
Fluid Solver for Incompressible Flow in a Rectangular Domain with Arbitrarily-placed Inclusions

A Senior Honors Thesis

Presented to

The Department of Mathematics
Brandeis University

Department of Mathematics
Bachelor of Science in Applied Mathematics

Dr. Thomas Fai, Advisor

In Partial Fulfillment
of the Requirements for the Degree

BS in Applied Mathematics

by

Swaminathan Lamelas

May 2022



Copyright by
Swaminathan Lamelas

2022



Fluid Solver for Incompressible Flow in a Rectangular Domain with Arbitrarily-placed Inclusions

A thesis presented to the Department of Mathematics, Brandeis University
Waltham, Massachusetts

By Swaminathan Lamelas

Microfluidic devices are used to process fluids at a small scale. Some of these devices contain physical

obstacles that are used to manipulate the flow of fluid through the device. In our work, we implement a

Python program for approximating the velocity of an incompressible fluid over a rectangular domain using

the Navier-Stokes equations. Our strategy, which is built primarily on common finite difference methods,

allows users to easily add obstacles into the domain and observe their effects on fluid flow. In the first half

of the thesis, we describe the derivation, implementation, and benchmarking of our strategy. In the latter

half, we describe some numerical experiments that we performed with our program to observe the effects of

inclusions on both fluid flow and hydraulic resistance. We compare the hydraulic resistance reported by our

program with an analytic approximation. Lastly, we briefly mention some possible expansions on our work.

iii



This Senior Honors thesis, directed and approved by Swaminathan Lamelas’ Committee, has been accepted

and

approved by

the Department of Mathematics at Brandeis University

in partial fulfillment of the requirements for the degree of: BS Applied Mathematics

An Huang, Undergraduate Advising Head

Dissertation Committee: Dr. Thomas Fai, Dr. An Huang

Printed Name Signature

Printed Name Signature



1 Introduction

Microfluidic devices are used in a variety of disciplines as a way to process particles in a fluid. The study

of fluids at small volumes via these devices has been of interest in both academia and industry for quite

some time and has recently grown in popularity. These devices have been primarily used in the research and

development of commercial products in the life sciences as opposed to being stand alone products themselves

[10]. “Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration” by Torino et.

al. provides an example use of microfluidic devices [14]. In their work, Torino et. al. create a cross-filter

by placing obstacles in a microfluidic device that manipulate the flow of a fluid in such a way that certain

particles are separated from the fluid. A cross-filter is a type of filter that is less likely to become clogged

when filtering out particles from a surrounding fluid.

Kelly and Fai study blood cell clogging in certain microfluidic devices [8]. They also are interested in a

related problem that inspired this thesis: model the flow of an incompressible fluid through a rectangular

domain with rectangular inclusions placed throughout. Inclusions are obstacles in the domain that the fluid

must flow around. In this thesis, we implement a Python program that numerically approximates the fluid

velocity using the Navier-Stokes equations for incompressible fluids [7]. Our primary focus in building this

program is providing users with the ability to place inclusions in the domain as arbitrarily as possible.

In section 1.1, we introduce the particular boundary value problem we solve to obtain approximations for

the velocity on the domain. In section 2, we discuss the implementation of our solver for Poisson’s equation

[11]. This is necessary because our strategy for approximating the solution to the Navier-Stokes equations

involves approximating the solution to Poisson’s equation. Our strategy for approximating the solution to

Poisson’s equation reduces to a solving a matrix system constructed using common finite difference techniques.

In section 3, we describe and benchmark our fluid velocity solver which uses an iterative strategy to solve

the Navier-Stokes equations in the presence of inclusions. This solver is built upon our Poisson solver. We

also discuss evidence of unresolved inaccuracies with our velocity solver.

In section 4, we discuss a collection of numerical experiments that use our velocity solver to analyze the

effects of inclusion arrangement on fluid flow. 2 of our experiments examine how the proximity and number

of inclusions affect the fluid flow. Others such as Eluru et. al. look into the effects of these variations

when studying particle clogging [3]. 2 of our other experiments examine the effects of placing inclusions

into 2 columns and staggering them. Staggering refers to the horizontal offsetting of the inclusions in the 2

columns. To see an example of aligned and staggered inclusions, see Figures 15 and 16 in section 4.2 where

these experiments are discussed in detail. Analysis of the impact of staggered inclusions on fluid flow is

related to the work done by Torino et. al. [14] and Bacchin et. al [1]. In section 4, we also compare the

1



hydraulic resistance output by our solver with an analytic approximation that treats fluid flow channels like

resistors. By channels, we mean the paths defined by inclusions in the domain that the fluid is forced to travel

through. We find that for some inclusion set ups the analytic approximation fails to capture some impacts of

the inclusions while our solver is able to. This demonstrates the importance of such a solver beyond providing

us with the ability to analyze fluid flow using streamline plots derived from velocity approximations. We end

the thesis describing some possible expansions on our work. This includes directions for improving our solver

in accuracy and efficiency as well as incorporating our solver with the Immersed Boundary Method [12] to

model the movement of blood cells in a fluid.

1.1 Problem Formulation

The incompressible Navier-Stokes equations are partial differential equations that describe the flow of incom-

pressible fluids. As stated in “Finite Difference Schemes for Incompressible Flow Based on Local Pressure

Boundary Conditions” by Johnston and Liu, the incompressible Navier-Stokes equations may be written as

follows [7]. Incompressibility is enforced by the pressure Poisson equation.

ρ

(
du

dt
+ (u · ∇)u

)
+∇p = µ∇u (momentum equation)

∆p = 2ρ

(
du

dx

dv

dy
− du

dy

dv

dx

)
(pressure Poisson equation)

ρ is the density and µ is the dynamic viscosity. u = u(x, y, t) is the velocity and has a horizontal component

u = u(x, y, t) and a vertical component v = v(x, y, t). p = p(x, y, t) denotes the pressure. As mentioned

previously, we are interested in fluid flow on a 2-dimensional rectangular domain with certain rectangular

regions of the domain removed. Let the domain be defined as D = [xl, xh]× [yl, yh]. The regions of D that are

removed are known as inclusions. At time t and point (x, y) ∈ D that lies outside of an inclusion, u(x, y, t)

denotes the horizontal velocity, v(x, y, t) the vertical velocity, and p(x, y, t) the pressure. The goal of our fluid

velocity solver is to approximate the solution u(x, y, t) to the above equations under the following boundary

conditions. There are no slip boundary conditions on the low and high y boundaries:

u(x, yl, t) = 0 v(x, yl, t) = 0 (1)

u(x, yh, t) = 0 v(x, yh, t) = 0 (2)

Since the fluid of study is incompressible, the divergence of the velocity ∇ ·u(x, y, t) is 0 over all of D and t.

Hence we can add the boundary conditions on the left and right domain boundaries:

2



p(xl, y, t) = pl v(xl, y, t) = 0 ∇ · u(xl, y, t) = 0

p(xh, y, t) = pr v(xh, y, t) = 0 ∇ · u(xh, y, t) = 0

pl and pr, the pressure on the left and right boundaries, are included to enforce a pressure drop from left to

right on D. Since v(xl, y, t) = v(xh, y, t) = 0 for all y ∈ [yl, yh], we know dv
dy (xl, y, t) =

dv
dy (xh, y, t) = 0 on the

same y-range. Therefore, the boundary conditions on the low and high x boundaries can be simplified to:

p(xl, y, t) = pl v(xl, y, t) = 0
du

dx
(xl, y, t) = 0 (3)

p(xh, y, t) = pr v(xh, y, t) = 0
du

dx
(xh, y, t) = 0 (4)

In the event we have inclusions in the domain, we have no slip boundary conditions on all the boundaries of

the inclusions. That is, for an inclusion spanning [x′
l, x

′
h]× [y′l, y

′
h] we have:

u(x′
l, y, t) = 0 u(x′

h, y, t) = 0 for y ∈ [y′l, y
′
h]

u(x, y′l, t) = 0 u(x, y′h, t) = 0 for x ∈ [x′
l, x

′
h]

In section 3.1, we formally describe an iterative strategy for approximating the solution to this boundary value

problem. This strategy requires the ability to approximate a solution to Poisson’s equation ∆p(x, y) = f(x, y)

on a rectangular domain. For now, we take f(x, y) to be a general function from R2 to R. In section 3 we

describe what f(x, y) is in the context of our velocity solver.

2 Poisson Solver

In this section we describe the implementation of our Poisson solver which approximates a discrete solution

to ∆p(x, y) = f(x, y) on a rectangular domain with rectangular inclusions. In this section, we explain how

such an approximation is derived, implemented, and benchmarked. In sections 2.1 and 2.3 we take f(x, y) to

be a general function as noted above. In sections 2.2 and 2.4, f(x, y) is specified in our benchmarks.

2.1 Derivation of Solver for a Rectangular Domain

To start, suppose we want to solve for p(x, y) such that ∆p(x, y) = f(x, y) on the interior of a domain

D = [xl, xh] × [yl, yh]. The boundary conditions along the boundaries of D are allowed be Neumann or

3



Dirichlet. For the moment, we assume there are no inclusions in the domain. We discuss inclusions in section

2.3. Formally, we want to approximate the solution p(x, y) such that:

∆p(x, y) = f(x, y) (5)

(x, y) ∈ D = [xl, xh]× [yl, yh] (6)

p(x, yl) = p0(x, yl)

(
or

∂p

∂y
(x, yl) = p0(x, yl)

)
(7)

p(x, yh) = p1(x, yh)

(
or

∂p

∂y
(x, yh) = p1(x, yh)

)
(8)

p(xl, y) = p2(xl, y)

(
or

∂p

∂x
(xl, y) = p2(xl, y)

)
(9)

p(xh, y) = p3(xh, y)

(
or

∂p

∂x
(xh, y) = p3(xh, y)

)
(10)

In equations (7) through (10), p0, p1, p2 and p3 are known functions that can be evaluated at points (x, y)

on the boundaries they correspond to. The first step to deriving a discrete approximation to p(x, y) subject

to these conditions is to discretize D into a non-staggered rectangular grid. Let h ∈ R>0 define the space

between points in the grid in both the x and y directions. h should evenly divide both yh − yl and xh − xl.

The discretization of D is given as the following set:

{
(
xl + (j + 1)h, yl + (i+ 1)h

)
: i = −1, 0, 1, . . . , Nr and j = −1, 0, 1, . . . , Nc} (11)

Nr gives the number of interior grid rows and Nc gives the number of interior grid columns. Restricting

i = 0, 1, . . . , Nr − 1 and j = 0, 1, . . . , Nc − 1 yields a subset of the grid points which form the interior grid: a

discretization of the interior of D. Nr and Nc are defined in terms of h and the bounds of D:

Nr =
yh − yl

h
− 1 Nc =

xh − xl

h
− 1

Thus, by increasing h, the number of grid points increases, meaning p(x, y) is approximated for more points

in D yielding a better approximation of the true behavior of p(x, y). Let pi,j denote the approximation of

p(xl + (j + 1)h, yl + (i+ 1)h). The solver calculates pi,j for grid points {(i, j) : i = 0, 1, . . . , Nr − 1 and j =

0, 1, . . . , Nc − 1}.

The second step to deriving a discrete approximation to p(x, y) is to approximate the constraints on it.

Most importantly, ∆p(x, y) = f(x, y). To do this, we need to use an approximation of the Laplacian ∆(·)

that makes use of the grid constructed above to approximate ∆p(x, y) at an (x, y) that lies on the grid. For

4



g(x, y), ∂g
∂x can be approximated using a second order finite centered difference method as follows:

∂g

∂x
≈ g(x+ δx, y)− g(x− δx, y)

2δx
(12)

δx represents a step size that discretizes the x-axis. Here we apply the single variable centered difference

method [5] to approximate a partial derivative. We can similarly approximate ∂2g
∂x2 with second order accuracy

based off the centered difference method for approximating the second derivative for a single variable [5]:

∂2g

∂x2
(x, y) ≈ g(x+ δx, y)− 2g(x, y) + g(x− δx, y)

δx2
(13)

(13) can be applied to approximate ∆g with second order accuracy assuming that δx is our step size on both

x and y. This approximation is referred to as the 5-point stencil approximation for the Laplacian of p(x, y)

[11].

