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Abstract

Consider non-intersecting Brownian motions on the line leaving
from the origin and forced to two arbitrary points. Letting the num-
ber of Brownian particles tend to infinity, and upon rescaling, there
is a point of bifurcation, where the support of the density of parti-
cles goes from one interval to two intervals. In this paper, we show
that at that very point of bifurcation a cusp appears, near which the
Brownian paths fluctuate like the Pearcey process. This is a univer-
sality result within this class of problems. Tracy and Widom obtained
such a result in the symmetric case, when the two target points are
symmetric with regard to the origin. This asymmetry enabled us to
improve considerably a result concerning the non-linear partial differ-
ential equations governing the transition probabilities for the Pearcey
process, obtained by Adler and van Moerbeke.

1 Introduction

Consider the probability that n non-intersecting (Dyson) Brownian motions

x1(t) < . . . < xn(t)

in R belong to a set E ∈ R, with all particles leaving from the origin at time
t = 0 and all forced to end up at b1 < b2 < . . . < bp at time t = 1:
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P(b1,...,bp)
n


all xj(0) = 0

all xj(t) ∈ E for 1 ≤ j ≤ n n1 paths end up at b1 at t = 1
...

np paths end up at bp at t = 1


with

∑p
i=1 ni = n and with (local) transition probability

p(t;x, y) :=
1√
πt
e−

(x−y)2

t . (1.1)

A formula by Karlin-McGregor enables one to express this probability as an
integral of a product of two determinants involving the transition probability
(1.1) above. This further leads to a expression as (i) a GUE-matrix integral
with an external potential, (ii) a determinant of a block moment matrix, with
p blocks and (iii) a Fredholm determinant of a kernel. Finally it is also the
solution of a PDE in the end-points of the interval E and the target points
b1, . . . , bp.

Throughout this paper, we shall be dealing with the case of two target
points p = 2. In this paper, we show that, when n→∞ and when one looks
through a microscope near a certain point of bifurcation, the non-intersecting
Brownian motions tend to a new process, the Pearcey process, whatever be
the location of the target points and whatever be the proportion of particles
forced to those points. Tracy and Widom [28] showed this result in the
symmetric case; namely when the target points are symmetric with respect
to the origin and half of the particles go to either target point. Brézin and
Hikami [9, 10, 11, 12] first considered this kernel and Bleher-Kuijlaars [8]
obtained strong asymptotics using Riemann-Hilbert techniques.

The Pearcey process P(t) describes a cloud of Brownian particles, evolving
in time according to a (matrix) Fredholm determinant,

PP
(
all P(tj) ∈ Ec

j , 1 ≤ j ≤ m
)

= det

(
I −

(
χ
Ei
KPtitj

χ
Ej

)
1≤i,j≤m

)
of the Pearcey kernel

KPs,t(x, y) = − 1

4π2

∫
X

dV

∫ i∞

−i∞
dUe−

U4

4
+ tU2

2
−Uye

V 4

4
− sV

2

2
+V x 1

U − V

− I(s < t)√
2π(t− s)

e−
(x−y)2

2(t−s)
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(1.2)

The contour X is given by the ingoing rays from ±∞eiπ/4 to 0 and the
outgoing rays from 0 to ±∞e−iπ/4, i.e., X stands for the contour, all rays
making an angle of π/4 with the horizontal axis.

↖ ↙
0

↗ ↘
For s = t, the Pearcey kernel can also be written

KPt,t(x, y) =
p(x)q′′(y)− p′(x)q′(y) + p′′(x)q(y)− tp(x)q(y)

x− y
(1.3)

with

q(y) :=
i

2π

∫ i∞

−i∞
e−

U4

4
+ tU2

2
−UydU, p(x) :=

1

2πi

∫
X

e
V 4

4
− tV

2

2
+V xdV,

satisfying both, the differential equations (using integration by parts)

p′′′(x)− tp′(x) + xp(x) = 0, q′′′(y)− tq′(y)− yq(y) = 0, (1.4)

and the heat equations

∂p

∂t
= −1

2
p′′(x),

∂q

∂t
=

1

2
q′′(y), (1.5)

whereas KPt,t satisfies the following equation

∂KPt,t
∂t

=
1

2
(−p′(x)q(y) + p(x)q′(y)). (1.6)

The latter follows from taking ∂/∂t of the kernel (1.2), which has for effect to
multiply the exponentials under the integral (1.2) with 1

2
(U2−V 2)/(U−V ) =

1
2
(U + V ).

Consider n non-intersecting Brownian motions, with 0 < p < 1 and b < a:

P(b,a)
n


all xj(0) = 0⋂

1≤i≤m

{all xj (ti) for 1 ≤ j ≤ n} pn paths end up at a at t = 1

(1−p)n paths end up at b at t = 1
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When n→∞, the mean density of Brownian particles has its support on one
interval for t ∼ 0 and on two intervals for t ∼ 1, so that a bifurcation appears
for some intermediate time t0, where one interval splits into two intervals. At
this point the boundary of the support of the mean density has a cusp. We
show that near this cusp, the same Pearcey process appears, independently
of the values of a, b and p, showing “universality” of the Pearcey process; see
Figure 1. As it turns out, it is convenient to introduce the parametrization

p =
1

1 + q3
with 0 < q <∞ and let r :=

√
q2 − q + 1. (1.7)

Theorem 1.1 For n → ∞, the cloud of Brownian particles lie within a
region, having a cusp at location (x0

√
n, t0), with

x0 =
(2a− b)q + (2b− a)

q + 1
t0,

1

t 0
= 1 + 2

(
r(a− b)
q + 1

)2

. (1.8)

Moreover, the following probability tends to the probability for the Pearcey
process:

lim
n→∞

P(b
√
n,a
√
n)

n

( ⋂
1≤i≤m

{
all xj

(
t0 +

( c0µ

n1/4

)2

2τi

)
∈ x0n

1/2 + c0Aτi +
c0µ

n1/4
Ec

})

= PP
( ⋂

1≤i≤m

{P(τi) ∩ E = ∅}

)
,

(1.9)

using the following constants

µ =

(
q2 − q + 1

q

)1/4

> 0, , c0 :=

√
t0(1− t0)

2
= t0

r(a− b)
q + 1

> 0.

A =
q1/2(a− x0) + q−1/2(b− x0)

(a− b)
(1.10)

In [4], Adler and van Moerbeke showed that the Pearcey transition prob-
ability (1.11) satisfies a non-linear PDE, expressible as a Wronskian of the
expression (1.12) with some partial. This was obtained from taking a scal-
ing limit, when n → ∞, of the symmetric situation, i.e., where b = −a

5



and p = 1/2. It came as a surprise to us that considering the asymmet-
ric case leads to a different non-linear PDE, when n→∞, but nevertheless
also expressible as a Wronskian of the same expression (1.12) with some other
partial. A separate functional-theoretical argument then enables one to show
that the expresssion (1.12) itself vanishes. This was one of the motivations
for finding the exact scaling as presented in Theorem 1.1.

To E = ∪ri=1(y2i−1, y2i) ⊂ R one associates two operators, a divergence
and an Euler operator

∂
E

=
2r∑
1

∂

∂yi
, ε

E
=

2r∑
1

yi
∂

∂yi
.

6



Figure 1: The Pearcey process for b = 0.

parametrization:

q3 :=
1− p
p

, r :=
√
q2 − q + 1.

cusp x− x0 = 2
(
t−t0

3

)3/2
at

x0 = at0
2q − 1

q + 1
,

1

t0
= 1 + 2

(
ar

q + 1

)2

.

Theorem 1.2 The log of the transition probability for the Pearcey process,
which is non-stationary,

Q(t, E) := log PP (P(t) ∩ E = ∅) (1.11)

satisfies the following 3rd order non-linear PDE in t and the boundary points
of E,

∂3Q
∂t3

+
1

8

(
εE − 2t

∂

∂t
− 2

)
∂2
E
Q− 1

2

{
∂2
E
Q, ∂

E

∂Q
∂t

}
∂
E

= 0, (1.12)

7



with “final condition”, given by the Airy process1 which is a stationary pro-

cess, (by moving far out along the cusp x = 2
(
t
3

)3/2
)

lim
t→∞

PP
(
P(t)− 2

(
t
3

)3/2

(3t)1/6
∩ (−E) = ∅

)
= det(I −A)(−E)

Remark: It is interesting to compare the Pearcey PDE with the Airy process
PDE; namely for semi-infinite intervals E1 and E2, the 3rd order non-linear
PDE for the Airy joint probability

QA(t;x, y) := log PA
(
A(t1) ≤ y + x

2
, A(t2) ≤ y − x

2

)
, for t = t2 − t1,

reads

2t
∂3QA

∂t∂x∂y
=

(
t2
∂

∂x
− x ∂

∂y

)(
∂2QA

∂x2
− ∂2QA

∂y2

)
+ 8

{
∂2QA

∂x∂y
,
∂2QA

∂y2

}
y

,

(1.13)
with ”final condition”:

lim
t2−t1→∞

PA (A(t1) ≤ u1, A(t2) ≤ u2) = F(u1)F(u2).

In the last section (section 7), we develop -in a formal way- the central role
played by the spectral curve (or Pastur equation [24]) in the steepest descent
analysis used to prove the universal behavior of the kernel as N → ∞ for
the different problems of non-intersecting Brownian motions. The spectral
curve is precisely the function which appears in the steepest descent analysis.
The spectral curve associated to the problem provides the universal limiting
kernel obtained after a proper rescaling of the variable around a singularity
of the problem.

1The Airy process is a stationary process, which describe the statistical fluctuations
of the process about the curve appearing in Figure 1, away from the edge and properly
rescaled. Its probability given at any time by the Tracy-Widom distribution F(x). The
latter is given by the Fredholm determinant det(I −A) of the Airy kernel A, restricted to
the interval under consideration.
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2 Non-intersecting Brownian motions on R,

forced to several points

In the expression below, Hn(E) is the set of all Hermitian matrices with
all eigenvalues in E. Note that in general one has the following, using the
Karlin-McGregor formula2 (see [21, 9, 10, 11, 12, 28, 8]):

P(b1,...,bp)
n


all xj(0) = 0

all xj(t) ∈ E for 1 ≤ j ≤ n n1 paths end up at b1 at t = 1
...

np paths end up at bp at t = 1


= lim

all γi → 0
δ1, . . . , δn1 → b1

.

.

