BCHM 101a Advanced Biochemistry: Enzyme Mechanisms Fall 2018 Oprian

<u>Four-Credit Course (with three hours of class-time per week)</u> Success in this 4 credit hour course is based on the expectation that students will spend a minimum of 9 hours of study time per week in preparation for class (readings, papers, discussion sections, preparation for exams, etc.).

Course Information

Meets: MWTh, 10:00 -10:50 am

Recitation: M, 5:00 – 5:50 pm

Instructor: Dan Oprian, office Volen 407, oprian@brandeis.edu

Office Hours: M 1-3

Focus of the Course: Chemistry of Enzyme Active Sites, taught from the point of view of understanding the experiments needed to elucidate mechanism.

Texts: This is an inherently advanced topic course and will be taught exclusively from primary and secondary literature (papers will be posted on the LATTE site). I put five texts on reserve to provide a source of background and reference material:

Silverman, The Organic Chemistry of Enzyme-Catalyzed Reactions Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding Jencks, Catalysis in Chemistry and Enzymology Segel, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems Moore and Pearson, Kinetics and Mechanism

Grades: Grades will be determined on the basis of 4 exams (3 midterms and 1 final, each worth 100 pts; the final will be cumulative), 3 quizzes (worth a total of 100 pts), and 4 problem sets (worth a total of 100 pts). The problem sets will not be graded, but answer keys will be posted, and I will be happy to go over any questions you may have.

Syllabus

Aug 29 (W)	Overview of Class: Enzymatic Rate Enhancements.
30 (Th)	Review of Carbonyl Chemistry. Latte: Overview of Carbonyl Chemistry
Sept 3 (M)	No class
5 (W)	Chemical Kinetics. Review: ln and e Empirical rate laws: From where do they come? 1 st -order, 2 nd - order, and reversible reactions. Background sources: Jencks, Chapter 11; Moore and Pearson, Chapters 2 & 8. Latte: Integrating factors
6 (Th)	Chemical Kinetics, cont. Quiz 1
10 (M)	No class
12 (W)	Transition-State Theory. Arrhenius, Eyring, and the Hammond Postulate. The transition state in equilibrium with ground state.
13 (Th)	General Mechanisms of Catalysis. Intramolecular catalysis ("approximation"), covalent catalysis (nucleophilic, electrophilic), General Acid-Base Catalysis (GABC), electrostatic, strain, etc. Background sources: Fersht, Chapter 2; Jencks, Chapters 1, 2, 3, & 5.
17 (M)	Aspartate Aminotransferase – GABC Linear free energy relationships – Bronsted plots. Assigned reading: Toney & Kirsch (1989) Science 243, 1485- 1488. Problem set 1 due Tuesday Sept 18
19 (W)	No class
20 (Th)	Enzyme Kinetics: Steady-State. Latte: Review Basic Enzyme Kinetics Background sources: Fersht, Chapter 3.

24 (M) No class

	25	(T)	Enzyme Kinetics: Steady-State. Partition Analysis: Linear and Branched Pathways Assigned reading: Cleland (1975) Biochemistry 14, 3220- 3224.
	26	(W)	Chymotrypsin - Covalent Catalysis. Burst kinetics (Hartley & Kilbey), common intermediates (Bender), and peptides (Fersht). Assigned reading: Fastrez & Fersht (1973) Biochemistry 12, 2025-2034.
	27	(Th)	EXAM I
0ct	1	(M)	No class
	3	(W)	Chymotrypsin – Covalent Catalysis. Catalytic Triad (Koshland, Blow, Wells, Abeles, & Petsko) Assigned reading: Carter & Wells (1988) Nature 332, 564-568; Rasmussen, Stock, Ringe, & Petsko (1992) Nature 357, 423- 424.
	4	(Th)	Acetoacetate Decarboxylase - The Enzyme that Created Israel. Active-site Lys, and perturbed pKa. Background sources: : Schmidt & Westheimer (1971) Biochemistry 10, 1249-1253.
	8	(M)	Acetoacetate Decarboxylase - The Enzyme that Created Israel. Structure of the enzyme. Assigned reading: Ho, Menetret, Tsuruta, & Allen (2009) Nature 459, 393-397.
	10	(W)	Transition-State Stabilization. And transition-state analogs as inhibitors. Assigned reading: Wolfenden (1972) Accts. Chem. Res. 5, 10- 18. Further reading: Schramm (1998) Annu. Rev. Biochem. 67, 693-720; Schramm (2011) Annu. Rev. Biochem. 80, 703-32.
	11	(Th)	Lysozyme: Covalent Catalysis or Oxocarbenium Ion Intermediate. Assigned reading: Kirby (2001) Nat. Struct. Biol. 8, 737-739; Vocadlo, Davies, Laine, & Withers (2001) Nature 412, 835-838. Quiz 2

