ) =

{
0 [do not report] if ξ < ξ1

1 [report] if ξ > ξ̄1
.

The inductive hypothesis is that if s (ξ) survives the n-th round of deletion of dominated strategies, we

must have:

s (ξ) =

{
0 [do not report] if ξ < ξn

1 [report] if ξ > ξ̄n

Let Sn denote the set of strategies that survives this n-rounds of deletion. Our claim is that if player i faces

a strategy profile Σn consisting of those drawn from Sn, then the set of strategies that survives the next

round of deletion of dominated strategies Sn+1 satisfies:

s (ξ) =

{
0 [do not report] if ξ < ξn+1

1 [report] if ξ > ξ̄n+1
.

If everyone else is playing a ξn-threshold strategy (reporting for ξ > ξn), player i’s payoff is maximized.

Therefore:

ξ < ξn+1 ⇒ for any Σ, π̃iσ (ξ,Σn) ≤ π∗ (ξ, ξn) < π∗
(
ξn+1, ξn

)
= 0,

so that not-reporting strictly dominates reporting (π̃iσ (ξ,Σn) < 0) whenever ξ < ξn+1, irrespective of other

players’ strategies. Conversely, if everyone else is playing a ξ̄n-threshold strategy (reporting for ξ > ξ̄n),

player i’s payoff is minimized. Therefore:

ξ > ξ̄n+1 ⇒ for any Σ, π̃iσ (ξ,Σn) ≥ π∗ (ξ, ξn) > π∗
(
ξn+1, ξn

)
= 0,

so that reporting strictly dominates not-reporting (π̃iσ (ξ,Σn) > 0) whenever ξ > ξn+1, irrespective of other

players’ strategies, from which the claim follows. �

B.2 Distributions with bounded support

The key result that needs revisiting with bounded support is Lemma A2. We consider the case where ε has

bounded support and is possibly asymmetric.
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Suppose ε has bounded support with cumulative distribution function (CDF) F and probability density

function (PDF) f . In particular, suppose ε has CDF representation:

Fε (ε) =


0 ε < −l
F̃ε (ε) ε ∈

[
−l, l̄

]
1 ε > l̄

,

where F̃ε (ε) is weakly increasing and has F̃ε (−l) = 0 and F̃ε (l) = 1, and l, l̄ > 0. The PDF representation

is:

fε (ε) =


0 ε < −l
f̃ε (ε) ε ∈

[
−l, l̄

]
1 ε > l̄

,

for a density function f̃ε that is continuous, positive and integrates to 1 over
[
−l, l̄

]
. Other than requiring ε

to have zero mean, we place no other restrictions on f̃ .

The PDF for xi = θ + σεi given θ is then:

fx (x | θ) =


0 x < θ − σl
f̃x (x | θ) x ∈

[
θ − σl, θ + σl̄

]
0 x > θ + σl̄

,

for:

f̃x (x | θ) =
1

σ
f̃ε

(
x− θ
σ

)
.

The CDF for xi is:

Fx (x | θ) =


0 x < θ − σl
F̃x (x | θ) x ∈

[
θ − σl, θ + σl̄

]
1 x > θ + σl̄

=


0 x < θ − σl
F̃ε
(
x−θ
σ

)
x ∈

[
θ − σl, θ + σl̄

]
1 x > θ + σl̄

,

for:

F̃x (x | θ) =

∫ x

θ−σl

1

σ
f̃ε

(
s− θ
σ

)
ds

= F̃ε

(
x− θ
σ

)
.
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The posterior in θ conditional on x equals:

fθ (θ | x) =
fx (x | θ) fθ (θ)∫

x
fx (x | θ) fθ (θ) dθ

= fx (x | θ)

=


0 θ < x− σl̄
f̃x (x | θ) θ ∈

[
x− σl̄, x+ σl

]
0 θ > x+ σl

=


0 θ < x− σl̄
1
σ f̃ε

(
x−θ
σ

)
θ ∈

[
x− σl̄, x+ σl

]
0 θ > x+ σl

,

under the improper prior assumption. Thus:

Fθ (θ | x) =


0 θ < x− σl̄∫ θ
x−σl̄ f̃x (x | θ) dθ θ ∈

[
x− σl̄, x+ σl

]
1 θ > x+ σl

=


0 θ < x− σl̄
1− F̃ε

(
x−θ
σ

)
θ ∈

[
x− σl̄, x+ σl

]
1 θ > x+ σl

.

B.2.1 One-to-one map

Let k be the cutoff that agents play. Given k, r (θ; k) =
∫∞
k
fx (x | θ) dx = 1− Fx (k | θ). Then:

r (θ; k) =


0 θ < k − σl̄
1− F̃ε

(
k−θ
σ

)
θ ∈

[
k − σl, k + σl̄

]
1 θ > k + σl

.

It follows that:

r (θ; k) = 1− F̃ε
(
k − θ
σ

)
⇔ θ (r; k) = k − σF̃−1

ε (1− r)

is a bijection for any r ∈ (0, 1) to θ ∈
(
k − σl, k + σl̄

)
, where the open intervals are important. The 1-1 map

fails if r = 1, since then θ ≥ k + σl and if r = 0, since then θ ≤ k − σl̄.

