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The Atiyah-Patodi-Singer eta invariant associates to an oriented odd-dimensional 
Riemannian manifold M , and a unitary representation α of its fundamental group 
π = π1(M), a real number ηα(M). Moreover, if one “reduces” the eta invariant by 
subtracting its value at the trivial representation, the resulting invariant ρα(M) is 
independent of the Riemannian structure and is, therefore, a “topological” invariant 
of M . The question of when ρα(M) is a homotopy invariant of M has been the object 
of some interest (see [6] and [7]). One approach to understanding the ρ invariant has 
been to examine its behavior as α varies in the variety Rk(M) of (k-dimensional) 
unitary representations of π. From this point of view, one sees that ρ decomposes 
into a continuous and a discrete part. The former is easily understood, up to an 
indeterminacy in the form of a locally constant function from Rk(M) to R/Z (see 
[2]), but the discrete part, which corresponds to the spectral flow of an associated 
self- adjoint elliptic differential operator on M presents a deeper problem. Recently 
there have been two solutions to the problem of describing this discrete part of ρ. 
In [2] the present authors associate to any germ αt of an analytic path in Rk(M) a 
purely homotopy-theoretic form on the cohomology of M , twisted by αt, and give 
a formula for the spectral flow in terms of signature invariants of this form. In a 
series of papers-[3], [4], [5]- Kirk and Klassen also give a formula for the spectral flow 
in terms of signatures of Hermitian pairings defined on a sequence of subquotients 
Gi of the deRham cohomology G0 of M . Each Gi is equipped with a coboundary 
operator δi defined, via higher Massey products, from a path of signature operators 
corresponding to a path of flat connexions. Gi+1 is the cohomology of (Gi, δi) and 
the Hermitian pairing is defined from δi and the Riemannian structure on M . 

It is the aim of the present work to reformulate the signature invariants of [2] 
using only the cohomology of M at α0 and a cochain of π defined by the deforma
tion αt. This will also provide a topological version of the Kirk-Klassen scheme, 
demonstrating its equivalence to the Farber-Levine scheme. 
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1. Cohomology of a space twisted by a path of representations 

Let X be a connected Poincare complex of formal dimension n and fundamental 
group π = π1(X). In other words, for any left Zπ-module A, the cap product 

[X ]∩ : Cp(X ;A) → Cn−p(X ;A) 

is a chain homotopy equivalence. Recall Cp(X ;A) = HomZπ(Cp(X̃), A) 

and Cq(X ;A) = A⊗Zπ Cq(X̃), where X̃ is the universal covering space of X , Cq(X̃) 

is the singular chain complex of X̃ and A denotes the right Zπ- module defined by 
−1A with α · g = g · α. We also recall the general cap product pairing 

Cp(X ;A) ⊗ Cq(X ;B) → Cp−q(X ;C) 

where A, B and C are left Zπ-modules equipped with a Z homomorphism 
φ : A ⊗Z B → C and A ⊗Z B has the diagonal π-action: g · (α ⊗ β) = g · α ⊗ g · β. 
The cap product is defined by the formula: 

(α ⊗ σ) ∩ c = φ(α ⊗ c(σ�)) ⊗ σ�� 

for any α ∈ A and σ a p-simplex in X̃ , with σ� = σ |“front q-face ”and σ�� = σ |“back 
(p-q)-face ”. 

There is a Liebnitz formula. If c ∈ Cp(X ;A) and u ∈ Cq(X ;B) then 

∂c ∩ u = c ∩ δu + (−1)q∂(c ∩ u) 

Now suppose αt is a formal analytic germ of a path in Rk(π) = the real algebraic 
variety of representations of π into the unitary group Uk. By this we mean only that 
αt is a homomorphism π → Uk(P ), where P = C[[t]], the ring of power series over 
C, and Uk(P ) is the group of (k × k) matrices M over P which satisfy the formula 

t t 
MM = I (M is the conjugate transpose of M - conjugation in P means conjugate 
every coefficient). We denote by α0 the ordinary unitary representation obtained 
by setting t = 0. Note that we impose no convergence requirement on αt. We can 
use αt to define a local coefficient system over X . Let Vt denote the free P -module 
of rank k specifically identified as (k × 1)-column vectors with entries in P . Then 
Vt is a left module over Mk(P ) = the ring of all (k × k)-matrices over P , and so, 
via αt, a left module over Cπ. We can now define H∗(X ;αt) (or H∗(X ;Vt)) to be 

the cohomology of the cochain complex HomZπ(Ck(X̃), Vt) so that H∗(X ;αt) is 
a P -module. We can also use α0 to define Vt as a local coefficient system over X by 
the natural inclusion Uk(C) ⊂ Uk(P ). 

There is a cup product pairing 

C ∗ (X ;αt) × C ∗ (X ;αt) → C ∗ (X ;P ) 

since αt is a unitary representation. Generally, given left Zπ-modules A, B, C and 
a π-homomorphism φ : A ⊗Z B → C (with the diagonal π-action) we define a cup 
product pairing by 

(u ∪ v)(σ) = φ(u(σ�) ⊗ v(σ��)) 
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It satisfies the usual Liebnitz formula δ(u∪v) = δu∪v +(−1)pu∪δv and, therefore, 
induces a pairing in cohomology. The necessary φ : Vt ⊗ Vt → P is defined by the 
usual scalar product on column vectors and φ is a homomorphism precisely because 
αt is unitary. Since X is an n-dimensional Poincare complex, it follows, just as in 
classical Poincare duality, since P is a principal ideal domain, that the induced cup 
product 