.
δn1+...+np−1+1, . . . , δn → bp

∫
En

∏n
1 dxi
Zn

det (p(t; γi, xj))1≤i,j≤n det(p(1−t;xi′ , δj′))1≤i′,j′≤n,

=
1

Zn

∫
Ẽn

∆n(x1, ..., xn)

p∏
`=1

∆n`(x
(`))

n∏̀
j=1

e−
1
2
x

(`)2

j +b̃`x
(`)
j dx

(`)
j

∣∣∣∣∣ Ẽ = E
√

2
t(1−t)

b̃` =
√

2t
1−tb`

=
1

Zn

∫
Hn
“
E
q

2
t(1−t)

” dMe−
1
2

Tr(M2−2AtM)dM

=
1

Zn
det



(∫
Ẽ

xi+je−
x2

2
+b̃1xdx

)
0≤i≤n1−1, 0≤j≤n−1

...(∫
Ẽ

xi+je−
x2

2
+b̃pxdx

)
0≤i≤np−1, 0≤j≤n−1


= det(I −H(p)

n )Ec , (Fredholm determinant) (2.1)

2∆n(x1, . . . , xn) is the Vandermonde determinant.
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where H
(p)
n (x, y) is the kernel (setting tk = t` = t)

H(p)
n (x, y)dy

= − dy

2π2
√

(1− tk)(1− t`)

∫
C
dV

∫
L+iR

dU
e
− tkV

2

1−tk
+ 2xV

1−tk

e
− t`U

2

1−t`
+ 2yU

1−t`

p∏
r=1

(
U − br
V − br

)nr 1

U − V

−


0 for tk ≥ t`

1√
π(t`−tk)

e
− (x−y)2

t`−tk e
x2

1−tk
− y2

1−t` , for tk < t`

. (2.2)

where X is a contour consisting of the two incoming rays from ±∞eiπ/4 to 0
and the two outgoing rays from 0 to ±∞e−iπ/4, provided no br = 0. In the
expression above, At is the diagonal matrix

At :=



b̃1

. . . O

b̃1

b̃2

O
. . .

b̃2

. . .

b̃p
. . .

b̃p



l n1

l n2
...

l np

with b̃i = bi

√
2t

1− t
,

(2.3)
The main expression appearing in (2.1) contains the matrix integral

Pn(E; b1, . . . , bp) =
1

Zn

∫
En

∆n(x1, ..., xn)

p∏
`=1

∆n`(x
(`))

n∏̀
j=1

e−
1
2
x

(`)2

j +b`x
(`)
j dx

(`)
j

=
1

Zn

∫
Hn(E)

dMe−
1
2

Tr(M2−2AM), (2.4)

which is now viewed as a function of the boundary points of E and the target
points bi, for which one assumes a linear dependence

p∑
1

cibi = 0 with

p∑
1

ci = 1.

10



Introduce the following operators:

∂
E

:=

{
sum of partials in the
boundary points of E

}
ε :=

{
Euler operator in the
boundary points of E

}
−

p−1∑
1

bi
∂

∂bi

∂
(`)
b := c`

p−1∑
1

∂

∂bi
− ∂

∂b`
(1− δ`p), one checks

p∑
`=1

∂
(`)
b = 0 (2.5)

Proposition: [5] The expression log Pn satisfies a non-linear PDE in the
boundary points of the interval E and in the target points bi, given by the
(near-Wronskian) determinant of a (p+ 1)× (p+ 1) matrix

det


F1 F2 F3 . . . Fp 0
F ′1 F ′2 F ′3 . . . F ′p G1

F ′′1 F ′′2 F ′′3 . . . F ′′p G2
...

...
...

...
...

F
(p)
1 F

(p)
2 F

(p)
3 . . . F

(p)
p Gp

 = 0, ′ := ∂
E

(2.6)

where the F` and G` are given by3 (G0 = 0)

F` :=
(
∂

(`)
b + c`∂E

)
∂
E

log Pn + n`

G`+1 := ∂
E
G` +

p∑
j=1

(∂`
E
Fj)

(
∂
E

H
(1)
j

Fj
− ∂(`)

b

H
(2)
j

Fj

)
,

H
(1)
` :=

(
−c`∂Eε+ ((ε− 1)c` + 2)(∂

(`)
b + c`∂E)

)
log Pn + C`

H
(2)
` := (1− ε+ 2b`∂E)

(
∂

(`)
b + c`∂E

)
log Pn. (2.7)

3 with C` = −2n`
(

(1− c`)b` +
∑
j 6=`

nj

b`−bj

)
.

11



Example: Setting H` :=
{
H

(1)
` , F`

}
∂
E

−
{
H

(2)
` , F`

}
∂

(b)
`

, one has:

p = 1 =⇒ det

(
F1 0
F ′1

H1

F1

)
= H1 = 0 (2.8)

p = 2 =⇒ F1F2 det

 F1 F2 0
F ′1 F ′2

H1

F1
+ H2

F2

F ′′1 F ′′2
H′1
F1

+
H′2
F2

 = (H1F2 +H2F1){F1, F2}′

− (H ′1F2 +H ′2F1){F1, F2} = 0

3 Proof of Theorem 1.1

Proof: It is easily computed by the Pastur-Marcenko method [24], which
states that, given a diagonal matrix A = (a1, . . . , an) and its spectral function
dσ(λ) := 1

n

∑
i δ(λ − ai), the random Hermitian ensemble with probability

defined by
1

Zn

∫
Hn(E)

dMe−
n

2v2 Tr(M−A)2

, (3.1)

has, in the limit when n → ∞, a spectral density dν(λ), whose Stieltjes
transform

f(z) =

∫ ∞
−∞

dν(λ)

λ− z
, =m z 6= 0,

satisfies the integral equation

f(z) =

∫ ∞
−∞

dσ(λ)

λ− z − v2f(z)
, (3.2)

and, in view of the spectral function dσ(λ) := 1
n

∑
i δ(λ− ai), this becomes,

f(z) =
n∑
i=1

1/n

ai − z − v2f(z)
. (3.3)

Consider the situation (2.1), where ni particles are forced to bi. Then, upon
setting the variance v2 = 1 and defining g(z) := f(z) + z, the equation (3.3)
reads4

g − z +

p∑
i=1

εi

g − b̃i
= 0, with εi =

ni
n
. (3.4)

4See Section 7, formula (7.18), for further comments on the “fraction numbers” εi.
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The density of the equilibrium distribution is then given by

dν(z)

dz
=

1

π
|=m f(z)| = 1

π
|=m g(z)| , with z ∈ R.

Remark: It is precisely this Pastur-Marchenko equation (3.4), which will
appear in the argument of steepest descent for the corresponding kernel in
section 7. Namely, equation (3.4) is the derivative (7.19) of the S-function,
appearing in (7.17).

We will now specialize to two target points p = 2, where n1 = pn and
n2 = (1 − p)n. From (2.1), it follows that for non-intersecting Brownian
motions forced to b

√
n < a

√
n, one has

Pb
√
n,a
√
n

n (all xj(t) ∈
√
nE) =

1

Zn

∫
Hn
“
E
q

2
t(1−t)

” e−n2 Tr(M−At)2

dM, (3.5)

with

At :=



a
√

2t
1−t = α

. . . O

a
√

2t
1−t = α

b
√

2t
1−t = β

O
. . .

b
√

2t
1−t = β



l pn

l (1− p)n

,

(3.6)
For At as above, the integral equation (3.2) becomes the algebraic equation

g − z +
1− p
g − β

+
p

g − α
= 0

which, upon clearing, leads to a cubic equation for g,

G(g) := g3−(z + α + β) g2+(z(α + β) + αβ + 1) g−(αβz+(1−p)α+pβ) = 0,
(3.7)

with roots given by g = q̃+ 3
√
r̃ +
√

∆1 + 3
√
r̃ −
√

∆1, with a quartic discrim-
inant in z,

∆1(z) = (α− β)2

3∏
0

(z − zi) = 0;

13



q̃, r̃ are polynomials of z, α, β. Thus one finds the following

dν(z)

dz
=

1

π
|=m g(z)| =


1

π
|=m g(z)| for z such that ∆1(z) < 0

0 for z such that ∆1(z) ≥ 0

Therefore the support of the equilibrium measure will be given by

either two intervals [z2, z0] ∪ [z1, z3]

or two intervals touching [z2, z0] ∪ [z0, z3]

or one interval [z2, z3]

for the real roots of ∆1(z) = (α−β)2
∏3

0(z−zi) = 0. Thus depending on the
values of the parameters α, β and p, there will be four real roots or two real
roots, with a critical situation where two of the four real ones collide, say
z1 = z0. The latter occurs exactly when the discriminant ∆2 (with regard to
z) of ∆1 vanishes, namely when

∆2(α, β, p) = 4p(1− p)ρ
(

(ρ− 1)3 − 27p(1− p)ρ
)3∣∣∣

ρ=(α−β)2
= 0.

This polynomial has one positive root (the others being imaginary), and one
checks that, taking into account α > β, and defining p and r as in (1.7),

α− β =
√
ρ =

(
3p1/3 (1−p)2/3 + 3p2/3(1−p)1/3 + 1

)1/2

=
q+1

r
> 0 (3.8)

For this precise value of the parameter α−β, two of the four boundary points
of the support coincide, namely the roots z0 and z1 of ∆1(z) coincide:

z0 = z1 = β +
2q − 1

r
= α +

q − 2

r
. (3.9)

This double root z0 is found by stating that, under the condition α − β =
(q+1)/r, the polynomials ∆1 and ∆′1 have a common root; in other terms for
appropriate choices of c1, c2, c3, some linear combination of the polynomials
∆1 and ∆′1 becomes a linear polynomial (4z+c1)∆1(z)−(z2+c2z+c3)∆′1(z) =
c4z + z5 for some c4 and c5. Since z0 is a root of the left hand side, it also
must be a root of the right hand side. This is to say z0 = −c5/c4, yielding
the expression (3.9).
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The critical time t0 is then obtained from setting t = t0 in (3.6),

α = a

√
2t0

1− t0
and β = b

√
2t0

1− t0
(3.10)

from which one computes t0, by taking the difference and by using (3.8),

t0 =
(q + 1)2

(q + 1)2 + 2(a− b)2(q2 − q + 1)
,

and from which one further computes

c0 :=

√
t0(1− t0)

2
= t0

r(a− b)
q + 1

and
t0
c0

=

√
2t0

1− t0
=

q + 1

(a− b)r
, (3.11)

confirming the expression for c0 in (1.10). Then from (3.10) and (3.11) one
deduces

α = a
t0
c0

=
a(q + 1)

(a− b)r
β = b

t0
c0

=
b(q + 1)

(a− b)r
. (3.12)

Defining x0 := z0c0, one computes from (3.9),

z0 =
x0

c0

=
(2a− b)q + (2b− a)

(a− b)r
. (3.13)

Next, one computes the double root of the G-equation (3.7) for the value
z = z0. Indeed, using (3.9) and (3.12), one checks that for some root g = g0,

G =
∂G

∂g
=
∂2G

∂g2
= 0,

where

g0 :=
1

3
(z0 + α + β) =

1

3
(2a

t0
c0

+ b
t0
c0

+
q − 2

r
) =

aq + b

(a− b)r
, (3.14)

and from (3.12) and b < a that

β < g0 < α. (3.15)

The point z0 in (3.13) refers to the matrix integral variables on the right
hand side of (3.5), which can then be transformed into the Brownian motion
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variables, according to E = Ẽ
√

t(1−t)
2

at t = t0, which gives the transfor-

mation from the matrix integral variables to the Brownian motion variables.
Hence the critical point in the Brownian picture takes place at (using (3.11)
and (3.13))

(x0

√
n, t0) = (z0c0

√
n, t0) =

(
(2a− b)q + (2b− a)

q + 1
t0
√
n, t0

)
.

