Syllabi for Required Courses

Math 201a: Algebra I

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) Group theory:
 Quick review of the basic theory (subgroups, homomorphisms, etc.).
 Group actions
 Sylow theorems.
 Solvable and nilpotent groups.
 Free groups, presentations.

2) Category theory
 Basic notions of categories and functors
 Example of categories, basic constructions (products), universal objects
 Use of Category language when treating the different part of the course
 Natural transformations

3) Rings and Modules:
 Review of basic theory (subrings, ideals, fields, homomorphisms, etc.)
 PID’s, UFD’s, Polynomial rings.
 Modules (over a commutative ring)
 Tensor products, exterior and symmetric powers, determinants.
 Finitely generated modules over a PID and applications.

4) Field theory:
 Field extensions, splitting fields, finite fields.
 Separable and inseparable extensions, algebraic closure.
 Fundamental theorem of Galois theory, solvability by radicals.

Additional topics (if time permits):
 • Field theory (trace and norm, transcendental extensions, purely inseparable extensions, infinite Galois extensions, Kummer theory).
 • Category theory (adjoint functors, Yoneda’s lemma, limits).

Possible Texts:
 • Lang: Algebra
 • Jacobson: Basic Algebra
Math 201b: Algebra II

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) **Homological algebra**:
 - Exact sequences
 - Complexes and homology
 - Projective and injective modules
 - Ext and Tor

2) **Commutative algebra**:
 - Chain conditions
 - Hilbert basis theorem
 - Localization
 - Nullstellensatz

3) **Representation theory (of finite groups)**:
 - Maschke’s theorem
 - Schur’s Lemma
 - Fundamental isomorphism theorem for the group algebra
 - Characters
 - Frobenius reciprocity

Additional topics (if time permits):
- Non-commutative algebra (Semisimple rings, Wedderburn’s theorem).
- Additional representation theory (representations of Sn, Brauer’s theorem, representations in finite characteristic, representations of Lie algebras and Lie groups).
- Commutative algebra/number theory (integrality, completion, DVR’s, Dedekind domains).
- Commutative algebra/algebraic geometry (dimension theory, Noether normalization, the ideal-variety correspondence, primary decomposition).

Possible Texts:
- Lang: Algebra
- Jacobson: Basic Algebra

225a: Geometry of Manifolds

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) **Manifolds**:
Change of coordinates
Differential structure

2) Tangent vectors
Tangent bundle
Derivations
Vector fields
Lie bracket
Tensors

3) Vector bundles
Basics of vector bundles
Normal bundles
Pullback construction

4) Differential topology
Inverse and implicit function theorems—as assigned reading
Transversality
Sard’s theorem—discussion without proof

5) Differential equations and systems
Frobenius Theorem
Existence and uniqueness theorems for ODE’s—discussion without proof

6) Differential forms:
Closed and exact
Poincaré Lemma

7) Integration
Basics of Integration
Stokes Theorem
Orientations and volume elements

Additional topics (if time permits).
• Basic Lie Groups: Lie algebra, one parameter subgroups, structural equations, left and right
 invariant vector fields.
• Principal bundles; connections on vector bundles
• Frobenius Theorem in differential form version
• de Rham cohomology and theorem

Possible Texts:
• Lee: Introduction to Smooth Manifolds
• Hitchin’s Oxford Notes: Differentiable Manifolds
 (http://people.maths.ox.ac.uk/hitchin/files/LectureNotes/Differentiable_manifolds/manifolds2014.pdf)
• Spivak: A Comprehensive Introduction to Differential Geometry, vol. I
Math 211a: Real Analysis

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) General topology
 Basic axioms of topology, continuous maps
 Compact spaces
 Metric spaces, completeness, Baire Category Theorem
 Stone-Weierstrass Theorem
 Arzela-Ascoli Theorem, an application to Peano’s Existence Theorem

2) Banach spaces:
 Topological vector spaces; normed spaces
 Linear functionals, dual spaces, Hahn-Banach Theorem
 Banach spaces
 Contraction principle, applications to Picard’s Existence Theorem and Implicit Function
 Theorem
 Hilbert spaces (basic theory), Riesz Representation Theorem