Hp(X ;αt) × Hn−p(X ;αt) → Hn(X ;P ) ∼ P= 

is non-singular on the P -torsionfree quotients. There is also an induced non-singular 
pairing on the P -torsion submodules 

tHp(X ;αt) × tHn−1−p(X ;αt) → ˆ (1) P /P 

where P̂ is the field of Laurent series over C (i.e. the quotient field of P ). This 
pairing is defined in the usual way. Given α ∈ tHp(X ;αt), β ∈ tHn−1−p(X ;αt), and 
suppose tmα = 0. Then we can choose α̃ ∈ Hp−1(X ;Vt/t

mVt) such that δ∗(α̃) = α, 
where δ∗ is the Bockstein defined by the exact coefficient sequence 

mt
0 → Vt−→Vt → Vt/t

mVt → 0 

and define 
< α, β >≡ t−m(α� ∪ β) (mod P ) (2) 

where α� ∪ β ∈ Hn(X ;P/tmP ) ∼ P/tmP and we use = the obvious pairing 
(Vt/t

mVt) ⊗ Vt → P/tmP induced by the scalar product. The pairing <, > is used 
in [2] in the formula for the spectral jump at α0 along the path αt (when it has a 
positive radius of convergence). Our aim is to give a computation of H∗(X ;αt) and 
<, > from H∗(X ;α0) and certain endomorphisms defined by homological extraction 
from αt. 

Let us, for the time being, place ourselves in a more general situation in which 
we have a representation αt : π → Glk(P ), where Glk(P ) is the group of invertible 
(k × k) matrices over P . As above, we have the cochain complexes C∗(X ;αt) = 

Homπ(C(X̃), Vt) using αt and C∗(X ;α0)t = Homπ(C(X̃), Vt) using α0. It will be 

convenient to replace C(X̃) by a slightly smaller, but chain-homotopy equivalent 
π-subcomplex, assuming X is connected. Choose a base-point x0 ∈ X and consider 
the π- subcomplex of C(X̃) generated by the set S(X̃) of singular simplices σ 
such that σ(v) lies over x0, for every vertex v. The usual proof shows that this 

subcomplex is a π-equivariant chain deformation retract of C(X̃). We will, from 

now on, use C(X̃) to denote this subcomplex. 
Our next step is to set up a P -isomorphism between the cochain complexes 

C∗(X ;αt) and C∗(X ;α0)t. To do this we choose a base-point x̃0 ∈ X̃ lying over x0 

and define S0(X̃) ⊂ S(X̃) to be the set of singular simplices σ ∈ S(X̃) satisfying 
σ(v0) = x̃0, where v0 is the initial vertex in the canonical domain simplex of σ. 

Clearly S0(X̃) is a basis for the free Zπ-module C(X̃) and so an element of C∗(X ;αt) 

or C∗(X ;α0)t is determined by its value on the elements of S0(X̃). We will agree 
to identify C∗(X ;αt) and C∗(X ;α0)t by identifying cochains which take identical 

values on S0(X̃). Clearly this defines an isomorphism of P -modules. 
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2. Cochains defined by a path of representations
 

We will need a description of the coboundary operator δt in C∗(X ;αt) under this 
identification. In order to achieve this we need to digress to examine some group 
cochains associated to any P -representation of a discrete group. 

Given a representation αt : π → Glk(P ), we define φt : π → Glk(P ) and φ̃t : π → 
Mk(P ) by the formulae 

φt(g) = αt(g)α0(g)
−1 and φ̃t(g) = φt(g) − I (3) 

where Mk(P ) is the ring of all (k × k) matrices over P . We wish to regard φt and 

φ̃t as 1-cochains in π with coefficients in Mk(P ). We consider Mk(P ) to have the 
left π-module structure defined by 

gM = α0(g)Mα0(g)
−1 

Recall the bar resolution for a group π (see [1]). Cn(π) is the free left Zπ-module 
with a basis consisting of n-tuples [g1| . . . |gn] and boundary operator defined by 

n−1 
L

∂ [g1| . . . |gn] = g1[g2| . . . |gn] + (−1)i[g1| . . . |gigi+1| . . . |gn] + (−1)n[g1| . . . |gn−1] 
i=1 

Then, if A is a left Zπ-module C∗(π;A) = HomZπ(C(π), A). We will also need 
the standard cup product structure in C∗(π;A). Suppose we have left π-modules 
A, B, C and a π-homomorphism µ : A ⊗Z B → C, where A ⊗Z B has the usual 
diagonal π-action. Let u ∈ Cp(π;A), v ∈ Cq(π;B); then u ∪ v ∈ Cp+q(π;C) is 
defined by 

(u ∪ v)[g1| . . . |gp+q] = µ(u([g1| . . . |gp]), g1 . . . gpv([gp+1| . . . |gp+q]) 

(Note that we have chosen a different sign convention than [1], but it still satisfies 
the usual Liebnitz formula δ(u ∪ v) = δu ∪ v + (−1)pu ∪ δv). 

Theorem 2.1. Consider the 1-cochain φ̃t ∈ C
1(π;Mk(P )) defined, as above, from 

a representation αt : π → Glk(P ) and the π-structure on Mk(P ) defined as above 
by α0. Then the usual matrix multiplication on Mk(P ) defines a cup product on 

C∗(π;Mk(P )) and we have δφ̃t = −φ̃t ∪ φ̃t. 