B.2.2 Lemma A2, revisited

The statement of the Lemma is unchanged with the exception of Part 1, which should now state that “π∗

weakly decreases in k (strictly decreasing for x > 0 and k > 0 for k ∈
(
x− σ(l + l̄), x+ σ(l + l̄)

)
.”

Proof. The payoff gain π(r, x) continues to satisfy Properties P1-P5 in Lemma A1.
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[1]: π∗ (x, k) increases in x: As before, implement a change in variables z = −θ. Then:

π∗ (x, k) =

∫ θ=x+σl

θ=x−σl̄,

1

σ
fε

(
x− θ
σ

)
π

(
1− Fε

(
k − θ
σ

)
, x

)
dθ

=

∫ z=−x+σl̄

z=−x−σl,

1

σ
fε

(
x+ z

σ

)
π

(
1− Fε

(
k + z

σ

)
, x

)
dz

It is trivial to show that, for x1 < x2, Fε (x1 + ε) ≤ Fε (x2 + ε) ∀ε. Therefore z under x1 stochastically

dominates z under x2, and the original proof flows.

π∗ (x, k) weakly decreases in k follows from Property P1 and that r weakly decreases in k. To obtain

strictly decreasing over x > 0 and k > 0, we also need k ∈
(
x− σ

(
l + l̄

)
, x+ σ

(
l + l̄

))
. Observe:

π∗ (x, k) =

∫ θ=x+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k − θ
σ

)
, x

)
dθ

=



∫ θ=x+σl

θ=x−σl̄ fθ (θ | x)π (0, x) dθ = π (0, x) x < k − σ
(
l + l̄

)∫ θ=k−σl̄
θ=x−σl̄ fθ (θ | x)π (0, x) dθ

+
∫ θ=x+σl

θ=k−σl̄ fθ (θ | x)π
(
1− Fε

(
k−θ
σ

)
, x
)
dθ x ∈

(
k − σ

(
l + l̄

)
, k
)∫ θ=k+σl

θ=x−σl̄ fθ (θ | x)π
(
1− Fε

(
k−θ
σ

)
, x
)
dθ

+
∫ θ=x+σl

θ=k+σl,
fθ (θ | x)π (1, x) dθ x ∈

(
k, k + σ

(
l + l̄

))∫ θ=x+σl

θ=x−σl̄ fθ (θ | x)π (1, x) dθ = π (1, x) x > k + σ
(
l + l̄

)
Let k1 < k2 be given. Re-write as:

π∗ (x, k) =

∫ θ=x+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k − θ
σ

)
, x

)
dθ

=



F1 (x, k) ≡
∫ θ=x+σl

θ=x−σl̄ fθ (θ | x)π (0, x) dθ = π (0, x) k > x+ σ
(
l + l̄

)
F2 (x, k) ≡

∫ θ=k−σl̄
θ=x−σl̄ fθ (θ | x)π (0, x) dθ

+
∫ θ=x+σl

θ=k−σl̄ fθ (θ | x)π
(
1− Fε

(
k−θ
σ

)
, x
)
dθ k ∈

(
x, x+ σ

(
l + l̄

))
F3 (x, k) ≡

∫ θ=k+σl

θ=x−σl̄ fθ (θ | x)π
(
1− Fε

(
k−θ
σ

)
, x
)
dθ

+
∫ θ=x+σl

θ=k+σl,
fθ (θ | x)π (1, x) dθ k ∈

(
x− σ

(
l + l̄

)
, x
)

F4 (x, k) ≡
∫ θ=x+σl

θ=x−σl̄ fθ (θ | x)π (1, x) dθ = π (1, x) k < x− σ
(
l + l̄

)
Notice that F1

(
x, k1

)
< F2

(
x, k2

)
< F3

(
x, k3

)
< F4

(
x, k4

)
for every x for any k1 > k2 > k3 > k4

satisfying the conditions of k for each function. So if k2 > k1 in any way that crosses these regions,

π∗ (x, k2) < π∗ (x, k1).

If k2 > k1 but each both lie within a single region, evidently π∗ (x, k2) = π∗ (x, k1) in regions 1 and 4.
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In Region 2:

F2 (x, k2)− F2 (x, k1) =

∫ θ=k2−σl̄

θ=x−σl̄
fθ (θ | x)π (0, x) dθ

+

∫ θ=x+σl

θ=k2−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=k1−σl̄

θ=x−σl̄
fθ (θ | x)π (0, x) dθ

−
∫ θ=x+σl

θ=k1−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

=

∫ θ=k2−σl̄

θ=k1−σl̄
fθ (θ | x)π (0, x) dθ

+

∫ θ=x+σl

θ=k2−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=x+σl

θ=k1−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

≤
∫ θ=k2−σl̄

θ=k1−σl̄
fθ (θ | x)π (0, x) dθ

+

∫ θ=x+σl

θ=k2−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

−
∫ θ=x+σl

θ=k1−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

=

∫ θ=k2−σl̄

θ=k1−σl̄
fθ (θ | x)π (0, x) dθ

−
∫ θ=k2+σl

θ=k1−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

< 0,
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since π is an increasing function of r and 1− Fε
(
k1−θ
σ

