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1. Introduction 

Knot and link theory studies how one manifold embeds in another. Given a manifold 
embedding, one can alter that embedding in a neighborhood of a point by removing this 
neighborhood and replacing it with an embedded disk pair. In this way traditional knot the
ory, the study of embeddings of spheres in spheres, impacts the general manifold embedding 
problem. In dimension one, the manifold embedding problem is knot and link theory. 

This article attempts a rapid survey of the role of surgery in the development of knot 
and link theory. Surgery is one of the most powerful tools in dealing with the question 
“To what extent are manifolds (or manifold embeddings) uniquely determined by their 
homotopy type?” As we shall see, roughly speaking, knots and links are determined by 
their homotopy type (more precisely, Poincaré embedding type) in codimension ≥ 3 and  
are much more complicated in codimension two. We proceed, largely, from an historical 
perspective, presenting most of seminal early results in the language and techniques in 
which they were first discovered. These results in knot theory are among the most significant 
early applications of surgery theory and contributed to its development. We will emphasize 
knotted and linked spheres, providing only a brief discussion of more general codimension 
two embedding questions. In particular, the theory of codimension two embedding, from the 
standpoint of classifying within a Poincaré embedding type, deserves a long overdue survey 
paper. The present paper will not fill this void in the literature. Cappell and Shaneson give 
an excellent introduction to this subject in [CS78]. 

By no means is this survey comprehensive, and we apologize in advance for the omission 
of many areas where considerable and important work has been done. For example, we 
will omit the extensive subject of equivariant knot theory. We will also not include any 
discussion of the techniques of Dehn surgery that have proven so valuable in the study of 
three manifolds and classical knots. Furthermore, we will not touch on the related subject 
of immersion theory, and barely mention singularity theory. We urge the reader to consult 
one of the many excellent surveys which have covered the early (before 1977) development 
of codimension two knot theory in more depth. The articles by Cameron Gordon [Gor77] 
and Kervaire-Weber [KW77] on, respectively, low-dimensional and high-dimensional knot 
theory are excellent. A detailed discussion of surgery and embedding theory can be found 
in Ranicki’s book, [Ran81]. On the other hand, we are not aware of any previously existing 
comprehensive survey of recent developments in link theory. 
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2. Codimension > 2 

Perhaps the first use of surgery techniques in knot theory was in the work of Andre 
Haefliger. In 1961 Haefliger [Hae61] proved a basic theorem which showed that, for ap
propriately highly connected manifolds, the isotopy classification of embeddings coincided 
with the homotopy classification of maps, as long as one was in the metastable range of 
dimensions. More specifically Haefliger showed that if M is a compact manifold, then any 

n V mq-connected map f : M → (where superscripts denote dimension) is homotopic to 
n Vman embedding, if m ≥ 2n − q, and any two homotopic q-connected maps M → are 

isotopic if m >  2n − q. This theorem required, also, the restriction 2m ≥ 3(n + 1)  and  
m2m > 3(n+ 1), respectively. In particular, any homotopy n-sphere embeds in S and any 

two such embeddings are homotopic as long as 2m > 3(n+ 1).  
His proof proceeded by examining the singular set of a smooth map and eliminating it 

by handle manipulations — a generalization of Whitney’s method for n-manifolds in 2n
space. Meanwhile Zeeman in the PL-category, and Stallings in the topological category, 
had shown, using the technique of engulfing, that there were no non-trivial knots as long as 
m > n+ 2 [Zee60] [Sta63]. 

3 (n + 1), the analogous Haefliger, in a seminal paper [Hae62], showed that when m = 2 
smooth result was already false. Here was the first real use of surgery to study embedding 
problems. In this paper Haefliger developed the technique of ambient surgery, i.e. surgery 
on embedded manifolds, and used this technique to give a classification of knotted (4k − 
1)-spheres in 6k-space (which was, shortly after, extended to a classification of (2k − 1)
spheres in 3k-space). He first observed that the set Θn,k of h-cobordism classes of embedded 
homotopy n-spheres in (n+ k)-space was an abelian group under connected sum (by results 
of Smale, h-cobordism and isotopy are synonymous if k > 2 and  n > 4). He then showed 
that Θ4k−1,2k+1 ∼= Z by constructing an invariant in the following manner. 

If K4k−1 ⊆ S6k is a smooth knot, then choose a framed properly embedded submanifold 
N ⊆ D6k+1 bounded by K. A 2k-cocycle of N is defined by considering the linking number 

6k+1of any 2k-cycle of N with a translate of N in D . The square of this cocycle is the 
desired invariant. It turned out to be the complete obstruction to ambiently “surgering” N 
to a disk . A similar argument showed that Θ4k+1,2k+2 ∼= Z2. 