Proof. The multiplicative property αt(gh) = αt(g)αt(h) translates to φt(gh) = 
φt(g) · gφt(h) (g acting as conjugation by α0(g)) and so 

˜ ˜ ˜ ˜ ˜φt(gh) = φt(g) · gφt(h) + φt(g) + gφt(h) 

This gives the desired formula. D 
� L

Since Mk(P ) = i≥0 t
iMk(C), we may write φt in the form φt = tiφi,i 

thereby defining φi ∈ C
1(π;Mk(C)). Then we may reformulate Theorem (2.1) as: 
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L∞
Theorem 2.2. If we write ˜ φit

i , φi ∈ C
1(π;Mk(C)), then φt = i=1 

r−1 
L 

δφr = − φi ∪ φr−i 

i=1 

. 

There are two inconveniences associated to the cochains φ̃t or φi. 
a) The φi are not cocycles (except for φ1) and so a homological descrioption of the 

situation is not apparent. 

b) The conditions on φ̃t corresponding to αt being unitary are unnatural. The 
formula φt(g)φt(g)

t = I becomes 

r−1 
L 

φr(g) + φ (g)t + φi(g)φ (g)t = 0 (4) r r−i

i=1 

which does not break up into independent conditions on each φi. 

One way to deal with these difficulties is to concentrate on the lowest order terms 
of the deformation. 

Proposition 2.3. Suppose αt : π → Glk(P ) and φt is as defined in (3). Suppose 
φi = 0 for i < r. Then: 
a) φi is a cocycle for i < 2r and 
b) If αt is unitary, then φi is skew-Hermitian for i < 2r, i.e. φi ∈ SHk(C), the 

subspace of skew- Hermitian matrices, for every g ∈ π. 

Proof. These assertions follow easily from Theorem (2.2) and equation (4). D 

As an interesting corollary of this Proposition we have the following. Suppose 
α0 : π → Glk(C) and τ ∈ H1(π;Mk(C)) where π acts on Mk(C) via the adjoint rep
resentation of α0. H

1(π;Mk(C)) is the formal tangent space to the representation 
variety at α0. We can ask whether there is a formal deformation, αt : π → Glk(P ), 
of α0 which is ‘tangent to τ ’, i.e. so that φ1 is a cocycle representative of τ . We 
have: 

Corollary 2.4. If τ ∪ τ = 0 ( a necessary condition) and every element of 
H2(π;Mk(C)) can be written in the form τ ∪ξ +ξ ∪τ for some ξ ∈ H1(π;Mk(C)), 
then αt exists. 

Proof. Suppose inductively that αt exists mod tr, for some r ≥ 2 ,i.e. we have 
αt : π → Glk(P ) such that αt(gh) ≡ αt(g)αt(h) (mod tr) ,for all g, h ∈ π, and 
φ1 represents τ . For the inductive step we need to find γ : π → Mk(C) so that 
α� 

t = αt+t
rγα0 

−1 is a homomorphism mod tr+1 . Thus we change φt to φt = φt+t
rγ. 

tr � � � tr+1)The coefficient of the required equation: φt (gh) ≡ φt (g) · gφt (h) (mod is 
the equation: 

r−1 
L 

γ(gh) + φr(gh) = γ(g) + gγ(h) + φr(g) + gφr(h) + φi(g) · gφr−i(h) 
i=1 
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If we consider γ, φi ∈ C
1(π;Mk(C)), this expression can be rewritten 

r−2 
L 

−δγ − δφr = φ1 ∪ φr−1 + φr−1 ∪ φ1 + φi ∪ φr−i (5) 
i=2 

If r = 2, we can choose γ to satisfy (5) since τ ∪ τ = 0. Suppose r > 2. We first 
observe that we may change φr−1 to φr−1 + u for any cocycle u ∈ C1(π;Mk(C)) 
without disturbing the fact that αt is a homomorphism mod tr . This is clear since 
the equations which express this property are, for every l < r: 

l−1 
L 

δφl = φi ∪ φl−i 

i=1 

So now we can rewrite (5) as 

r−1 
L 

−δγ = φ1 ∪ u + u ∪ φ1 + (δφr + φi ∪ φr−i) (6) 
i=1 

But since the term in parentheses is a cocycle our hypothesis says that we can 
choose u, γ to satisfy (6). D 

Remark. To obtain an analogous result for unitary representations we need to 
consider cohomology with coefficients in a Lie algebra. We discuss this below. 

Another way to ameliorate these difficulties is to consider the logarithm: 

∞ 
L 

λt(g) = log φt(g) = (−1)iφ̃t(g)
i/i (7) 

i=1 

This is also a well-defined element of C1(π;Mk(P )) and, of course, φ̃t can be 
recovered from it by exponentiating. 

Proposition 2.5. 

a) δλt = −1/2[λt, λt ] − 1/12 ([[λt, λt ], λt ] − [[λt, λt ], λt]) + · · · 
where λt = λt 

b) αt is unitary iff. α0 is unitary and λt is skew-Hermitian. 

Explanations. 

a) We view Mk(P ) as a Lie algebra with the usual bracket [M, N ] = MN − 
NM . The terms on the right are various “cup products” defined by using it
erated brackets. If L is a Lie algebra with a left π-module structure satisfying 
g[a, b] = [ga, gb] then any formal bracket in two variables defines a “cup product” 
Cp(X ;L) × Cq(X ;L) → Cp+q(X ;L). For example the formal bracket [[x, y], x] 
defines (u, v) → w where w(σ) = [[u(σ�), v(σ��], u(σ�)] for any σ ∈ S(X̃). Note 
that these cup products are not bilinear except for the special case of [x, y]. This 
particular cup product also satisfies the Liebnitz formula and so induces a cup 
product on cohomology. In the right-hand formula of (2.8a) we introduce an alias 
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λt of λt to indicate which formal brackets are used for the various cup products. 
The entire formula is just the usual Campbell-Baker-Haussdorf formula. 

b) Let SHk(P ) ⊆ Mk(P ) be the Lie subalgebra and, assuming α0 is unitary, 
π-submodule consisting of skew-Hermitian matrices, i.e. M ∈ SHk(P ) iff. 

t 
M = −M . So C∗(X ;SHk(P )) ⊆ C∗(X ;Mk(P )), a subcomplex. We are as
serting that λt ∈ C

∗(π;SHk(P )) iff. αt is unitary or, equivalently, if λt = 
L 

λit
i (λi ∈ C

∗(π;Mk(C))), then αt is unitary iff. α0 is unitary and every 
λi ∈ C

∗(π;SHk(C)). 