)
> 0 for θ > k1 − σl̄. In Region 3:

F3 (x, k2)− F3 (x, k1) =

∫ θ=k2+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

+

∫ θ=x+σl

θ=k2+σl,

fθ (θ | x)π (1, x) dθ

−
∫ θ=k1+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

−
∫ θ=x+σl

θ=k1+σl,

fθ (θ | x)π (1, x) dθ

= −
∫ θ=k2+σl

θ=k1+σl,

fθ (θ | x)π (1, x) dθ

+

∫ θ=k2+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=k1+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

≤ −
∫ θ=k2+σl

θ=k1+σl,

fθ (θ | x)π (1, x) dθ

+

∫ θ=k2+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=k1+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

=

∫ θ=k2+σl

θ=k1+σl

fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=k2+σl

θ=k1+σl,

fθ (θ | x)π (1, x) dθ

< 0,

since π is an increasing function of r and 1− Fε
(
k2−θ
σ

)
< 1 for θ < k2 + σl.

Continuity in x and k should follow from Property P5, which is unchanged.

[2] This portion of the proof follows very similarly from before, with a few additional arguments to

account for the fact that π∗(x, k) strictly decreases in k only locally when k is close to x.

We show that {ξn} and
{
ξ̄n
}

are well-defined increasing and decreasing sequences, respectively, through

induction. From Property P4, we know that not reporting is dominant for x < x, so π∗ (x, 0) < 0 for all

x < x. But we also know that π∗ (x, 0) > 0 for all x > x̄. Define ξ0 ≡ 0 and ξ̄0 ≡ ∞. By continuity in x,

there exists at least one solution x with π∗
(
x, ξ0

)
= 0, where x ∈ [x, x̄]. Call ξ1 the smallest such solution.

Define ξ̄1 analogously to be the largest such solution with π∗
(
x, ξ̄0

)
= 0. Note that ξ0 < ξ1 < ξ̄1 < ξ̄0; if the

inside inequality did not hold and ξ1 ≥ ξ̄1, then 0 = π∗
(
ξ1, ξ0

)
> π∗

(
ξ1, ξ1

)
≥ π∗

(
ξ̄1, ξ1

)
≥ π∗

(
ξ̄1, ξ̄0

)
= 0,

a contradiction. The inequalities are because π∗
(
ξ1, ξ1

)
strictly decreases in k locally, the contradiction

assumption with π∗ strictly increasing in x, and that π∗ is globally weakly decreasing with ξ1 < ξ̄0 = ∞,

respectively.

Our starting point for the induction is as follows. Given ξ1 and ξ̄1 with ξ0 < ξ1 < ξ̄1 < ξ̄0, π∗
(
ξ1, ξ0

)
= 0,

and π∗
(
ξ̄1, ξ̄0

)
= 0, we claim there exists a smallest solution ξ2 of π

(
ξ2, ξ1

)
= 0 and a largest solution ξ̄2

of π
(
ξ̄2, ξ̄1

)
= 0, and that ξ1 < ξ2 < ξ̄2 < ξ̄1. We know π∗

(
ξ1, ξ0

)
= 0 > π∗

(
ξ1, ξ1

)
, and π∗

(
ξ̄1, ξ̄0

)
=

0 < π∗
(
ξ̄1, ξ̄1

)
≤ π∗

(
ξ̄1, ξ1

)
, where the first inequality is strict because π∗

(
ξ̄1, ξ̄1

)
is strictly decreasing in
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k. By continuity, there exists a smallest solution ξ2 ∈
(
ξ1, ξ̄1

)
with π∗

(
ξ2, ξ1

)
= 0. Analogously, we know

π∗
(
ξ1, ξ0

)
= 0 > π∗

(
ξ1, ξ1

)
≥ π∗

(
ξ1, ξ̄1

)
, and π∗

(
ξ̄1, ξ̄0

)
= 0 < π∗

(
ξ̄1, ξ̄1

)
; by continuity there exists a

largest solution ξ̄2 ∈
(
ξ1, ξ̄1

)
with π∗

(
ξ̄2, ξ̄1

)
= 0. Note that ξ1 < ξ2 < ξ̄2 < ξ̄1; if the inside inequality did

not hold and ξ2 ≥ ξ̄2, then 0 = π∗
(
ξ2, ξ1

)
> π∗

(
ξ2, ξ2

)
≥ π∗

(
ξ̄2, ξ2

)
≥ π∗

(
ξ̄2, ξ̄1

)
= 0, a contradiction.

The inequalities are because π∗
(
ξ2, ξ2

)
strictly decreases in k locally, the contradiction assumption with

π∗strictly increasing in x, and that π∗ is globally weakly decreasing with ξ2 ∈
(
ξ1, ξ̄1

)
, respectively.