∆g(x, y) =
∂2g

∂x2
+

∂2g

∂y2
≈ g(x+ δx, y) + g(x− δx, y)− 4g(x, y) + g(x, y + δx) + g(x, y − δx)

δx2 (14)

Recall that our task is to approximate p(x, y) for interior grid point (x, y) for the grid defined by (11) such

that ∆p(x, y) = f(x, y). If (x, y) lies on the interior of the grid, we have that (x+ h, y), (x− h, y), (x, y + h)

and (x, y − h) all fall in the set defined by (11). In particular, if pi,j is the approximation for p(x, y), then

we have the following approximations for p(x+ h, y), p(x− h, y), p(x, y + h) and p(x, y − h):

pi,j+1 ≈ p(x+ h, y) pi,j−1 ≈ p(x− h, y) pi+1,j ≈ p(x, y + h) pi−1,j ≈ p(x, y − h) (15)

We refer to (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1) as the neighbors of (i, j). Applying equation (14) to

interior grid position (x, y), with δx = h as defined above, we have the following approximation stencil using

the definitions in (15):

∆p(x, y) ≈ pi−1,j + pi+1,j − 4pi,j + pi,j−1 + pi,j+1

h2
(16)

The problem of approximating p(x, y) that satisfies equation (5) has been reduced to finding pi,j for i =

0, 1, . . . , Nr − 1 and j = 0, 1, . . . , Nc − 1 that satisfy:

pi−1,j + pi+1,j − 4pi,j + pi,j−1 + pi,j+1 = h2f(xl + (j + 1)h, yl + (i+ 1)h) (17)

It is important to note here that while pi,j is an unknown we are trying to solve for, this is not necessarily

true for pni,nj
for the neighbors (ni, nj) of (i, j). Each case where (ni, nj) is not an unknown is described

5



below. First, we introduce 2 more approximations of ∂g
∂x for g(x, y):

∂g

∂x
(x, y) ≈ g(x, y)− g(x− δx, y)

δx
(18)

∂g

∂x
(x, y) ≈ g(x+ δx, y)− g(x, y)

δx
(19)

These are modifications of the first order backward and forward finite difference approximations of a derivative

for a single variable respectively [5]. These equations are used shortly. First, consider equation (17) when

(i, j) = (0, 0). Equation (17) becomes:

p−1,0 + p1,0 − 4p0,0 + p0,−1 + p0,1 = h2f(xl + h, yl + h)

p−1,0 and p0,−1 do not correspond to interior grid points. That is, they are not values that are calculated

by our Poisson solver. Hence, they need to be replaced by known values in some way. If the boundary

condition given by equation (7) is Dirichlet, then p−1,0 can be set exactly to p0(xl + h, yl). Similarly, if the

boundary condition given by (9) is also Dirichlet, p0,−1 can be set to p2(xl, yl + h). Equations (7) and (9)

could alternatively be Neumann conditions. We cannot set p−1,0 and p0,−1 as above because p(xl+h, yl) and

p(xl, yl + h) are not known in this case. Observe that the following approximations can be made using (19):

∂p

∂y
(xl + h, yl) = p0(xl + h, yl) ≈

p(xl + h, yl + h)− p(xl + h, yl)

h
≈ p0,0 − p−1,0

h

=⇒ p−1,0 − p0,0 ≈ −hp0(xl + h, yl)

∂p

∂x
(xl, yl + h) = p2(xl, yl + h) ≈ p(xl + h, yl + h)− p(xl, yl + h)

h
≈ p0,0 − p0,−1

h

=⇒ p0,−1 − p0,0 ≈ −hp2(xl, yl + h)

Hence, when (i, j) = (0, 0) we have 4 possible equations:

p0(xl + h, yl) + p1,0 − 4p0,0 + p2(xl, yl + h) + p0,1 = h2f(xl + h, yl + h)

p0(xl + h, yl) + p1,0 − 3p0,0 − hp2(xl, yl + h) + p0,1 = h2f(xl + h, yl + h)

−hp0(xl + h, yl) + p1,0 − 3p0,0 + p2(xl, yl + h) + p0,1 = h2f(xl + h, yl + h)

−hp0(xl + h, yl) + p1,0 − 2p0,0 − hp2(xl, yl + h) + p0,1 = h2f(xl + h, yl + h)

To match the pattern of (17), it is more convenient to write these in such a way that the left hand side of

6



these equations are solely made up of pi,j for interior grid positions (i, j).

p1,0 − 4p0,0 + p0,1 = h2f(xl + h, yl + h)− p0(xl + h, yl)− p2(xl, yl + h) (20)

p1,0 − 3p0,0 + p0,1 = h2f(xl + h, yl + h)− p0(xl + h, yl) + hp2(xl, yl + h) (21)

p1,0 − 3p0,0 + p0,1 = h2f(xl + h, yl + h) + hp0(xl + h, yl)− p2(xl, yl + h) (22)

p1,0 − 2p0,0 + p0,1 = h2f(xl + h, yl + h) + hp0(xl + h, yl) + hp2(xl, yl + h) (23)

The next grid position we consider is (Nr − 1, Nc − 1). Equation (17) becomes:

pNr−2,Nc−1 + pNr,Nc−1 − 4pNr−1,Nc−1 + pNr−1,Nc−2 + pNr−1,Nc = h2f(xl +Nch, yl +Nrh)

pNr,Nc−1 and pNr−1,Nc do not correspond to interior grid points. Similar to the derivation for the equation

for p0,0, if equations (8) and (10) are Dirichlet boundary conditions we set pNr,Nc−1 = p1(xl +Nch, yh) and

pNr−1,Nc
= p3(xh, yl +Nrh). In the case of equations (8) and (10) being Neumann conditions, we cannot set

pNr,Nc−1 and pNr−1,Nc because p(xl+Nch, yh) and p(xh, yl+Nrh) are not known. The following observations

can be made using (18):

∂p

∂y
(xl +Nch, yh) = p1(xl +Nch, yh) ≈

p(xl +Nch, yh)− p(xl +Nch, yl +Nrh)

h
≈ pNr,Nc−1 − pNr−1,Nc−1

h

=⇒ pNr,Nc−1 − pNr−1,Nc−1 ≈ hp1(xl +Nch, yh)

∂p

∂x
(xh, yl +Nrh) = p3(xh, yl +Nrh) ≈

p(xh, yl +Nrh)− p(xl +Nch, yl +Nrh)

h
≈ pNr−1,Nc

− pNr−1,Nc−1

h

=⇒ pNr−1,Nc
− pNr−1,Nc−1 ≈ hp3(xh, yl +Nrh)

Thus, when (i, j) = (Nr − 1, Nc − 1) we have 4 possible equations arranged to match the format of (17):

pNr−2,Nc−1 − 4pNr−1,Nc−1 + pNr−1,Nc−2

= h2f(xl +Nch, yl +Nrh)− p1(xl +Nch, yh)− p3(xh, yl +Nrh) (24)

pNr−2,Nc−1 − 3pNr−1,Nc−1 + pNr−1,Nc−2

= h2f(xl +Nch, yl +Nrh)− p1(xl +Nch, yh)− hp3(xh, yl +Nrh) (25)

pNr−2,Nc−1 − 3pNr−1,Nc−1 + pNr−1,Nc−2

= h2f(xl +Nch, yl +Nrh)− hp1(xl +Nch, yh)− p3(xh, yl +Nrh) (26)

7



pNr−2,Nc−1 − 2pNr−1,Nc−1 + pNr−1,Nc−2

= h2f(xl +Nch, yl +Nrh)− hp1(xl +Nch, yh)− hp3(xh, yl +Nrh) (27)

The strategies used to derive the equations for (i, j) = (0, 0) and (i, j) = (Nr − 1, Nc − 1) can be used to

derive the equations for any (i, j) that has neighbors who lie on a boundary. The strategy for constructing

the equation for pi,j can be summarized as follows:

1. Start with equation (17).

2. In the case that (i, j) has a neighbor (ni, nj) that lies on a boundary with a Dirichlet condition, replace

pni,nj
in the stencil with the boundary value at (xl + (nj + 1)h, yl + (ni + 1)h) pertaining to (i, j) .

3. If (ni, nj) lies on a boundary with a Neumann condition there are 2 cases. If ni > i or nj > j, then

approximate pni,nj − pi,j to be h multiplied with the boundary value at (xl + (nj +1)h, yl + (ni +1)h)

pertaining to (i, j) using the backward difference method given by (18). If ni < i or nj < j, then

approximate pi,j − pni,nj
to be h multiplied with the boundary value at (xl + (nj +1)h, yl + (ni +1)h)

pertaining to (i, j) using the forward difference method given by (19).

4. Lastly, arrange the equation for pi,j so that only the unknowns are on the left hand side.

Now, let us consider the other 2 corner interior grid points. There are 4 possible equations for (0, Nc − 1).

Following the strategy above, we use (19) in the case that equation (7) is a Neumann condition and (18) in

the case that equation (10) is a Neumann condition.

p1,Nc−1 − 4p0,Nc−1 + p0,Nc−2 = h2f(xl +Nch, yl + h)− p0(xl +Nch, yl)− p3(xh, yl + h) (28)

p1,Nc−1 − 3p0,Nc−1 + p0,Nc−2 = h2f(xl +Nch, yl + h)− p0(xl +Nch, yl)− hp3(xh, yl + h) (29)

p1,Nc−1 − 3p0,Nc−1 + p0,Nc−2 = h2f(xl +Nch, yl + h) + hp0(xl +Nch, yl)− p3(xh, yl + h) (30)

p1,Nc−1 − 2p0,Nc−1 + p0,Nc−2 = h2f(xl +Nch, yl + h) + hp0(xl +Nch, yl)− hp3(xh, yl + h) (31)

Similarly for (Nr − 1, 0), we use (19) in the case that equation (9) is a Neumann condition and (18) in the

case that equation (8) is a Neumann condition.

pNr−2,0 − 4pNr−1,0 + pNr−1,1 = h2f(xl + h, yl +Nrh)− p1(xl + h, yh)− p2(xl, yl +Nrh) (32)

pNr−2,0 − 3pNr−1,0 + pNr−1,1 = h2f(xl + h, yl +Nrh)− p1(xl + h, yh) + hp2(xl, yl +Nrh) (33)

pNr−2,0 − 3pNr−1,0 + pNr−1,1 = h2f(xl + h, yl +Nrh)− hp1(xl + h, yh)− p2(xl, yl +Nrh) (34)

8



pNr−2,0 − 2pNr−1,0 + pNr−1,1 = h2f(xl + h, yl +Nrh)− hp1(xl + h, yh) + hp2(xl, yl +Nrh) (35)

For interior points (0, j) for j = 1, . . . , Nc − 2, only one of the stencil points, (−1, j), lies on the boundary.

Thus, there are 2 possible equations for these points. We use (19) in the case that (7) is a Neumann condition.

p1,j − 4p0,j + p0,j−1 + p0,j+1 = h2f(xl + (j + 1)h, yl + h)− p0(xl + (j + 1)h, yl) (36)

p1,j − 3p0,j + p0,j−1 + p0,j+1 = h2f(xl + (j + 1)h, yl + h) + p0(xl + (j + 1)h, yl) (37)

For interior points (Nr−1, j) for j = 1, . . . , Nc−2, only one of the stencil points, (Nr, j), lies on the boundary.

Thus, there are 2 possible equations for these points. We use (18) in the case that (8) is a Neumann condition.

pNr−2,j − 4pNr−1,j + pNr−1,j−1 + pNr−1,j+1 = h2f(xl + (j + 1)h, yl +Nrh)− p1(xl + (j + 1)h, yh) (38)

pNr−2,j − 3pNr−1,j + pNr−1,j−1 + pNr−1,j+1 = h2f(xl + (j + 1)h, yl +Nrh)− hp1(xl + (j + 1)h, yh) (39)

For interior points (i, 0) for i = 1, . . . , Nr − 2, only one of the stencil points, (i,−1), lies on the boundary.

Thus, there are 2 possible equations for these points. We use (19) in the case that (9) is a Neumann condition.

pi−1,0 + pi+1,0 − 4pi,0 + pi,1 = h2f(xl + h, yl + (i+ 1)h)− p2(xl, yl + (i+ 1)h) (40)

pi−1,0 + pi+1,0 − 3pi,0 + pi,1 = h2f(xl + h, yl + (i+ 1)h) + hp2(xl, yl + (i+ 1)h) (41)

For interior points (i,Nc−1) for i = 1, . . . , Nr−2, only one of the stencil points, (i,Nc), lies on the boundary.

Thus, there are 2 possible equations for these points. We use (18) in the case that (10) is a Neumann condition.

pi−1,Nc−1 + pi+1,Nc−1 − 4pi,Nc−1 + pi,Nc−2 = h2f(xl +Nch, yl + (i+ 1)h)− p3(xh, yl + (i+ 1)h) (42)

pi−1,Nc−1 + pi+1,Nc−1 − 3pi,Nc−1 + pi,Nc−2 = h2f(xl +Nch, yl + (i+ 1)h)− hp3(xh, yl + (i+ 1)h) (43)

Lastly, we have the interior grid points who have no neighbors on the boundary. For these points, we can

just use equation (17).