Remark. If αt : π → SU k(P ), the special unitary group, then λt : π → SH0 
k(P ), 

skew-Hermitian matrices with zero trace. 

Proof. a) Recall the formula φt(gh) = φt(g) · gφt(h) from the proof of Theorem 
2.1. Taking logarithms and applying the Campbell-Baker-Haussdorf formula to the 
right side gives the following: 

λt(gh) = λt(g) + log(gφt(h)) + 1/2 [λt(g), log(gφt(h)] + · · · 

To obtain the formula in (a) we only need to point out that log(gφt(h)) = g·log φt(h) 

since (gφ̃t(h))
i = gφ̃t(h)

i because the action of π is defined by the adjoint action 
under α0. 

b) The Campbell-Baker-Haussdorf formula gives 

t t t 
log(φt(g)φt(g) ) = λt(g) + λt(g) − 1/2 [λt(g), λt(g) ] + . . . 

t t t 
since log φt(g) = log φt(g) . Now suppose λt(g) + λt(g) = trσt(g) where 

t 
σ0(g) � 0. If we substitute λt(g) = trσt(g) − λt(g)= into all the bracket terms and 
use the fact that [λt(g), λt(g)] = 0, and λ0(g) = 0, we find that 

t t 
log(φt(g)φt(g) ) ≡ trσt(g) (mod tr+1). Thus we conclude that log(φt(g)φt(g) ) = 0 

t 
iff. λt(g) + λt(g) = 0. D 

Corollary 2.6. If k = 1, then every λi is a cocycle. 

Now suppose we have a unitary representation α0 : π → Uk(P ) and a ”tangent 
vector at α0”, τ ∈ H1(π;SHk(P )). We ask whether there is a formal unitary 
deformation αt of α0 so that if λt = log φt then λ1 represents τ . 

Analogous to Corollary (2.4) we have: 

Corollary 2.7. Suppose [τ, τ ] = 0 and every element of H2(π;SHk(P )) can be 
written in the form [τ, ξ] + [ξ, τ ] for some ξ ∈ H1(π;SHk(P )). Then αt exists. 

Proof. By (7) such a deformation αt corresponds to a function λt : π → SHk(P ) 
satisfying λ0 = 0 and 

λt(gh) = λt(g) + gλt(h) + 1/2 [λt(g), gλt(h)] + · · · (8) 

where the right side is the Campbell-Baker-Haussdorf formula. Suppose we have 
λt which satisfies this equation mod tr, r ≥ 2. We will, as above, try to find 
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λt = λt + trξ , where ξ : π → SHk(C). The equation for the coefficient of tr 

becomes: 

λr(gh) + ξ(gh) = 

λr(g) + gλr(h) + ξ(h) + 1/2 ([λ1(g), gλr−1(h)] + [λr−1(g), gλ1(h)]) + · · · 

where the omitted terms involve neither λ1 nor λr−1 . Interpreting ξ and λi as 
cochains, this becomes 

δλr + δξ = 1/2 ([λ1, λr−1] + [λr−1, λ1]) + · · · (9) 

If r = 2, there are no omitted terms and [τ, τ ] = 0 assures that we can choose ξ 
appropriately. If r > 2 we allow ourselves to replace λr−1 by λr−1 + u , where u is 
a cocycle. As before this does not affect the fact that λt satisfies (8) mod tr . Now 
equation (9) becomes 

δλr + δξ = 1/2 ([λ1, u] + [u, λ1]) + · · · (10) 

where the omitted terms involve neither ξ nor u. The existence of ξ and u satisfying 
(10) now follows from the hypothesis. D 

Remark. The theorem also holds for special unitary representations using SH0(P ). k

Example: Consider representations into SU2. Then SH0
2(C) ∼ R ⊕ C via= 

  

it z 
↔ (t, z) with the bracket operation defined by the formula: 

−z −it


[(t, z), (s, w)] = (i(zw − zw), 2i(tw − sz)).
 

  

ω(g) 0 
Suppose α0 is reducible, i.e. α0(g) = for some homomorphism 

0 ω(g)
ω : π → S1 . Then 

H ∗ (π;SH0
2(C)) ∼ H ∗ (π; R)⊕H ∗ (π; Cω2)= 

where the first term has untwisted coefficients and, in the second, π acts on C by 
g → ω(g)2 . We can see easily that the cup product 

H1(π;SH0
2(C)) × H1(π;SH0

2(C)) → H2(π;SH2
0(C)) 

is described as follows. If ξ, ξ� ∈ H1(π; R) and η, η� ∈ H1(π; Cω2), then 

[ξ, ξ�] = 0, [η, η�] = [η�, η] = η ∪ η� ∈ H2(π; R) 

where the last term is the cup product defined by the pairing Cω2 ⊗ Cω2 → 
R, (z, w) → i(zw − wz). and 

[ξ, η] = [η, ξ] = 2i(ξ ∪ η) ∈ H2(π; Cω2) 
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where the last term refers to the cup product pairing defined by R ⊗ Cω2 → 
Cω2 , (t, z) → tz. The commutativity of these cup products follows from the usual 
super-commutativity of cup products and the fact that the pairing R⊗Cω2 → Cω2 

is the negative of the relevant pairing Cω2 ⊗ R → Cω2 while Cω2 ⊗ Cω2 → R is 
anti-commutative. 

