
Group factorization, moment matrices and
Toda lattices∗

M. Adler† P. van Moerbeke‡

The following differential equations have arisen in the study of two-matrix
integrals by the authors [2],

∂M

∂tn
= ΛnM

∂M

∂sn

= −MΛ>
n

, n = 1, 2, ..., (1)

where M is a semi-infinite matrix M = (Mij)0≤i,j<∞; the matrix Λ =
(δi,j−1)i,j≥0 is the customary shift matrix.

A variation of the equations (1) have appeared in the study of Fredholm
determinants for Ising correlation functions by Harold Widom [22],

∂M

∂tn
= [Λn,M ]

∂M

∂sn

= [Λ>
n

,M ], n = 1, 2, ... . (2)

for a certain bi-infinite matrix M and the bi-infinite shift matrix Λ; for
background and references, see [18] and [5].

Using different methods, both studies [2] and [22] reach similar conclu-
sions: upon factorizing a moment-like matrix M , equations (1) and (2) lead
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to the two-Toda lattice equations, which are deformations of a couple of
matrices (L1, L2).

Widom uses (rigorous) functional analysis to connect (2) with the two-
Toda lattice, whereas we use the theory of so-called string-orthogonal poly-
nomials. Such ideas go back to the early days, where integrable theory arose
naturally in the context of group factorization. A connection with inverse
scattering theory was made in [7, 17] and with the sine-Gordon equation in
[16].

The main result (section 1) of this paper is to show how a general set-
up, involving a group factorization and a set of commuting elements in the
corresponding Lie algebra, leads to a set of vector fields on the group, thus
unifying equations (1) and (2). These equations lead, upon factorizing an
element in the group, to a general two-Toda lattice. For the group GL(∞),
we find the customary two-Toda lattice and the related sine-Gordon like and
modified KP equations (section 2).

If the initial condition for equations (1) and (2) satisfies a certain com-
mutation relation, we are lead to two different reductions from 2-Toda to
1-Toda: equation (1) corresponds to the reduction L1 = L2, implying that
L1 = L2 is tridiagonal; this reduction is explained in Corollary 1.2. Equa-
tion (2) corresponds to the reduction L1 + L−1

1 = L2 + L−1
2 , implying that

L1 + L−1
1 = L2 + L−1

2 is tridiagonal; this reduction was studied in [20].
We discuss, in some detail, the two kinds of equations (1) and (2). In the

case (1), discussed in section 3, M is a moment matrix with regard to a certain
weight. The Borel decomposition amounts to the study of string-orthogonal
polynomials. We give various representations for those polynomials and pro-
vide their evolution in time, compatible with equations (1). We also give
an example of a string-orthogonal polynomial for a Gaussian weight. Of
course, in this case, much more is known: the determinants, obtained from
the upper-left corner of M , satisfy partial differential equations, forming a
Virasoro algebra; see [2].

In the context of equation (2), we discuss in section 4 a weight, introduced
by Widom; this leads to a bi-infinite moment matrix µ. The determinant
of the (semi-infinite) upper-left corner of M = I − µ makes sense and is
connected with the Fredholm determinants of certain kernels, as Widom
points out in [22]. We also show that this Fredholm determinant can be
written in terms of a vertex operator, taylored to the particular reduction
from 2- to 1-Toda, mentioned above.
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1 Group factorization and 2-Toda lattice

Given a Lie group G and its Lie algebra g, define for a ∈ g and M ∈ G,

aM :=
∂

∂t
(etaM)

∣∣∣
t=0

= RM∗ a ∈ g,

Ma :=
∂

∂t
(Meta)

∣∣∣
t=0

= LM∗ a ∈ g,

(3)

where RM and LM denote right and left multiplication in G.
Let g = g− ⊕ g+ be a (direct sum) vector space decomposition into Lie

subalgebras g− and g+, with the induced (generic) factorization G = G−G+.
Consider the corresponding vector space decomposition of g × g into Lie
subalgebras

g × g = (g × g)u ⊕ (g × g)`, (4)

where

(x, y) = (x, y)u + (x, y)`

= (x+ + y−, x+ + y−) + (x− − y−,−x+ + y+).

For the sake of Theorem 1.1, define two sets of times t = (t1, t2, ...) ∈ C∞
and s = (s1, s2, ...) ∈ C∞.