In 1964 Levine [Lev65a] used the methods of Kervaire-Milnor’s ground-breaking work [KM63] 
on the classification of homotopy-spheres, together with Haefliger’s ambient surgery tech
niques, to produce a non-stable version of the Kervaire-Milnor exact sequences for k >  2 
and n > 4: 

d
Θn,k τ σ· · ·  →  πn+1(Gk, SOk) −−−−→ Pn+1 −−−−→ −−−−→ πn(Gk, SOk) −−−−→ Pn →  · · ·  

Here Pn is defined to be Z, if  n ≡ 0 (mod  4),  Z2 if n ≡ 2 (mod  4),  and  0  if  n is odd. Gk 
k−1 k−1is the space of maps S → S of degree 1. The map d is defined as follows. Choose 
n+1a proper embedding N ⊆ Dn+k+1, where  N is some framed manifold with spherical 

boundary and signature or Kervaire invariant a given element a ∈ Pn+1. Then  d(a) is  
n+k n+kdefined to be the knot ∂N ⊆ S and is independent of the choice of N . If  K ⊆ S , 

n+k − K c Sk−1then τ([K]) is defined from the homotopy class of the inclusion ∂T ⊆ S , 
where T is a tubular neighborhood of K. This sequence essentially reduced the classification 
of knots in codimension > 2 to the computation of some homotopy groups of spheres and 
the relevant J-homomorphisms, modulo some important group extension problems including 
the infamous Kervaire invariant conjecture. 
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Shortly after this, Haefliger [Hae66a] produced an alternative classification of knots using 
triad homotopy groups. He considered the group Cn,k of h-cobordism classes of embeddings 
of Sn in Sn+k . The relation between Cn,k and Θn,k is embodied in an exact sequence due 
to Kervaire: 

→ Θn+1 → Cn,k → Θn,k → Θn ∂ → Cn−1,k →· · · −−−− −−−− · · ·  
Here Θn denotes the group of h-cobordism classes of homotopy n-spheres, and ∂ is defined 

n nby associating to any Σ ∈ Θn its gluing map h, defined by the formula Σ = D ∪h D , 
hand then considering the embedding Sn−1 → Sn−1 ⊆ Sn+k−1. Haefliger showed that −−−−

Cn,k ∼= πn+1(G; Gk , SO), where G = limq→∞ Gq and SO = limq→∞ SOq . 
All of these results are interconnected by a “braided” collection of exact sequences 

(see [Hae66a]). 
In [Hae66b] Haefliger applied these techniques to the classification of links in codimension 

> 2 and the result was another collection of exact sequences which reduced the classification 
of links to the classification of the knot components and more homotopy theory. For any 
collection of positive integers p1, · · · pr,m, where  m > pi + 2, the set of h-cobordism classes 
of disjoint embeddings Sp1 + · · ·+ Spr ⊆ Sm forms an abelian group under component-wise 
connected sum. It contains, as a summand, the direct sum Cpi ,m−pi , representing  the  i 

msplit links. The remaining summand Lp was shown by Haefliger to lie in an exact sequence: 

Wm m m· · · → Ap+1 → Bp
m 
+1 → Lp → Ap −−−−→ Bp

m → · · ·  (1) 

mwhere p stands for the sequence p1, · · · pr. The  terms  Ap and Bp
m are made up from 

homotopy groups of spheres and W is defined by Whitehead products. 
After the development of the surgery sequence of Browder, Novikov, Sullivan and Wall [Wal70] 

these earlier knot and link classification results were given a more concise treatment in [Hab86]. 
In fact the methods of Browder and Novikov had already been extended to give a surgery-
theoretic classification of embeddings of a simply-connected manifold in another simply-
connected manifold. A general classification of embeddings in the meta-stable range, using 
the homotopy theory of the Thom space of the normal bundle was given by Levine in [Lev63]. 
For any closed simply-connected manifold Mn and vector bundle ξk over M , with  n < 2k−3, 
which is stably isomorphic to the stable normal bundle of M , there is a one-one correspon
dence (with some possible exceptions related to the Kervaire invariant problem) between 
the set of h-cobordism classes of embeddings of M into Sn+k and normal bundle ξ and 
the set h−1(ω), where ω ∈ Hn+k(T (ξ)) ∼ Z and h : πn+k(T (ξ)) → Hn+k(T (ξ)) is the = 
Hurewicz homomorphism. Here, T (ξ) is the Thom space of ξ. Browder, in [Bro66], gives 
a classification of smooth simply connected embeddings in codimension > 2 in terms  of  a  
homotopy-theoretic model of the complement. Here the fundamental notion of a Poincaré 
embedding first appeared, and was later refined by Levitt [Lev68] and Wall [Wal70]. 

A Poincaré embedding of manifolds X in Y is a spherical fibration ξ over X , a  Poincaré 
pair (C,B), a homotopy equivalence of B with the total space S(ξ) of  ξ, and  of  Y with the 
union along B of C and the mapping cylinder of the map S(ξ) → X . C is a homotopy 
theoretic model for the complement of the embedding. A theorem of Browder (extended 
by Wall to the non-simply connected case) says that if if X is an m manifold and Y is an 
n manifold, and n − m ≥ 3 then a (locally flat) topological or PL embedding determines 
a unique Poincaré embedding and a Poincaré embedding corresponds to a unique locally 
flat PL or topological embedding (See, for instance, [Wal70].) For smooth embeddings 
one must first specify a linear reduction for ξ as well. This extended an earlier result of 

→ V n+qBrowder, Casson, Haefliger and Wall that said that any homotopy equivalence Mn 
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of PL-manifolds is homotopic to an embedding if q ≥ 3. (The more general result has been 
sometimes referred to as the Browder, Casson, Haefliger, Sullivan, Wall theorem.) A broad 
extension of this result to stratified spaces can be found in [Wei94]. 