To prove the main statement (1.9) in Theorem 1.1, start with the kernel
(2.2) of the non-intersecting Brownian motion:

Hn(x, y; tk, t`)dy

= − dy

2π2
√

(1− tk)(1− t`)

∫
C
dV

∫
L+iR

dU
e
− tV 2

1−tk
+ 2xV

1−tk

e
− tU2

1−t`
+ 2yU

1−t`

×
(
U − b
V − b

)n2
(
U − a
V − a

)n1 1

U − V
. (3.16)

One first needs to prove that for some ϕn(λ, τ):

lim
n→∞

ϕn(x, tk)Hn(x, y; tk, t`)ϕn(y, t`)
−1
∣∣∣
rescaling

= KP(ξ, η; τk, τ`)

:= − 1

4π2

∫
X

dωv

∫ i∞

−i∞
dωu

e−
ω4
u
4

+
τ`ω

2
u

2
−ωuη

e−
ω4
v
4

+
τkω

2
v

2
−ωvξ

1

ωu − ωv

with the rescaling
{
x
y

}

ti = t0 + (c0µ)2 2τi
n1/2

,

{
x

y

}
= c0

z0n
1/2 + A

{
τk
τ`

}
+ µ

{
ξ
η

}
n1/4

 , (3.17)

with constants A, µ, given by (1.10).

Consider the change of variables U := c0u
√
n

t0
. The form of the Brownian

motion kernel (2.2) suggests, by putting the two U -factors of the integrand
in the exponential, the function F (u), which one observes, at leading order,

16



is closely related to the function G(u), defined in (3.7); namely5

F (u) :=
u2

2
− uz + p log(u− α) + (1−p) log(u− β)

∣∣∣
α=

at0
c0
, β=

bt0
c0
, z=

x0
c0

,(3.18)

with

F ′(u) =
G(u)

(u− α)(u− β)

∣∣∣∣
α=

at0
c0
, β=

bt0
c0
, z=

x0
c0

.

Remember from (3.14) that

u0 := g0 =
aq + b

(a− b)r
(3.19)

is a root of G(u) = 0 and two of its derivatives,

G(u0) = G′(u0) = G′′(u0) = 0 and G′′′(u0) = 6

and then one computes, since6 (u0−α)(u0− β) = −q(q2− q+ 1)−1 = −µ−4,

F ′(u0) = F ′′(u0) = F ′′′(u0) = 0 and
1

4!
F (iv)(u0) = −(q2 − q + 1)

4q
(3.20)

and so

F (u) = F (u0)− µ4

4
(u− u0)4 + O(u− u0)5.

In the calculation below, the first equality
∗
= is obtained by doing all the

substitions below, except for the last one u 7→ ωu, whereas the second equality
∗∗
= is obtained by the substitution to the new integration variable u 7→ ωu; the
expression after

∗∗
= contains a term n1/4ωu, which contains the new integration

variable and which blows up as n1/4 . Hence this coefficient must be put = 0,

5The function F (u) should contain the term log
√
nc0
t0

; however as the same rescaling
is made in the v-variables, this same term will appear with a different sign and therefore
they will cancel. Consequently, this term will be omitted.

6upon using (3.9), α− β = (q + 1)/r and the root u0 = 1
3 (z0 + α+ β) as in (3.14).
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yielding the value of A as in (1.10). In the next equality one uses this value,
thus yielding in the end,

tU2

1−t
− 2Uy

1−t
+ n2 log(U−b) + n1 log(U−a)

∣∣∣∣∣∣∣∣ n1 = np, n2 = (1− p)n
U = c0u

√
n

t0

t = t0 + (c0µ)2 2τ`
n1/2

a 7→ a
√
n, b 7→ b

√
n

y = c0

(
z0n

1/2+Aτ`+µ
η

n1/4

)
u = u0 + ωu

µn1/4

∗
= nF (u) + n1/2 τ`uµ

2

(
u

2
− t0
c0

x0 −
A

µ2

)
− n1/4uηµ

+t0uµ
4τ 2
`

(
u

2
− t0
c0

x0 −
A

µ2

)
+O(n−1/4)

∗∗
= nF (u0) + n1/2 τ`u0µ

2

(
u0

2
− t0
c0

x0 −
A

µ2

)
+n1/4

(
τ`ωu(u0 −

t0
c0

x0 −
A

µ2
)− ηu0

)
µ+O(1)

= nF (u0) + n1/2 τ`u
2
0µ

2

2
− n1/4u0µη −

(
ω4
u

4
− τ`ω

2
u

2
+ ηωu

)
− t0u

2
0µ

4

2
τ 2
`

+O(n−1/4),

using the value (1.10) of

A =
√
q +

t0
c0

µ2 (b− x0) =
q1/2(a− x0) + q−1/2(b− x0)

(a− b)
.

Similarly,

tV 2

1−t
− 2V x

1−t
+ n2 log(V −b) + n1 log(V −a)

∣∣∣∣∣∣∣∣ n1 = np, n2 = (1− p)n
V = c0v

√
n

t0

t = t0 + (c0µ)2 2τk
n1/2

a 7→ a
√
n, b 7→ b

√
n

x = c0

(
z0n

1/2+Aτk + µ ξ
n1/4

)
v = v0 + ωv

µn1/4
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= nF (u0) + n1/2 τku
2
0µ

2

2
− n1/4u0µξ −

(
ω4
v

4
− τkω

2
v

2
+ ξωv

)
− t0u

2
0µ

4

2
τ 2
k

+O(n−1/4)

Moreover, using
2c20

(t0−1)t0
= −1, together with the rescalings above, one finds

dy

2π2
√

(1− tk)(1− t`)
dUdV

U − V
= − dη

4π2

dωudωv
(ωu − ωv)

+O(n−1/2)

Summarizing, one obtains:

−dy
2π2
√

(1− tk)(1− t`)

∫
C
dV

∫
L+iR

dU
e
− tkV

2

1−tk
+ 2xV

1−tk

e
− t`U

2

1−t`
+ 2yU

1−t`

×
(
U − b
V − b

)n2
(
U − a
V − a

)n1 1

U − V
= eu0µ(ξ−η)n1/4

e
1
2

√
nu2

0µ
2(τk−τ`)e

1
2
t0u2

0µ
4(τ2

k−τ
2
` )

dη

4π2

∫
X

dωv

∫ i∞

−i∞
dωue

ω4
v
4
− τkω

2
v

2
+ξωv−

ω4
u
4

+
τ`ω

2
u

2
−ηωu 1

ωu − ωv
+O(n−1/4),

where we deformed the u, v contours, by translating them by u0, so they are
no longer emanating from 0, but from u0. Moreover, taking into account the
extra-piece appearing in (2.2) for τk < τ`, one computes

dy√
π(t` − tk)

e
− (x−y)2

t`−tk e
x2

1−tk
− y2

1−t`

∣∣∣∣∣ ti = t0 + (c0µ)2 2τi

n1/2

x = c0

(
z0n

1/2 +Aτk + µ ξ
n1/4

)
y = c0

(
z0n

1/2 +Aτ` + µ η
n1/4

)
= eu0µn1/4(ξ−η)e

1
2

√
nu2

0µ
2(τk−τ`)e

1
2
t0u2

0µ
4(τ2

k−τ
2
` )

dη√
2π(τ` − τk)

e
− (ξ−η)2

2(τ`−τk)
(
1 +O(n−1/4)

)
. (3.21)

In other terms, setting

D(ξ, τ) := diag
(
. . . , e−u0µξn1/4

e−
1
2

√
nτku

2
0µ

2

e−
1
2
t0u2

0µ
4τ2
k , . . .

)
1≤k≤m

,
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one has the following limit, upon using the (ti, x, y)-rescaling in (3.21) and
upon conjugation of the matrix kernel,

lim
n→∞

D(ξ, τ)(Ktk,t`(x, y))1≤k,`≤mD(η, τ)−1 =
(
KPτk,τ`(ξ, η)

)
1≤k,`≤m ,

which leads to the desired kernel (1.2), upon replacing the integration vari-
ables ωu → U, ωv → V .

Since the above argument is obviously formal, one needs to make a rigor-
ous steepest descent analysis on the conjugated kernel above. In the follow-
ing section, steepest descent contours will be found, depending on whether
q < 1, q = 1 q > 1, or what is the same p > 1

2
, p = 1

2
, p < 1

2
. Notice the

duality q < 1↔ q > 1.

4 Steepest descent analysis

In this section, we will deform the contours for both the u and v integration
into steepest decent contours. They will be as depicted in the picture below;
all lines are at an angle of 0, π/4 or π/2 with the horizontal line.

After having set U := c0u
√
n

t0
and V := c0v

√
n

t0
in the exponential appearing

in the kernel, one was led to a function

F (u) =
u2

2
− uz0 + p log(u− α) + (1−p) log(u− β),

where (upon using (3.9), (3.12) and (3.19)),

z0 =
x0

c0

= β +
2q − 1

r
= α +

q − 2

r
, α =

at0
c0

, β =
bt0
c0

, u0 = β +
q

r
.