Theorem 1.1. (i) Consider fixed scalars λ and µ, a Lie algebra decomposi-
tion g = g− ⊕ g+, and commuting ai and bi ∈ g, as follows:

ai ∈ g+, bi ∈ g−, (i = 1, 2, ...) with [ai, aj] = [bi, bj] = λ[ai, bj] = µ[ai, bj] = 0.
(5)

The vector fields,

∂M

∂tn
= anM − λMan,

∂M

∂sn

= −Mbn + µbnM, n = 1, 2, ..., (6)

acting on the underlying group (M ∈ G), all commute; their integral curves
are given by:

M(t, s) = e
∑∞

1 (tnan+µsnbn)M(0, 0)e−
∑∞

1 (snbn+λtnan). (7)

(ii) Then, upon decomposing

M(t, s) = S−1
1 S2 with S1 ∈ G−, S2 ∈ G+, (8)
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the elements L = L(a,b) ∈ g × g, defined for fixed a = an and b = bn by

L := L(a,b) := (L
(a)
1 , L

(b)
2 ) = (S1aS−1

1 , S2bS
−1
2 ) ∈ g × g, (9)

satisfy the 2-Toda lattice equations associated with the Lie algebra above:

∂L

∂tn
= [(L

(an)
1 , 0)u, L] and

∂L

∂sn

= [(0, L
(bn)
2 )u, L], n = 1, 2, ... . (10)

Proof: That the vector fields (6) all commute follows from (7) or, alterna-
tively, from the commutation relations (5); e.g.,

[
∂

∂sk

,
∂

∂tn

]
M = µ[an, bk]M + Mλ[bk, an].

We have that S1ṀS−1
2 ∈ g for any of the vector fields ∂/∂tn or ∂/∂sn in (6).

Moreover, it can be decomposed in two different ways: on the one hand,

S1ṀS−1
2 = S1(S

−1
1 S2)

.S−1
2 = −Ṡ1S

−1
1 + Ṡ2S

−1
2 ∈ g− + g+ (11)

and, on the other hand, one computes for the ∂/∂tn and ∂/∂sn vector fields
separately:

S1
∂M

∂t
S−1

2 = S1(aM − λMa)S−1
2

= S1aS−1
1 − λS2aS−1

2 , using M = S−1
1 S2

= L
(a)
1 − λS2aS−1

2 , by definition (9)

= (L
(a)
1 )− +

(
(L

(a)
1 )+ − λS2aS−1

2

)
∈ g− + g+ .

(12)

Similarly, for the ∂/∂s vector fields, we compute

S1
∂M

∂s
S−1

2 = S1(−Mb + µbM)S−1
2

= −S2bS
−1
2 + µS1bS

−1
1 , using M = S−1

1 S2

= −L
(b)
2 + µS1bS

−1
1 , by (9)

=
(
−(L

(b)
2 )− + µS1bS

−1
1

)
− (L

(b)
2 )+ ∈ g− + g+.

(13)
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Comparing formula (11) with (12) and (13) and using the uniqueness of the
direct sum decomposition g = g− + g+, we find

∂S1

∂t
S−1

1 = −(L
(a)
1 )−,

∂S2

∂t
S−1

2 = (L
(a)
1 )+ − λS2aS−1

2

∂S1

∂s
S−1

1 = (L
(b)
2 )− − µS1bS

−1
1 ,

∂S2

∂s
S−1

2 = −(L
(b)
2 )+.

(14)

Upon using the representation (9) of L
(a)
1 and L

(b)
2 in terms of S1 and S2, and

the commutation relations λ[ai, b] = 0 and [L
(α)
i , L

(α′)
i ] = Si[α, α′]S−1

i = 0,
where α, α′ = a for i = 1 and α, α′ = b for i = 2, we find

∂L
(a)
1

∂ti
= [−(L

(ai)
1 )−, L

(a)
1 ] = [L

(ai)
1 − (L

(ai)
1 )−, L

(a)
1 ] = [(L

(ai)
1 )+, L

(a)
1 ]

∂L
(b)
2

∂ti
= [(L

(ai)
1 )+, L

(b)
2 ]− S2λ[ai, b]S

−1
2 = [(L

(ai)
1 )+, L

(b)
2 ],

which establishes the first equation of (10), keeping in mind the decomposi-
tion (4). Similarly

∂L
(a)
1

∂si

= [(L
(bi)
2 )−, L

(a)
1 ]− S1µ[bi, a]S−1

1 = [(L
(bi)
2 )−, L

(a)
1 ]

∂L
(b)
2

∂si

= [−(L
(bi)
2 )+, L

(b)
2 ] = [L

(bi)
2 − (L

(bi)
2 )+, L

(b)
2 ] = [(L

(bi)
2 )−, L

(b)
2 ],

lead to the second equation (10), ending the proof of Theorem 1.1.