Let equation (17) and equations (20) through (43) be known as the equations for pi,j which are used to

approximate ∆p(x, y) = f(x, y). Observe that in these equations there is a linear relationship between our

NrNc unknowns {pi,j : i = 0, 1, . . . , Nr − 1 and j = 0, 1, . . . , Nc − 1}. Since we have one of these equations

for each pi,j we have NrNc linear equations for the same number unknowns. Thus, our approximation for

p(x, y) that satisfies equations (5) through (10) has been reduced to solving a linear system. The next step

9



is to set up this system as a matrix equation Ap = b. This allows for the use of various built in solvers to

calculate pi,j .

p is a vector of pi,j stacked columnwise. That is, pi,j is stored in pk(i,j) for k(i, j) given by:

k(i, j) = jNr + i (44)

The left hand side for any one of the equations for pi,j can be expressed as a product ak(i,j)
T
p. ak(i,j)k(i′,j′)

is set to the coefficient of pi′,j′ in the equation for pi,j for all interior grid points (i′, j′). For example, the

left hand side of equation (17) can be expressed as ak(i,j)
T
p where ak(i,j) is 0 except at the following indices:

ak(i,j)k(i−1,j) = 1 ak(i,j)k(i+1,j) = 1 ak(i,j)k(i,j) = −4 ak(i,j)k(i,j−1) = 1 ak(i,j)k(i,j+1) = 1

The left hand side of equations (20) through (43) can be expressed as dot products following a similar strategy.

A is constructed as:

A =



ak(0,0)
T

ak(1,0)
T

...

ak(0,1)
T

ak(1,1)
T

...

ak(Nr−1,Nc−1)T



∈ ZNrNc×NrNc (45)

Thus, Ap holds the left hand side of the equations for all interior pi,j . To complete the matrix equa-

tion, collect the right hand side of the equations for pi,j into b. bk(i,j) holds the right hand side of the

equation for pi,j . For example, if the equation for pi,j is of the form of equation (43), then bk(i,j) =

h2f(xl +Nch, yl + (i+ 1)h)− hp3(xh, yl + (i+ 1)h).

Ap = b can be solved as follows:

1. Perform an LU factorization with complete pivoting [15] on A to get PAQ = LU . P and Q are

permutation matrices, L is a lower triangular matrix, and U is an upper triangular matrix.

2. Rearrange the above equation making use of the fact that permutation matrix Q is orthogonal and

right multiply both sides by p to get Pb = LUQTp.

3. Define z := QTp and y := Uz.

10



4. Solve Ly = Pb for y using forward substitution.

5. Solve Uz = y for z using backward substitution.

6. Compute p = Qz.

The reason why Ap = b is solved using an LU decomposition is directly tailored to our Poisson solver being

used in our velocity solver. This is explained in section 3.1.

Note that in equations (17) and (20) through (43) that the majority of pi,j have a coefficient of 0.

This results in A being a very sparse matrix with its nonzero values concentrated near the main diagonal.

Figure 3 in section 2.2 shows a particular construction of A. SciPy [16] provides the capability, via the

SuperLU [9] library, to solve Ap = b using an LU factorization with complete pivoting when A is represented

as a SciPy sparse matrix. The SuperLU library is quite easy to use in Python. A SuperLU object can

be constructed from A represented as a scipy.sparse.csc matrix via the scipy.sparse.linalg.splu

function. scipy.sparse.csc matrix is one of numerous SciPy classes that represents a sparse matrix.

Calling solve on a SuperLU object provided b solves for p in a manner similar to the steps 3 through 6

described above.

However, there remains the issue of representing A as a scipy.sparse.csc matrix. A is constructed as

follows. For each interior grid point (i, j), the k(i, j)th row of A is set according to one of equations (17)

and (20) through (43) as described on page 10. We test 5 methods that could be used to construct A as a

scipy.sparse.csc matrix. We test these 5 methods on constructing the identity matrix with sizes 10,000,

20,000 . . . 100,000. That is, we construct the identity matrix setting each nonzero element for each row one

at a time to simulate how A would be constructed. We choose the identity matrix because, like A, it is very

sparse with its nonzero values near the main diagonal. The 5 methods are:

1. Construct a numpy.ndarray of 0s and set the diagonal element of each row to 1. numpy.ndarray stores

a dense matrix and can be converted into a scipy.sparse.csc matrix. We expect this to perform

poorly, especially the conversion.

2. Construct an empty scipy.sparse.csc matrix and set the diagonal element of each row to 1. It

is specifically stated on the SciPy documentation of scipy.sparse.csc matrix that one should not

change its sparsity in any manner. Thus, we also expect this to be a slow approach.

3. Construct an empty scipy.sparse.lil matrix and set the diagonal element of each row to 1.

scipy.sparse.lil matrix is another sparse matrix type offered by SciPy that handles sparsity changes

efficiently. scipy.sparse.lil matrix can be converted into a scipy.sparse.csc matrix. We expect

this approach to perform well.

11



4. Represent the identity matrix as 3 lists: rows, cols, and vals. For each row, add its index to

rows, add the row’s index on the diagonal to cols, and 1 to vals. scipy.sparse.csc matrix can be

constructed from these lists under the assumption that the value at position (rows[n],cols[n]) in the

resulting matrix is vals[n]. We expect this approach to perform well.

5. Use the same strategy as 4 except have rows, cols, and vals be pre-allocated numpy.ndarrays. We

expect this approach to be faster than 4 because we expect our 3 lists will need to internally resize

as we append to them.

Figure 1 shows the runtime comparisons for these 5 strategies. From it we see that strategies 1 and

2 perform very poorly compared to strategies 3, 4, and 5. Figure 2 provides a closer look at the 3 best

strategies. From it we can see that the runtime of strategy 3 is O(size) while the runtime of strategies 4

and 5 increases far less for larger sizes. Also, strategy 5 does not noticeably outperform strategy 4 despite

our expectations. It is important to note that it is easy to use strategy 5 to construct the identity matrix

because the size to pre-allocate the 3 arrays to is known. However, when constructing A, the pre-allocation

size is not as easy to derive because the number of nonzero elements is directly dependent on the nature of

the boundary conditions. We adopt strategy 4 to initialize A as a scipy.sparse.csc matrix in our solver.

2.2 Benchmarks Against an Existing Solver

We implement the strategy we describe in section 2.1 in a Python class PoissonSolver. We initialize a

PoissonSolver object with xl, xh, yl, yh, h, and the boundary conditions. The class also provides methods to

construct A and b and solve for p. We benchmark this solver with benchmark problems used by the existing

Medusa library [13]. The first benchmark is done on the following problem.

Figure 1: csc matrix Initialization Runtimes Figure 2: Top 3 csc matrix Initialization Runtimes

12



Find p(x, y) that satisfies:

∆p(x, y) = −2π2 sin(πx) sin(πy)

(x, y) ∈ D = [0, 1]× [0, 1]

p(x, 0) = p(x, 1) = p(0, y) = p(1, y) = 0

The solution to this problem is given by p(x, y) = sin(πx) sin(πy). This problem and its solution are

taken from the Medusa example page on solving Poisson’s equation with their library [6]. Figure 3 shows

the appearance of the matrix A that our solver constructs for h = 0.01. For h = 0.01, D is discretized such

that Nr = Nc = 99 which means that A is 992 × 992. In the figure, black represents the matrix entries that

are nonzero while white represents entries that are zero. We can see that the matrix is very sparse with

its nonzero entries concentrated on the main diagonal. Our solver’s output matches the solution visually

quite well, but we want to ensure that the solver improves its approximation of p(x, y) as h is decreased. We

test the solver for h = 0.005, 0.01, 0.025, 0.05, and 0.1. That corresponds to D being discretized such that

Nr = Nc = 199,99,39,19, and 9. We calculate 2 error metrics for each of these: (i) the mean absolute error of

our solver’s approximation of the solution p(x, y) over the interior grid points and (ii) the maximum absolute

error of our solver’s approximation of p(x, y) over the interior grid points. Figures 4 (a) and 4 (b) are log-log

plots of the tested values of h versus (i) and (ii) respectively.

The order 1 line in Figure 4 (a) portrays the relationship between h and the mean absolute error for an

order 1 method. The order 2 line is the same except for an order 2 method. In Figure 4 (b), the order lines

represent the relationship between h and the maximum absolute error for order 1 and 2 methods. Thus, we

can see that our solver is close to being an order 2 method for both of our error metrics when applied to

Figure 3: Visualization of an Example A Matrix Constructed by our Poisson Solver

13



(a) Mean Absolute Error (b) Maximum Absolute Error

Figure 4: Log-log Plots of Error Metrics for First Medusa Example

this problem. This is expected since the approximations made in the construction of A to solve this partic-

ular problem are all second order accurate. The only approximations that are first order in equations (17)

and (20) through (43) appear in the equations incorporating Neumann boundary conditions. None of these

equations are used in the solver for this particular problem. The second benchmark is done on the second

Medusa library Poisson example [6].

Find p(x, y) that satisfies:

∆p(x, y) = −2π2 sin(πx) sin(πy)

(x, y) ∈ D = [0, 0.5]× [0, 0.5]

p(x, 0) = p(0, y) = 0

∂p

∂y
(x, 0.5) =

∂p

∂x
(0.5, y) = 0

p(x, y) = sin(πx) sin(πy) satisfies this as well as noted in the Medusa example. Our solver’s output for

h = 0.01 (Nr = Nc = 49) visually matches the Medusa solution given in the “Mixed boundary conditions”

section of the Medusa Poisson examples well [6]. Again, we test how the solver behaves for different h.

We calculate the error metrics (i) and (ii) described on the previous page on the solver’s approximation

for h = 0.0025, 0.005, 0.01, 0.025, and 0.05. These step sizes correspond to D being discretized such that

Nr = Nc =199,99,49,19, and 9. We plot these metrics against h in Figure 5. Figures 5 (a) and 5 (b) include

lines to represent the behavior of order 1 and order 0.5 methods. For both error metrics, we can see that our

solver is close to being an order 1 method when applied to this problem. This is expected because, in contrast

14



to the first example, we have to incorporate Neumann boundary conditions in our derivation of the equations

for pi,j . As described previously, this involves first order derivative approximations on the boundaries.

2.3 Addition of Inclusions

An inclusion is a rectangular region that is removed from the problem domain. For each inclusion that is

added to the problem, 4 new boundaries are created. Thus, the user must specify 4 new boundary conditions

when they add an inclusion. Our solver requires that inclusions must have bounds that fall on valid interior

grid points, not in between. Furthermore, inclusions cannot be too close to each other or to the boundary

of the domain. This is explained more in section 2.4. To account for inclusions, we build upon our strategy

from section 2.1. We discretize domain D in the same manner and use equations (17) and (20) through (43)

as long as pi,j does not have a neighbor that is on the boundary of an inclusion.

As mentioned previously, some interior points have neighbors that lie on the boundary of an inclusion. We

use the general strategy outlined on page 8 for deriving an equation for pi,j to substitute in inclusion boundary

values as necessary. The derivation of the rows of A is the same as in section 2.1 for interior grid points

that lie outside of inclusions. Recall that A has a row for each interior grid point in our discretization of the

domain. For (i, j) that lie in an inclusion, including the boundary of an inclusion, set ak(i,j)
T

k(i,j) = 1 and all

other elements of ak(i,j)
T
to 0. bk(i,j) for (i, j) can be set to some constant. In Python, it is convenient to set

it to numpy.nan for the purposes of plotting the output of our solver. Despite having equations represented

in Ap = b for interior grid points in and outside of inclusions, the equations are independent of each other.

The equations for interior grid points not in an inclusion are only dependent on other interior grid points

that are not in an inclusion and known values expressed in terms of f and boundary values. Therefore, the

(a) Mean Absolute Error (b) Maximum Absolute Error

Figure 5: Log-log Plots of Error Metrics for Second Medusa Example

15



equations for interior grid points in inclusions are independent in this setup.

More boundary conditions have to be managed given that each inclusion has 4 of them. As mentioned

previously, this is one of the primary reasons we went with strategy 4 for initializing the

scipy.sparse.csc matrix representation of A. Building up 3 lists allows for a more easily understandable

implementation. Since we want to maintain the flexibility to incorporate different arrangements of inclusions,

we construct A by iterating over each interior grid point. With the addition of inclusions, the set of points

{pi,j : i = 0, 1, . . . , Nr − 1 and j = 0, 1, . . . , Nc − 1} produced by our solver is made up of 2 different

types of points. For interior grid points (i, j) that do not lie on an inclusion, pi,j is the approximation for

p(xl + (j + 1)h, yl + (i + 1)h). For interior grid points (i, j) that lie on an inclusion, pi,j is numpy.nan to

signify that the p is not calculated at those points.

2.4 Benchmark for a Single Inclusion

Our class PoissonSolver is adapted to include a method that allows for the addition of an inclusion given

the range of the inclusion and its boundary conditions. We benchmark the updated PoissonSolver against

the following problem taken from “Discontinuous Galerkin approximations in computational mechanics: hy-

bridization, exact geometry and degree adaptivity” by Giacomini and Sevilla [4].

∆p(x, y) = 0

(x, y) ∈ D = [−75, 75]× [−100, 100]− [−50, 50]× [−50, 50]

p(x,−100) = p(x, 100) = p(−75, y) = p(75, y) = 1

p(x,−50) = p(x, 50) = 0 for x ∈ [−50, 50]

p(−50, y) = p(50, y) = 0 for y ∈ [−50, 50]

In this case, our domain has a single inclusion spanning [−50, 50]× [−50, 50]. When applying our solver to

this problem, we need to choose h such that [−75, 75]× [−100, 100] is discretized in such a way that x = −50

and x = 50 lie on grid columns and y = −50 and y = 50 lie on grid rows. Figure 1 in Giacomini and Sevilla’s

work [4] includes 3 approximations of
∥∥∇p(x, y)

∥∥
2
. We test our solver on this problem with 3 values of h.