3. Knot theory in codimension two 

3.1. Unknotting. One of the earliest applications of surgery to codimension two knot the
ory was the unknotting theorem of Levine [Lev65b] which states that a smooth or piecewise-
linearly embedded homotopy n-sphere K ⊆ Sn+2, for  n >  2, is smoothly isotopic to the 

⊆ Sn+2standard embedding Sn if and only if the complement Sn+2 − K is homotopy 
equivalent to the circle. Earlier Stallings had established that topological locally flat codi
mension 2 knots, of dimension > 2, whose complements have the homotopy type of a circle, 
are unknotted [Sta63]. His proof used the method of engulfing. Levine’s proof of this fact 
(in dimensions > 4, extended by Wall [Wal65] to n = 3) in the smooth or piecewise-linear 
category proceeded by showing that one could do ambient surgery on a Seifert surface of 
the knot to convert it to a disk. 

These surgery techniques were later used by Levine, in [Lev70], to give a classification 
of simple odd-dimensional knots of dimension > 1— i.e. knots whose complements are 
homotopy equivalent to that of the trivial knot below the middle dimension— in terms of the 
Seifert matrix of the knot. The Seifert matrix of a knot K2n−1 ⊆ S2n+1 is a representative 
matrix of the Seifert pairing which is defined as follows. Choose any (n−1)-connected Seifert 
surface for K, i.e. a submanifold M2n ⊆ S2n+1 whose boundary is K. The existence of such 
M is equivalent to K being simple. The Seifert pairing associated to M is a bilinear pairing 
σ : Hn(M) ⊗ Hn(M) → Z. If  α, β ∈ Hn(M) choose representative cycles z, w, respectively 

'and define σ(α, β) =  e k(z , w), where e k  denotes linking number and z' is a translate of z off 
M in the positive normal direction. Different choices of M give different Seifert matrices but 
any two are related by a sequence of simple moves called S-equivalence. The classification 
of simple knots is then given by the S-equivalence class of its Seifert matrix. 

Classification of simple even-dimensional knots was achieved, in special cases, by Kearton [Kea76] 
and Kojima [Koj79] and, in full generality, by Farber in [Far84a]. The classification scheme 
here is considerably more complex than in the odd-dimensional case. For a simple knot 
K2n ⊆ S2n+2 let X = S2n+2 − K and X̃ denote the infinite cyclic cover of X . Then the in
variants which classify, in Farber’s formulation, are: the Z[t, t−1]-modules A = Hn(X̃), B  = 
πn
S 
+2(X̃) (the stable homotopy group), the map α : A ⊗ Z2 → B, defined by composition 

with the non-zero element of πn+2(S
n), and two pairings l : T (A) ⊗ T (A) → Q/Z (T (A) 

is the Z-torsion submodule of A) and  ψ : B ⊗Z B → Z4 which are defined from Poincaré 
duality. 

This result is, in fact, a consequence of a more general result of Farber’s [Far84], [Far80] 
which gives a homotopy-theoretic classification of stable knots, i.e. knots Kn ⊆ Sn+2 whose 
complements are homotopy equivalent to that of the trivial knot below dimension (n+3)/3. 
The classification is via the stable homotopy type of a Seifert surface M together with 
a product structure u : M ∧ M → Sn+1, representing the intersection pairing, and a map 
z : ΣM → ΣM (ΣM is the suspension of M) representing the Seifert pairing, i.e. translation 
into the complement of M in Sn+2 combined with Alexander duality. In a somewhat different 
direction, Lashof-Shaneson [LS69], used the surgery theory of Wall [Wal70] to show that 
the isotopy class of a knot is determined by the homotopy type of its complementary pair 
(X, ∂X), where X is the complement of the knot, as long as π1(X) =  Z. 

A specific problem which received some attention was the question of how well the com
plement of a knot determined the knot (we restrict ourselves to knots of dimension > 1). 
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Gluck [Glu67] showed that there could be at most two knots with the same complement in 
dimension 2. Later Browder [Bro67] obtained this result in all dimensions ≥ 5. Lashof and 
Shaneson extended this to the remaining high dimensional cases, n = 3, 4 [LS69]. It followed 
from Farber’s classification that stable knots were determined by their complement, but Gor
don [Gor76], Cappell-Shaneson [CS76b] and Suciu [Suc92] constructed examples of knots 
which were not determined by their complements. These examples all had non-abelian fun
damental group and it remains a popular open conjecture that, when π1(complement) = Z, 
the knot is determined by its complement. 