Corollary 1.2. Considering the data of Theorem 1.1, let M = S−1
1 S2 ∈ G

be such that aiM = Mbi for pairs (ai, bi) with i = 1, 2, .... Then, for each

of those pairs (ai, bi) and for that M , we have L
(a)
1 = L

(b)
2 , and this relation

is preserved under the vector fields ∂/∂tn and ∂/∂sn. Moreover setting1

un = tn − sn and vn = tn + sn, we have that L
(a)
1 flows according to the

1-Toda lattice in the un and is invariant in the vn:

∂

∂un

L
(a)
1 = [−(Lan

1 )−, L
(a)
1 ] and

∂

∂vn

L
(a)
1 = 0.

1 ∂
∂un

= 1
2

(
∂

∂tn
− ∂

∂sn

)
and ∂

∂vn
= 1

2

(
∂

∂tn
+ ∂

∂sn

)
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Proof: At first, for that specific M = S−1
1 S2 ∈ G and for each pair (a, b) :=

(ai, bi), we have

L
(a)
1 = S1aS−1

1 = S1aMS−1
2 = S1MbS−1

2 = S2bS
−1
2 = L

(b)
2 ,

which is preserved under the vector fields ∂/∂tn and ∂/∂sn:

∂

∂tn
(L

(a)
1 − L

(b)
2 ) = [(L

(an)
1 )+, L

(a)
1 − L

(b)
2 ] = 0,

∂

∂sn

(L
(a)
1 − L

(b)
2 ) = [(L

(bn)
2 )−, L

(a)
1 − L

(b)
2 ] = 0.

Moreover,

(
∂

∂tn
+

∂

∂sn

)
L

(a)
1 = [(L

(an)
1 )+, L

(a)
1 ] + [(L

(bn)
2 )−, L

(a)
1 ]

= [(L
(an)
1 )+ + (L

(an)
1 )−, L

(a)
1 ]

= [L
(an)
1 , L

(a)
1 ] = 0

and
(

∂

∂tn
− ∂

∂sn

)
L

(a)
1 = [(L

(an)
1 )+ − (L

(an)
1 )−, L

(a)
1 ] = −2[(L

(an)
1 )−, L

(a)
1 ],

ending the proof of Corollary 1.2.

2 Application to GL(∞) and its Borel decom-

position

Here we apply Theorem 1.1 and Corollary 1.2 to an appropriate closure of
GL(∞) and g`(∞); the ai and bi will be represented by powers of the shift
matrix Λ = (δi,j−1)i,j∈Z ∈ g`(∞) and its transpose Λ> respectively. We now
consider matrices M such that

τn(M) = det(Mn), with Mn = (Mij)−∞<i,j≤n−1

makes sense.
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Theorem 2.1. Consider the equations on GL(∞)

∂M

∂tn
= ΛnM

∂M

∂sn

= −MΛ>
n

, n = 1, 2, ..., (15)

or
∂M

∂tn
= [Λn,M ]

∂M

∂sn

= [Λ>
n

,M ], n = 1, 2, ... ; (16)

then the Borel decomposition M = S−1
1 S2, with

S1 ∈ G− = {lower-triangular invertible matrices, with 1’s on the diagonal}

S2 ∈ G+ = {upper-triangular invertible matrices}
(17)

leads to matrices

L1 = S1ΛS−1
1 and L2 = S2Λ

>S−1
2 (18)

satisfying the (standard) 2-Toda equations

∂Li

∂tn
= [(Ln

1 )+, Li] and
∂Li

∂sn

= [(Ln
2 )−, Li], n = 1, 2, ... , (19)

with

(Lk
1)nn =

∂

∂tk
log

τn+1(M)