The inductive hypothesis is that, given ξn and ξ̄n with ξn−1 < ξn < ξ̄n < ξ̄n−1, π∗
(
ξn, ξn−1

)
= 0,

and π∗
(
ξ̄n, ξ̄n−1

)
= 0, there exists a smallest solution ξn+1 of π

(
ξn+1, ξn

)
= 0 and a largest solu-

tion ξ̄n+1 of π
(
ξ̄n+1, ξ̄n

)
= 0, and that ξn < ξn+1 < ξ̄n+1 < ξ̄n. We know π∗

(
ξn, ξn−1

)
= 0 >

π∗ (ξn, ξn), and π∗
(
ξ̄n, ξ̄n−1

)
= 0 < π∗

(
ξ̄n, ξ̄n

)
≤ π∗

(
ξ̄n, ξn

)
. By continuity, there exists a smallest solution

ξn+1 ∈
(
ξn, ξ̄n

)
with π∗

(
ξn+1, ξn

)
= 0. Similarly, we know π∗

(
ξn, ξn−1

)
= 0 > π∗ (ξn, ξn) ≥ π∗

(
ξn, ξ̄n

)
,

and π∗
(
ξ̄n, ξ̄n−1

)
= 0 < π∗

(
ξ̄n, ξ̄n

)
; by continuity there exists a largest solution ξ̄n+1 ∈

(
ξn, ξ̄n

)
with

π∗
(
ξ̄n+1, ξ̄n

)
= 0. Note that ξn < ξn+1 < ξ̄n+1 < ξ̄n; if the inside inequality did not hold and ξn+1 ≥ ξ̄n+1,

then 0 = π∗
(
ξn+1, ξn

)
> π∗

(
ξn+1, ξn+1

)
≥ π∗

(
ξ̄n+1, ξn+1

)
≥ π∗

(
ξ̄n+1, ξ̄n

)
= 0, a contradiction. The

inequalities are because π∗
(
ξn+1, ξn+1

)
strictly decreases in k locally, the contradiction assumption with

π∗strictly increasing in x, and that π∗ is globally weakly decreasing with ξn+1 ∈
(
ξn, ξ̄n

)
, respectively.

Note that {ξn} is bounded from above by construction. Because it is also an increasing sequence, there

exists a ξ with limn→∞ ξn = ξ. Note that limn→∞ π∗
(
ξn+1, ξn

)
= 0 so by construction and continuity of

π∗, we must have π∗ (ξ, ξ) = 0 and that ξ is the smallest such solution to π∗ (ξ, ξ) = 0. Analogously, there

exists a ξ̄ with limn→∞ ξn = ξ and π∗
(
ξ̄, ξ̄
)

= 0 and that ξ̄ is the smallest such solution to π∗ (ξ, ξ) = 0.

This shows, among other things, that there exists at least one threshold equilibrium ξ. One can see that any

such solution ξ is an equilibrium because x1 < ξ < x2 implies π∗ (x1, ξ) < π∗ (ξ, ξ) = 0 < π∗ (x2, ξ).

[3] Given the agent’s signal x, what is her assessment of the cumulative distribution function of r,

Ψ (r̃;x, k)? For r̃ ∈ (0, 1), the argument follows from before, which we restate here. The probability that

r < r̃ equals the probability that θ < k − σF−1
ε (1− r̃). In words, the probability Ψ (r̃;x, k) ≡ Pr (r < r̃ | x)

that the true proportion of players reporting is less than r̃ equals the probability that the true θ satisfies

r (θ; k) = 1− Fε
(
k−θ
σ

)
< r̃, or equivalently that θ is such that fewer than r̃ players observe a signal greater

than k; in turn, this equals the probability that the true θ is less than k − σF−1
ε (1− r̃), integrated against

the conditional density fθ (θ | x).

Importantly, conditional on x, we must have θ ∈
[
x− σl̄, x+ σl

]
.

Given x, what is the agent’s probability assessment that r = 0? This must equal the posterior probability

that θ < k − σl̄ given x. If k − σl̄ ∈
[
x− σl̄, x+ σl

]
, then x ∈

[
k − σ

(
l̄ + l

)
, k
]

then:

Ψ (r;x, k) =

∫ k−σl̄

x−σl̄
fθ (θ | x) dθ

=

∫ k−σl̄

x−σl̄

1

σ
fε

(
x− θ
σ

)
dθ

=

∫ z=l̄

z= x−k
σ +l̄

fz (z) dz for z =
x− θ
σ

, dz = − 1

σ
dθ

noting that z
(
k − σl̄

)
=
x−

(
k − σl̄

)
σ

=
x− k
σ

+ l̄

and that z
(
x− σl̄

)
=
x−

(
x− σl̄

)
σ

= l̄

= 1− Fε
(
x− k
σ

+ l̄

)
.

If k − σl̄ < x − σl̄ then x > k and the probability is zero by the definition of fθ (θ). If k − σl̄ > x + σl or
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equivalently if k−x
σ > l̄ + l then the probability is 1. So:

Ψ (0;x, k) =


0 x ≥ k
1− Fε

(
x−k
σ + l̄

)
x ∈

(
k − σ

(
l̄ + l

)
, k
)

1 x ≤ k − σ
(
l̄ + l

) .