Then one checks (with p = (1 + q3)−1 and r =
√
q2 − q + 1),

z0 − u0 =
q − 1

r
, u0 − α = −1

r
, u0 − β =

q

r
. (4.1)
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(i) First we derive the steepest descent contour for the q-independent u-
integration, which is the vertical line through u0. Indeed, one checks that
for

<eF (u0 + iy) =
1

2
(u2

0−y2)−u0z0+
p

2
log((u0−α)2+y2)+(1−p) log((u0−β)2+y2)
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and using (4.1), the derivative equals

∂

∂y
<eF (u0 + iy) = −y3 y2 + q

r2

(y2 + 1
r2 )(y2 + q2

r2 )
= −y3

{
a positive
function

}
,

showing <eF (u0 + iy) has a maximum at y = 0, which takes care of the
u-contour.

(ii) The next point is to deal with the v-integration. Returning to the
non-intersecting Brownian motion kernel (3.16), the F -function goes with a
negative sign on the v-contour and thus (with ε = ±1)

−<eF (u0 + x(ε+ i)) = −1

2
((u0 + xε)2 − x2) + (u0 + xε)z0

−p
2

log((u0 − α + xε)2 + x2)

−1− p
2

log((u0 − β + xε)2 + x2)

�
�
�
�
�

�
�

�
�
�

@
@
@
@
@

@
@

@
@
@

u0

u0 + s(1 + i) + x

u0 + s(1− i) + xu0 − s(1 + i)− x

u0 − s(1− i)− x

0 < q < 1 1 < q

s =
q

r|q − 1|
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Using (4.1),one checks for ε = ±1

−
((
u0 − α + xε

)2
+ x2

)((
u0 − β + xε

)2
+ x2

) ∂

∂x
<eF (u0 + x(ε+ i))

= −4x3

r

(
− (q − 1) εx+

q

r

)
= −x3 ×

{
a positive
function

}
for {

−∞ < x < q
r(q−1)

, ε = 1

− q
r(q−1)

< x <∞, ε = −1

}
if q > 1,

{
−∞ < x <∞, ε = 1
−∞ < x <∞, ε = −1

}
if q = 1,

{
− q
r(1−q) < x <∞, ε = 1

−∞ < x < q
r(1−q) , ε = −1

}
if q < 1,

(4.2)

Therefore the function −<eF (u0 +x(ε+ i)), restricted to the segments spec-
ified by (4.2), has its maximum at u0. One then completes those segments
by horizontal lines starting from the end of those segments as in the figure
above. Along those horizontal half lines, one must check that the maximum
is attained at the points u0 ± s(1 − i) and u0 ± s(1 + i). To carry out this
computation, the four horizontal segments can readily be represented by

u0 + δs(ε+ i) + δεx

with
δ = −ε = 1 δ = ε = 1

�
�
�

�
�
�

@
@@

@
@
@−δ = ε = 1 − δ = −ε = 1

in the four corresponding regions of the figure above.
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To deal with the horizontal segment, setting s = q
r|q−1| , one finds

−<eF (u0 + δs(ε+ i) + δεx) = −1

2
((u0 + εδ(s+ x))2 − s2) + (u0 + εδ(s+ x))z0

−p
2

log
(
(u0 − α + εδ(s+ x))2 + s2

)
−1− p

2
log
(
(u0 − β + εδ(s+ x))2 + s2

)
.

One computes,

−
((
u0 + (s+ x)εδ − α

)2
+ s2

)((
u0 + (s+ x)εδ − β

)2
+ s2

)
∂

∂x
<e F (u0 + δs(ε+ i) + δεx)

∣∣∣
s= εδq

r(q−1)

=
q4

r5(q − 1)5

(
qz5 + εδ(q2 + 3q + 1)z4 + 3(q + 1)2z3 + εδ(q + 3)z2

+4(q2 + q + 1)z + εδ(1 + q2)

)∣∣∣∣
z=

r(q−1)
q

x

(4.3)

Since x > 0 is increasing as one moves away from u0 along the horizontal
lines; one has simultaneously,

s = q
r(q−1)

, εδ = +1, q − 1 > 0, z > 0

s = − q
r(q−1)

, εδ = −1, q − 1 < 0, z < 0

and thus, since q > 0, the right hand side of (4.3) is > 0. Thus the above
derivative is negative on the four lines and so, when one moves away from
u0 along the horizontal paths in all four directions (as in the picture above)
the function −<e F (z) goes down so that combining both calculations, the
maximum will be attained at u0.

In order to show that in the limit the Pearcey kernel is obtained, one
picks τi’s, and ξ, η in a compact set of R, one integrates the u and v variables

along the contour in a neighborhood of radius n−1/4n
1
20
−ε. Then

∣∣∣ωuµ ∣∣∣, ∣∣∣ωuµ ∣∣∣ ≤
δ ≤ n

1
20
−ε, as n → ∞. In this range lemma 4.1 will apply, whereas outside

this neighborhood, the rest of the contour makes no contribution, because of
the steepest descent estimates. So, one needs the following estimate:

Lemma 4.1 Given the function F (u) as in (3.18), one has the following
estimate,

n

∣∣∣∣∣F (u0 +
δ

n1/4
)− F (u0)− F (iv)(u0)

1

4!

(
δ

n1/4

)4
∣∣∣∣∣ ≤ 64δ5

5n1/4

(
q +

1

q

)5

.
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Proof: By Taylor’s Theorem and using F ′(u0) = F ′′(u0) = F ′′′(u0) =
0 and 1

4!
F (iv)(u0) = − r2

4q
, as in (3.20), one has∣∣∣∣∣F (u0 +

δ

n1/4
)− F (u0)− 1

4!

(
δ

n1/4

)4

F (iv)(u0)

∣∣∣∣∣ ≤
(

δ

n1/4

)5

max
|u−u0|≤ δ

n1/4

∣∣F (v)(u)
∣∣

5!

From the explicit expression (3.18) for F , from the fact that u0 − β = q/r
and a− u0 = 1/r and that β < u0 < α, one deduces7

max
|u−u0|≤ δ

n1/4

∣∣∣∣F (v)(u)

5!

∣∣∣∣ = sup
|u−u0|≤ δ

n1/4

1

5

∣∣∣∣ 1− p
(u− β)5

+
p

(u− α)5

∣∣∣∣
≤ 2

5 min(|α− u0 − δ
n1/4 |, |u0 − β − δ

n1/4 |)5

≤ 2

5

(
1

r
min(1, q)− δ

n1/4

)−5

≤ 64

5

(
r

(min(1, q))

)5
 by picking n large enough

such that δ
n1/4 ≤ 1

2r
min(1, q)

since δ ≤ n
1
20
−ε


≤ 64

5

(
q +

1

q

)5

ending the proof of Lemma 4.1.

5 Proof of Theorem 1.2

In this section, we denote by a and b the Brownian motions target points,
where we put b = 0. We denote the old time in the Brownian motion formula
by t̄ and the new rescaled time and space in the Brownian motion formula
(Theorem 1.1) by τ̄ and η̄. Set Ec = ∪ri=1(y2i−1, y2i) ⊂ R. Let x be the
spatial variable for the matrix integral and α the variable appearing in the
diagonal matrix, the other one being = 0.

7Remember r =
√
q2 − q + 1
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The reader is reminded of the different players in the argument below, in
accordance with (2.1),

PBr(t̄, y, a
√
n)

:= P(0,a
√
n)

n

 all xj(0) = 0
all xj(t̄) ∈ E for 1 ≤ j ≤ n n1 paths end up at a

√
n at t̄ = 1

n2 paths end up at 0 at t̄ = 1


and, setting b̃1 = α, b̃2 = 0,

Pn(α, xi) :=
1

Zn

∫
Ẽn

∆n(x1, ..., xn)
2∏
`=1

∆n`(x
(`))

n∏̀
j=1

e−
1
2
x

(`)2

j +b̃`x
(`)
j dx

(`)
j

with Pn(α, xi) satisfying the PDE8, as in (2.6) and (2.8),

det


F1 F2 0

F ′1 F ′2 F1F2

(
H1

F1
+ H2

F2

)
F ′′1 F ′′2 F1F2

(
H′1
F1

+
H′2
F2

)
 = 0,

with Fi and Hi given in (2.7). From (2.1), one has the following relationship

PBr
(
t̄, y, a

√
n
)

= Pn

(
a
√
n

√
2t̄

1− t̄
, yi

√
2

t̄(1− t̄)

)
= Pn(α, xi)

and also from Theorem 1.1,

PBr(t̄, y, a
√
n)
∣∣
t̄=t0+(c0µ)2 2τ̄

n1/2
, y=x0n1/2+c0Aτ̄+c0µ

η̄

n1/4

= PP
(
P(τ̄) ∩ ∪ri−1(η̄2i−1, η̄2i) = ∅

)
+O(n−1/4) (5.1)

Setting b = 0, the formulae (1.7), (1.8) and (1.10) in Theorem 1.1 simplify:√
2t0

1− t0
=
q + 1

ar
, x0 =

2q − 1

q + 1
at0 , c0 =

√
t0(1− t0)

2
=

at0r

q + 1

A =
q − (2q − 1)t0√

q
, µ =

√
r

q1/4
. (5.2)

8 Given Ẽc = ∪ri=1(x2i−1, x2i) ⊂ R, the prime in the formula below denotes ′ :=
∑

∂
∂xi

.
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For convenience, we set

τ :=
τ̄
√
q
, η :=

η̄

q1/4
, z :=

(
q2 − q + 1

n

)1/4

.

One finds, using z2 = r/
√
n and formulae (5.2),

t̄ = t0 + (c0µ)2 2τ̄√
n

= t0

(
1 + (1− t0)

τ̄
√
q

(
q2 − q + 1

n

)1/2
)

= t0
(
1 + (1− t0)τz2

)
Moreover, one computes

α = a
√
n

√
2t̄

1− t̄
=
√
na

√
2t0

1− t0

√
1 + (1− t0)τz2

1− t0τz2

=
q + 1

z2

√
1 + (1− t0)τz2

1− t0τz2
.