τn(M)
(Lk

2)nn = − ∂

∂sk

log
τn+1(M)

τn(M)
, (20)

expressible in terms of τn = τn(M). In particular

L1 = ...+
∂

∂t1
log

τn+1

τn

+Λ and L2 =
τn−1τn+1

τ 2
n

Λ−1− ∂

∂s1

log
τn+1

τn

+... (21)

Proof: The statement follows at once from Theorem 1, by picking an = Λn

and bn = Λ>
n

for n = 1, 2, ..., for which assumption (5) holds. Note, the first
set (15) of equations corresponds to (6) with λ = 0 and µ = 0, whereas the
second set (16) corresponds to λ = µ = 1.

Finally the matrix M admits the following Borel decomposition

M = S−1
1 S2 = S−1(M)h(M)(S−1(M>))>, (22)
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with S1 := S(M) and S2 := h(M)(S−1(M>))>, where

S(M) =




. . .

. . . 1 0 0

. . . τ01
τ1

1 0
τ02
τ2

τ12
τ2

1
. . .




and h(M) =




. . .
τ1
τ0

O
τ2
τ1

O τ3
τ2

. . . . . . . . .




(23)
with τn(M) defined in the beginning of this section and

τin(M) := (−1)i+n det(minor of (i, n)th entry in the last column of Mn).

From (22), the diagonal of S2 is given by the entries of the diagonal matrix
h(M); therefore (20) follows at once from the equations (14) for ∂S2

∂tk
S−1

2 and
∂S2

∂sk
S−1

2 , ending the proof of Theorem 2.1.

Remark: It is important to note that equations (15) make sense also for
truncated M ’s:

M̄ := (Mij)i,j≥0,

but equations (16) cease to make sense for truncated M ’s. Indeed, in the
truncated situation and for λ, µ 6= 0, the conditions λ[ai, bj] = µ[ai, bj] = 0
are not met, since [Λ̄i, Λ̄>j] 6= 0 for i, j ≥ 1.

In the next statement, we show that the sinh-Gordon-like and modified
KP equations appear very naturally in the 2-Toda lattice context; For the
sake of completeness, we reproduce the proof of these facts; see, for instance,
[20] and [11].

Corollary 2.2. The functions qn = log τn+1

τn
satisfy the sinh-Gordon-like

equation,
∂2

∂s1∂t1
qn = eqn−qn−1 − eqn+1−qn , (24)

and the modified KP equation,

3
∂2qn

∂t22
+ 6

∂qn

∂t2

∂2qn

∂t21
− 4

∂2qn

∂t1∂t3
+

∂4qn

∂t41
− 6

(
∂qn

∂t1

)2
∂2qn

∂t21
= 0. (25)

8



Proof: Since the t- and s-vector fields all commute, we have

∂

∂s1

(L1)+ − ∂

∂t1
(L2)− + [(L1)+, (L2)−] = 0,

which upon using (21), keeping the diagonal terms only and upon setting

qn = log
τn+1

τn

, leads to (24).

To prove the modified KP equation for un, one uses the fact that the τn’s
satisfy a bilinear equation

∮

z=∞
τn(t− [z−1], s)τm+1(t

′ + [z−1], s′)e
∑∞

1 (ti−t′i)z
i

zn−m−1dz

=

∮

z=0

τn+1(t, s− [z])τm(t′, s′ + [z])e
∑∞

1 (si−s′i)z
−i

zn−m−1dz.

Setting t 7→ t− a, t′ 7→ t + a, s 7→ s− b, s′ 7→ s + b, and using the standard
Hirota symbol2, one finds

∞∑

k=0

pm+k(−2a)pk(∂̃t)e
∑∞

0 (ai
∂

∂ti
+bi

∂
∂si

)
τn+m+1 ◦ τn

=
∞∑

k=0

p−m+k(−2b)pk(∂̃s)e
∑∞

0 (ai
∂

∂ti
+bi

∂
∂si

)
τn+m ◦ τn+1.

Setting m = 0, the coefficient of the a3
1-term in the (a, b)-Taylor expansion

of this expression leads to
((

∂

∂t1

)3

+ 3
∂2

∂t1∂t2
− 4

∂

∂t3

)
τn+1 ◦ τn = 0,

which amounts to equation (25) for qn = log τn+1

τn
, ending the proof of Corol-

lary 2.2.