However, to compare our solver results with that figure, we need to have a way of approximating ∇p(x, y)

given our solver’s approximation of p(x, y).

Recall the form of the set of points pi,j our solver returns as described at the end of the previous section.

Consider a set of points gi,j that takes on the same form. That is, it serves as an approximation of a function

g(x, y) over a matrix of grid points on the interior of a domain except at inclusions. We want to use gi,j to

16



approximate ∂g
∂x and ∂g

∂y at the interior grid points. Our velocity solver will also need to be able to approximate

the gradient of a function using an approximation of the form of gi,j .

Assuming that gi,j are spaced out by some spacing h, applying (12) we get:

∂g

∂x
(xl + (j + 1)h, yl + (i+ 1)h) ≈ gi,j+1 − gi,j−1

2h
(46)

∂g

∂y
(xl + (j + 1)h, yl + (i+ 1)h) ≈ gi+1,j − gi−1,j

2h
(47)

However, (46) and (47) cannot always be used. For example, suppose (i, j+1), (i, j−1), (i+1, j), or (i−1, j)

lies on a boundary, either of the domain or of an inclusion. We need to derive modified versions of these

equations similar to how we derived equations (20) through (43) from equation (17). That is, we must

incorporate boundary values. Therefore, to approximate ∂g
∂x and ∂g

∂y on a set of interior grid points, we not

only need gi,j but also the boundary conditions of the domain and of any contained inclusions.

First, consider the case where (i, j−1) lies on a boundary with boundary value specified g1(x, y). If there

is a Dirichlet condition on the boundary, then replace gi,j−1 with g1(xl + jh, yl + (i+ 1)h) in (46). Thus, we

get:

∂g

∂x
(xl + (j + 1)h, yl + (i+ 1)h) ≈ gi,j+1 − g1(xl + jh, yl + (i+ 1)h)

2h
(48)

Suppose there is a Neumann condition on the boundary with boundary value of the form ∂g
∂x (x, y) = g1(x, y).

We approximate ∂g
∂x (xl + (j + 1)h, yl + (i+ 1)h) as an average of the derivatives of the left and right:

∂g

∂x
(xl + (j + 1)h, yl + (i+ 1)h) ≈ 1

2

(
∂g

∂x
(xl + (j + 2)h, yl + (i+ 1)h) +

∂g

∂x
(xl + jh, yl + (i+ 1)h)

)
≈ 1

2

(
gi,j+2 − gi,j

2h
+ g1(xl + jh, yl + (i+ 1)h)

)
(49)

Here, we use a second order centered finite difference for the derivative to the right in the average. Note

that equation (49) assumes that (i, j + 2) is an interior grid point. This restricts how close inclusions can

be to each other or to the domain boundary. In particular, no interior grid point in an inclusion can be less

than 4 rows or columns away from an interior grid point in another inclusion or a grid point on the domain

boundary. For a similar reason, we assume that the grid is not so small that (i, j + 2) is not a valid interior

grid point. In particular, we assume that h is small enough that Nr, Nc ≥ 3. Following the idea behind

equations (48) and (49) we can derive the following derivative approximations.

If (i, j+1) lies on a boundary with boundary value g2(x, y), equation (50) gives the approximation in the

case that the boundary has a Dirichlet condition and equation (51) gives the approximation in the case of a

17



Neumann condition of the form ∂g
∂x (x, y) = g2(x, y).

∂g

∂x
(xl + (j + 1)h, yl + (i+ 1)h) ≈ g2(xl + (j + 2)h, yl + (i+ 1)h)− gi,j−1

2h
(50)

∂g

∂x
(xl + (j + 1)h, yl + (i+ 1)h) ≈ 1

2

(
gi,j − gi,j−2

2h
+ g2(xl + (j + 2)h, yl + (i+ 1)h)

)
(51)

The next 4 equations are modifications of (47) instead of (46). If (i− 1, j) lies on a boundary with boundary

value g3(x, y), equation (52) gives the approximation in the case that the boundary has a Dirichlet condition

and equation (53) gives the approximation in the case of a Neumann condition of the form ∂g
∂y (x, y) = g3(x, y).

∂g

∂y
(xl + (j + 1)h, yl + (i+ 1)h) ≈ gi+1,j − g3(xl + (j + 1)h, yl + ih)

2h
(52)

∂g

∂y
(xl + (j + 1)h, yl + (i+ 1)h) ≈ 1

2

(
gi+2,j − gi,j

2h
+ g3(xl + (j + 1)h, yl + ih)

)
(53)

If (i + 1, j) lies on a boundary with boundary value g4(x, y), equation (54) gives the approximation in the

case that the boundary has a Dirichlet condition and equation (55) gives the approximation in the case of a

Neumann condition of the form ∂g
∂y (x, y) = g4(x, y).

∂g

∂y
(xl + (j + 1)h, yl + (i+ 1)h) ≈ g4(xl + (j + 1)h, yl + (i+ 2)h)− gi−1,j

2h
(54)

∂g

∂y
(xl + (j + 1)h, yl + (i+ 1)h) ≈ 1

2

(
gi,j − gi−2,j

2h
+ g4(xl + (j + 1)h, yl + (i+ 2)h)

)
(55)

By applying equations (46) through (55) appropriately, we can approximate ∂g
∂x and ∂g

∂y at all of the interior

grid points that are not in inclusions.

We first implement this strategy in Python using a pair of nested loops. That is, we visit each interior grid

point (i, j) and apply the appropriate equations from (46) through (55). However, this strategy is inefficient

assuming that the majority of interior grid points do not have neighbors who lie on a boundary. Thus, we

consider a different approach. We store {gi,j} in a numpy.ndarray. For any (i, j) that is in an inclusion, the

element in the array is set to numpy.nan. We then apply the following strategy.

1. Approximate ∂g
∂x at all interior grid points besides those in column j = 0 or j = Nc − 1 using (46).

2. Approximate ∂g
∂y at all interior grid points besides those in row i = 0 or i = Nr − 1 using (47).

3. Go back and revisit all interior grid points who have neighbors on a boundary and approximate ∂g
∂x and

∂g
∂y appropriately at these points using (48) through (55).

We know ahead of time that equation (46) cannot be used to approximate ∂g
∂x on the first and last interior grid

columns because we know those columns have horizontal neighbors that lie on the boundary of the domain.

18



(a) h = 1 (Nr = 199, Nc = 149) (b) h = 0.5 (Nr = 399, Nc = 299) (c) h = 0.1 (Nr = 1999, Nc = 1499)

Figure 6: Approximations for
∥∥∇p(x, y)

∥∥
2
for Single Inclusion Benchmark

For a similar reason we know ahead of time that equation (47) cannot be used to approximate ∂g
∂y on the

first and last interior grid rows. This is why these interior grid regions are omitted in steps 1 and 2. Steps 1

and 2 can be implemented quite efficiently on a numpy.ndarray by using slicing. Step 3 is necessary as the

slicing in steps 1 and 2 will result in (incorrect) gradient approximations of numpy.nan for interior points

who have neighbors on inclusion boundaries. Assuming that the majority of interior grid points do not have

neighbors on an inclusion boundary, we do not approximate the derivative twice for too many points and

take advantage of the efficiency of slicing over nested loops on the majority of points.

Now, we return to the example problem described on page 16. Once we get pi,j from our solver, using

the boundary conditions provided in the problem, we can approximate
∥∥∇p(x, y)

∥∥
2
using the strategy above.

Figure 6 shows our approximations of
∥∥∇p(x, y)

∥∥
2
for grids constructed for h = 1, 0.5, and 0.1. (Nr, Nc) for

each grid are included in the figure captions. These match the plots in Figure 1 of Giacomini and Sevilla’s

work [4].

3 Fluid Velocity Solver

In this section, we describe our fluid velocity solver which approximates the solution to the problem outlined

in section 1.1. In particular, we calculate what u(x, y, t) converges to over time. We discuss how we implement

our fluid velocity solver, how we test it, and some unresolved issues with it.

3.1 Iterative Method

Our method for approximating u(x, y, t) and v(x, y, t) is based off of the explicit Forward Euler strategy and

follows the work of Johnston and Liu [7]. As in section 2.1, let us first consider a rectangular domain D

without inclusions. Our update step is given below starting with u(x, y, 0) = v(x, y, 0) = 0 for all (x, y) ∈ D:

19



1. Find the solution p(x, y, tk) to the following problem:

∆p = 2ρ

(
∂u

∂x
(x, y, tk)

∂v

∂y
(x, y, tk)−

∂u

∂y
(x, y, tk)

∂v

∂x
(x, y, tk)

)
(56)

(x, y) ∈ D = [xl, xh]× [yl, yh] (57)

∂p

∂y
(x, yl, tk) = µ

∂2v

∂y2
(x, yl, tk) (58)

∂p

∂y
(x, yh, tk) = µ

∂2v

∂y2
(x, yh, tk) (59)

p(xl, y, tk) = pl p(xh, y, tk) = pr (60)

2. Calculate u(x, y, tk+1) and v(x, y, tk+1) as follows:

u(x, y, tk+1) = u(x, y, tk)−
∆t

ρ

∂p

∂x
(x, y, tk)−∆t

(
u(x, y, tk)

∂u

∂x
(x, y, tk) + v(x, y, tk)

∂u

∂y
(x, y, tk)

)
+∆u(x, y, tk)

µ∆t

ρ
(61)

v(x, y, tk+1) = v(x, y, tk)−
∆t

ρ

∂p

∂y
(x, y, tk)−∆t

(
u(x, y, tk)

∂v

∂x
(x, y, tk) + v(x, y, tk)

∂v

∂y
(x, y, tk)

)
+∆v(x, y, tk)

µ∆t

ρ
(62)

In order to implement this strategy, we have to make a variety of approximations. D is discretized in the

same manner as given in equation (11) from section 2.1 given some spacing h. We approximate u(x, y, tk)

and v(x, y, tk) for a particular time step tk at the values (x, y) that lie on the interior of this grid. That is,

let ui,j ≈ u(xl + (j + 1)h, yl + (i+ 1)h, tk) and vi,j ≈ v(xl + (j + 1)h, yl + (i+ 1)h, tk).

As derived in equations (46) through (55) in section 2.4, we know how to approximate ∂g
∂x and ∂g

∂y over

interior grid points gi,j given the boundary conditions on those points. By applying this strategy with

gi,j = vi,j for interior grid points (i, j) and boundary conditions v(x, yl) = v(x, yh) = v(xl, y) = v(xh, y) = 0,

we can get approximations for ∂v
∂x (x, y, tk) and ∂v

∂y (x, y, tk). Before applying this strategy to approximate

∂u
∂x (x, y, tk) and ∂u

∂y (x, y, tk) we show that the Neumann conditions on u(x, y, tk) expressed in equations (3)

and (4) in section 1.1 can be expressed as Dirichlet conditions.

Since the fluid being modelled is incompressible on D, we can derive the following using the finite centered

difference method given in equation (12) from section 2.1:

∂u

∂x
(xl + h, y, tk) +

∂v

∂y
(xl + h, y, tk) ≈

u(xl + 2h, y, tk)− u(xl, y, tk)

2h

+
v(xl + h, y + h, tk)− v(xl + h, y − h, tk)

2h
= 0

20



∂u

∂x
(xl +Nch, y, tk) +

∂v

∂y
(xl +Nch, y, tk) ≈

u(xl + (Nc + 1)h, y, tk)− u(xl + (Nc − 1)h, y, tk)

2h

+
v(xl +Nch, y + h, tk)− v(xl +Nch, y − h, tk)

2h
= 0

Therefore, we can more explicitly write our new boundary conditions on u(x, y, tk) as:

u(xl, yl + (i+ 1)h, tk) = u(xl + 2h, yl + (i+ 1)h, tk) + v(xl + h, yl + (i+ 2)h, tk)

− v(xl + h, yl + ih, tk) (63)

u(xl + (Nc + 1)h, yl + (i+ 1)h, tk) = u(xl + (Nc − 1)h, yl + (i+ 1)h, tk)

− v(xl +Nch, yl + (i+ 2)h, tk) + v(xl +Nch, yl + ih, tk) (64)

Since these boundary conditions are Dirichlet, when they are evaluated to approximate ∂u
∂x (x, y, tk) over our

discretized region, y will lie on a grid row. This can be seen in the right hand side of equations (48) and (50)

in section 2.4 which give the approximation of the horizontal derivative at grid points who have neighbors

on boundaries with Dirichlet conditions.