Given x, what is the agent’s probability assessment that r ≤ 1? Trivially, this must be 1, since this

equals the probability that r < 1, which is the probability that θ < k + σl, plus the probability that r = 1,

which is the probability that θ ≥ k + σl. Thus, Ψ (1) = 1.

Given r̃ ∈ (0, 1), what is the agent’s probability assessment that r < r̃? Given k, we know θ (r; k) =

k − σF̃−1
ε (1− r) ∈

(
k − σl, k + σl̄

)
. We also must have θ ∈

[
x− σl̄, x+ σl

]
in the posterior distribution of

θ. Some useful facts to reference later:

k − σF̃−1
ε (1− r) > x− σl̄ ⇔ r > 1− F̃ε

(
k − x
σ

+ l̄

)
x ≥ k + σ

(
l̄ + l

)
⇒ 1− F̃ε

(
k − x
σ

+ l̄

)
= 1

x < k + σ
(
l̄ + l

)
⇒ 1− F̃ε

(
k − x
σ

+ l̄

)
< 1

x < k ⇒ 1− F̃ε
(
k − x
σ

+ l̄

)
= 0,

k − σF̃−1
ε (1− r) < x+ σl ⇔ r < 1− F̃−1

ε

(
k − x
σ
− l
)

x ≤ k − σ
(
l̄ + l

)
⇒ 1− F̃ε

(
k − x
σ
− l
)

= 0

x > k − σ
(
l̄ + l

)
⇒ 1− F̃ε

(
k − x
σ
− l
)
> 0

x > k ⇒ 1− F̃ε
(
k − x
σ
− l
)

= 1.

Suppose first x ∈
(
k − σ

(
l̄ + l

)
, k + σ

(
l̄ + l

))
. Then 1 − F̃ε

(
k−x
σ − l

)
> 0 and 1 − F̃ε

(
k−x
σ + l̄

)
< 1.

Several cases can occur:

k − σF̃−1
ε (1− r) > x+ σl ⇒ r ∈

(
1− F̃−1

ε

(
k − x
σ
− l
)
, 1

)
k − σF̃−1

ε (1− r) ∈
(
x− σl̄, x+ σl

)
⇒ r ∈

(
1− F̃ε

(
k − x
σ

+ l̄

)
, 1− F̃−1

ε

(
k − x
σ
− l
))

k − σF̃−1
ε (1− r) < x− σl̄ ⇒ r ∈

(
0, 1− F̃ε

(
k − x
σ

+ l̄

))
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If k − σF̃−1
ε (1− r) > x− σl̄, then r ∈

(
1− F̃ε

(
k−x
σ + l̄

)
, 1
)

, and furthermore:

Ψ (r;x, k) =

∫ k−σF̃−1
ε (1−r)

x−σl̄
fθ (θ | x) dθ

=

∫ k−σF̃−1
ε (1−r)

x−σl̄

1

σ
f̃ε

(
x− θ
σ

)
dθ

=

∫ z=l̄

z= x−k
σ +F̃−1

ε (1−r)
fz (z) dz for z =

x− θ
σ

, dz = − 1

σ
dθ

noting that z
(
k − σF̃−1

ε (1− r)
)

=
x−

(
k − σF̃−1

ε (1− r̃)
)

σ
=
x− k
σ

+ F̃−1
ε (1− r)

and that z
(
x− σl̄

)
=
x−

(
x− σl̄

)
σ

= l̄

= 1− F̃ε
(
x− k
σ

+ F̃−1
ε (1− r)

)
If k − σF̃−1

ε (1− r) < x− σl̄, then r ∈
(

0, 1− F̃ε
(
k−x
σ + l̄

))
and furthermore by the definition of fθ:

Ψ (r;x, k) = −
∫ x−σl̄

k−σF−1
ε (1−r)

fθ (θ | x) dθ

= 0.

Suppose next x ≥ k + σ
(
l̄ + l

)
. Then 1 − F̃ε

(
k−x
σ + l̄

)
= 1 and 1 − F̃ε

(
k−x
σ − l

)
> 0. From before,

1− F̃ε
(
k−x
σ + l̄

)
= 1 implies k− σF̃−1

ε (1− r) < x− σl̄ since r < 1. But then, following a similar argument,

Ψ (r;x, k) = −
∫ x−σl̄

k−σF−1
ε (1−r)

fθ (θ | x) dθ

= 0.

Suppose finally x ≤ k − σ
(
l̄ + l

)
. Then 1 − F̃ε

(
k−x
σ − l

)
= 0 and 1 − F̃ε

(
k−x
σ + l̄

)
< 1. From before,

1− F̃ε
(
k−x
σ − l

)
= 0 implies k − σF̃−1

ε (1− r) > x+ σl since r > 0. But then:

Ψ (r;x, k) =

∫ x+σl

x−σl̄
fθ (θ | x) dθ

= 1.
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To summarize:

Ψ
(
r;x ≥ k + σ

(
l̄ + l

))
=


0 r = 0

0 r ∈ (0, 1)

1 r = 1,

Ψ
(
r;x ∈

(
k, k + σ

(
l̄ + l

)))
=


0 r = 0

0 r ∈
(

0, 1− F̃ε
(
k−x
σ + l̄

))
1− F̃ε

(
x−k
σ + F̃−1

ε (1− r)
)

r ∈
(

1− F̃ε
(
k−x
σ + l̄

)
, 1
)

1 r = 1,

Ψ
(
r;x ∈

(
k − σ

(
l̄ + l

)
, k
))

=


1− Fε

(
x−k
σ + l̄

)
r = 0

1− F̃ε
(
x−k
σ + F̃−1

ε (1− r)
)

r ∈ (0, 1)

1 r = 1,

Ψ
(
r;x ≤ k − σ

(
l̄ + l

))
=


1 r = 0

1 r ∈ (0, 1)

1 r = 1,

Ψ (r;x = k) =


0 r = 0

r r ∈ (0, 1)

1 r = 1.