2For an arbitrary polynomial p,

p(∂)f ◦ g(t) ≡ p(
∂

∂y1
,

∂

∂y2
, . . .)f(t + y)g(t− y)|y=0.

For the Schur polynomials pn, defined by e
∑∞

0 tnzn =
∑∞

0 znpn(t), introduce the follow-
ing standard notation:

p(∂̃t) := p

(
∂

∂t1
,
1
2

∂

∂t2
,
1
3

∂

∂t3
, ...

)
.
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Corollary 2.3. If M satisfies any of the two equations (15) or (16), and
if M satisfies ΛM = MΛ>, then, in particular, M is symmetric and the
tridiagonal matrices L := L1 = L2 satisfy the 1-Toda equations

∂L

∂un

= [−(Ln)−, L],

for the un-variables introduced in Corollary 1.2.

Proof: The statement follows at once from Corollary 1.2, except for the
symmetry; indeed Mk` = M`k with k ≥ `, by setting i = j = ` and n = k− `
in

Mi+n,j = (ΛnM)ij = (MΛ>
n

)ij = Mi,j+n,

establishing Corollary 2.3.

Moment matrices, viewed in the context of Hermitean matrix integrals or
viewed as solutions to the 1-Toda lattice, have been considered in the ran-
dom matrix literature, for instance in [13, 14], but also in the Grassmannian
context in [9] and [15].

3 A solution to the semi-infinite Toda lattice

and string-orthogonal polynomials

An example of a semi-infinite matrix M , satisfying the equation (15), is
constructed as follows. Consider a weight on R2,

ρ(y, z) := ρt,s(y, z) := ρ0(y, z)e
∑∞

1 (tiy
i−siz

i) (26)

and the corresponding inner product between functions of one real variable:

〈f, g〉 =

∫

R2
dydzρ(y, z)f(y)g(z).

Define also the semi-infinite moment matrix

M = (µij)0≤i,j<∞ = (〈yi, zj〉)0≤i,j<∞ (27)

and the finite matrix Mn := (µij)0≤i,j≤n−1.
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Theorem 3.1. The moment matrix M with regard to the weight (26) sat-
isfies the equations (15), i.e.,

∂M

∂tn
= ΛnM and

∂M

∂sn

= −MΛ>
n

; (28)

for generic s and t, the matrix M admits a decomposition M = S−1
1 S2,

leading to semi-infinite matrices L1 and L2, as in (18), satisfying the two-
Toda lattice equations (19). Also qn = log (det Mn+1/ det Mn) satisfies the
sinh-Gordon-like equation (24) and the modified KP equation (25).

Proof: The proof follows at once from Theorem 2.1 and Corollary 2.2, upon
noting that

(
∂M

∂tn

)

ij

=
∂

∂tn
〈yi, zj〉 = 〈yn+i, zj〉 = (ΛnM)ij

(
∂M

∂sn

)

ij

=
∂

∂sn

〈yi, zj〉 = −〈yi, zj+n〉 = (−MΛ>n)ij.

The finite matrix Mn admits generically a Borel decomposition and its de-
terminant τn satisfies (24) and (25), ending the proof of theorem 3.1.

In the next theorem, we show that performing the Borel decomposition
of a semi-infinite matrix M is tantamount to the process of constructing
string-orthogonal polynomials with regard to M .

They are defined as two sets of monic polynomials of degree i, each de-
pending on one variable (y and z ∈ R)

{p(1)
i (y)}∞i=0 and {p(2)

i (z)}∞i=0,

orthogonal in the following sense

〈p(1)
i , p

(2)
j 〉 = hiδij.

Note, since µij = 〈yi, zj〉, the string-orthogonality of polynomials or entire
functions can purely be expressed in terms of the entries of the matrix M , re-
gardless of the weight ρdy dz. To the best of our knowledge, string-orthogonal
polynomials were considered for the first time, in the context of symmetric
weights ρ(y, z)dydz, by Mehta (see [13] and [6]). The ideas in Theorem 3.2
are mainly due to [1].
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Theorem 3.2. (i) For g`(∞), the matrices S1 and S2 in3 the Borel decom-
position M = S−1

1 S2 of the semi-infinite matrix M , lead to vectors4

p(1)(y) = S1χ(y) and h−1p(2)(z) = (S>2 )−1χ(z) (29)

of monic string-orthogonal polynomials with regard to the matrix M , i.e.