We also have, using the formulae (5.2) above,

x = y

√
2

t̄(1− t̄)

=

√
2

t̄(1− t̄)
c0

(
x0

c0

√
n+ Aτ̄ + µ

η̄

n1/4

)

=

√
2

t̄(1− t̄)
c0

(
(2q − 1)

√
n

r
+ (q − (2q − 1)t0)

τ̄

q1/2
+

η̄

q1/4

√
r

n1/4

)
=

1√
(1 + (1− t0)τz2)

√
(1− t0τz2)

(
2q − 1

z2
+ (q − t0(2q − 1))τ + ηz

)
One also checks

n1 = np =
n

q3+1
=

n

(q+1)(q2 − q + 1)
=

z−4

(q + 1)
, n2 = n(1− p) =

q3z−4

(q + 1)
.

Consider the map Tz : (τ, ηi) 7→ (α, xi),

(α, xi) := Tz(τ, ηi)

=

(
(q + 1)

√
1 + (1− t0)τz2

z2
√

(1− t0τz2)
,

(
2q−1
z2 + (q − (2q − 1)t0) τ + ηiz

)√
(1 + (1− t0)τz2) (1− t0τz2)

)
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and its inverse T−1
z : (α, xi) 7→ (τ, ηi),

(τ, ηi) = T−1
z (α, xi)

=

(
α2z4 − (q + 1)2

z2(t0z4α2 + (q + 1)2(1−t0))
,
α(xiq − αq + xi)z

4 − (q−1)(q+1)2

z3(t0z4α2 + (q + 1)2 (1− t0))

)
Then setting

log Pn(α, xi) = F (τ, ηi) = F (T−1
z (α, xi)),

setting B = ∪ri−1(x2i−1, x2i) ⊂ R, taking the derivatives ∂x :=
∑

∂
∂xi
, εx :=∑

xi
∂
∂xi

and then taking a series in z, the functions Fi and Hi in (2.7) have
the following form,

F1 = − ∂

∂α
∂x log Pn + n1 =

1

q + 1

(
z−4 + z−2F ′′ − 2z−1∂F

′

∂τ
+O(1)

)
F2 = (

∂

∂α
+ ∂x)∂x log Pn + n2 =

1

q + 1

(
q3z−4 + qz−2F ′′ + 2z−1∂F

′

∂τ
+O(1)

)

H1 =
{
H

(1)
1 , F1

}
∂x

+
{
H

(2)
1 , F1

}
α

=
2

(q+1)4

 q(2q2 + 3q + 2)F ′′′z−9

−(4q3 − 1 + 6q2 + 3q)∂F
′′

∂τ
z−8

+O(z−7)


H2 =

{
H

(1)
2 , F2

}
∂x

−
{
H

(2)
2 , F2

}
α

=
2q3

(q+1)4

 −q(2q2 + 3q + 2)F ′′′z−9

+ (4q3−1 +6q2+3q) ∂F ′′

∂τ
z−8

+O (z−7)


with

H
(2)
1 = (1− εx + α

∂

∂α
+ 2α∂x)(−

∂

∂α
) log Pn

H
(2)
2 = (1− εx + α

∂

∂α
)(
∂

∂α
+ ∂x) log Pn

H
(1)
1 = −2

∂

∂α
log Pn − 2n1(α +

n2

α
)

H
(1)
2 = (1 + εx − α

∂

∂α
)
∂

∂α
log Pn + 2

n1n2

α

Then one computes (2.8), setting ′ = ∂x and setting ∂E =
∑

∂
∂yi

for E =
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(y1, y2),

det


F1 F2 0

F ′1 F ′2 F1F2

(
H1

F1
+ H2

F2

)
F ′′1 F ′′2 F1F2

(
H′1
F1

+
H′2
F2

)

∣∣∣∣∣∣∣∣
(α,xi)=Tz(τ,ηi), with τ= t√

q
, ηi=

yi

q1/4

= −2q6+1/2 q − 1

(q + 1)5

{
∂3
E

log PP ,X
}
∂E

z−18

+
1

8

({
∂

∂t
∂2
E

log PP ,X
}
∂E

+O(q − 1)

)
z−17 +O(z−16),

where, setting Q(t, E) := log PP (P(t) ∩ E = ∅),

X := 8
∂3Q
∂t3

+

(
ε
E
− 2t

∂

∂t
− 2

)
∂2
E
Q− 4

{
∂2
E
Q, ∂

E

∂Q
∂t

}
,

where we made use of (5.1), which states that log Pn(α, xi) = Q(t, E)+O(z).
• For q 6= 1, the function log PP , which is independent of q by the universality
result, satisfies the differential equation, given by the leading term z−18,{

∂3
E log PP ,X

}
= 0. (5.3)

• For q = 1, the z−18-term vanishes and thus log P satisfies another equation,
namely the one appearing in the z−17-term,{

∂2
E

∂

∂t
log PP ,X

}
= 0. (5.4)

This means that log PP satisfies the two equations (5.3) and (5.4).
Thus for E = (x, y) ⊂ R, setting u± = 1

2
(y± x), and log PP = H(t; 1

2
(y+

x), 1
2
(y − x)),

∂
E

log PP = (
∂

∂x
+

∂

∂y
) log PP =

∂

∂u+

H

ε
E

log PP = (x
∂

∂x
+ y

∂

∂y
) log PP = (u+

∂

∂u+

+ u−
∂

∂u−
)H.
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Since the wronskian of two functions equals the derivative of the ratio, mod-
ulo a non-zero multiplicative term, one concludes from equation (5.3) that
X = c(t, u−)∂

3H
∂u3

+
, with c(t, u−) a function depending on all variables except

u+; putting this equation in equation (5.3), one finds

c(t, u−)

{
∂3H

∂u3
+

,
∂3H

∂t∂u2
+

}
u+

= c(t, u−)

{
∂3
E log PP ,

∂

∂t
∂2
E log PP

}
∂E

= 0,

implying c(t, u−) = 0 for all t, u− and thus H(t;u+, u−) = log PP satisfies
the equation X = 0, provided the Wronskian

{
∂3
E log PP , ∂

∂t
∂2
E log PP

}
∂E
6= 0.

This will be shown in the next section, using functional theoretical arguments.
This ends the proof of Theorem 1.2, except for the “final condition”, which
will be shown in [1].

6 An estimate for the Wronskian

Proposition 6.1 The Wronskian{
∂

∂t
∂2
E log PP , ∂3

E log PP
}
∂E

is a non-zero function.

In order to prove this proposition, we need a number of lemmas; the
proofs will be functional-theoretical and rely on the techniques and on some
of the formulae in [26]. Given the Pearcey kernel KP , one defines, for a given
set E = ∪rk=1[a2k−1, a2k] ⊂ R, the following9:

KPE := KPχE, I +R := (I −KPE )−1 .
=: ρ(x, y) (6.1)

and thus one has

(I −KPE )−1KPE = KPE + (EPE )2 + ... = R. (6.2)

Also, from (1.2) and the differential equations (1.4) for p(x) and q(y), it
follows that (

∂

∂x
+

∂

∂y

)
KP(x, y) = p(x)q(y). (6.3)

9Given a kernel, viewed as an operator, the equality .= refers to the corresponding
kernel
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Note that for a general kernel L, one has

[D,L]
.
=

(
∂

∂x
+

∂

∂y

)
L(x, y). (6.4)

Define the functions

p̂ := (I −KPE )−1p, q̂ := (I −KP>E )−1q (6.5)

and10

u :=

∫
E

(I −KPE )−1p(α)q(α)dα = 〈p̂(α), q(α)χE(α)〉. (6.6)

Lemma 6.2 For a disjoint union E =
⋃r
k=1[a2k−1, a2k], one has the follow-

ing identity11:

∂2
E log PP = ∂2

E log det(I −KPE ) = ∂Eu =
∑
k

(−1)kp̂(ak)q̂(ak).

Proof: At first notice that

[D,KPE ] = [D,KPχE]
.
=

(
∂

∂x
+

∂

∂y

)
(KPχE) (6.7)

= p(x)q(y)χE(y)−
∑
k

(−1)kKP(x, ak)δ(y − ak),

from which one deduces, using notations (6.1) and (6.2),(
∂

∂x
+

∂

∂y

)
R(x, y)

.
= [D, (I −KPE )−1]

.
= (I −KPE )−1p(x)q(y)χE(y)(I −KPE )−1

−
∑
k

(−1)k(I −KPE )−1KP(x, ak)δ(y − ak)(I −KPE )−1

= p̂(x)q̂(y)χE(y)−
∑
k

(−1)kR(x, ak)ρ(ak, y). (6.8)

10〈f, g〉 :=
∫

R f(x)g(x)dx.
11Remembering ∂E =

∑r
1

∂
∂aj

.
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and

∂

∂ak
R(x, y) =

∂

∂ak
(I +R) =

∂

∂ak
(I −KPE )−1

= (I −KPχE)−1KP
∂χE
∂ak

(I −KPχE)−1

= R(x, z)(δ(z − ak)(−1)k)ρ(z, y)

= (−1)kR(x, ak)ρ(ak, y). (6.9)

Then combining (6.8) and (6.9), one finds(
∂

∂x
+

∂

∂y
+
∑
k

∂

∂ak

)
R(x, y) = [D, (I −KPE )−1] +

∑
k

∂

∂ak
R(x, y)

.
= p̂(x)q̂(y)χE(y), (6.10)

and hence, setting x = y = aj, the total derivative becomes∑
k

d

dak
R(aj, aj)

.
= p̂(aj)q̂(aj). (6.11)

One then computes the derivative of u, as defined in (6.6), with respect to
ak: (of course, the functions p and q do not involve the interval E)

∂u

∂ak
=

∂

∂ak

〈
(I −KPE )−1p, qχE

〉
=

〈( ∂

∂ak
(I −KPE )−1

)
p, qχE

〉
+
〈
p̂, q

∂χE
∂ak

〉
= (−1)k〈R(x, ak)p̂(ak), qχE〉+ 〈p̂, qδ(y − ak)(−1)k〉, using (6.9),

= (−1)k (p̂(ak)〈R(x, ak), qχE〉+ p̂(ak)q(ak))

= (−1)kp̂(ak)((I +R>)q(ak)− q(ak) + q(ak))

= (−1)kp̂(ak)q̂(ak). (6.12)
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Combining (6.11) and (6.12) yields

∂u

∂aj
=
∑
k

d

dak
(−1)jR(aj, aj)

and then summing with respect to j,12

∑
k

∂u

∂ak
=

∑
k

d

dak

(∑
j

(−1)jR(aj, aj)

)

= −

(∑
k

d

dak

)2

log det(I −KPE )−1

= ∂2
E log det(I −KPE ) = ∂2

E log PP ,

which, together with (1.2), establishes Lemma 6.2.