It is important to note that the boundary conditions given by (63) and (64) are dependent on interior values

of u(x, y, tk) and v(x, y, tk) which are the values we will be approximating. We can remedy this as follows. We

know from equations (48) and (50) that the grid row of u(xl, yl+(i+1)h, tk) and u(xl+(Nc+1)h, yl+(i+1)h, tk)

will be identical to the grid row of the interior point at which we are trying to approximate the horizontal

derivative. Hence, we know that u(xl+2h, yl+(i+1)h, tk) and u(xl+(Nc−1)h, yl+(i+1)h, tk) are interior

values and can be replaced by their respective approximations ui,1 and ui,Nc−2. If 1 ≤ i ≤ Nr − 2, we also

know that v(xl+h, yl+(i+2)h, tk), v(xl+h, yl+ih, tk), v(xl+Nch, yl+(i+2)h, tk) and v(xl+Nch, yl+ih, tk)

are interior values and can thus be respectively replaced by their approximations vi+1,0, vi−1,0, vi+1,Nc−1 and

vi−1,Nc−1. In the case that i = 0 or i = Nr−1 we can substitute 0 as we know that v(xl+h, yl+(Nr+1)h, tk) =

v(xl + h, yl, tk) = v(xl +Nch, yl + (Nr + 1)h, tk) = v(xl +Nch, yl, tk) = 0.

With our new formulation of the boundary conditions on u(x, y, tk) we can use our strategy from section

2.4 to approximate the gradients of u(x, y, tk) and v(x, y, tk) using our approximations ui,j and vi,j . However,

update steps (61) and (62) also require an approximation of ∆u(x, y, tk) and ∆v(x, y, tk). To make these

approximations, we can use many of the ideas from section 2.1. Again, consider a set of points gi,j as in

section 2.4. If gi,j has no neighbors that lie on the boundary of the domain or of an inclusion, then we can

use the 5-point strategy from section 2.1 to approximate the Laplacian at this point:

∆g(xl + (j + 1)h, yl + (i+ 1)h) ≈ gi−1,j + gi+1,j − 4gi,j + gi,j−1 + gi,j+1

h2
(65)

21



Suppose (i− 1, j) lies on a boundary with boundary value given by g1(x, y). If the boundary has a Dirichlet

condition, then we replace gi−1,j in (65) with g1(xl + (j + 1)h, yl + ih). If the boundary has a Neumann

condition of the form ∂g
∂y (x, y) = g1(x, y) then, applying the forward difference method given by equation

(19) in section 2.1, we replace
gi−1,j−gi,j

h in (65) with −g1(xl + (j + 1)h, yl + ih). Suppose (i+ 1, j) lies on a

boundary with boundary value given by g2(x, y). If the boundary has a Dirichlet condition, then we replace

gi+1,j in (65) with g2(xl + (j + 1)h, yl + (i + 2)h). If the boundary has a Neumann condition of the form

∂g
∂y (x, y) = g2(x, y) then, applying the backward difference method given by (18), we replace

gi+1,j−gi,j
h in (65)

with g2(xl+(j+1)h, yl+(i+2)h). Suppose (i, j−1) lies on a boundary with boundary value given by g3(x, y).

If the boundary has a Dirichlet condition, then we replace gi,j−1 in (65) with g3(xl + jh, yl + (i + 1)h). If

the boundary has a Neumann condition of the form ∂g
∂x (x, y) = g3(x, y) then, applying the forward difference

method given by (19), we replace
gi,j−1−gi,j

h in (65) with −g3(xl + jh, yl + (i + 1)h. Suppose (i, j + 1) lies

on a boundary with boundary value given by g4(x, y). If the boundary has a Dirichlet condition, then we

replace gi,j+1 in (65) with g4(xl + (j + 2)h, yl + (i+ 1)h). If the boundary has a Neumann condition of the

form ∂g
∂x (x, y) = g4(x, y) then, applying the backward difference method given by (18), we replace

gi,j+1−gi,j
h

in (65) with g4(xl + (j + 2)h, yl + (i+ 1)h).

Similar to our strategy described in section 2.4, if {gi,j} are stored in a numpy.ndarray we can use the

following strategy to approximate ∆g(x, y).

1. Approximate ∆g(x, y) at all interior grid points besides those in column j = 0 and j = Nc−1 and rows

i = 0 and i = Nr − 1 with equation (65).

2. Go back and revisit all interior grid points who have neighbors on a boundary and approximate ∆g(x, y)

appropriately using the strategy described in the previous paragraph.

Similarly to approximating the gradient, we implement step 1 efficiently using slicing. Step 2 goes back

and corrects Laplacian approximations for interior points with neighbors on boundaries. Assuming that the

majority of interior grid points do not have boundary neighbors, this strategy allows us to take advantage of

slicing without computing the Laplacian multiple times at too many points.

The next step of implementing the update given on page 20 is solving the Poisson problem in step 1. As

described previously, ∂u
∂x (x, y, tk),

∂v
∂y (x, y, tk),

∂u
∂y (x, y, tk) and

∂v
∂x (x, y, tk) are all approximated as discretized

sets of points gi,j . Hence, the right hand side of equation (56) is also a discretized set of points. As described

in section 2.1 in the construction of b, we must be able to access the right hand side of Poisson’s equation

for every point in the grid used to discretize the equation domain. Therefore, we must use the same grid

spacing h in the discretization of u(x, y, tk) and v(x, y, tk) as in our Poisson solver.

We also must approximate the right hand side of the Neumann conditions on p(x, y, tk) given by equations

22



(58) and (59). As described by Johnston and Liu [7], we can approximate:

∂2v

∂y2
(xl + (j + 1)h, yl) ≈

2v0,j
h2

∂2v

∂y2
(xl + (j + 1)h, yh) ≈

2vNr−1,j

h2

Now that the Poisson problem given by (56) through (60) can be expressed explicitly in terms of our approx-

imations ui,j and vi,j , we can solve it using our Poisson solver to get our approximation pi,j for p(x, y, tk).

The output of the solver can then be used along with our gradient approximation strategy from section 2.4

to approximate ∂p
∂x (x, y, tk) and

∂p
∂y (x, y, tk) in part 2 of the update step on page 20. We now present a more

detailed version of our method for approximating the fluid velocity.

Initialization: Initialize ui,j and vi,j to be all 0. Let ∆t = 1
4h2

ρ
µ seconds. Our method will simulate a total

time of T = ρ(xh−xl)
2

µ seconds.

Iteration (or Time step): For k = 1, . . . , T
∆t do the following:

1. Approximate ∂u
∂x (x, y, tk),

∂u
∂y (x, y, tk),∆u(x, y, tk),

∂v
∂x (x, y, tk),

∂v
∂y (x, y, tk), and ∆v(x, y, tk). Denote these

Gxui,j , Gyui,j , Lui,j , Gxvi,j , Gyvi,j and Lvi,j . Note that we can combine steps 2 and 3 from our gradient

approximation strategy with step 2 from our Laplacian approximation strategy into the same loop to

speed up the computation of the gradient and Laplacian for a set of points gi,j .

2. Solve the pressure Poisson problem below to get our pressure approximation pi,j .

∆p(x, y) = 2ρ(Gxui,jGyvi,j +Gyui,jGxvi,j)

∂p

∂y
(x, yl) =

2µv0,j
h2

∂p

∂y
(x, yh) =

2µvNr−1,j

h2

p(xl, y) = pl p(xh, y) = pr

3. Approximate ∂p
∂x (x, y, tk) and

∂p
∂y (x, y, tk) using pi,j . Denote the approximations as Gxpi,j and Gypi,j .

4. Update ui,j and vi,j as follows:

u′
i,j = ui,j −

∆t

ρ
Gxpi,j −∆t(ui,jGxui,j + vi,jGyui,j) +

µ∆t

ρ
Lui,j

v′i,j = vi,j −
∆t

ρ
Gypi,j −∆t(ui,jGxvi,j + vi,jGyvi,j) +

µ∆t

ρ
Lvi,j

ui,j = u′
i,j vi,j = v′i,j

Output: pi,j , ui,j , and vi,j from the final time step. We refer to this as the output of our velocity solver.

23



Observe that in the derivation of the Poisson solver in section 2.1 that the matrix A is dependent only

on the type of boundary conditions and location of inclusions on the domain D. A does not depend on the

boundary values and the right hand side of Poisson’s equation in step 2 above. Since only these aspects of the

pressure Poisson equation are changed at each iteration, A can be constructed and decomposed once at the

beginning of our algorithm. By performing an LU decomposition of A, solving Ap = b for different b reduces

to just performing 1 forward substitution, 1 backward substitution, and 1 matrix vector multiplication as

shown in section 2.1. This is more efficient than performing a full solve of Ap = b for every iteration.

3.2 Results for Plane Poiseuille Flow

We implement the strategy described in section 3.1 in a Python class VelocitySolver. We initialize a

VelocitySolver with xl, xh, yl, yh, pl, pr, ρ,µ and h. For all the experiments we perform we took pl = 0.08

Ba, pr = 0 Ba, ρ = 1 g/cm3, and µ = 0.01 P. We benchmark VelocitySolver by having it approximate

u(x, y, t) and v(x, y, t) on D = [0 cm, 0.01 cm] × [0 cm, 0.01 cm] without any inclusions. As shown in G. K.

Batchelor’s “Introduction to Fluid Dynamics”, u(x, y, t) and v(x, y, t) can be found analytically [2]:

u(x, y, t) =
pl − pr
xh − xl

1

2µ
y((yh − yl)− y) v(x, y, t) = 0 (66)

Figure 7 shows the maximum and mean absolute error between our solver’s approximation and the true

solution for u(x, y, t) given by (66) for each time step over an interior grid with Nr = Nc = 79 . Here we can

see that our solver converges to u(x, y, t) for later time steps. Our solver accurately approximates v(x, y, t)

as 0 from very early on.

Figure 7: Convergence of u(x, y, t) Approximation Error for Plane Poiseuille Flow

24



3.3 Addition of Inclusions

The next step was to approximate u(x, y, t) and v(x, y, t) when we add rectangular inclusions into the problem

domain. As in section 2.3, we require that inclusions cannot be too close to each other or the domain boundary

and they must have bounds that lie on the grid discretization of D. Suppose there is an inclusion that spans

[xl + (jl + 1)h, xl + (jh + 1)h]× [yl + (il + 1)h, yl + (ih + 1)h]. We impose the following boundary conditions

on u(x, y, t) and v(x, y, t):

u(xl + (jl + 1)h, y, t) = v(xl + (jl + 1)h, y, t) = 0 for y ∈ {yl + (i+ 1)h : i = il, il + 1, . . . , ih} (67)

u(xl + (jh + 1)h, y, t) = v(xl + (jh + 1)h, y, t) = 0 for y ∈ {yl + (i+ 1)h : i = il, il + 1, . . . , ih} (68)

u(x, yl + (il + 1)h, t) = v(x, yl + (il + 1)h, t) = 0 for x ∈ {xl + (j + 1)h : j = jl, jl + 1, . . . , jh} (69)

u(x, yl + (ih + 1)h, t) = v(x, yl + (ih + 1)h, t) = 0 for x ∈ {xl + (j + 1)h : j = jl, jl + 1, . . . , jh} (70)

We modify the initialization step from our strategy at the end of section 3.1 to set ui,j = vi,j to numpy.nan

for (i, j) that lie in inclusions. We keep step 1 of our iteration the same. Our strategies for approximating

the gradient and Laplacian on {gi,j} work in the presence of inclusions as long as the boundary conditions

on those inclusions given by (67) through (70) are incorporated. We modify the Poisson problem in step 2

as follows. Taking an inclusion spanning [xl + (jl + 1)h, xl + (jh + 1)h] × [yl + (il + 1)h, yl + (ih + 1)h] as

above, we impose the following boundary conditions on p(x, y, t) [7]:

∂p

∂x
(xl + (jl + 1)h, y, t) ≈ 2µui,jl−1

h2
for y ∈ {yl + (i+ 1)h : i = il, il + 1, . . . , ih}

∂p

∂x
(xl + (jh + 1)h, y, t) ≈ 2µui,jh+1

h2
for y ∈ {yl + (i+ 1)h : i = il, il + 1, . . . , ih}

∂p

∂y
(x, yl + (il + 1)h, t) ≈ 2µvil−1,j

h2
for x ∈ {xl + (j + 1)h : j = jl, jl + 1, . . . , jh}

∂p

∂y
(x, yl + (ih + 1)h, t) ≈ 2µvih+1,j

h2
for x ∈ {xl + (j + 1)h : j = jl, jl + 1, . . . , jh}

These boundary conditions can be expressed in terms of our approximations ui,j and vi,j which means we can

continue to use our Poisson solver as before to complete step 2. We incorporate these boundary conditions

into the gradient computations in step 3 of our iteration. We keep step 4 the same.