Suppose π is a knot group. Then H2(π; R) = 0 and the only non-trivial cup 
products are [ξ, η] = [η, ξ]. It is well-known that H1(π; Cω2) = H2(π; Cω2) = 0 
unless ω2 is a root of the Alexander polynomial. Since 

H1(π; R) ⊗R H
1(π; Cω2) → H2(π; Cω2) 

is an isomorphism, by duality, we conclude that, for τ = ξ + η to be the tangent 
vector of a deformation we need ξ ∪ η = 0 which requires that either ξ = 0 or 
η = 0. If η = 0 and ξ � 0, then ξ ∪ H1(π; Cω2) = H2(π; Cω2)= so the formal 
deformation exists. On the other hand this is easy to see directly, since the circle 
of reducible representations gives such a deformation. If ξ = 0, it is false that 
H1(π; R) ∪ η = H2(π; Cω2). 

We now examine the effect of changing the deformation αt : π → Glk(P ) by 
a conjugation. Let θt ∈ Glk(P ) with θ0 =identity and consider α� : π → Glk(P )t 

defined by α� = θtαt(g)θ
−1 (If αt : π → Uk(P ) we would demand that θk ∈ Uk(P )) t t 

Let φt (g) = α� (g)α0(g)
−1 .t

Proposition 2.8. Given αt, α
� , θt as above: t

a) Suppose φi = 0 for i < r. Then φi 
� = 0 for i < r and, if θi = 0 for 0 < i < l, then 

φi and φ� are cohomologous (more specifically φ� − φi = δθi) for i < r + l. In i i 

particular φr and φ� are always cohomologous. If θt is unitary, then θi ∈ SHk(C)r 

for i ≤ 2l. In other words, the “gauge equivalence” class of αt determines the 
cohomology class of φi in H1(π;Mk(C)) for i ≤ r + l and, in the unitary case, 
in 
H1(π;SHk(C)) for i ≤ l + min{r, l} 

b) Suppose αt and θt are unitary. Set λt = logφt, λt� = log φt and ηt = log θt. 
Then, for any g ∈ π 

λt(g) − λt (g) = (δηt)(g) + brackets involving ηt or gηt 

Corollary 2.9. If k = 1, then λt and λt are cohomologous. 

Proof. (a) We have 
φt (g) = θtφt(g)gθ

−1 (11) t
 

If θt = 1 + Ωt , then θ−1 ≡ 1 − Ωt (mod t2) and so:
 t 

φt ≡ φt(g) + Ωtφt(g) − φt(g) · gΩt (mod t2l+r) 

≡ φt(g) + Ωt − gΩt (mod tr+l) 

If we consider Ωt ∈ C
0(π;Mk(P )), then this equation becomes 

φt(g)− φt (g) ≡ (δΩt)(g) (mod tr+l) 

(b) If we apply the Campbell-Baker-Haussdorf formula to (11) with the observa
tion that log(gθ−1) = g log(θ−1) = −g log θt we get t t 

λt (g) = λt(g) + (1 − g)ηt + 1/2 ([(1 + g)ηt, λt(g)]− [ηt, gηt]) + · · · 

So, if we consider ηt ∈ C
0(π;SHk(P )), then (g − 1)ηt = (δηt)(g). D 
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3. Relating the cohomologies
 

We can now return to the question of the relation between the coboundary op
∼erators δ and δt in C∗(X ;α0)t = C∗(X ;αt), respectively.Suppose π = π1(X, x0), or 

more generally, we have a homomorphism 
π1(X, x0) → π. Then we have an induced map X → Bπ and so a chain map 

ξ : C(X̃) → C(π). Using the bar resolution this can be described as follows. Sup

pose x0 and x̃0 are chosen as above and σ ∈ S(X̃). Then each vertex vi of the 
standard simplex determines hi ∈ π by σ(vi) = hi(x̃0). Then ξ(σ) = h0[g1| . . . |gn] 

h−1where gi = hi. It is straightforward to check that this is a chain-map and a i−1

Zπ-homomorphism. Recall ([1]) that C(π) can be described as the ordered simpli
cial chain complex of the simplex Δ whose vertices are the elements of π and the 
action of π is the obvious simplicial one (it is not free on Δ if π has elements of 
finite order). Then ξ is induced by σ →the ordered simplex < h0, . . . hn >. Define 

the 1-cochain ψt = ξ�(φ̃t) ∈ C
∗(X ;Mk(P )), π-action defined by α0. Then, from 

Theorem (2.1) we have: 
δψt = −ψt ∪ ψt (12) 

Now there is also a cup product 

C ∗ (X ;Mk(P )) × C ∗ (X ;α0)t → C ∗ (X ;α0)t 

defined by the pairing Mk(P ) × Vt → Vt given by matrix multiplication (The π
actions defined by α0). The next result says that the cohomological effect of the 
deformation αt on X is determined entirely by the cocycle ψt. 

Theorem 3.1. If u ∈ C∗(X ;α0)t, then δtu = δu + ψt ∪ u. 