〈p(1)
i , p

(2)
j 〉 = hiδij. (30)

and conversely.
(ii) The string-orthogonal polynomials p

(1)
n (y) and p

(2)
n (z) are explicitly given

either in terms of τn = det Mn or in terms of the measure ρ(u, v)du dv defining
the moments, as follows5

p(1)
n (y) =

1

det Mn

det




1
Mn y

...
µn0 ... µn,n−1 yn


 (31)

=
1

det Mn

∫ ∫

(Rn)2

n∏

k=1

(y − uk)∆(u)∆(v)
n∏
1

ρ(uk, vk)du dv (32)

= yn τn(t− [y−1], s)

τn(t, s)
(33)

and

p(2)
n (z) =

1

det Mn

det




M>
n 1

z
...

µ0,n ... µn−1,n zn


 (34)

=
1

det Mn

∫ ∫

(Rn)2

n∏

k=1

(z − vk)∆(u)∆(v)
n∏
1

ρ(uk, vk)du dv (35)

= zn τn(t, s + [z−1])

τn(t, s)
, (36)

3with S1 and S2 as in Theorem 2.1; the diagonal matrix h is defined, such that h−1S2

has 1’s on the diagonal.
4χ(z) := (1, z, z2, ...)
5∆(a) :=

∏

1≤i<j≤n

(ai − aj) and [α] := (α, α2/2, α3/3, ...)
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where τn has the integral representation

det τn = Mn =

∫ ∫

(Rn)2
∆(u)∆(v)

n∏

k=1

ρt,s(uk, vk)du dv. (37)

Proof: Given string orthogonal polynomials

p
(1)
i (y) =

i∑

k=0

Piky
k p

(2)
j (z) =

j∑

`=0

Qj`z
`,

thus satisfying 〈p(1)
i , p

(2)
j 〉 = hiδij, we have upon setting h := diag(h0, h1, ...),

h =
(
〈p(1)

i (y), p
(2)
j (z)〉

)
0≤i,j<∞

=




∑
0≤k≤i
0≤`≤j

Pik〈yk, z`〉(Q>)`j




0≤i,j<∞
= PMQ>

with P and Q being lower-triangular matrices, yielding the Borel decompo-
sition of M . The converse is true as well: given the Borel decomposition
M = P−1hQ>−1

of the matrix M of moments µij = 〈yi, zj〉, we find polyno-

mials p
(1)
i and p

(2)
j , defined as above, such that hiδij = 〈p(1)

i (y), p
(2)
j (z)〉.

To show the expressions (31) and (34) for p(1) and p(2), it suffices to
compute

〈p(1)
n (y), zr〉 =

1

det Mn

det




〈1, zr〉
Mn

...
〈yn−1, zr〉

µn0 ... µn,n−1 〈yn, zr〉




=
1

det Mn

det




µ0,r

Mn
...

µn−1,r

µn0 ... µn,n−1 µn,r




=





0 if r ≤ n− 1, (matrix with two equal columns)
det Mn+1

det Mn

if r = n,

13



and thus

〈p(1)
n , p(2)

m 〉 = δm,n
det Mn+1

det Mn

.

The proof of (32) and (35) is quite similar, whereas (33) and (36) follows
from replacing ti by ti − y−i/i and si by si + z−i/i in (37), and using

e−
∑∞

1
ai

i = 1− a,

ending the proof of Theorem 3.2.

Theorem 3.3. The string-orthogonal polynomials are eigenvectors of the
matrices L1 and L>2 :

yp(1)(y) = L1p
(1)(y) zh−1p(2)(z) = L>2 h−1p(2)(z) (38)

and flow in t and s according to the equations

∂p(1)

∂tk
= −(Lk

1)−p(1) ∂

∂tk
h−1p(2) = − (

(Lk
1)+

)>
h−1p(2)

∂p(1)

∂sk

= (Lk
2)−p(1) ∂

∂sk

h−1p(2) = (Lk
2)+h−1p(2).