3.2. Knot invariants. Surgery methods were also used to describe the various algebraic 
invariants associated to knots. For example in [Lev66] Levine gave another proof of Seifert’s 
result characterizing which polynomials could be the Alexander polynomial of a knot (also 
see [Rol75]). This generalized Seifert’s result to a wider array of knot polynomials, defined 
for higher-dimensional knots as the Fitting invariants of the homology Z[t, t−1]-modules of 
the canonical infinite cyclic covering of the complement of the knot. In [Ker65a] Kervaire 
gave a complete and simple characterization of which groups π could be the fundamental 
group of the complement of a knot of dimension > 2. The proof used plumbing constructions 
to construct the knot complement with the desired group, and then invoked the Poincaré 
conjecture to recognize that a given manifold was a knot complement. This last idea at 
least partially foreshadowed the homology surgery techniques of Cappell and Shaneson of 
the next decade. The conditions Kervaire obtained were: 

(i) H1(π) ∼= Z
 
(ii) H2(π) = 0 
  
(iii) π is normally generated by a single element 

By replacing condition (ii) by the stronger condition: 

(ii’) π has a presentation with one more generator than relators 

he described a large class of groups which are the fundamental group of the complement 
of some 2-dimensional knot (the process of spinning shows that any 2-knot group is a 3
knot group). Using Poincaré duality in the universal cover of the complement, several 
people found further properties of 2-knot groups which enabled them to produce examples 
of 3-knot groups which were not 2-knot groups, but the problem of characterizing 2-knot 
groups is still open (as is, of course, 1-knot groups). See Farber [Far75], Gutierrez [Gut72], 
Hausmann and Weinberger [HW85], Hillman [Hil80], Levine [Lev77b], and especially, see 
Hillman’s book [Hil89] for an extensive study of this question. An old example of Fox showed 
that (ii’) was not a necessary condition for 2-knot groups. In [Ker65a] Kervaire also gave a 
complete characterization of the lowest non-trivial homotopy group of the complement of a 
knot with π1(complement) = Z, as a  Z[t, t−1]-module. In [Lev77a], Levine gives a complete 
characterization of the Z[t, t−1]-modules which can arise as any given homology module of 
the infinite cyclic covering of a knot of dimension > 2 (except for the torsion submodule of 
H1). 

3.3. Knot concordance. In codimension two, the relation of h-cobordism (more often 
called concordance today) is definitely weaker than isotopy and so the group Θn,2, known  
as the knot concordance group, measures this weaker relation. Its computation required 
drastically different techniques. 

The application of surgery techniques in this context was begun by Kervaire. In [Ker65b] 
he showed that all even-dimensional knots were slice. In [Lev69b] Levine gave an algebraic 
determination of the odd-dimensional knot concordance group in dimensions > 1 in  terms  of  
the algebraic cobordism classes of Seifert matrices. Two Seifert matrices A, B are cobordant 
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Xif the block sum A⊕(−B) is congruent to a matrix of the form ( 0 ), where X, Y, Z and the Y Z

zero matrix 0 are all square. It was then shown [Lev69a], using results of Milnor [Mil69], that 
the knot concordance group is a sum of an infinite number of Z, Z/2 and  Z/4 summands. 
More detailed information on the structure of this group was obtained by Stoltzfus in [Sto77]. 

In summation, knot concordance is now reasonably well-understood in dimensions > 1; 
the (smooth and PL) knot concordance group is periodic of period 4 (except it is a subgroup 
of index 2 for 3-dimensional knots). The topological knot concordance group preserves 
this periodicity at dimension 3 and is otherwise the same as the smooth and PL groups 
(see [CS73]). 

3.4. Homology surgery. In [CS74], Cappell and Shaneson attacked the problem of classi
fying codimension two embeddings within a fixed h-Poincaré embedding type. (See [CS78] 
for a precise definition of an h-Poincaré embedding.) Here, the key idea was to interpret 
codimension two embedding problems as problems in the classification of spaces up to ho
mology type. The motivating example should illustrate this well. 

By the high-dimensional Poincaré conjecture, a manifold with boundary Sn × S1 is the 
complement of a knot if and only if it is a homology circle and the fundamental group 
is normally generated by a single element (the meridian.) Thus, the classification of knot 
complements is the classification of homology circles, a calculation carried out in [CS74]. (In 
contrast, Levine’s unknotting theorem tells us that only the trivial knot has the homotopy 
type of S1.) Similarly, a homology cobordism between knot complements (again with extra 
π1 condition) extends, by the h-cobordism theorem, to a concordance of knots. Hence the 
classification of knot concordance reduces to computing the structure group of homology 
S1 × Dn+1 ' s. A general discussion tying together the various surgery theoretic tools for 
codimension two placement, known as of 1981, can be found in [Ran81]. 