	15	(M)	Lysozyme: Covalent Catalysis or Oxocarbenium Ion Intermediate, cont.
			Assigned reading: Gandour (1981) Bioorganic Chemistry 10, 169- 176.
	17	(W)	Kinetic Isotope Effects (KIE). Harmonic oscillator, zero-point energy, and primary kinetic isotope effects. Background sources: Westheimer (1961) Chemical Reviews 61, 265; Northrop (1975) Biochemistry 14, 2644-2651.
	18	(Th)	Kinetic Isotope Effects (KIE). Secondary isotope effects, inverse isotope effects, and tunneling.
	22	(M)	Racemases. One base or two? Assigned reading: Cardinale & Abeles (1968) Biochemistry 7, 3970-3978
	24	(W)	Racemases. Enzyme inhibitors – transition-state analogs. Assigned reading: Buschiazzo et al. (2006) PNAS 103, 1705- 1710. Background sources: Kenyon & Gerlt (1991) Biochemistry 30, 9255-9263.
	25	(Th)	Triose Phosphate Isomerase (TIM) – The Perfect Enzyme. Assigned reading: Knowles & Albery (1977) Acc. Chem. Res. 10, 105-111; Knowles (1991) Nature 350, 121-124. Problem set 2 due
	29	(M)	EXAM II
	31	(W)	Triose Phosphate Isomerase (TIM) – The Perfect Enzyme, cont. Background sources: Richard (2012) Biochemistry 51, 2652- 2661.
Nov	1	(Th)	No class
	5	(M)	Pyridoxal Phosphate.

Mechanism-based inactivators ("suicide substrates").

Assigned reading: Faraci & Walsh (1989) Biochemistry 28, 431-437. Background source: Fersht, Chapter 9. PLP-dependent enzymes.

- 7 (W) **Pyridoxal Phosphate.** Assigned reading: Eliot & Kirsch (2004) Annu. Rev. Biochem. 73, 383-415.
- 8 (Th) Phosphoryl Transfer Reactions: Why Nature Choose Phosphate. Assigned reading: Westheimer (1987) Science 235, 1173

Assigned reading: Westheimer (1987) Science 235, 1173-1178.

12 (M) **Phosphoryl Transfer Reactions: Associative, Dissociative, and Concerted.**

Assigned reading: Knowles (1980) Annu. Rev. Biochem. 49, 877-919; Background source: Herschlag (2011) Annu. Rev. Biochem. 80, 669-702.

14 (W) **Phosphoryl Transfer Reactions: Detection of** Intermediates.

 $\beta\gamma$ bridge/ β non-bridge scrambling and chiral phosphate. Background sources: Midelfort & Rose (1976) J. Biol. Chem. 251, 5881-5887; Jones et al. (1978) Nature 275, 564-5. Rose et al. (1974) J. Biol. Chem. 249, 5163-5168.

- 15 (Th) Thiamine Diphosphate. Assigned reading: Kern et al. (1987) Science 275, 67-70. Quiz 3
- 19 (M) **Thiamine Diphosphate.** Assigned reading: Tittmann et al. (2003) Biochemistry 42, 7885-7891; Tittmann et al. (2006) Nat. Chem. Biol. 2, 324-328.
- 21 (W) No class
- 22 (Th) No class
- 26 (M) Economics of Enzyme Catalysis: Binding Energy. Circe Effect Background sources: Jencks (1975) Adv. Enzymol. And Related Areas of Molecular Biology 43, 219-410; Jencks (1987) CSHSQB 52, 65-73; Stoddard & Baker (2009) Nature 461, 1300-1304.

28 (W)	Free Energy Profiles. Background sources: Fierke et al. (1987) CSHSQB 52, 631- 638.Anderson & Johnson (1990) Chem. Rev. 90, 1131-1149; Toney (2013) Biochemistry 52, 5952-5965.
29 (Th)	Oxidation-Reduction Reactions: P-450: Nature's Blowtorch. A radical mechanism. Assigned reading: Sligar & Petsko (2000) Science 287, 1615- 1622; Sligar (2010) Science 330, 924-925. Kinetic crystallography. Background sources: Bourgeois & Royant (2005) Curr. Opin. Struct. Biol. 15, 538-647; Frey (2006) Nat. Chem. Biol. 2, 294- 295; Wille et al., (2006) Nat. Chem. Biol. 2, 324-328; Johnson (2012) Nature 487, 177-178; Nakamura et al., (2012) Nature 487, 196-201. Problem set 3 due
Dec 3 (M)	Oxidation-Reduction Reactions: P-450: Nature's Blowtorch. Capturing the intermediate. Background sources: Rittle & Green (2010) Science 330, 933- 937; Krest et al., 2013) J. Biol. Chem. 288, 17074-17081.
5 (W)	EXAM III
6 (Th)	Oligosaccharyl Transferase: Asn-X-Ser/Thr. What nucleophile? Assigned reading: Locher (2011) Nature 474, 350-356.
10 (M)	Terpene Synthases: Generation and Control of Carbenium Ions. Background sources: Davis and Croteau (2000) Topics in Current Chemistry 209, 53-95; Christianson (2017) Chem. Rev. 117, 11570-11648.

Problem set 4 due