3) Measure theory:
 Algebras and sigma-algebras of sets, measurable functions
 Measure spaces
 Integrable functions, integration and convergence theorems
 Extension of measures from algebras to sigma-algebras
 Lebesgue measurable sets, Lebesgue measure on \(\mathbb{R}^n \)
 Products measures, Fubini’s Theorem
 Signed/complex measures, Radon-Nikodym Theorem, Hahn and Jordan decompositions
 \(L^p \)-spaces
 Egorov’s Theorem, Lusin’s Theorem

Additional topics (if time permits):
 • Open mapping theorem, closed graph theorem (to be covered in Functional Analysis)
 • Functions of bounded variation, Lebesgue-Stieltjes integral
 • Convolution in \(L^1(\mathbb{R}^n) \)
 • Fourier transform, Fourier inversion
 • Fourier series, Poisson summation, Fejer’s Theorem
 • Probability theory. Basic ergodic theory.

Possible Texts:
 • Kolmogorov/Fomin: Introductory Real Analysis
Math 211b: Complex Analysis

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) Complex analytic functions
 Riemann sphere and rational functions
 Complex derivatives and Cauchy-Riemann equations
 Holomorphic functions in one variable (basic theory)

2) Integration
 Cauchy’s theorem, Cauchy’s integral formula
 Applications to: Fundamental Theorem of Algebra, Liouville’s theorem, Morera’s theorem, Gauss’ mean value theorem
 Maximum principle, Rouche’s theorem, argument principle
 Schwarz reflection principle, analytic continuation

3) Conformal maps
 Fractional-linear transformations
 Open mapping theorem
 Riemann mapping theorem
 Harmonic and subharmonic functions, Poisson's formula

4) Power series, partial fractions, special functions
 Taylor series
 Classification of singularities
 Laurent series
 Weierstrass theorem
 Mittag-Leffler theorem
 Infinite products and partial sums
 Elliptic functions, Weierstrass \(\wp \)-function

Additional topics (if time permits):
Math 221a: Topology I

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) CW-Complexes
 Definitions, direct limit topology

2) Covering Spaces and Fundamental Group
 Basic Definitions (homotopy, fundamental group)
 Existence and classification of covering spaces
 Correspondence between subgroups and covering spaces
 Van Kampen’s theorem

3) Homology Theory:
 Definitions of simplicial complexes and simplicial homology
 Definition of singular homology
 Long exact sequence of a pair, excision, Mayer-Vietoris sequence
 Homology of cell complexes and/or CW complexes
 Computing homology of basic spaces: eg., spheres, projective spaces

4) Applications of homology:
 Maps between spheres; degree of map
 Vector fields
 Fixed point theorems
 Separation theorems (Jordan Curve theorem)

Additional topics (if time permits):
 • Homology with coefficients

Possible Texts:
 • Hatcher: Algebraic Topology
 • Greenberg and Harper: Algebraic Topology: A First Course
 • Munkres: Elements of Algebraic Topology
Math 221b: Topology II

Core topics: the topics underlined below should be ALWAYS covered; the rest should be mentioned and discussed, and the students should be directed to appropriate literature.

1) Cohomology theory
 - Definition of cohomology
 - Basic properties
 - Cup and cap products

2) Universal coefficients:
 - Tor and homology
 - Ext and cohomology
 - Kunneth theorems

3) Poincare duality
 - Poincare duality for manifolds with and without boundaries

Additional topics (if time permits):
 - Homotopy theory: Basic properties, Hurewicz theorem, path spaces, fibrations
 - Eilenberg-MacLane spaces

Possible Texts:
 - Hatcher: Algebraic Topology
 - Greenberg and Harper: Algebraic Topology: A First Course
 - Munkres: Elements of Algebraic Topology

Core topics (ALWAYS covered): Please use this checklist as you go through the course.

1) Numerical linear algebra:
 - Floating point arithmetic
 - Polynomial interpolation
 - Linear systems and LU factorization
 - Least squares and QR factorization
 - Singular Value Decomposition

2) Numerical differential equations:
 - Quadrature methods
 - Euler and Runge-Kutta methods
Accuracy and stability of timestepping schemes

Additional topics (if time permits):
• Optimization, eigenvalue problems, finite difference methods for PDE’s, Lax Equivalence Theorem

Possible Texts:
• Heath: Scientific Computing: An Introductory Survey
Trefethen and Bau: Numerical Linear Algebra