Cappell and Shaneson’s applications of these techniques were quite rich. For example 
they showed that concordance classes of embeddings of a simply-connected manifold in a 
codimension two tubular neighborhood of itself were in one-one correspondence with the 
knot concordance group of the same dimension and this bijection was produced by adding 
local knots to the 0-section embedding. (See Matsumoto [Mat73] for related results.) This 
allowed for a geometric interpretation of the periodicity of knot concordance from a more 
natural surgery theoretic point of view [CS74], than those given via tensoring knots [KN77], 
or groups actions [Bre73]. In turn, as an example of how knot theory fertilizes the more 
general subject of manifold theory, knot theoretic ideas (in particular, branched fibrations) 
provided a geometric description of Siebenmann periodicity [CW87]. 

Cappell and Shaneson applied their homology surgery techniques to the study of singu
larities of codimension two PL-embeddings (i.e. non-locally flat embeddings) in [CS76a] and 
gave definitive results on the existence of such embeddings as well as an obstruction theory 
for removing the singularities. A codimension two PL locally flat embedding has a trivial 
tubular neighborhood. Thus one might hope to study non-locally flat embeddings with iso
lated singularities via the knot types of the links of the singularities. Indeed, they showed 
that the classifying space of oriented codimension two thickenings has the knot concordance 
groups as its homotopy groups. More recently, Cappell and Shaneson studied non-isolated 
singularities by observing that, with appropriate perversity, the link of a singularity looks 
like a knot to intersection homology [CS91]. 

Cappell and Shaneson prove that for closed oriented odd dimensional PL manifolds Mn 

and W n+2, with  n ≥ 3, a map f : M → W is homotopic to a (in general, non-locally flat) 
PL embedding if and only if f is the underlying map of an h-Poincaré embedding. This 
is often false in even dimensions, but still holds if W is simply connected. In fact, they 
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show the existence of even dimensional spineless manifolds, i.e., manifolds W n+2 with the 
homotopy type of an n manifold and such that W contains no codimension two embedded 
submanifold within its homotopy type. See [CS78] for an extensive discussion of these and 
other results and the techniques used to derive them. 

3.5. Four-dimensional surgery and classical knot concordance. For the case of clas
sical one-dimensional knots it was clear that the classification scheme of Kervaire and Levine 
must fail but it took some time before it was actually proved by Casson and Gordon [CG76], 
in a paper that is among the deepest in the literature of knot theory. All the higher-
dimensional knot concordance invariants are invariants of knotted circles as well, and knots 
for which these invariants vanish are often called algebraically slice. Casson and Gordon 
defined secondary slicing obstructions using signatures associated to metabelian coverings 
of the knot complement, and gave explicit examples of very simple one-dimensional knots 
that were algebraically slice but not (even topologically) slice. These remain among the 
most obscure invariants in geometric topology, and very little progress has been made in 
understanding them. Several papers of interest include Gilmer [Gil83], and Letsche [Let95] 
for traditional Casson Gordon invariants, and results of Cappell and Ruberman [CR88], 
Gilmer-Livingston [GL92], Ruberman [Rub83], and Smolinsky [Smo86] that investigate the 
use of Casson Gordon invariants to study doubly slice knots in the classical and higher 
dimensional context. 

The knot slice problem seeks to classify the structure set of homology circles, and it seems 
natural to suppose that the Casson-Gordon invariants manifest the existence of secondary 
four-dimensional homology surgery invariants. Freedman’s work suggests that any secondary 
obstructions to topological surgery obstruct building Casson handles. It is a central question 
to relate these ideas, and see what role Casson-Gordon invariants play in the general problem 
of computing homology structure groups in dimension four, and in creating Casson handles 
in general. 

In a remarkable application of Freedman’s topological surgery machine, Freedman has 
shown that a classical knot is slice with a slicing complement with fundamental group Z 
(called Z-slice) if and only if the Alexander module of the knot vanishes [Fre82]. (Donald
son’s work implies not all of these knots are smoothly slice, giving counterexamples to the 
topological ribbon slice problem! Freedman’s work predicts that an analogous class of links, 
called good boundary links, are slice. However, such links have free (or nearly so) fundamen
tal groups, and it is still an open question whether topological surgery works for such groups. 
In fact, Casson and Freedman showed that good boundary links are slice if and only if every 
four-dimensional normal map with vanishing surgery obstruction is normally cobordant to 
a homotopy equivalence [CF84]. The Whitehead double of any link, with pairwise vanishing 
linking numbers zero, is a good boundary link, and the slicing problem for the Whitehead 
double of the Borromean rings may be the archetypal example on which this problem’s 
solution rests. A discussion of these and other connections between the four-dimensional 
topological surgery conjecture and the link slice problem can be found in [FQ90]. 

Among the most important open problems that surgery theory gives hope of answering 
is the ribbon-slice problem. It is conjectured that a knot is ribbon if and only if it is 
smoothly slice. In the topological category, one seeks to determine if a knot is slice if 
and only if it is homotopy ribbon. A knot is homotopy ribbon if it is slice by a locally 
flat, topologically embedded two disk where the inclusion of the complement of the knot 
to the complement of the slicing disk induces an epimorphism on fundamental group. The 
Casson-Gordon invariants give potential obstructions to this, as they may detect the failure 
of this map to induce an epimorphism of fundamental groups. A more complete theory 
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of topological homology surgery in dimension 4 would give deeper invariants, and possibly 
realization techniques for solving the homotopy ribbon-slice problem. For instance, reducing 
the classification of classical knot concordance to the four dimensional topological surgery 
conjecture might reduce this problem to a surgery group computation. 