Lemma 6.3 Given E = [x, y], the following estimates hold(
∂

∂x
+

∂

∂y

)
u = (y − x)(p(x)q(x))′ + O(y − x)2

∂u

∂t
=

1

2
(y − x)(p′′q − pq′′)(x) + O(y − x)2.

Proof: Using the fact that, for a small interval E, the integral
∫ y
x

has order
x− y, using R(α, y)−R(α, x) = O(y − x), one deduces from the formula of
Lemma 6.2, (remember the definitions (6.5) of p̂ and q̂)

∂Eu = p̂(y)q̂(y)− p̂(x)q̂(x)

=

(
p(y) +

∫ y

x

R(y, α)p(α)dα

)(
q(y) +

∫ y

x

R(α, y)q(α)dα

)
−
(
p(x) +

∫ y

x

R(x, α)p(α)dα

)(
q(x) +

∫ y

x

R(α, x)q(α)dα

)
= p(y)q(y)− p(x)q(x) + O(y − x)2

= (y − x)(p(x)q(x))′ + O(y − x)2.

12Here one uses identity (1.1) in [26],

d

daj
log det(I −KPE )−1 = (−1)j+1R(aj , aj).
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Using the heat equations (1.5) satisfied by p, q and the PDE (1.6) for KP ,
one checks

2
∂u

∂t
= 2

∂

∂t
〈(I −KPE )−1p, q〉

=
〈

(I −KPE )−12
∂KPE
∂t

(I −KPE )−1p, q
〉

+
〈

(I −KPE )−12
∂p

∂t
, q
〉

+
〈

(I −KPE )−1p, 2
∂q

∂t

〉
=

〈∫
E

dy (−p′(x)q(y) + p(x)q′(y)) p̂(y),
(

(I −KP>E )−1q
)

(x)
〉

−
〈
p′′(x),

(
(I −KP>E )−1q

)
(x)
〉

+
〈

(I −KPE )−1p(x), q′′(x)
〉

= u(x)(−〈p′, q̂〉+ 〈q′, p̂〉)− 〈p′′, q̂〉+ 〈p̂, q′′〉, using 〈p, q̂〉 = 〈p̂, q〉 = u,

= O(y − x)2 − 〈p′′, q〉+ 〈p, q′′〉
= −(y − x)(p′′(x)q(x)− p(x)q′′(x)) + O(y − x)2,

thus ending the proof of Lemma 6.3.

Proof of Proposition 6.1: One computes the following Wronskian and expand
for small y − x, given E = (x, y). Indeed, from ∂Eu = ∂2

E log PP(see Lemma
6.2), the estimates of Lemma 6.3 and the the differential equations (1.4) for
p and q, one computes{

∂

∂t
∂2
E log PP , ∂3

E log PP
}
∂E

=

{
∂E
∂u

∂t
, ∂2

Eu

}
∂E

= −(y − x)2

2
({(p′′q − pq′′)′, (pq)′′}x + O(y − x))

=
(y − x)2

2

(
(−t(p′′q − pq′′) + 3x(pq)′ + 2pq)(pq)′′ + O(y − x)

+(t(p′q − pq′)− 2xpq + p′′q′ − p′q′′)(t(pq)′ + 3(p′q′)′)

)
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with the coefficient of (y − x)2/2, for x = t = 0 being equal to

2pq(pq)′′ − 3(p′q′)′(p′q′′ − p′′q′) 6= 0

which is nonzero, ending the proof of Proposition 6.1.

7 Steepest descent analysis and replica dual-

ity

In this section, we emphasize the central role played by the spectral curve
(or Pastur equation [24]) in the steepest descent analysis used to prove the
universal behavior of the kernel as N → ∞. More precisely, we point out
that the kernel used for the steepest descent analysis takes a very universal
form in the different problems of non-intersecting Brownian motions studied
so far. We further give show that the study of the spectral curve associated
to the considered problem gives the universal limiting kernel obtained after
a proper rescaling of the variable around a singularity of the problem: we
give a ”physical meaning” to the computations performed in the preceding
sections as well as a way to generalize it to more complicated problems.

In a first part, we show how this spectral curve arises in an integral
representation of the kernel in the case of the matrix model in an external
field. We then show how the expression of this kernel in terms of the spectral
curves exhibits a universal behavior in the large matrix limit depending on
the local properties of this curve. We finally apply this procedure to prove
the appearance of the Pearcy and Airy kernels in the context described in
the previous sections.

7.1 From Hermitian matrix integrals to double con-
tour integrals

In this section, we derive the a double integral representation of the kernel by
using the replica formulation introduced by Brézin and Hikami [9]. In order
to make this paper self-contained, we show this duality by simply performing
gaussian integrals.

Let us consider the partition function

Z(A) :=

∫
HN

dMe
−N Tr

“
M2

2
−AM

”
(7.1)
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where one integrates over hermitian matrices M of size N × N and A is a
deterministic diagonal matrix, with arbitrary k13, of the form

A := diag(

n1︷ ︸︸ ︷
a1, . . . , a1,

n2︷ ︸︸ ︷
a2, . . . , a2, . . . ,

nk︷ ︸︸ ︷
ak, . . . , ak). (7.2)

Diagonalizing the matrix M and using the HCIZ formula [16, 17], one is
left with the integration over the eigenvalues (x1, x2, . . . , xN) of M :

Z(A) =

∫
RN

N∏
i=1

dxi
∆(x)

∆(a)
e

−N
∑
i

„
x2
i
2
−xiai

«
. (7.3)

In order to compute the density of state R1(λ) and the `-point correlation
functions R` defined by

Rk(λ1, λ2, . . . , λ`) =
1

N `

〈∏̀
i=1

Tr δ(λiI−M)

〉
, (7.4)

where the average is taken with respect to the probability measure

1

Z(A)

N∏
i=1

dxi
∆(x)

∆(a)
e

−N
∑
i

„
x2
i
2
−xiai

«
, (7.5)

we consider their ”Fourier” transforms

Ul(t1, t2, . . . , tl) =

〈
l∏

i=1

Tr eiNtiM

〉
(7.6)

and, in particular, one gets the Fourier transform of the two points correlation
function:

U2(t1, t2) =
1

Z(A)N2

N∑
α1,α2=1

∫ ( N∏
j=1

dxj

)
∆(x)

∆(a)
e

−N

N∑
j=1

"
x2
j
2
−xj(aj+it1δj,α1

+it2δj,α2)
#
.

(7.7)

13The previous section considers the particular case k = 2.
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One can now integrate the variables xj by noting that

∫ ( N∏
j=1

dxj

)
∆(x)e

−N

N∑
j=1

"
x2
j
2

+xjbj

#
= ∆(b)e

N
2

N∑
j=1

b2j

(7.8)

and expanding ∆(x) =
∏

i 6=j(xi − xj):

U2(t1, t2)

=
N∑

α1,α2=1

e
N

„
it1aα1+it2aα2−

t21+t22
2
−t1t2δα1,α2

«
×

×

∏
1≤l<m≤N

(al − am + it1(δl,α1 − δm,α1) + it2(δl,α2 − δm,α2))∏
1≤l<m≤N

(al − am)
. (7.9)

One can see that this can be written as a double contour integral

U2(t1, t2)

=
e−N

t21+t22
2

t1t2

∮ ∮
dudv

(2iπ)2
eNi(t1u+t2v) (u− v + it1 − it2)(u− v)

(u− v + it1)(u− v − it2)
×

×
∏
k

(
1 +

it1
u− ak

)(
1 +

it2
v − ak

)

=
e−N

t21+t22
2

t1t2

∮ ∮
dudv

(2iπ)2
eNi(t1u+t2v)

(
1− t1t2

(u− v + it1)(u− v − it2)

)
×

×
∏
k

(
1 +

it1
u− ak

)(
1 +

it2
v − ak

)
, (7.10)

where the integration contours encircle all the eigenvalues ak and the pole
v = u− it114.

We can now go back to the correlation function

R2(λ, µ) =

∫ ∞
−∞

∫ ∞
−∞

dt1dt2
4π2

e−iN(t1λ+t2µ)U(t1, t2). (7.11)

14see for instance [9] for more details around eq.(2-20) and eq.(4-40).
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By first integrating on t1 and t2 with the shifts t1 → t1− iu and t2 → t2− iu,
this latter equation reads:

R2(λ, µ) = KN(λ, λ)KN(µ, µ)−KN(µ, λ)KN(λ, µ) (7.12)

where the kernel is defined by

KN(λ, µ) =

∫
dt

2π

∮
dv

2iπ

N∏
k=1

(
it− ak
v − ak

)
1

v − it
e
−N

“
v2+t2

2
+itλ−vµ

”
(7.13)

where the integration contour for v goes around all the points ak and the
integration for t is parallel to the real axis and avoids the v contour. More-
over, it can be derived in a very similar way that any k-point function can
be written as the Fredholm determinant:

Rk(x1, . . . , xk) = det [KN(xi, xj)]
k
i,j=1 . (7.14)

By Wick rotating the integration variable t→ it, one gets

KN(λ, µ) =

∫
dt

2iπ

∮
dv

2iπ

N∏
k=1

(
t− ak
v − ak

)
1

v − t
e
−N

“
v2−t2

2
+tλ−vµ

”
(7.15)

where the integration contour for t is now parallel to the imaginary axis. One
can then rewrite it under a more factorized form:

KN(λ, µ) =

∫
dt

2iπ

∮
dv

2iπ
e−N(S(µ,v)−S(λ,t)) 1

v − t
(7.16)

where

S(x, y) =
y2

2
− xy +

k∑
i=1

εi ln(y − ai) (7.17)

with the ”fraction numbers” given by

εi := ni/N. (7.18)

The first step in the steepest descent analysis of this kernel is to look for
the stationary points of the exponent in the integrand, i.e. we look for y as
a function of x solution of the equation

∂yS(x, y) = y − x+
k∑
i=1

εi
y − ai

= 0 (7.19)
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which is nothing but the equation of the classical spectral curve introduced in
the preceding sections (see 3.18) and in the general study of the one matrix
model in an external field.

Remark: If the external matrix A is highly degenerated, the εi are fixed and do
not depend in N . Thus, the action S(x, y) does not depend on N in this case.