.

Therefore, the marginal agent has a uniform belief over r.

Given this belief, we can solve for the threshold x∗. Recall the expected payoff gain equals:

π∗ (x, k) =

∫ ∞
−∞

f (θ | x)π

(
1− F

(
k − θ
σ

)
, x

)
dθ (B.1)

⇒ π∗ (x, k) =

∫ θ=x+σl

θ=x−σl̄,

1

σ
f

(
x− θ
σ

)
π

(
1− F

(
k − θ
σ

)
, x

)
dθ. (B.2)

For the marginal agent with x = k, this payoff equals:

π∗ (x, x) =

∫ x+σl

x−σl̄,

1

σ
f

(
x− θ
σ

)
π

(
1− F

(
x− θ
σ

)
, x

)
dθ. (B.3)

Given the marginal agent’s posterior belief over θ translates into a uniform belief over r, we can write:

π∗ (x, x) =

∫ 1

0

π (r, x) dr.

�

B.3 General sanction function

The outside party observes X ≡ {(x, n(x))|∀R}, the frequency and value of each reported x. Let Ξ(X|X) :

RR × RR → [0, 1] represent the sanction probability given the set of all reports and the value of those

reports. Consider a class of sanction functions Ξ(X) = B(
∫
x
ϕ(x)n(x)dx), where ϕ(x) is a weight for each

reported x and n(x) ≥ 0 is the frequency of reports for each x. Let ϕ(x) be weakly monotone increasing and

differentiable, where ϕ(x) = 0 if x < 0 and ϕ(x) > 0 for some x > 0. Let B(s) : [0,∞) → [0, 1] be weakly
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monotone increasing, and strictly increasing at some s. Note that B(s) does not have to be continuous.

This describes a natural class of sanction functions in which the sanction probability weakly increases in the

number of reports and in the severity of misconduct.

1. We can show that when ϕ(x) = 1 for all x > 0, then Ξ(X) = B(r) = Γ(r). Thus, the sanction

probability is a weakly increasing function of r alone.

Proof. By Lemma A4, all agents use the same strategy in equilibrium. Suppose agents use threshold

strategy x∗. Then n(x) = 1[x>x∗]
1
σφ(x−θσ ), giving

Ξ(X) = B(

∫
x

ϕ(x)n(x)dx)

= B

(∫ ∞
x∗

1

σ
ϕ(x)φ

(
x− θ
σ

)
dx

)
.

The outside party observes r̂ (θ) =
∫∞
x∗

1
σφ (x | θ) dx = Φ

(
θ−x∗
σ

)
, so θ = x∗ + σΦ−1(r).

Suppose ϕ(x) = 1. Then

Ξ(X) = B

(∫ ∞
x∗

1

σ
φ

(
x− θ
σ

)
dx

)
= B

(
1− Φ

(
x∗ − θ
σ

))
= B

(
1− Φ

(
x∗ −

[
x∗ + σΦ−1 (r)

]
σ

))
= B

(
1− Φ

(
−Φ−1 (r)

))
= B

(
1− Φ

(
Φ−1 (1− r)

))
= B (r) .

Thus, Ξ(X) = B (r) = Γ(r). Thus, the sanction probability is a weakly increasing function of r

alone. �

Notable special cases: If B(s) = γs, then Ξ(X) = γr. If B(s) =

{
0 if s ∈ [0, r)

1 if s ∈ [r, 1]
, then Ξ(X) ={

0 if s ∈ [0, r)

1 if s ∈ [r, 1]
where r ∈ [0, 1] is a constant.

2. For more general ϕ(x), the sanction function can be reformulated as Ξ(X) = Γ(x∗, r) (though there

may be multiple equilibria in which agents use threshold strategies).

By Lemma A4, all agents use the same strategy in equilibrium. Suppose agents use threshold strategy

x∗. Then

Ξ(X) = B

(∫ ∞
x∗

ϕ(x)

σ
φ

(
x− θ
σ

)
dx

)
= B

(∫ ∞
x∗

ϕ(x)

σ
φ

(
x− x∗

σ
− Φ−1(r)

)
dx

)
= Γ(x∗, r),
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since θ = x∗+σΦ−1(r) when agents use threshold x∗. Since each agent, including the marginal agent,

takes x∗ as given, then the marginal agent solves:∫ 1

0

π(r, x∗)dr = 0,

which has the implicit solution

x∗ =
c

ω − β +
(∫ 1

0
Γ(x∗, r)dr

)
(α+ β)

. (B.4)

To show the existence of such an x∗, note that we can still define the dominance regions in which the

agent never reports if x ≤ x (i.e., even if everyone reports and the manager is definitely sanctioned)

and always reports if x ≥ x (i.e., even if no one reports so the manager is definitely not sanctioned),

where

x =
c

ω + α

x =
c

ω − β
.