4. Link concordance 

4.1. Boundary links. Following success in the classification of knot concordance in high 
dimensions, attention focused on classifying links up to concordance. The knot concordance 
classification theorems made explicit use of the Seifert surface for the knot. The existence 
of this Seifert surface meant that S1 split from the knot complement. A link for which the 
components bound pairwise disjoint Seifert surfaces is called a boundary link. A boundary 
link complement splits a wedge of circles. It is natural to suspect that concordance of 
boundary links might be computable using similar techniques to those used to classify knots. 
In fact, the trivial link gives a nice Poincaré embedding and the classification of concordance 
of boundary links is, roughly, the classification of homology structures on the trivial link 
complement. 

The arguments of Kervaire used to slice even-dimensional knots were easily seen to slice 
even-dimensional boundary links as well. Cappell-Shaneson applied their homology surgery 
machinery to calculate the boundary concordance group of boundary links of dimension 
> 1 [CS80], where boundary link concordance is the natural notion of concordance for bound
ary links. More precisely, the components of the concordance, together with the Seifert 
surface systems for the links, are assumed to bound pairwise disjoint, oriented, and embed
ded manifolds. They prove that in all odd dimensions there exist infinitely many distinct 
concordance classes of boundary links none of which contain split links. Their argument is 
somewhat delicate. The homology surgery group which computes boundary concordance of 
boundary links detects links not boundary concordant to a split link. Further arguments 
were needed to show that these same links were not concordant to split links. 

Later, Ko [Ko87] and Mio [Mio87] used Seifert matrices to give an alternative classification 
of boundary link concordance of boundary links and Duval [DuV86] obtained the classifica
tion using Blanchfield pairings. The complete computation of these surgery groups has not 
been attempted to our knowledge, and remains an interesting open problem. An isotopy 
classification of simple odd-dimensional (boundary) links was carried out by Liang [Lia77] in 
terms of Seifert matrices and by Farber [Far91] in terms of the Blanchfield pairing. Farber’s 
result was a special case of a more general classification, carried out in [Far92], of stable 
boundary links using stable homotopy theory and Wall’s theory of thickenings. 

4.2. Non-boundary links. We have seen that the classification of boundary links, up 
to concordance, followed similar lines to the classification of knot concordance. But the 
concordance classification of non-boundary links has proven more difficult, requiring new 
ideas and techniques. With the work of Cappell and Shaneson, attention naturally focused 
on these two questions: 

(1) Are all links concordant to boundary links? 
(2) Is boundary link concordance the same as link concordance? 

The first question has only recently been answered and the second remains open. 
Perhaps the first suggestion of how to proceed appeared in a small concluding section 

of [CS80], where the authors anticipate and motivate many of the techniques which continue 
to dominate research on link concordance. The authors suggested that one may study 
general link concordance (as opposed to boundary link concordance) by considering limiting 
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constructions which serve as a way of measuring the failure of a given link to be a boundary 
link. We elaborate further. 

Boundary links are accessible to surgery techniques because there is a terminal boundary 
link complement (the trivial link) to which all boundary link complements map by a degree 
one map. This gives a manifold to which all boundary link complements can be compared. 
Similarly, a slice complement for the trivial link is terminal among all boundary link slice 
complements. Since the fundamental group can change dramatically under a homology 
equivalence (and under a concordance), no simple terminal object exists for general links. 
Cappell and Shaneson suggested that a limit of link groups might be used to construct such 
a terminal object for links. This suggestion launched a flurry of research activity. 

The missing idea, needed to make Cappell and Shaneson’s suggestion work, was discov
ered by Vogel in an unpublished manuscript, and implemented in a paper of Le Dimet [Dim88]. 
Vogel suggested that instead of taking the limit through link groups, one should take the 
limit through spaces of the homology type one seeks to classify, thus constructing a terminal 
object within a homology class. Homotopy theory had long studied similar limiting con
structions, i.e., Bousfield’s homology localization of a space [Bou75]. Bousfield’s space was 
far too big for the study of compact manifolds. The Vogel localization was a limit through 
maps of finite CW complexes with contractible cofiber. 