Remark: The density of states is given by ρ(λ) = KN (λ, λ) and its derivative wrt
λ can be factorized:

1
N

∂ρ(λ)
∂λ

=
∫

dt

2iπ

∮
dv

2iπ
e−N(S(λ,v)−S(λ,t)) = φ(λ)ψ(λ) (7.20)

where
φ(λ) =

∫
iR

idt

2π
eNS(λ,t) and ψ(λ) =

∮
dv

2iπ
e−NS(λ,v). (7.21)

7.2 Saddle points, spectral curve and universality

Let us now forget about the matrix model and consider a general kernel of
the form

KN(λ, µ) = (−1)N
∫
idt

2π

∮
dv

2iπ
e−N(S(µ,v)−S(λ,t)) 1

v − t
(7.22)

where the derivative of the action S(x, y):

∂yS(x, y) =
E(x, y)

D(x, y)
(7.23)

is a rational function which can be written as the ratio of two polynomials
in both variables. Then the locus of stationary points of S is given by an
algebraic equation

E(x, y) = 0, (7.24)

referred to as the spectral curve in the sequel. Let us study some of its
properties necessary to classify the different universal behavior of KN(λ, µ)
as N →∞.

Generically, the equation E(x, y) = 0 has dy distinct solutions in y for a
given value of x. Let us denote them Yi(x) as functions of x:

E(x, y) = gdy(x)

dy∏
i=1

(y − Yi(x)) (7.25)
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where gdy(x) is the leading coefficient of E(x, y) as a polynomial in y. How-
ever, there exists finitely many branch points xi such that E(x, y) = 0 has
a double zero, i.e. two solutions Yj(xi) = Yl(xi) coincide. One can also
characterize them by the property:

∂y E(xi, y)|y:=Yj(xi)
= 0. (7.26)

More generally, a `th order branch point x
(`)
i is defined by

∂my E(x
(`)
i , y)

∣∣∣
y:=Yj(x

(l`)
i )

= 0, for m ≤ `, with ∂`+1
y E(x

(`)
i , y)

∣∣∣
y:=Yj(x

(`)
i )
6= 0.

(7.27)
Other types of singularities might occur, but we will not refer to them in this
paper.

Remark: A (`+ 1)th order branch point can be obtained when a `th order branch
point and a simple branch point merge.

In the next sections, we show that, as N → ∞, the kernel KN(λ, µ)
has a universal behavior for λ and µ approaching the same point with an
appropriate scaling (depending onN and the singular behavior of the spectral
curve at this point). We study the first singularities and show this universal
behavior by a local analysis of the spectral curve whereas the usual Riemann-
Hilbert study [?] involves a global analysis of the latter.

7.3 Steepest descent analysis

The asymptotic of this kernel when N → ∞ exhibits different regimes de-
pending on the value of its argument. More precisely, we get a universal
kernel associated to the neighborhood of any point x0 of the spectral curve:
if x0 is a generic point of the spectral curve, we get the sine kernel; if x0 is
a simple branch point, we get the Airy kernel; if x0 is a higher order sin-
gularity of the curve, we get a universal kernel associated to this particular
singularity.

In any case, we proceed with the same steps: we choose a point x0. We
then focus on its neighborhood by a change of variable consistent with the
singularity of the curve at x0. We expand the exponent in the kernel around
this point by simply writing a Taylor series expansion.
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7.3.1 Simple branch point: the Airy kernel

Consider a one-parameter family of algebraic functions S(x, y|t), parametrized
by t, such that there exists a critical point (xc, yc, tc) satisfying

Sy(xc, yc|tc) = Syy(xc, yc|tc) = 0, (7.28)

Syyy(xc, yc|tc) 6= 0, Syx(xc, yc|tc) 6= 0, Syt(xc, yc|tc) 6= 0. (7.29)

It means that the spectral curve E(x, y|tc) has a simple branch point at
(xc, yc). One shows that in the neighborhood of this branch point, the kernel
can be rescaled in such a way that it converges to the Airy kernel as N →∞.
Consider the changes of variables allowing to focus on the neighborhood of
the critical point: 

t := tc + αtT

N
1
3

x := xc + αx

N
1
3

+ βxX

N
2
3

y := yc + αyY

N
1
3

, (7.30)

and expand S(x, y|t) around this critical point using (7.30) as N →∞. One
then expands S(x, y|t) and S(x̃, ỹ|t) in aTaylor series in t, x and y, thus
obtaining for the expression in the integrand of the kernel:

N (S(x, y; t)− S(x̃, ỹ; t))

= N
1
3

(
αy [αxSxy(xc, yc; tc) + αtTSty(xc, yc; tc)] (Y − Ỹ ) + βxXSx(xc, yc; tc)

)
+(Y 3 − Ỹ 3)

α3
y

6
Syyy(xc, yc; tc)

+(Y 2 − Ỹ 2)
α2
y

2
[αxSxyy(xc, yc; tc) + αtTStyy(xc, yc; tc)]

+(XY − X̃Ỹ )βxαySxy(xc, yc; tc)

+(X − X̃)βx [αxSxx(xc, yc; tc) + αtTStx(xc, yc; tc)]

+(Y − Ỹ )αy

[
α2
x

2
Sxxy(xc, yc; tc) + αxαtTStxy(xc, yc; tc) +

α2
t

2
T 2Stty(xc, yc; tc)

]
+O(N−

1
3 ); (7.31)

which we write for brevity as

N (S(x, y; t)− S(x̃, ỹ; t)) =

= N
1
3

[
α1

(
Y − Ỹ

)
+ α2

(
X − X̃

)]
+ α3

(
Y 3 − Ỹ 3

)
+ α4

(
Y 2 − Ỹ 2

)
+α5

(
XY − X̃Ỹ

)
+ α6

(
Y − Ỹ

)
+ α7

(
X − X̃

)
(7.32)
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for coefficients {αi}7
i=1 functions of the scaling parameters αt, αx, βx and αy.

The coefficients α2 and α7 can be eliminated by conjugation of the kernel
leaving the Fredholm determinants invariant. In order to recover the Airy
kernel, one has to fix the remaining coefficients by

α1 = 0 , α3 = 1/3 , α5 = −1 and α6 − α2
4 = 0.

(7.33)
αy and βx are determined by the constraints on α3 and α5 respectively, while
the first equation gives αtT

αx
and the last one determines α2

x.

7.3.2 Double branch point: the Pearcey kernel

Let us now consider an algebraic a function S(x, y|t) such that there exists
a critical point (xc, yc, tc) satisfying

Sy(xc, yc|tc) = Syy(xc, yc|tc) = Syyy(xc, yc|tc) = 0, (7.34)

Syyyy(xc, yc|tc) 6= 0, Syx(xc, yc|tc) 6= 0, Syt(xc, yc|tc) 6= 0. (7.35)

It means that the spectral curve E(x, y|tc) has a double branch point at
(xc, yc). In the neighborhood of this critical point, one can rescale the kernel
in such a way that it converges to the Pearcey kernel as N → ∞. To this
effect, consider the changes of variables in the neighborhood of the critical
point: 

t := tc + αtT

N
1
2

x := xc + αx

N
1
2

+ βxX

N
3
4

y := yc + αyY

N
1
4

(7.36)

and expand S(x, y|t) around the critical point using (7.36) as N →∞.

N (S(x, y; t)− S(x̃, ỹ; t)) =

= N
1
4

[
βxSx(xc, yc; tc)(X − X̃) + αy(Y − Ỹ ) (αxSxy(xc, yc; tc) + αtTSty(xc, yc; tc))

]
+
α4
y

24
Syyyy(xc, yc; tc)(Y

4 − Ỹ 4)

+
α2
y

2
[αtTStyy(xc, yc; tc) + αxSxyy(xc, yc; tc)] (Y 2 − Ỹ 2)

+βxαySxy(xc, yc; tc)(Y X − Ỹ X̃) +O(N−
1
4 ). (7.37)

Remark: One can see that (as in the previous case) all the terms in this expression,
except the scaling factor βxSx(xc, yc; tc)(X − X̃), depend only on derivatives of S
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wrt y. This shows that the kernel depends only on the spectral curve E(x, y|t) :=
Sy(x, y|t).

One can see that the variables to be integrated Y and Ỹ appear only in
terms which do not blow up as N →∞ except one which is proportional to
N

1
4 . One can get rid of this term by fine-tuning the coefficients of the change

of variable. Indeed, imposing the constraint on αtT
αx

,

αxSxy(xc, yc; tc) + αtTSty(xc, yc; tc) = 0 (7.38)

eliminates this term. One can finally normalize the scaling coefficients αy,
αx and βx respectively by setting

α4
y

24
Syyyy(xc, yc; tc) = −1

4
, βxαySxy(xc, yc; tc) = −1 (7.39)

αxα
2
y

2

[
αtT

αx
Styy(xc, yc; tc) + Sxyy(xc, yc; tc)

]
=
τ

2
, (7.40)

yielding the quartic exponent appearing in the Pearcey kernel:

N (S(x, y; t)− S(x̃, ỹ; t))

= N
1
4βxSx(xc, yc; tc)(X − X̃)

+
1

4
(Y 4 − Ỹ 4)− τ

2
(Y 2 − Ỹ 2) + (Y X − Ỹ X̃) +O(N−

1
4 ), (7.41)

where the term in (X − X̃) can be eliminated by conjugation of the kernel.