3.4 Issues with the Solver

As discussed in 3.2, our solver appears to work well in the case of a domain with no inclusions. However, we

find that our solver is not perfect at approximating the fluid velocity even with only 1 inclusion. We test our

solver by having it approximate u(x, y, t) and v(x, y, t) on D = [0 cm, 0.01 cm]× [0 cm, 0.01 cm] with an

25



Figure 8: Convergence of the Mean of {ui,j} for Single
Inclusion

Figure 9: Velocity Divergence after 25, 601 Time Steps for
Single Inclusion

inclusion spanning [0.003 cm, 0.007 cm] × [0.003 cm, 0.007 cm]. With a step size of h = 0.000125 cm, the

interior of D is discretized such that Nr = Nc = 79 and our solver runs for 25,601 time steps. Figure 8

shows the mean of our approximations ui,j and vi,j for each time step. Here we can see that, over time, our

approximations converge, which is a good sign. Figure 9 shows the divergence of our solver’s approximation of

the velocity after the final time step. Since the fluid of study is incompressible, the divergence of our solver’s

approximation of the velocities should be 0 everywhere on D. However, we can see that the divergence is

nonzero at some points near the corners of the inclusion.

Figure 10 shows the flow rate across the horizontal axis of the domain calculated from ui,j after the final

time step. The flow rate at column j is calculated as hmultiplied with the sum over ui,j for i = 0, 1, . . . , Nr−1

and (i, j) not in an inclusion. In the figure, we can see that the flow rate is not constant as it should be.

We spent a great deal of time looking into the potential source of these errors and even went as far as

reimplementing our fluid velocity solver from scratch. However, we are unable to identify why the velocity

for points around the inclusion corners had nonzero divergence. Furthermore, we find that increasing the

grid size did not remove the error evident in Figure 9 but it did decrease the flow rate error. Let fj denote

the flow rate at column j and f̄ as the mean flow rate over the columns of the interior of our domain grid.

We define our error metric for flow rate as:

max
j=0,1,...,Nc−1

∣∣fj − f̄
∣∣

fj

Figure 11 shows a plot of this error metric against the step size. For a step size of h = 0.00025 cm, our solver

26



Figure 10: Flow Rate Over the Domain for Single Inclu-
sion

Figure 11: Flow Rate Error for Varying Discretization for
Single Inclusion

discretizes the interior of D with a grid such that Nr = Nc = 39 and runs for 6,401 time steps. For a step

size of h = 0.0005 cm, Nr = Nc = 19 and the solver runs for 1,601 time steps. Here we can see that as the

step size is decreased, the flow rate error decreases as well. In general, we wanted this error metric to be less

than 0.10. We discuss in the next section that this cannot always be guaranteed.

4 Analysis of Inclusion Arrangements

As discussed in section 1, placing inclusions in the domain can be used to manipulate the flow of the fluid

passed through the domain. In this section, we describe 4 numerical experiments where we study the effects

of inclusion arrangement on fluid flow. In particular, we examine the effects on hydraulic resistance. In all

4 of the experiments, we keep D = [0 cm, 0.02 cm] × [0 cm, 0.03 cm], pl = 0.08 Ba, pr = 0 Ba, µ = 0.01 P,

and ρ = 1 g/cm3. We calculate the hydraulic resistance from our solver’s output as (pl − pr)/f̄ for f̄ defined

on the previous page. We choose the mean flow rate due to the variance in flow rate observed with our

solver discussed in the previous section. We end this section with a comparison of the hydraulic resistance

calculated from our solver’s output with an analytic approximation.

4.1 Experiment 1: Closing Inclusions

For our first experiment, we want to see how the vertical proximity of inclusions affect fluid flow. To do this,

we place 2 inclusions symmetrically distant from the top and bottom boundaries of D and move them closer

together over 7 runs. We calculate the hydraulic resistance at the end of each run from the output of our

27



(a) Interior Pressure (Ba) (b) Streamlines

Figure 12: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for Far Inclusions

(a) Interior Pressure (Ba) (b) Streamlines

Figure 13: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for Close Inclusions

28



Figure 14: Hydraulic Resistance for Closing Inclusions

solver as described above. For these runs, D was discretized with h = 0.0005 cm which meant Nr = 59

and Nc = 39 and that the solver ran for 6,401 time steps. Figure 12 (a) shows a plot of the interior

pressure approximated by our solver at the last time step when the inclusions are farthest apart. That top

inclusion spans [0.008 cm, 0.012 cm]×[0.023 cm, 0.027 cm] while the bottom one spans [0.008 cm, 0.0012 cm]×

[0.003 cm, 0.007 cm]. Figure 12 (b) is a streamline plot constructed using the velocities calculated in the final

time step on the same domain. Figure 13 has the pressure and streamline plots derived from the final time step

when the inclusions are closest together. When they are closest, the top inclusion spans [0.008 cm, 0.012 cm]×

[0.017 cm, 0.021 cm] while the bottom one spans [0.008 cm, 0.0012 cm]× [0.009 cm, 0.013 cm].

Starting from the set up displayed in Figure 12, we move up the bottom inclusion by 0.001 cm and the

top inclusion down by 0.001 cm 6 times ending with the set up displayed in Figure 13. By doing this, we

maintain for all of the 7 set ups that the top and bottom inclusions are symmetrically distant from the

top and bottom domain boundaries. Figure 14 shows a plot of the distance between the top of the bottom

inclusion and the bottom of the top inclusion versus the hydraulic resistance for our 7 runs in the experiment.

There is a slight increase in hydraulic resistance between the first and second run, but then the hydraulic

resistance decreases while the distance between inclusions increases. It is also important to note that the

flow rate error, as defined in the previous section, remains between 0.038 and 0.083 for all 7 set ups. Since

these errors are less than our threshold of 0.10, we are confident in these results.

4.2 Experiment 2: Staggering 6 Inclusions in 2 Columns

Suppose that we have 2 columns of with equal numbers of inclusions that the fluid must flow through when

passing through the domain. Our second experiment looks to discover how the hydraulic resistance is affected

by how much the inclusions in the 2 columns are horizontally aligned. In our first run, we place 6 inclusions

29



(a) Interior Pressure (Ba) (b) Streamlines

Figure 15: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 6 Aligned Inclusions

(a) Interior Pressure (Ba) (b) Streamlines

Figure 16: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 6 Staggered
Inclusions

30



into 2 columns where the 3 inclusions in the second column completely line up horizontally with the 3

inclusions in the first column. In subsequent runs, we progressively shift the inclusions until the inclusions in

the 2 columns line up the least. For these runs, we discretize D with h = 0.000125 cm which means Nr = 239

and Nc = 159 and that the solver runs for 102,401 time steps.

Figure 15 shows plots of the interior pressure and streamlines approximated by our solver at the last

time step when the inclusions in the 2 columns are lined up completely. The first column has inclu-

sions spanning [0.003 cm, 0.007 cm] × [0.005 cm, 0.009 cm], [0.003 cm, 0.007 cm] × [0.013 cm, 0.017 cm], and

[0.003 cm, 0.007 cm]×[0.021 cm, 0.025 cm]. The second column has inclusions spanning [0.013 cm, 0.017 cm]×

[0.005 cm, 0.009 cm], [0.013 cm, 0.017 cm]× [0.013 cm, 0.017 cm], and [0.013 cm, 0.017 cm]× [0.021 cm,

0.025 cm]. Figure 16 shows plots of the interior pressure and streamlines approximated by our solver at

the last time step when the inclusions in the 2 columns are fully staggered. By this we mean that the

inclusions in the 2 columns are lined up horizontally the least. The first column has inclusions spanning

[0.003 cm, 0.007 cm]× [0.003 cm, 0.007 cm], [0.003 cm, 0.007 cm]× [0.011 cm, 0.015 cm], and [0.003 cm,

0.007 cm]×[0.019 cm, 0.023 cm]. The second column has inclusions spanning [0.013 cm, 0.017 cm]×[0.007 cm,

0.011 cm], [0.013 cm, 0.017 cm]× [0.015 cm, 0.019 cm], and [0.013 cm, 0.017 cm]× [0.023 cm, 0.027 cm].

Starting from the set up displayed in Figure 15, we move the inclusions in the left column down by 0.0005

cm and the inclusions in the right column up by 0.0005 cm 4 times to end up with the set up displayed

in Figure 16. At each of these steps, the inclusions in the right column line up 0.001 cm less with the

inclusions in the left column. Let d1 and d3 be the distances in centimeters from the bottom boundary to the

bottom of the bottom inclusions in the left and right columns respectively. Let d2 and d4 be the distances in

centimeters from the top boundary to the top of the top inclusions in the left and right columns respectively.

By staggering inclusions progressively in this fashion, we keep d1 = d4 and d2 = d3 at each staggering step.

Our metric for the level of staggering is the difference in centimeters between the bottom of the bottom

inclusion in the right column and the bottom of the bottom inclusion in the left column. This starts at 0

cm, then is 0.001 cm, and so on up to 0.004 cm. Figure 19 shows a plot of this distance versus the hydraulic

resistance for the 5 runs. Here we can see that as inclusions become less aligned, the hydraulic resistance

increases. We are confident in these results as the flow rate error remained between 0.041 and 0.047 for these

5 runs.

4.3 Experiment 3: Staggering 12 Inclusions in 2 Columns

Our third experiment builds upon the second. Instead of 2 columns with 3 inclusions each, we had 2 columns

with 6 inclusions each. We want to see if the hydraulic resistance follows the same trend as the inclusions

31



(a) Interior Pressure (Ba) (b) Streamlines

Figure 17: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 12 Aligned
Inclusions

(a) Interior Pressure (Ba) (b) Streamlines

Figure 18: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 12 Staggered
Inclusions

32



Figure 19: Hydraulic Resistance for 6 Staggering Inclu-
sions

Figure 20: Hydraulic Resistance for 12 Staggering Inclu-
sions

become less horizontally aligned. As in the second experiment, we discretize D with h = 0.000125 cm.

Figure 17 shows plots of the interior pressure and streamlines of our first run, when the inclusions are lined

up completely. As in the second experiment, the left column of inclusions spans x range 0.003 cm to 0.007 cm

and the right column of inclusions spans x range 0.013 cm to 0.017 cm. The inclusions in both columns are

placed at on y intervals [0.004 cm, 0.006 cm], [0.008 cm, 0.01 cm], [0.012 cm, 0.014 cm], [0.016 cm, 0.018 cm],

[0.02 cm, 0.022 cm] and [0.024 cm, 0.026 cm].

Figure 18 shows plots of the interior pressure and streamlines approximated by our solver at the last time

step when the inclusions in the 2 columns are staggered. The 2 inclusion columns lie on the same x ranges but

on different y ranges. The first column has inclusions at y intervals [0.003 cm, 0.005 cm], [0.007 cm, 0.009 cm],

[0.011 cm, 0.013 cm], [0.015 cm, 0.017 cm], [0.019 cm, 0.021 cm] and [0.023 cm, 0.025 cm]. The second column

has inclusions at y intervals [0.005 cm, 0.007 cm], [0.009 cm, 0.011 cm], [0.013 cm, 0.015 cm], [0.017 cm, 0.019 cm],

[0.021 cm, 0.023 cm] and [0.025 cm, 0.027 cm]. In these set ups, we have doubled the number of inclusions

from the second experiment but halved their height. Since the inclusions’ width is the same as in the second

experiment, the area occupied by inclusions in the domain remains constant between the 2 experiments.

Starting from the set up in Figure 17, we move the inclusions in the first column down by 0.00025 cm

and the inclusions in the second column up by 0.00025 cm 4 times to end with the set up in Figure 18. For

each of these runs, the inclusions in the second column line up 0.0005 cm less with the inclusions in the first

column. As in our second experiment, this keeps d1 = d4 and d2 = d3 for di defined previously. Figure 20

shows a plot of the distance between the bottom of the bottom inclusion in the right column and the bottom

of the bottom inclusion in the left column versus the hydraulic resistance for the 5 runs. As in the case of

the second experiment, we can see that as inclusions become less aligned, the hydraulic resistance increases.

33



Figure 21: Flow Rate Error for Aligned and Staggered Setups (6 and 12 Inclusions)

We are confident in these results because the flow rate error remained between 0.082 and 0.087 for these 5

runs.

In section 3.4, we show how the flow rate error decreased with step size. To see if this is also true for the

set ups in our second and third experiments, we run our solver on the 6 and 12 inclusion aligned and fully

staggered set ups with h = 0.0005 cm and h = 0.00025 cm. With h = 0.0005 cm, D is discretized such that

Nr = 59 and Nc = 39 and the solver runs for 6,401 time steps. With h = 0.00025 cm, D is discretized such

that Nr = 119 and Nc = 79 and the solver runs for 25,601 time steps. Figure 21 shows a plot of the flow rate

error versus h for the aligned and fully staggered setups for 6 and 12 inclusions. We can see that the flow

rate error is higher with more inclusions but the error decreases with h in all 4 set ups.

4.4 Experiment 4: Comparing Counts of Inclusions

In our fourth experiment, we study how the number of inclusions affects the hydraulic resistance in aligned

and fully staggered set ups. To do this, we run our solver on 4 additional set ups. As before, we discretize D

with h = 0.000125 cm. As in the second and third experiments, we place inclusions into 2 columns where the

left column spans x ranges 0.003 cm to 0.007 cm and 0.013 cm to 0.017 cm. In our first set up, we split 24

inclusions into 2 columns such that the right inclusions line up horizontally with the left inclusions. Figure

22 shows plots of the interior pressure and streamlines for this set up. The first inclusion is placed on y

interval [0.0035 cm, 0.0045 cm] in both columns. We place inclusions with height 1 cm 1 cm apart up until

the highest inclusions on y interval [0.0255 cm, 0.0265 cm].