In [Dim88], Le Dimet uses Vogel’s idea to classify concordance classes of disk links. A 
disk link is a collection of codimension two disks disjointly embedded in a disk so that the 
embedding is standard on the boundary [Dim88]. (We believe disk links first appeared in 
this paper. Links in the 3-disk were later referred to as string links.) The inclusion of the 
meridians (a wedge of circles) of a disk link into the complement is a map of finite complexes 
with contractible cofiber, and thus becomes a homotopy equivalence after localization. Re
stricting a homotopy inverse to the boundary of the disk link complement gives a map 
whose homotopy class is a concordance invariant of the disk link. We will refer to this as 
Le Dimet’s homotopy invariant. Le Dimet proved that m component, n-dimensional disks 
links, modulo disk link concordance, form a group Cn,m and that, for n ≥ 2, this group 
and his homotopy invariant fit into an exact sequence involving Cappell-Shaneson homology 
surgery groups. In particular, Le Dimet gives a long exact sequence as follows: 

· · · → Cn+1,m → Hn+1 → Γn+3 → Cn,m → Hn → · · ·  

Here, Hn = [#Sn × S1, E(∨S1)] (homotopy classes of maps) is the home of Le Dimet’s 
homotopy invariant. E(∨S1) is the Vogel localization of a wedge of circles, and Γn+3 is a 
relative homology surgery group involving π1(E(∨S1)) which acts on Cn,m. 

Concordance classes of links are a quotient set of Le Dimet’s disk link concordance group, 
and so the computation of this group is of fundamental importance. Unfortunately, the Vogel 
localization is difficult to compute and almost nothing is known about it. Understanding 
this space and its fundamental group remains among the most central open problems in the 
study of high-dimensional link concordance. For example, if this space is a K(π, 1), then 
even-dimensional links are always slice. 

In [CO90, CO93], Cochran and Orr gave the first examples of higher odd-dimensional links 
not concordant to boundary links. Although this work was partly motivated by Le Dimet’s 
work (and other sources as well) the paper gave obstructions in terms of localized Blanchfield 
pairings of knots lying in branched covers of the given link. They obtained examples of 2
torsion and 4-torsion, Brunnian examples (remove one component and the link becomes 
trivial) as well as other interesting phenomena. They gave similar examples for links in 
S3 . (Here the interesting problem was to find links with vanishing Milnor µ̄-invariants that 
are not concordant to boundary links.) All these examples are odd-dimensional and realize 
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non-trivial surgery group obstructions from Le Dimet’s sequence. After their work several 
alternative approaches have provided more examples. (See Gilmer-Livingston [GL92] and 
Levine [Lev94]. The latter paper investigates the invariance of signatures and the Atiyah-
Patodi-Singer invariant under homology cobordism.) 

In [Coc87], Cochran began an investigation of homology boundary links and concordance. 
Homology boundary links, like boundary links, have a rank preserving homomorphism from 
their link groups to a free group. But unlike boundary links, this homomorphism is not 
required to take meridians to a generating set. (Using the Pontryagin-Thom construc
tion one can obtain what is called a singular Seifert surface system for this class of links 
(see Smythe [Smy66]). All known examples of higher-dimensional links not concordant to 
boundary links are sublinks of homology boundary links. 

Realizing Le Dimet’s homotopy obstruction is a difficult problem about which almost 
nothing is known. For even-dimensional links it is the sole obstruction to slicing. For links 
in S3, Levine showed that it (or equivalently, an invariant he defined independently – see 
below) vanishes if and only if the link is concordant to a sublink of a homology boundary 
link [Lev89]. Shortly afterwards, Levine, Mio and Orr proved the same result for links of 
higher odd dimension [LMO93]. An easy calculation shows Le Dimet’s invariant vanishes 
on even dimensional sublinks of homology boundary links as well, implying these links are 
always slice! Thus, homology boundary links provide a geometric interpretation for the 
vanishing of Le Dimet’s homotopy invariant. 

In [CO94], Cochran and Orr classified homology boundary links. Of particular interest 
here was a new construction for creating a homology boundary link from a boundary link 
and a ribbon link with a fixed normal generating set, creating a link with prescribed prop
erties and realizing given surgery invariants. It seems likely that this construction can be 
generalized, potentially providing examples for a wide class of related problems in knot and 
link theory. 

The work of Vogel and Le Dimet was not unprecedented. In [Coc84], Cochran employed 
Cappell and Shaneson’s suggestion of taking a limit through link groups to classify links of 
two spheres in S4 . He used the observation that link groups had the homology type of link 
complements through half the dimensions of the link complement for links in S4. In  fact,  
Le Dimet’s homotopy invariant followed a flurry of mathematical activity in the study of 
homotopy theoretic invariants of link concordance. 

Prior to 1980 Milnor’s µ̄-invariants for classical links (equivalently, Massey products) were 
the only known homotopy theoretic obstructions to slicing a link. They remain among the 
deepest and most important invariants of knot theory and play an important role in the study 
of topological surgery in dimension four [FQ90]. In [Sat84], Sato (and Levine, independently) 
introduced a concordance invariant for higher-dimensional links that generalized the µ̄
invariant, µ̄1212, which detects the Whitehead link in dimension one. These invariants were 
greatly extended using geometric techniques by Cochran [Coc85, Coc90], and homotopy-
theoretic techniques by Orr [Orr87, Orr89]. But the only invariant among these that was 
not later shown to vanish, or to be roughly equivalent to Milnor’s invariants was a single 
invariant from [Orr89]. This invariant remains obscure and unrealized. 