7.3.3 kth order branch point

More generally, consider a point (xc, yc; tc) of the spectral curve E(xc, yc; tc)
where15

∂my E(xc, yc; tc) = 0, for all m ≤ l, with ∂l+1
y E(xc, yc; tc) 6= 0, (7.42)

while still assuming that ∂tE and ∂xE do not vanish at this critical point.
Let us use this example to explain how one can guess the rescaling to

obtain the desired universal kernel. Generically, one looks for a rescaling of
the form: 

t := tc + αtT
Nγt

x := xc + αxX
Nγx

y := yc + αyY

Nγy

(7.43)

15Remark that the Airy case corresponds to l = 1 and the Pearcey case to l = 2.
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for some critical exponents γt, γx and γy to be determined. One then writes
the Taylor expansion of the action S around the critical point using this
rescaling: this expansion can be seen as a series in N−γ for some exponent γ
depending on the rescaling. Since the action is multiplied by N in the kernel
and integrating over the variable y, one needs that all the terms depending
on Y in this expansion are of order 1

N
at most as N → ∞. In particular,

considering the Taylor series with respect to y:

S(xc, y; tc) = S(xc, yc; tc)+· · ·+
(αyY )l+2

(l + 2)!
∂l+1
y E(xc, yc; tc)N

−(l+2)γy+o
(
N−(l+2)γy

)
,

one must impose (l + 2)γy = 1 for this contribution to appear, thus fixing
the critical exponent for y:

γy =
1

l + 2
. (7.44)

On the other hand, one expects x and y to couple in the exponent of the
limiting integrand (otherwise, it would only give a simple multiplicative fac-
tor). Thus, the first contribution of a mixed derivative wrt to x and y of the
action must be of order 1

N
which imposes:

γx = 1− γy =
l + 1

l + 2
. (7.45)

One can remark that we could stop the procedure here and not rescale
the time which could remain decoupled from x and y. But one could also
try to couple it with y by taking αt 6= 0. If one wants this coupling to be
different from the one between x and y, one must impose γt < γx and one
gets, in the simplest case16

γt = 1− 2γy =
l

l + 2
. (7.46)

By doing so, one has coupled t to y. But one has also introduced a divergent
term coming from the coefficient of Sty. One can compensate this term by
completing the change of variable for x and writing:

t := tc + αtT

N
l
l+2

x := xc + βx

N
l
l+2

+ αxX

N
l+1
l+2

y := yc + αyY

N
1
l+2

. (7.47)

16This means that one wants to have a coupling TY 2, but one could also obtain in a
more complicated way higher order times by looking for couplings of the form TY k with
k > 1.
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Doing so, one finally gets the associated kernel in terms of the rescaled
variables:

Kk(X,X
′) =

∫
dY

∫
dY ′e

Y l

l!
−TY

2

2
+XY e−

Y ′l
l!
−TY

′2
2

+X′Y ′ 1

Y − Y ′
. (7.48)

Remark: One omits a detailed proof here, although the details can be filled in.
Indeed, in order to do so, one carefully studies the integration contours and the
normalization, which implies a rescaling of the kernel as well as conjugation. It
is done in the preceding sections for the Airy and Pearcey cases for two ending
points.

7.4 General case

In a more general case, i.e. the two arguments x and y of KN approaching
any singular or non-singular point of the algebraic curve, one can use the
same study leading to a different universal limiting kernel associated to each
type of singularity. Let us summarize the procedure one has to follow to
obtain the universal kernel associated to a given singularity:

• First compute the multiple derivatives of the action S(x, y; t) with re-
spect to x, y and t at the considered critical point and fix which are
the first non-vanishing derivatives;

• Fix the critical exponent in the rescaling by studying the large N be-
havior of the Taylor expansion of the action around the critical point,
under consideration;

• Normalize the change of variables and compute the rescaling of the
kernel through the Taylor expansion of the action of the action around
the critical point: one then gets the universal limiting kernel;

• Finally, carefully study the integration contours to check that they give
a right path for the steepest descent analysis.

7.5 Example: back to the matrix model and non-intersecting
Brownian motions

Let us now apply the preceding procedure to the case of the random matrix
model in an external field studied in the preceding sections: one considers N
Brownian motions starting from 0 and going to two ending points at t = 1.
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As reminded in section 2 of this paper, the kernel, given in Eq. (2.2), can
easily be taken to the form of Eq. (7.22) :

Hn(µ̄, λ̄; t) =

∫
idu

2π

∮
dv

2iπ
e−n(S(µ̄,v;t)−S(λ̄,u;t)) 1

v − u
(7.49)

by using the rescaling

v :=
V t

c
√
n
, u :=

Ut

c
√
n
, ã :=

at

c
√
n
, b̃ :=

bt

c
√
n
, µ :=

x√
n

and λ :=
y√
n

(7.50)

with t
c

=
√

2t
1−t and the action

S(x, u; t) :=
u2

2
− xu

c
+ p log(u− ã) + (1− p) log(u− b̃) (7.51)

which is nothing but the function S(u, x; t) = F (u) of Eq. (3.18) studied in
section 3. The study of this section, and particularly Eq. (3.20), states that

Su(x0, u0; t0) = Suu(x0, u0; t0) = Suuu(x0, u0; t0) = 0 (7.52)

at the critical branch point (x0, u0) of the spectral curve

Su(x, u; t0) = u− x

c0

+
p

u− ã0

+
1− p
u− b̃0

= 0 (7.53)

where one notes c0 = c(t0), ã0 = at0
c0

and b̃0 = bt0
c0

. Moreover, using the
notations and computations of section 3, one has:

Sux(x0, u0; t0) = − 1

c0

,
Suuuu(x0, u0; t0)

4!
= −q

2 − q + 1

4q
(7.54)

and

Sut(x0, u0; t0) =
x0(1− 2t0)

2c0t0(1− t0)
+

pã0c
2
0

t20(1− t0)2 (u− ã0)2 +
(1− p)b̃0c

2
0

t20(1− t0)2(u− b̃0)2
.

(7.55)
This implies we are in the case of a double branch point studied in section
7.3.2 and thus, with the right rescaling, the kernel converges to the Pearcey
kernel as n → ∞. Let us now check the conditions to obtain precisely
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the Pearcey kernel. From the study of section 7.3.2, one must consider the
rescaling 

t := t0 + αtτ

N
1
2

x := x0 + αx

N
1
2

+ βxX

N
3
4

u := u0 + αuY

N
1
4

(7.56)

with the conditions

αxSxu(x0, u0; t0) + αtτStu(x0, u0; t0) = 0 (7.57)

α4
u

24
Suuuu(x0, u0; t0) = −1

4
, (7.58)

α2
u

2
[αtτStuu(x0, u0; t0) + αxSuux(x0, u0; t0)] =

τ

2
(7.59)

and
βxαuSux(x0, u0; t0) = −1. (7.60)

Let us check that these conditions agree with the rescalling Eq. (3.17).
From conditions (7.58) and (7.60), one gets (µ was defined in Eq. (1.10))

αu =
1

µ
, βx = c0µ, (7.61)

whereas Eq. (7.59) and Eq. (7.57) give

αt =
(1− t0)2c2

0

2

1
pã0

(u0−ã0)3 + (1−p)b̃0
(u0−b̃0)3

(
q2 − q + 1

q

) 1
2

= 2c2
0µ

2 (7.62)

and Eq. (7.57) states that

αx = τ

[
x0(1− t0)(1− 2t0)

2c0

+
pã0c

2
0

t0(u0 − ã0)2
+

(1− p)b̃0c
2
0

t0(u0 − b̃0)2

]

× µ2

pã0

(u0−ã0)3 + (1−p)b̃0
(u0−b̃0)3

.

It is then easily checked by plugging in the values of x0, t0 and u0 in terms
of q (with Maple for example) that this rescaling coincides with Eq. (3.17),
that is to say, the rescaling considered in the preceding part.

47



7.6 Application: Brownian bridges from one point to
k points

We can also use this analysis to study more general statistical systems. Let
us now consider N non-intersecting Brownian motions stating from 0 at time
t = 0 and ending at k points ai by groups of ni particles where ni = εiN . It is
a classical result that their probability measure at a given time t is given by
the probability measure of the eigenvalues of an Hermitian random matrix
in an external field with external matrix A(t) whose eigenvalues are given by

ai(t) =
√

2t
1−tai.

Then, the spectral curve is given by:

E(x, y) = y − x+
k∑
i=1

εi
y − ai(t)

= 0 (7.63)

and has genus zero. One can straightforwardly (just solving the equation in
x) find a rational parametrization under the form:

x(z) = z +
k∑
i=1

εi
(z − ai(t))

, y(z) = z (7.64)

and the branch points are given by

x′(z) = 1−
k∑
i=1

εi
(z − ai(t))2

= 0. (7.65)

For a generic time t, one has 2k branch points, 2l of them {z2i−1, z2i}li=1

being real and lying in the so-called physical sheet of the spectral curve
(see [6, 8, 23] for an extensive study of the spectral curve). Thus, by he
study of section 3 and 7.3, one can conclude that the kernel converges to the
Airy kernel in the neighborhood of these real branch points zi recovering the
results of [23].

Now, as the time decreases from 1 to 0, some real branch points z2i(t) and
z2i+1(t) merge for some critical value of the time tc. In the Brownian motion
setting, it correspond to the times when one big group of particles splits into
two smaller. In terms of the family of spectral curves parameterized by the
time t, it corresponds to the merging of two cuts. In the neighborhood of
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this double branch point, thanks to the study of section 7.3, one can rescale
the kernel in such a way that it converges to the Pearcey kernel as N →∞.
This generalizes the result of th. 1.1 to any cusp in this kind of processes
and recovers the former results of [23].

It is then natural to ask the question: Can we have higher order singu-
larity in these processes? When the εi’s are independent of N and the ai’s
real, the answer is no.

Indeed, it amounts to knowing what is the highest order possible for a
real root of Eq. (7.65). This problem can be rephrased as knowing the higher
order possible for a real root of the equation

T =
k∑
i=1

εi
(z − ai)2

, (7.66)

with the constraint
∑

i εi = 1 and the rescaled time evolution T = 2t
1−t ∈

[0,∞].
One can prove that the real roots of this equation are at most double.

For this purpose, let us follow the evlution of the roots as t decreases from 1
to 0, i.e. for T going from ∞ to 0.

For T large, this equation has obviously 2k simple real roots zi located
around their T → ∞ value, i.e. |z2i−1 − ai| � 1 and |z2i − ai| � 1 with
z2i−1 < ai < z2i. Now, for any real solution of this equation, one can compute

dzj
dT

= − 1

2
∑

i
εi

(zj−ai)3

. (7.67)

This derivative does not change sign as long as zj does not cross any ai. It
means that z2i (resp. z2i+1) keeps on going from ai to ai+1 (resp. from ai+1 to
ai) as T decreases, unless it reaches another real root. Following this process
one sees that the two real roots z2i and z2i+1 meet for some critical time Tc
giving birth to a double real root of this equation. In this first part of the
process, one can thus only encounter double real roots.

Let us keep on decreasing time. For T < Tc and close to it, the double
root gives rise to two simple complex conjugated roots. Let us thus now
consider a simple complex root z = r+ iθ. For θ close to 0, one can compute

dθ

dT
= − 1

6
∑

i
εiθ

(r−ai)4

(7.68)
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to first order in θ. The complex roots are thus repelled by the real axis and
cannot thus give birth to real roots. In this second part of the process, one do
not have real roots anymore. The only multiple real roots are thus obtained
when ai < z2i → z2i+1 < ai+1.
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