Proof. It suffices to check the values of both sides when evaluated on an element σ 
Ln

of S0(X̃). Write ∂σ = (−1)iσi; then σi ∈ S0(X̃) for 1 ≤ i ≤ n, but we must i=0 

write σ0 = g · σ0 where g · x̃0 = σ(v1) and σ0 ∈ S0(X̃). Thus 

n 
L 

δtu(σ) = αt(g) · u(σ0) + (−1)i u(σi) 
i=1 

and 
n 

L 

δu(σ) = α0(g) · u(σ0) + (−1)i u(σi) 
i=1 

Subtracting these, we get 

(δtu − δu)(σ) = (αt(g)− α0(g)) · u(σ0) 

and so 
˜(δtu − δu)(σ) = φt(g)α0(g) · u(σ0) 

On the other hand, (ψt ∪ u)(σ) = ψt(σ
�)u(σ��). One sees readily that ξ(σ�) = [g], 

and so ψt(σ
�) = φ̃t(g), and σ�� = σ0, so that u(σ��) = u(g · σ0) = α0(g)u(σ0) This 

completes the proof. D 
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The advantage of reducing the description of the cochain complex C∗(X ;αt) to 
C∗(X ;α0)t is that the latter can be identified with the direct product of a countable 

number of copies of C∗(X ;α0) = Homπ(C(X̃), V0), where V0 is just Ck with π
L∞

action defined by α0. If u ∈ C∗(X ;α0)t , then we may write u = i=0 uit
i, where 

L 

ui ∈ C
∗(X ;α0) and δu = (δui)t

i . Similarly C∗(X ;Mk(P )) is a direct product i 

of a countable number of copies of C∗(X ;Mk(C)). There are cup product pairings 

C ∗ (X ;Mk(C)) × C ∗ (X ;α0) → C ∗ (X ;α0) 

and
 
C ∗ (X ;Mk(C)) × C ∗ (X ;Mk(C)) → C ∗ (X ;Mk(C))
 

L 

induced by matrix multiplications and, clearly, if u = uit
i ∈ C∗(X ;Mk(P )) and i 

L 

v = uit
i ∈ C∗(X ;α0),then i 

∞ r 
L L 

u ∪ v = (ui ∪ vr−i)t
r 

r=0 i=0 

Thus we can rephrase Theorem (3.1) as follows. 
L∞

Theorem 3.2. If u ∈ C∗(X ;α0)t, u = i=0 uit
i and ψi = ξ (φi), then 

∞ r 
L L 

δtu = (δur + ψi ∪ ur−i)t
r 

r=0 i=1 

. 

4. Forms on the cohomology at a 

representation defined by a deformation 

We now exploit Theorem (3.1) to describe the torsion part of H∗(X ;αt) by means 
of a filtration of H∗(X ;α0). This could, alternatively, be done by a simple spectral 
sequence argument, but we especially want to have a more explicit description of 
the isomorphisms than one obtains from the spectral sequence approach. These 
considerations are quite similar to the work of [5] which takes place in an analytic 
context. 

First we define a filtration {J i} of H∗(X ;α0). We will say α ∈ J i iff. there exists 
L 

a cochain ut = uiti ∈ C∗(X ;α0)t such that: 

(i) u0 is a cocycle representing α
 
ti+1)
(ii) δut + ψt ∪ ut ≡ 0 (mod 

Obviously 
⊇ J i ⊇ J i+1 ⊇H ∗ (X ;α0) = J0 ⊇ · · · · · · 

Now we define homomorphisms 

τi : J
i → H ∗ (X ;α0)/ Im τi−1 (i ≥ 0) 

recursively, as follows. Set τ−1 = 0. For i ≥ 0 let τi(α) be the cohomology class 
represented by v, the ti+1-coefficient of δut + ψt ∪ ut, where ut satisfies (ii). In 
particular τ0(α) = [ψ1] ∪ α. For i ≥ 1 we must show: 
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Claim 4.1. 

a) v is a cocycle. 
b) a different choice u produces v� so that v� − v represents an element of Im τi−1.t 

This will show that τi is well-defined for all i ≥ 0. Note that we, somewhat im
precisely, use the notation Im τi−1 to refer to the pull-back of the actual Im τi−1 in 
H∗(X ;α0). We will also show: 
c) Ker τi = J i+1, for i ≥ 0. 

Proof. (a) 

δ(ψt ∪ ut) = δψt ∪ ut − ψt ∪ δut 

ti+2)≡ −(ψt ∪ ψt) ∪ ut − ψt ∪ (−ψt ∪ ut) (mod

ti+2)≡ 0 (mod

(b). It suffices to show that if ut satisfies (ii) and u0 is a coboundary, then v 
represents an element of Im τi−1. Let us write δw + tu� , w ∈ C∗(X ;α0). Then ut = t

set ut = u − ψt 
� ∪ w, where ψt = tψt

� . Now we compute: t 

δu�� + ψt ∪ u = δut� − δ(ψ� ∪ w) + ψt ∪ u − ψt ∪ (ψ� ∪ w)t t t t t 

= δu� − δψ� ∪ w + ψ� ∪ δw + ψt ∪ u + δψ� ∪ wt t t t t 

= δu� + ψ� ∪ δw + ψt ∪ ut t t 

using (12). Multiplying by t we obtain: 

t(δu�� + ψt ∪ u ) = δ(tu + δw) + ψt ∪ (δw + tu )t t t t

= δut + ψt ∪ ut 

To see that u0 
�� is a cocycle we show that δu�� is divisible by t.t 

tδu�� = tδu� − tδ(ψ� ∪ w)t t t 

= δ(tu ) − δψt ∪ w + ψt ∪ δw t

= δut + ψt ∪ (ut − tu ) − δψt ∪ wt

≡ δut + ψt ∪ ut (mod t2) 

≡ 0 (mod t2) 

since i ≥ 1. 
(c). It is clear that J i+1 ⊆ Ker τi. For the converse, suppose that α ∈ Ker τi. 