Let G(x) = x
(
ω − β +

(∫ 1

0
Γ(x, r)dr

)
(α+ β)

)
− c, so x∗ satisfies G(x∗) = 0. Note that G(x) > 0

if and only if
∫ 1

0
Γ(x∗, r)dr > 0. Given that f(x) is weakly monotone increasing where f(x) = 0

if x < 0 and f(x) > 0 for some x > 0, and B(s) : [0,∞) → [0, 1] is weakly monotone increasing

(and strictly increasing at some s), then
∫ 1

0
Γ(x∗, r)dr > 0. Note that G(x) < 0 if and only if∫ 1

0
Γ(x∗, r)dr < 1. Since

∫ 1

0
Γ(x∗, r)dr = 1 if and only if B(s) = 1 for all s, then

∫ 1

0
Γ(x∗, r)dr < 1

because B(s) : [0,∞)→ [0, 1] is weakly monotone increasing, and strictly increasing at some s. Thus,

such an x∗ exists, and x∗ ∈ (x, x). Given such an x∗, it is straightforward to verify that agents

with xi < x∗ do not report and agents with xi > x∗, since xi

(
ω − β +

(∫ 1

0
Γ(x∗, r)dr

)
(α+ β)

)
monotonically increases in xi when agents use threshold x∗. Thus, all agents using threshold x∗ is an

equilibrium.

Although we have established the existence of an equilibrium in which agents use threshold x∗, which

must satisfy Equation B.4, multiplicity of equilibria is entirely possible. Nonetheless, in any such

equilibrium, the existence of an “open secret” in which there is under-reporting, as described by

Corollary 1.1, still holds. This is because when, σ → 0, for any θ ∈ (x, x∗) we still have π(1, x) > 0 >

π(0, x). Since x∗ ∈ (x, x), this implies there will be under-reporting for any θ ∈ (x, x∗).

3. Even when the sanction function includes a general ϕ(x), we show that under-reporting occurs in any

equilibrium that involves threshold strategies, under qualitatively similar conditions as Proposition 2.

When θ is sufficiently high, there always exists some x̂ < x∗ such that there is a Pareto improvement

in agent payoffs. When θ is intermediate, there exists some x̂ < x∗ such that there is a Pareto

improvement in agent payoffs if σ is sufficiently small.

Lemma B2. Let g and h be density functions, where g � h if
∫ z
−∞ g(s)ds ≤

∫ z
−∞ h(s)ds. If g � h

and u(z) is a weakly increasing and weakly positive, differentiable function of z, then
∫∞
a
u(z)g(z)dz ≥∫∞

a
u(z)h(z)dz.

Proof. Define G(z) =
∫ z
−∞ g(s)ds and H(z) =

∫ z
−∞ h(s)ds. Note that if g � h, then G(z) ≤ H(z).
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Using integration by parts,∫ ∞
a

u(z)g(z)dz =

∫ ∞
a

u(z)G′(z)dz

= u(z)G(z)|∞a −
∫ ∞
a

G(z)u′(z)dz∫ ∞
a

u(z)h(z)dz =

∫ ∞
a

u(z)H ′(z)dz

= u(z)H(z)|∞a −
∫ ∞
a

H(z)u′(z)dz.

Since G(∞) = H(∞) = 1, then∫ ∞
a

u(z)g(z)dz −
∫ ∞
a

u(z)h(z)dz = u(a)[H(a)−G(z)] +

∫ ∞
a

u′(z)[H(z)−G(z)]dz ≥ 0.

�

Let θ′ be the minimum value of θ such that the marginal agent’s expected probability of sanction is

less than or equal to the realized probability of sanction:

θ′ = min{θ :

∫ 1

0

B

(∫ ∞
x∗

ϕ(x)

σ
φ

(
x− x∗

σ
− Φ−1(r)

)
dx

)
dr ≤ B

(∫ ∞
x∗

ϕ(x)

σ
φ

(
x− θ′

σ

))
}

Recall that Ξ(X|θ, x∗) = B
(∫∞
x∗

1
σϕ(x)φ

(
x−θ
σ

)
dx
)
. By Lemma B2, we know that Ξ(X|θ, x̂) is weakly

increasing in θ, so clearly such a θ′ exists.

(a) Suppose θ > θ′. There exists some x̂ < x∗ such that total welfare is higher due to a Pareto

improvement.

Recall that Ξ(X|θ, x∗) = B
(∫∞
x∗

1
σϕ(x)φ

(
x−θ
σ

)
dx
)
. For any x̂ < x∗, total agent payoffs equal:

W (θ | x̂) =

∫ ∞
x∗

[x (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx

+

∫ x∗

x̂

[x (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx.