In our second set up, we shift the 12 inclusions in the right column up by 0.0005 cm and the 12 inclusions

in the left column down by 0.0005 cm. Figure 23 shows plots of the interior pressure and streamlines

approximated by our solver at the last time step when the inclusions in the 2 columns are staggered. In

34



(a) Interior Pressure (Ba) (b) Streamlines

Figure 22: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 24 Aligned
Inclusions

(a) Interior Pressure (Ba) (b) Streamlines

Figure 23: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 24 Staggered
Inclusions

35



(a) Interior Pressure (Ba) (b) Streamlines

Figure 24: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 48 Aligned
Inclusions

(a) Interior Pressure (Ba) (b) Streamlines

Figure 25: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 48 Staggered
Inclusions

36



the third set up we split 48 inclusions into 2 columns such that the 24 inclusions in each of the columns

are horizontally aligned. Figure 24 shows plots of the interior pressure and streamlines for this set up. The

bottom inclusions are placed on y range [0.00325 cm, 0.00375 cm]. Inclusions with height 0.0005 cm are

placed 0.0005 cm apart up until the highest inclusions on y interval [0.02625 cm, 0.02675 cm]. In our fourth

set up, we shift the 24 inclusions in the right column up by 0.00025 cm and the 24 inclusions in the left

column down by 0.00025 cm. Figure 25 shows plots of the interior pressure and streamlines for this set up.

Note that the 24 and 48 inclusion aligned set ups shown in Figures 22 and 24 have the distance between

the top of the top inclusions and the top boundary equal to the distance between the bottom of the bottom

inclusions and the bottom boundary. Similarly, the staggered set ups shown in Figures 23 and 25 have d1 = d4

and d2 = d3 for di defined for the previous 2 experiments. Furthermore, observe that going from the third

experiment to the first 2 set ups, we doubled the number of inclusions but halved the area of each inclusion.

Similarly, going from the third experiment to the second 2 set ups, we quadrupled the number of inclusions

but quartered the area of each inclusion. Thus, we keep the area of the domain that lies in inclusions the

same as in the second and third experiments.

Figure 26 shows a plot of the number of inclusions compared to the hydraulic resistance. When the

inclusions are aligned or staggered, the hydraulic resistance increases with the number of inclusions. It is

important to note that in these 4 set ups the flow rate error ranged from 0.134 to 0.158 which is above our

desired threshold of 0.10. Therefore, we are least confident in these results of experiments 1 through 4. To

reduce the error, the step size h = 0.000125 cm would need to be halved for these 4 set ups as well as the

fully aligned and staggered set ups for 6 and 12 inclusions. We estimate that our solver would take over 2

days to produce results for h = 0.0000625 cm.

Figure 26: Hydraulic Resistance for Varying Number of Inclusions

37



4.5 Comparison with Analytic Approximation

We want to see if we can verify the results of our solver for our experiments 1 through 4. We do this using

an analytic approximation of hydraulic resistance. Our approximation is built on the idea of treating the

channels of fluid flow as resistors [17]. Channels are the areas in the domain where fluid is forced to flow

due to the positioning of inclusions. In our case, a channel is rectangular with its length and height being

defined by a combination of the surrounding inclusions and domain boundaries. Let L(C) and H(C) denote

the length and height of a channel C. We can calculate the resistance R(C) of such a channel using the

following formula [2].

R(C) =
12µL(C)

H(C)3
(71)

Note that µ is fixed to be 0.01 P in all of our experiments as noted at the beginning of section 4. There

are also 2 more formulas [17] taken from electrokinetics that we use. Suppose channels C1, C2, . . . , Cn lie in

parallel. Then, the total equivalent resistance is given by:

Rparallel =

 n∑
i=1

1

R(Ci)

−1

(72)

Suppose alternatively that this set of channels lie in series. Then, the total equivalent resistance is given by:

Rseries =

n∑
i=1

R(Ci) (73)

First, we derive the analytic approximation of the hydraulic resistance for our first experiment where 2

inclusions in a single column with equal horizontal span are moved vertically closer together. In these set

ups, we have 3 channels. The first channel C1 has a vertical span from the bottom domain boundary to the

bottom of the lower inclusion and a horizontal span equivalent to the 2 inclusions. The second channel C2

spans vertically from the top of the lower inclusion to the bottom of the higher inclusion and horizontally the

same as C1. The third channel C3 spans vertically from the top of the higher inclusion to the top domain

boundary and horizontally the same as C1. Figure 27 (a) gives an example channel setup diagram.

As described on the bottom of page 27, the distance from the bottom boundary to the bottom of the lower

inclusion is equal to the distance from the top boundary to the top of the higher inclusion in each of the set

ups for the 7 runs in this experiment. Let H1 be the distance from the 2 inclusions to their respectively closer

boundaries and H2 be the distance between the inclusions. Thus, H(C1) = H(C3) = H1 and H(C2) = H2.

From page 29, we know L(Ci) = 0.004 cm. Figure 27 (a) is a diagram that shows the set up of Ci in the case

38



that H2 = 0.016 cm. As we move inclusions closer together, H2 decreases while H1 increases. Applying (72)

and (73), we can approximate the hydraulic resistance for one of these set ups as:

(
2H3

1

12 · 0.01 P · 0.004 cm
+

H3
2

12 · 0.01 P · 0.004 cm

)−1

Figure 28 (a) includes our analytic approximation of the hydraulic resistance for H2 varied from 0.004 cm

to 0.016 cm. With a domain height of 0.03 cm and inclusions of height 0.004 cm each, we can calculate

H1 from H2 as H1 = (0.03 − 0.008 − H2)/2 cm. Figure 28 (a) shows the hydraulic resistances calculated

from the solver output and approximated using the above strategy normalized to R0.004. By this we mean

that the analytic approximation and solver approximation of the resistances are normalized to the analytic

approximation and solver approximation for the resistance when H2 = 0.004 cm respectively. From it we can

see that the analytic approximations do not exactly match the solver results, but they share the same trend.

Next, we derive the analytic approximation of the hydraulic resistance when we have 2 columns of inclu-

sions that may be staggered. As in experiment 1, the inclusions in experiments 2 through 4 all have equal

length 0.004 cm. We also know that the vertical distance between inclusions is kept constant in the set ups

of each of the experiments. In experiment 2, the distance is 0.004 cm, in experiment 3, the distance is 0.002

cm, and in experiment 4, the distances are 0.001 cm in the case of 24 inclusions and 0.0005 cm in the case

of 48. Let the vertical distance between inclusions be called dI . We also know in each of these experiments

that d1 = d4 and d2 = d3 for di defined previously. When inclusions are fully aligned d1 = d2 = d3 = d4. As

inclusions become more staggered, d1 = d4 decrease and d2 = d3 increase.

(a) Closing Inclusions (1 column) (b) Staggering Inclusions (2 columns)

Figure 27: Channel Setups for Analytic Approximation of Hydraulic Resistance

39



Let us derive the analytic approximation in the case that we have N inclusions split over 2 columns. We

are interested in N = 6, 12, 24, and 48. Let C1 be the first channel that spans vertically from the bottom

domain boundary to the bottom of the lowest left column inclusion and horizontally equivalent to the left

column inclusions. Let C2, C3, . . . , CN/2 be the channels that lie between the inclusions in the left column.

They each span vertically between 2 inclusions and horizontally equivalent to C1. Let C(N/2)+1 be the channel

spanning vertically from the top of the highest left inclusion to the top domain boundary and horizontally

equivalent to C1. Let C(N/2)+2 be the channel spanning vertically from the bottom domain boundary to

the bottom of the lowest right inclusion and horizontally equivalent to the right column inclusions. Let

C(N/2)+3, C(N/2)+4, . . . , CN+1 be the channels that lie between the inclusions in the right column. They

span vertically between 2 inclusions and horizontally equivalent to C(N/2)+2. Let CN+2 be the final channel

spanning vertically from the top of the highest right inclusion to the top domain boundary and horizontally

equivalent to C(N/2)+2. Figure 27 (b) shows a diagram of the channel set up for the run from experiment 2

where d1 = d4 = 0.004 cm and d2 = d3 = 0.006 cm.

We know that H(C1) = d1, H(C(N/2)+1) = d2, H(C(N/2)+2) = d3, H(CN+2) = d4, and H(Ci) = dI for

all other i. Thus, applying (72) we can compute the hydraulic resistance of the left column RL and of the

right column RR.

RL =

(
d31

12 · 0.01 · 0.004
+

((N/2)− 1)d3I
12 · 0.01 · 0.004

+
d32

12 · 0.01 · 0.004

)−1

RR =

(
d33

12 · 0.01 · 0.004
+

((N/2)− 1)d3I
12 · 0.01 · 0.004

+
d34

12 · 0.01 · 0.004

)−1

We can calculate the total hydraulic resistance as RL + RR by applying (73). Since d1 = d4 and d2 = d3,

RL +RR = 2RL and we can write the resistance in terms of N, dI , d1 and d2.

R(N, dI , d1, d2) = 2

(
d31

12 · 0.01 P · 0.004 cm
+

((N/2)− 1)d3I
12 · 0.01 P · 0.004 cm

+
d32

12 · 0.01 P · 0.004 cm

)−1

(74)

Figure 28 (b) includes our analytic approximation of the hydraulic resistance for varying number of inclusions

in both aligned and staggered cases. For the aligned cases, we include the approximationsR(6, 0.004, 0.005, 0.005),

R(12, 0.002, 0.004, 0.004),R(24, 0.001, 0.0035, 0.0035), and R(48, 0.0005, 0.00325, 0.00325). For the staggered

cases, we include the approximationsR(6, 0.004, 0.003, 0.007),R(12, 0.002, 0.003, 0.005),R(24, 0.001, 0.003, 0.004),

and R(48, 0.0005, 0.003, 0.0035). Figure 28 (b) shows the hydraulic resistances approximated analytically and

using our solver normalized to R6. By this we mean that the analytic approximations for aligned inclusions,

the solver approximations for aligned inclusions, analytic approximations for staggered inclusions, and the

40



(a) Experiment 1 (b) Experiment 4

Figure 28: Normalized Comparison of Analytic and Velocity Solver’s Approximation of Hydraulic Resistance for First
and Last Experiments

solver approximations for staggered inclusions are normalized by R(6, 0.004, 0.005, 0.005), the solver ap-

proximation for 6 aligned inclusions, R(6, 0.004, 0.003, 0.007), and the solver approximation for 6 staggered

inclusions respectively. Again, we see that the analytic approximation does not exactly match the solver

results, but the two share the same trend in both aligned and staggered cases.

Figure 29 (a) includes our analytic approximation of the hydraulic resistance R(6, 0.004, d1, 0.01− d1) for

d1 from 0.005 cm down to 0.003 cm. Note, here we take d2 = 0.01 − d1 which matches the relationships of

d1 = d3 and d2 = d4 for the 5 setups we ran in experiment 2 described in section 4.2. Figure 29 (a) shows

the hydraulic resistance approximated analytically and using our solver normalized to R0. By this we mean

all the analytic and solver approximations are normalized to the analytic and solver approximations of the

resistance when d1 = 0.005 cm respectively. Recall, d1 = 0.005 cm corresponds to there being 0 staggering.

Here we can see that the analytic approximations of resistance decrease when the inclusions are staggered

more. This is opposite of the trend of the solver results.

Figure 29 (b) includes our analytic approximation of the hydraulic resistance R(12, 0.002, d1, 0.008− d1)

for d1 from 0.004 cm down to 0.003 cm. Note, here we take d2 = 0.008− d1 which matches the relationships

of d1 and d2 for the 5 setups we ran in experiment 3 described in section 4.3. Figure 29 (b) shows the

hydraulic resistance approximated analytically and using our solver normalized to R0. Similar to above,

that means the approximations made using the 2 techniques are normalized to the techniques’ respective

approximations for the resistance when there is 0 staggering. For the 12 inclusion setups, there is 0 staggering

when d1 = 0.004 cm. Here, like in the case of Figure 29 (a), the trend of the analytically approximated

resistance is opposite of that of the solver approximations.