This means there exist ut, u , v so that u0 represents α and t

i+1 ti+2)δut + ψt ∪ ut ≡ t v (mod
� ti+1)δu� t + ψt ∪ u ≡ ti(v + δw) (modt 

for some w. Therefore, if u = ut − tu� , then δu�� +ψt ∪ u ≡ −ti+1δw (mod ti+2). t t t t 

Thus u0 = u0 represents an element of J i+1 . D 

We now recast these results in a more spectral-sequence-like format. For this we 
establish: 



13 

Proposition 4.2. Im τr ⊆ Js for any r, s. 

Proof. We proceed inductively. Denote by A(r,s) the assertion of the Proposition 
for specific given values of r, s. We first observe that A(r,s) only makes sense if 
A(r-1,s) is assumed to be true. We proceed inductively on r for a given value of 

tr+1s. Suppose α ∈ Jr is represented by u0 where δut + ψt ∪ ut = vt and so v0 
represents τr(α). It suffices to show that δvt + ψt ∪ vt is divisible by ts+1 . But, in 
fact, 

tr+1δvt = δ(δut + ψt ∪ ut) 

=	 δψt ∪ ut − ψt ∪ δut 

ut − ψt ∪ (tr+1 =	 −ψt ∪ ψt ∪ vt − ψt ∪ ut) 

−tr+1(ψt ∪=	 vt) 

D 

As a consequence of Proposition 4.2 we see that: 

Im τi ⊆ J i/ Im τi−1 and τi(Im τi−1) = 0 

Thus we can define 

Li = J i/ Im τi−1 = Ker τi−1/ Im τi−1 

Now we see that τi induces ∂i : L
i → Li and ∂2 = 0. So we can interpret Li+1 as i 

the homology of the chain complex (Li, ∂i). 

We now define some ±-Hermitian pairings on the {J i} and {Li}. Suppose αt 

is unitary and X is a connected oriented Poincare complex of formal dimension n. 
We have a cup product 

Hp(X ;α0) × Hn−p(X ;α0) → Hn(X ; C) ∼ C= 

defined by the π-homomorphism (using α0) V0 ⊗ V0 → C coming from the inner 
product on V0. Duality tells us that this pairing, which we denote by (,), is non
singular. We also have a cup product 

C ∗ (X ;αt) × C ∗ (X ;αt) → C ∗ (X ;P ) 

defined by the π-homomorphism (using αt) Vt ⊗C Vt → P coming from the inner 
product on Vt. It is, of course, essential here that αt be unitary. 

Proposition 4.3. 

a) (J i , Im τi−1) = 0. 
b) (α, τi(β)) = (−1)p+1(τi(α), β) for any α, β ∈ J i, where p = dimα. 

Proof. We prove these together inductively. Let (a)i, (b)i denote the assertions for 
the particular i as stated. First of all, we observe that the terms in (b)i are only 
well-defined once we know that (a)i is true. Second of all, it is immediate that (b)i 

implies (a)i+1. Thus we only have to prove that (a)i implies (b)i. 
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Choose ut and u so that t 

δut + ψt ∪ ut = ti+1 vt 

� i+1 �δu� + ψt ∪ ut = t vt t 

where u0 and u0 represent α and β, respectively, and so v0 and v0 represent τi(α) 
and τi(β), respectively. These equations take place in C∗(X ;α0)t. If we rewrite 
them as equations in C∗(X ;αt), then, according to Theorem (3.1), they become 

ti+1 � ti+1 �δtut = vt and δtut = vt. Using the cup product into C∗(X ;P ), we then 
have 

i+1(ut ∪
� �t v ) = ut ∪ δtut t 

and 
i+1(vt ∪

� �t u ) = δtut ∪ utt

Applying the Liebnitz rule we get 

i+1(vt ∪
� � � �t u + (−1)put ∪ v ) = δtut ∪ u + (−1)put ∪ δtut t t t 

= δt(ut ∪ u ) in Cn(X ;P )t

Therefore vt ∪ ut + (−1)put ∪ vt represents a cohomology class of order ti+1 in 
Hn(X ;P ) ∼= P , which implies that it is, in fact, null-cohomologous. Now if 
we set t = 0 we get a null-cohomologous cocycle which represents (τi(α), β) + 
(−1)p(α, τi(β)). D 

From Proposition 4.3 it follows that (, ) induces a pairing on Li and that ∂i is 
±-self-adjoint. 

We now define a new pairing {, }i on J i(and Li), with values in C, by {α, β}i = 
(α, τi(β))(or(α, ∂i(β))) . By Proposition 4.3(b) {, }i is ±-Hermitian. More precisely 

{α, β}i = (−1)(p+1)(n−p){β, α} where p = dimαi 

Note that this pairing is non-trivial only when dimα + dim β = n − 1. 

Proposition 4.4. J i+1 is the null-space of {, }i and so {, }i induces a non-singular 
pairing on J i/J i+1 . 

Proof. Since (, ) is non-singular,the Proposition will follow from the fact that J i+1 

and Im τi are orthogonal complements under (, ). In light of Proposition 4.3(a) 
it is only necessary to prove that dimJ i+1 + dim Im τi = dimH∗(X ;α0). But the 
definitions and Claim 4.1(c) imply that J i/J i+1 ∼ Im τi/ Im τi−1 and so the quantity = 
dim J i+1 + dim Im τi is independent of i. But for i = −1, we have J0 = H∗(X ;α0) 
and τ−1 = 0. D 

Since they are ±-Hermitian, the pairings {, }i have well- defined signatures (which 
are non-zero only when n is odd). These are the topological version of the signatures 
used in [5] . 