We know that equilibrium total payoffs are such that:

W (θ | x∗) =

∫ ∞
x∗

[x (ω − β + Ξ(X|θ, x∗) (α+ β))− c] f (x | θ) dx

<

∫ ∞
x∗

[x (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx,

for any x̂ < x∗.

The remaining claim is that there exists a x̂ < x∗ such that:

K ≡
∫ x∗

x̂

[x (ω − β + Ξ(X|θ) (α+ β))− c] f (x | θ) dx > 0.

15



By Lemma B2, we know that Ξ(X|θ, x̂) is weakly increasing in θ, which implies that when θ > θ′:

0 = x∗
(
ω − β + (

∫ 1

0

Γ(x∗, r)dr) (α+ β)

)
− c

< x∗ (ω − β + Ξ(X|θ, x∗) (α+ β))− c. (B.5)

Let H (x) ≡ x (ω − β + Ξ(X|θ, x) (α+ β))− c. Note that H (x∗) > 0 from Equation B.5.

Suppose H is continuous at x∗. If H ′ (x∗) < 0, then there exists a x̂ < x∗ such that:

0 < x∗ (ω − β + Ξ(X|θ, x∗) (α+ β))− c
< x̂ (ω − β + Ξ(X|θ, x̂) (α+ β))− c.

If H ′ (x∗) > 0, there exists some ε > 0 such that, for x̂ = x∗ − ε,

0 < x̂ (ω − β + Ξ(X|θ, x̂) (α+ β))− c
< x∗ (ω − β + Ξ(X|θ, x∗) (α+ β))− c.

If H ′ (x∗) = 0, observe that because H(n) (x∗) 6= 0 for some n > 0, we can apply a similar

argument to find an x̂ < x∗ such that H (x̂) > 0. Either way, there exists some x̂ < x∗ such

that H (x̂) > 0.

Suppose H is not continuous at x∗ (if B(·) is not continuous at x∗). By direct computation,
∂
∂x̂

∫∞
x̂

1
σϕ(x)φ

(
x−θ
σ

)
dx < 0. Since B(s) increases in s, then H is either left-continuous at x∗

or strictly decreasing in x. Either way, there exists some x̂ < x∗ such that H (x̂) > 0.

But then:

K =

∫ x∗

x̂

[x (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx

>

∫ x∗

x̂

[x̂ (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx

= [x̂ (ω − β + Ξ(X|θ, x̂) (α+ β))− c]×
[
Φ

(
x∗ − θ
σ

)
− Φ

(
x̂− θ
σ

)]
> 0.

Note that this is a Pareto improvement because for any x ∈ (x̂, x∗),

x (ω − β + Ξ(X|θ, x̂) (α+ β))− c > H (x̂) > 0,

whereas these agents all receive 0 when playing a threshold strategy around x∗.

(b) Suppose x < θ ≤ θ′, where x is defined below. If σ is sufficiently low, there exists some x̂ ∈ (x, θ)

such that total welfare is higher due to a Pareto improvement.

If θ ≤ θ′, then H(x∗) ≤ 0. Note that by Lemma B2, for all x̂ < θ, B
(∫∞

x̂
ϕ(x)
σ φ

(
x−θ′
σ

))
increases as σ decreases. By direct computation, ∂

∂x̂

∫∞
x̂

1
σϕ(x)φ

(
x−θ
σ

)
dx < 0. Define x as the

threshold such that

x

(
ω − β + lim

σ→0
B

(∫ ∞
x

ϕ(x)

σ
φ

(
x− θ′

σ

))
(α+ β)

)
− c = 0.

By construction, lim
σ→0

H(x) = 0 and x∗ > x ≥ x.

Suppose H(·) is continuous on the interval [x, θ) for all σ. By direct differentiation, lim
σ→0

∂H
∂x̂ > 0
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for all x̂ < θ. Thus, lim
σ→0

H(x̂) > 0 for all x̂ ∈ (x, θ). By Lemma B2, H(x̂) is decreasing as σ

increases. But by continuity of H, for any x̂ ∈ (x, θ), there exists some σ > 0 sufficiently small

that H(x̂) > 0.

Suppose H(x) is not continuous on the interval [x, θ) for all σ. Since x is determined by the

case of all agents reporting, then it is sufficient to consider the following to find a Pareto-

improving x̂ < x∗. Let Z = {z : limx↑z B (x) 6= limx↓z B (x)}. If f is discontinuous and has a

finite number of discontinuities, then Z is a finite non-empty set consisting of real numbers and

z0 = min (z ∈ Z) is well-defined. Furthermore, y0 = B (z0) is also well-defined. Let σ satisfy:

B

(∫ ∞
x

ϕ(x)

σ
φ

(
x− θ
σ

)
dx

)
= y0.

Since for all x̂ < θ, B
(∫∞

x̂
ϕ(x)
σ φ

(
x−θ′
σ

))
increases as σ decreases, and B(s) is increasing in s,

then there exists some ε > 0 such that H(x) is continuous on the interval [x, x+ ε) for all σ < σ

and we can apply the preceding argument. Thus for any x̂ ∈ (x, x+ ε), there exists some σ > 0

sufficiently small that H(x̂) > 0.
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