41



(a) Experiment 2 (b) Experiment 3

Figure 29: Normalized Comparison of Analytic and Velocity Solver’s Approximation of Hydraulic Resistance for
Second and Third Experiments

To understand this discrepancy, let us return to equation (74), our resistance approximation in the case

of inclusions split over 2 columns. In particular, we are interested in how R(N, dI , d1, d2) changes when

inclusions become more staggered for fixed N and dI . In this case, seeing how R(N, dI , d1, d2) behaves with

more staggering is equivalent to seeing how (d31 + d32)
−1 behaves as d1 decreases and d2 increases. In our

experiments, staggering is applied by starting d1 = d2 = d and then each staggering step is equivalent to

d1 = d − ∆d and d2 = d + ∆d. We are interested in seeing how ((d − ∆d)3 + (d + ∆d)3)−1 behaves for

∆d increasing from 0. Expanding terms shows that ((d−∆d)3 + (d+∆d)3)−1 = (2d3 + 6d∆d2)−1. One of

the effects of staggering inclusions is that we create a larger channel at the top of the left column and at

the bottom of the right column. Due to the fact that (2d3 + 6d∆d2)−1 decreases with increasing ∆d, this

implies that our analytic approximation is only taking into account the effect of the larger channels produced

by staggering inclusions. We believe that the analytic approximation is essentially treating staggering as

equivalent to gradually growing 2 larger channels at the same time as shrinking 2 others. We want to see

if our solver also reports that the resistance decreases when we do not stagger columns but instead grow 2

channels while shrinking 2 others. To do this, we perform 2 additional experiments.

In the first of these experiments, we start with the same setup as in the second experiment. However,

instead of shifting the 3 left inclusions down and the 3 right inclusions up by 0.0005 cm 4 times, we shift all

inclusions in both columns down by 0.0005 cm 4 times. By doing this, the sizes of the channels for each

run in this experiment are equivalent to the sizes of the channels in the runs of experiment 2. However,

here the 2 growing channels are both at the top of the domain while both shrinking channels are at the

bottom. Figure 15 shows the interior pressure and streamlines approximated by our solver at the last time

step for the setup of the first run of this experiment. Figure 30 shows plots of the interior pressure and

42



streamlines approximated by our solver at the last time step when the inclusions in the 2 columns have

been fully shifted downward. The inclusions lie in 2 columns on the same x ranges as in experiments 2

through 4: [0.003 cm, 0.007 cm] and [0.013 cm, 0.017 cm]. The inclusions in both columns lie on y ranges

[0.003 cm, 0.007 cm],[0.011 cm, 0.015 cm], and [0.019 cm, 0.023 cm]. Starting from the set up in Figure 15,

we move the inclusions in both columns down by 0.0005 cm 4 times to end up with the set up in Figure 30.

Figure 32 (a) includes the resistance as approximated by our solver as a function of the distance between

the highest left inclusion and the top domain boundary for our 5 set ups. In the figure, the resistance values

are normalized to the resistance approximated by our solver when the inclusions are aligned and symmetrically

distant from the domain boundaries. To make an analytic approximation of the resistance as the aligned

inclusions are moved down, we can make use of a similar channel set up to the one described on page 39.

The only difference is that d1 = d3 and d2 = d4 as opposed to d1 = d4 and d2 = d3. From (74), we can see

that this means the resistance of a staggered setup for a particular d1 and d2 is equivalent to the resistance

of a shifted aligned setup for the same d1 and d2. Figure 32 (a) demonstrates this by showing a plot of

R(6, 0.004, d1, 0.01−d1) for d1 from 0.005 cm down to 0.003 cm. Again, in these experiments, d2 = 0.01−d1.

In Figure 32 (a) these approximations are normalized by R(6, 0.004, 0.005, 0.005). Here we can see that the

solver results, like the analytic approximation, show that the resistance decreases as we widen 2 channels and

shrink 2 others in the manner described above. We are confident in the results of our solver because its flow

rate error remained between 0.034 and 0.043 for these 5 runs.

In the second of our new experiments, we start with the same setup as the third experiment. How-

ever, instead of shifting the 6 left inclusions down and the 6 right inclusions up by 0.00025 cm 4 times,

we shift all inclusions in both columns down by 0.00025 cm 4 times. By doing this, the sizes of the chan-

nels for each run in this experiment are equivalent to the sizes of the channels in the runs of experiment

3. However, here the 2 growing channels are both at the top of the domain while both shrinking chan-

nels are at the bottom. Figure 17 shows the interior pressure and streamlines approximated by our solver

at the last time step for the setup of the first run of this experiment. Figure 31 shows plots of the inte-

rior pressure and streamlines approximated by our solver at the last time step when the inclusions have

been fully shifted downward. The inclusions lie in 2 columns on the same x ranges as in experiments 2

through 4: [0.003 cm, 0.007 cm] and [0.013 cm, 0.017 cm]. The inclusions in both columns lie on y ranges

[0.003 cm, 0.005 cm],[0.007 cm, 0.009 cm],[0.011 cm, 0.013 cm],[0.015 cm, 0.017 cm],[0.019 cm, 0.021 cm], and

[0.023 cm, 0.025 cm]. Starting from the set up in Figure 17, we move the inclusions in both columns down

by 0.00025 cm 4 times to end up with the set up in Figure 31.

43



(a) Interior Pressure (Ba) (b) Streamlines

Figure 30: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 6 Shifted Aligned
Inclusions

(a) Interior Pressure (Ba) (b) Streamlines

Figure 31: Interior Pressure and Streamline Plots Made from the Output of our Velocity Solver for 12 Shifted Aligned
Inclusions

44



(a) Shifting 6 Aligned Inclusions (b) Shifting 12 Aligned Inclusions

Figure 32: Normalized Comparison of Analytic and Velocity Solver’s Approximation of Hydraulic Resistance for
Shifting Aligned Inclusions

Figure 32 (b) includes the resistance as approximated by our solver as a function of the distance between

the highest left inclusion to the top domain boundary for our 5 set ups. In the figure, the resistance values are

normalized to the resistance approximated by our solver when the inclusions are aligned and symmetrically

distant from the domain boundaries. As in the case of 6 inclusions, the staggered and shifted aligned setups

for a particular d1 and d2 have equal resistance. Figure 32 (b) demonstrates this by showing a plot of

R(12, 0.002, d1, 0.008 − d1) for d1 from 0.004 cm down to 0.003 cm. In these experiments, d2 = 0.008 − d1.

In Figure 32 (b) these approximations are normalized by R(2, 0.002, 0.004, 0.004). Here we see, like in the

previous experiment, that the solver results have the same trend as the analytic approximation. We are

confident in the results of our solver because its flow rate error remained between 0.079 and 0.086 for these

5 runs.

Let us return now to the difference in the analytic and solver approximations for staggered inclusions.

If one were to look only at the streamline plots in the case of staggered inclusions, we would be inclined to

think that the resistance only increases over D with more staggering because the streamlines become more

vertical. The more vertical streamlines indicate that the fluid is being forced to more drastically change its

path through D. One could look at Figures 16 (b), 18 (b), 23 (b), and 25 (b) for examples of this. However,

the analytic approximation, despite being inaccurate, shows us that there is a second change in fluid flow

with staggering. That is, with the creation of larger channels, the resistance also is decreasing as more fluid

can flow through those larger channels. This theory is supported by the results of our 2 new experiments.

Thus, staggering introduces 2 effects on fluid flow that counteract each other. We have discovered that the

analytic approximation, despite being much easier to compute, does not capture both of these effects. Our

velocity solver on the other hand is able to capture both effects of staggered inclusions on the resistance.

45



This demonstrates why our solver is important: it approximates the behavior of a fluid throughout the entire

domain.

5 Conclusions

Modelling the flow of fluids is an important task in the creation of microfluidic devices. This thesis is

particularly beneficial to the study of constructing devices that use obstacles to manipulate fluid flow. At

the beginning of this thesis, we formulated our task as solving the incompressible Navier-Stokes equations

subject to certain boundary conditions. Then, we went on to describe our construction of a solver to Poisson’s

equation. After that, we created our fluid velocity solver. Both solvers were constructed with the idea in

mind of allowing for arbitrary placement of inclusions. We also discussed benchmarks we performed on

our solvers as well as evidence of issues that we discovered. Lastly, we described a series of computer

experiments we conducted with our fluid solver on domains with various inclusion arrangements. In our last

section, we compared an analytic approximation of hydraulic resistance with an approximation computed

from our solver’s output. From this comparison we discovered that our solver is able to provide more accurate

approximations of the resistance for certain arrangements. Experiments 2 and 3 provide clear examples of

studies that greatly benefit from a fluid solver like ours.

5.1 Directions of Future Work

There are a variety of areas in which one could expand on this work. The most obvious being further analysis

of our solver to identify if the errors in our solver are due to the approach we took or are due to mistakes

in the Python implementation. There is also room to improve the method driving the velocity solver. The

method we use for solving the Navier-Stokes equations is explicit but one could study implicit methods

as replacements. There are also ways the solver could be sped up. As described in sections 2.4 and 3.1,

our strategies for approximating the gradient involve iteration with nested loops. This could definitely be

a bottleneck for our fluid solver as gradients are approximated at each velocity solver time step. If these

computations could be expressed in terms of matrix multiplications this may allow for a faster solver. This

may be especially useful if our implementation was ported to a Python implementation that uses GPUs.

Currently, our solver is built primarily on NumPy and SciPy which are both restricted to run on CPUs only.

GPUs may prove useful in speeding up matrix related operations.

There are also ways one could add to the existing solver. One area, in which we have already started to

work on, is incorporating the immersed boundary method [12] into the solver to model the movement of an

immersed boundary cell. So far, we have ported an existing MATLAB implementation for domains without

46



inclusions into Python. The ported code still needs further modifications to be fully incorporated with our

solver. In section 4, we studied a variety of arrangements of rectangular inclusions, but one could definitely

study more. For example, one may be interested in the effects of the horizontal distance between the 2

columns of inclusions discussed in the various experiments in section 4. One could also investigate adding

support to our solver for non rectangular inclusions in the domain. As seen in the work done by Torino et.

al [14], obstacles in microfluidic devices can take on a variety of shapes.

Acknowledgements

We would like to thank Brandeis University postdoctoral fellow Ying Zhang for providing us with her MAT-

LAB implementation for the Immersed Boundary Method which we have ported to Python.

References

[1] Patrice Bacchin, Quentin Derekx, Damien Veyret, Karl Glucina, and Philippe Moulin. Clogging of

microporous channels networks: role of connectivity and tortuosity. Microfluidics and nanofluidics,

17(1):85–96, 2014.

[2] Cx K Batchelor and GK Batchelor. An introduction to fluid dynamics. Cambridge university press,

2000.

[3] Gangadhar Eluru, Pavan Nagendra, and Sai Siva Gorthi. Microfluidic in-flow decantation technique

using stepped pillar arrays and hydraulic resistance tuners. Micromachines, 10(7):471, 2019.

[4] Matteo Giacomini and Ruben Sevilla. Discontinuous galerkin approximations in computational mechan-

ics: hybridization, exact geometry and degree adaptivity. SN Applied Sciences, 1(9):1–15, 2019.

[5] Michael T Heath. Scientific computing: an introductory survey, revised second edition. SIAM, 2018.

[6] Medusa: Coordinate Free Meshless Method implementation. Poisson’s equation — medusa: Coordinate

free mehless method implementation,, 2021. [Online; accessed 11-April-2022].

[7] Hans Johnston and Jian-Guo Liu. Finite difference schemes for incompressible flow based on local

pressure boundary conditions. Journal of Computational Physics, 180(1):120–154, 2002.

[8] Gess Kelly and Thomas G. Fai. Multiscale model of clogging in microfluidic devices with grid-like

geometries, 2021.

47



[9] Xiaoye S. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Transac-

tions on Mathematical Software, 31(3):302–325, September 2005.

[10] Daniel Mark, Stefan Haeberle, Günter Roth, F von Stetten, and Roland Zengerle. Microfluidic lab-on-a-

chip platforms: requirements, characteristics and applications. Microfluidics based microsystems, pages

305–376, 2010.

[11] Cleve B Moler. Numerical computing with MATLAB. SIAM, 2004. [Online; accessed 27-April-2022].

[12] Charles S Peskin. The immersed boundary method. Acta numerica, 11:479–517, 2002.

[13] Jure Slak and Gregor Kosec. Medusa: A c++ library for solving pdes using strong form mesh-free

methods. ACM Transactions on Mathematical Software, 2021.

[14] S Torino, M Iodice, I Rendina, G Coppola, and E Schonbrun. Hydrodynamic self-focusing in a parallel

microfluidic device through cross-filtration. Biomicrofluidics, 9(6):064107, 2015.

[15] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam, 1997.

[16] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,

Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew

Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert

Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,

Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,

Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[17] Wikibooks. Microfluidics/hydraulic resistance and capacity — wikibooks, the free textbook project,

2019. [Online; accessed 20-April-2022].

48


	Introduction
	Problem Formulation

	Poisson Solver
	Derivation of Solver for a Rectangular Domain
	Benchmarks Against an Existing Solver
	Addition of Inclusions
	Benchmark for a Single Inclusion

	Fluid Velocity Solver
	Iterative Method
	Results for Plane Poiseuille Flow
	Addition of Inclusions
	Issues with the Solver

	Analysis of Inclusion Arrangements
	Experiment 1: Closing Inclusions
	Experiment 2: Staggering 6 Inclusions in 2 Columns
	Experiment 3: Staggering 12 Inclusions in 2 Columns
	Experiment 4: Comparing Counts of Inclusions
	Comparison with Analytic Approximation

	Conclusions
	Directions of Future Work