One outgrowth of this study was the formulation of a group theoretic construction called 
algebraic closure by Levine in [Lev89], a smaller version of the nilpotent completion. This 
work provides a combinatorial description of the fundamental group of a Vogel local space, 
and has proven useful both in defining new invariants, and as a tool for computing local 
groups. There are two variations of this construction. For a group π, π̄ lives in the nilpotent 
completion of π while the possibly larger group π̂ is defined by a universal property. π̂ is the 
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fundamental group of the Vogel localization of any space with fundamental group π. Levine  
used this latter algebraic closure construction to define a new invariant for certain classical 

¯links. First of all, the µ̄-invariants of Milnor can be viewed as living in F . (This observation 
allows one to prove a realizability theorem for the µ̄ invariants; one of the conditions for 
realizability is the vanishing of a class in H2(F̄ )). One can define a slight generalization of 

ˆthe µ̄ invariants which are just liftings into F . Then, for (classical) links on which these 
invariants vanish, a new, possibly non-trivial, concordance invariant lives in H3(F̂ ). This 
latter invariant vanishes if and only if Le Dimet’s invariant vanishes. It was then proved 
in [Lev89] that this invariant vanishes if and only if the link is concordant to a sublink 
of a homology-boundary link, and that every element of H3(F̂ ) is realized by some link. 
(Unfortunately we do not know if this homology group is non-zero.) This result suggested 
the higher-dimensional analogue in [LMO93]. 

4.3. Poincaré embeddings again. In summary, it is still unknown whether all even-
dimensional links are slice and whether every higher-dimensional link is concordant to a 
sublink of a homology boundary link. Both of these problems would be solved by computing 
Le Dimet’s homotopy invariant. But, more generally, we should ask what is the larger role 
of Vogel local spaces in surgery and embedding theory? 

Implicit in Le Dimet’s work is the notion that, for codimension two placement and the 
classification theory of manifolds within a homology type, one should consider a weakened 
version of Poincaré embedding, where spaces are replaced with their Vogel local counterparts. 
For the study of high-codimension embeddings all spaces considered are usually simply 
connected, and therefore already local. For this reason, earlier results did not need this 
operation of localization. This helps account for both the early progress in high codimension, 
and the long delay in dealing effectively with the codimension-two case. It is a fundamental 
problem to develop this theory to its conclusion, and to consider the more general theory 
for stratified spaces (see [Wei94].) Examples where this is used (at least implicitly) to study 
general embedding theory can be found in the classification results of Mio, for links with 
one codimension component [Mio92], and the torus knotting results of Miller [Mil94]. 

Another problem is to derive the surgery exact sequence for this type of classification. 
Normal maps with coefficients were classified in [Qui75] and [TW79] for subrings of Q, but 
a general theory for the localization of an arbitrary ring does not exist at this time. 

4.4. Open problems. The following list of problems is by no means exhaustive, represent
ing a small subset of difficult problems we think are particularly interesting. They are either 
problems in surgery theory motivated by knot theory and from whose solution knot theory 
should benefit, or problems in knot theory that should be approachable through surgery 
theory. 

(1) Are knots determined by their complement when π1 is Z? 
(2) Give an algebraic characterization of 2-knot groups. 
(3) Find tools for computing the algebraic closure of a group.
 

¯
(4) For the free group F , compute the homology of F and the algebraic closure of the 
F ∼ F̂ ∼ ¯free group ˆ = π1(E(∨S1)). Is = F ? 

(5) Are all even-dimensional links slice? 
(6) Is every odd dimensional link (with vanishing Milnor’s µ̄-invariants if n = 1)  con

cordant to a sublink of a homology boundary link? Are all higher dimensional links 
sublinks of homology boundary links? 

(7) Is every sublink of a homology boundary link concordant to a homology boundary 
link? 

http:�1(E(�S1)).Is
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(8) Compute the homotopy type of the Vogel localization of a wedge of circles, and Le 
Dimet’s homotopy invariant. More generally, find tools for computing the homotopy 
type of Vogel local spaces. 

(9) Find more invariants and, ultimately, compute the homology surgery group classify
ing boundary link concordance. In particular, if two boundary links are concordant, 
are they also boundary concordant? 

(10) Find	 more invariants and, ultimately, compute the homology surgery group in 
LeDimet’s exact sequence which classifies sublinks of homology boundary links up 
to concordance. 

(11) Derive a surgery exact sequence for homology structures with coefficients.	 In par
ticular, classify normal maps. 

(12) Find a complete set of invariants for classical knot concordance. 
(13) If a classical knot is topologically slice in a homology three disk, is it topologically 

slice? This problem measures the possible difference between computing concor
dance of classical knots, and the solution of a homology surgery problem. 

(14) Develop a theory of homology surgery in dimension four (at least modulo Freedman’s 
four dimensional topological surgery problem.) 

(15) Solve the homotopy ribbon-topological slice problem. 
(16) Relate Casson-Gordon invariants to a topological four-dimensional homology surgery 

machine, and in particular, find the relation to Casson handles. 
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