We now relate these constructions in H∗(X ;α0) to the structure of 
H∗(X ;αt) and the pairing <, > defined in §1, equation (2). Let 

Kk = Ker tk ⊆ H ∗ (X ;αt) for k ≥ 0 
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Proposition 4.5. There are isomorphisms Kk/Kk−1 
∼ Jk−1/J∞, for k ≥ 1 and = 

n t
J∞ ⊆ Jk defined below, under which the injection Kk+1/Kk −→ Kk/Kk−1 cork 

responds to the inclusion Jk ⊆ Jk−1 . =Thus Jk−1/Jk ∼ Kk/(Kk−1 + tKk+1). 

Proof. The short exact sequences: 

kt
0 → Vt −→ Vt → Vt/t

kVt → 0 

t
0 → Vt/t

k−1Vt −→ Vt/t
kVt → V0 → 0 

yield long exact cohomology sequences which give, respectively, the horizontal and 
vertical lines of the following commutative diagram: 

H∗(X ;Vt/t
k+1Vt) 

⏐ 

⏐

l
t 

δkH∗(X ;αt) −−−−→ H∗(X ;Vt/t
kVt) −−−−→ Kk −−−−→ 0 (13) 

 ⏐ 

 ⏐

 l

ek 

e∞H∗(X ;αt) −−−−→ H∗(X ;α0) 

We will show that Im ek = Jk−1 and that ek ◦ δk 
−1 induces the desired iso

morphism. Im ek is the kernel of the coboundary homomorphism H∗(X ;α0) → 
H∗(X ;Vt/t

k−1Vt) and so α ∈ Im ek iff. there is a cochain ut ∈ C
∗(X ;αt) such that 

u0 represents α and, for some cochain vt, δt(ut − tvt) ≡ 0 (mod tk). Replacing ut 

by ut − tvt, we may just assume that δtut is divisible by tk . By Theorem (3.1), 
this is exactly the criterion that α ∈ Jk−1 . Thus, it follows from diagram (13) that 
ek ◦ δ

−1 induces an epimorphism fk : Kk → Jk−1/J∞, where J∞ = Im e∞. Now k 

the diagram: 

k−1t
0 −−−−→ Vt −−−−→ Vt −−−−→ Vt/t

k−1Vt −−−−→ 0 
⏐ ⏐ ⏐ 

⏐ ⏐ ⏐

l l 
t 

l 
t 

kt
0 −−−−→ Vt −−−−→ Vt −−−−→ Vt/t

kVt −−−−→ 0 

induces a commutative diagram: 

δk−1

H∗(X ;Vt/t
k−1Vt) −−−−→ Kk−1 −−−−→ 0 

⏐ ⏐ 

⏐ ⏐ 

l 
t 

lincl 

δkH∗(X ;Vt/t
kVt) −−−−→ Kk −−−−→ 0 

from which it follows that Ker fk = Kk−1. 
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The diagram: 

k+1 t
0 −−−−→ Vt −−−−→ Vt −−−−→ Vt/t

k+1Vt −−−−→ 0 
⏐ ⏐ ⏐ 

⏐ ⏐ ⏐ 

l 
t 

l l 

kt
0 −−−−→ Vt −−−−→ Vt −−−−→ Vt/t

kVt −−−−→ 0 

induces a commutative diagram: 

δk+1 

H∗(X ;Vt/t
k+1Vt) −−−−→ Kk+1 −−−−→ 0 

⏐ ⏐ 

⏐ ⏐ 

l l 
t 

δkH∗(X ;Vt/t
kVt) −−−−→ Kk −−−−→ 0 

from which we obtain: 
fk+1 

Kk+1 −−−−→ Jk/J∞ 

⏐ ⏐ 

⏐ ⏐ 

l 
t 

lincl 

Kk −−−−→ Jk−1/J∞ 

and the final statement of the Proposition follows. D 

5. Relating the forms 

We recall the non-singular pairing: 

<, >: tH ∗ (X ;αt) × tH ∗ (X ;αt) → P̂ /P 

define above in §1, . In [2] this is used to define the pairing: <, >k: Kk × Kk → C 

by the formula < α, β >k = tk < α, β > |t=0. Note that tk < α, β > is a well-defined 
element of P/tkP . Obviously <, >k is ±-Hermitian and it is easy to check that 
< α, β >k = 0 if α ∈ Kk−1 + tKk+1. 

Proposition 5.1. <, >k corresponds to {, }k−1 under the isomorphism of Propo
sition (4.4). 

Proof. Suppose that zt, wt are cocycle representatives in C∗(X ;αt) of α, β respec
tively. Choose ut, vt ∈ C

∗(X ;αt) so that δtut = tkzt and δtvt = tkwt. Then 
< α, β >= t−k(ut, wt)t where (, )t denotes the pairing 

cup [X]∩ 
C ∗ (X ;αt) × C ∗ (X ;αt) −−→ C ∗ (X ;P ) −−−→ P 

and so < α, β >k = ([u0], [w0]), where [, ] denotes the cohomology class in H∗(X ;α0). 
∼Under the isomorphism C∗(X ;αt) = C∗(X ;α0)t and applying Theorem (3.1), 

the above equations become 

δut + ψt ∪ ut = tk zt 

δvt + ψt ∪ vt = tk wt 

Now it is a direct consequence of the definitions that α �→ [u0], β �→ [v0] under the 
map Kk → Jk−1/J∞ of Proposition (4.4) and τk[v0] = [w0]. 

Thus < α, β >= ([u0], τk[v0]) = {[u0], [v0]}k−1. D 
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