(39)

Proof: one computes

yp(1)(y) = yS1χ(y) = S1Λχ(y) = S1ΛS−1
1 p(1)(y) = L1p

(1)(y)

zh−1p(2)(z) = z(S>2 )−1χ(z) = (S>2 )−1ΛS>2 h−1p(2)(z) = L>2 h−1p(2)(z),

establishing (38). Finally, using (14) and the definition (29) of p(1) and

h−1p(2), we have (set (Lk
i )
>
+ :=

(
(Lk

i )+

)>
)

∂p(1)(z)

∂tk
=

∂S1

∂tk
χ(z) = −(Lk

1)−S1χ(z) = −(Lk
1)−p(1)(z)

∂p(1)(z)

∂sk

=
∂S1

∂sk

χ(z) = (Lk
2)−S1χ(z) = (Lk

2)−p(1)(z)

∂h−1p(2)(z)

∂tk
=

∂(S>2 )−1

∂tk
χ(z) = −(Lk

1)
>
+(S>2 )−1χ(z) = −(Lk

1)
>
+h−1p(2)(z)

∂h−1p(2)(z)

∂sk

=
∂(S>2 )−1

∂sk

χ(z) = (Lk
2)
>
+(S>2 )−1χ(z) = (Lk

2)
>
+h−1p(2)(z),

establishing Theorem 3.3.
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Example: string-orthogonal polynomials for a Gaussian weight.

Monic string-orthogonal polynomials with respect to the Gaussian weight

ρ(x, y) = e−
1
2
(x2+y2−2cxy) = e−

1
2
(x,Cx), with C =

(
1 −c
−c 1

)

are given by

p̃(1)
n (x) = p̃(2)

n (x) =

(
1

2α

)n

Hn(αx), with hn =
2πn!cn

(1− c2)n+1/2
(40)

where

α =

(
1− c2

2

)1/2

and Hn(y) = 2nyn + ...

are the standard Hermite polynomials, with generating function

e2yz−z2

=
∞∑
0

Hn(y)

n!
zn. (41)

The proof of this fact relies on the moment generating function (see [8])

〈ea1x, aa2y〉ρ =
∑
j≥0

aj
1a

j
2

i!j!
Mij(0, 0)

=

∫ ∫

R2

ea1x+a1yρ(x, y)dx dy = 2π(det C)−1/2e
1
2
(a,C−1a).(42)

We compute

∑
n,m≥0

unvm

n!m!
〈Hn(αx), Hm(αy)〉ρ = 〈

∑
n≥0

un

n!
Hn(αx),

∑ vm

m!
Hm(αy)〉ρ

= e−u2−v2〈e2αxu, e2αyv〉 using (41)

=
2π√
1− c2

e−u2−v2

eu2+v2+2cuv using (42)

=
2π√
1− c2

∑
n≥0

(2c)nn!
(uv)n

(n!)2
.
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Therefore

〈Hn(αx), Hm(αy)〉 =
2πn!√
1− c2

(2c)nδnm,

and thus

〈( 1

2α
)nHn(αx), (

1

2α
)mHm(αy)〉 =

2πn!cn

(1− c2)n+1/2
δnm,

establishing formula (40) for the polynomials p̃
(1)
n (x) = p̃

(2)
n (x).

4 A solution to the bi-infinite Toda lattice

In contrast with (26), consider now the weight, introduced by Widom [22]

ρ(y, z) := ρt,s(y, z) := ρ0(y, z)e
∑∞

1 (tn(yn−z−n)+sn(y−n−zn)) (43)

and the corresponding inner product

〈f, g〉 =

∫

R2
dy dz ρ(y, z)f(y)g(z).

Consider the bi-infinite moment matrix

M = I − µ := (δij − 〈yi, zj〉)−∞<i,j<∞ (44)

and the matrix Mn := (Mij)−∞<i,j≤n−1. The Fredholm determinant of M
makes sense for good weights ρ0(y, z); see [22].

Also, consider one of the four 2-Toda vector vertex operators and its
expansion in W-generators, defined by us in [1]6,

X(t, y, z) : = (Xn(t, y, z))n∈Z := χ(z−1)χ(y)X(−t, z)X(t, y)

= − 1

y − z

∞∑

k=0

(y − z)k

k!

∞∑

`=−∞
z−`−kW

(k)
`

(
yn

zn−1

)

n∈Z
.

Theorem 4.1. The moment matrix M for the weight (43) satisfies the equa-
tions (16); the decomposition of M = S−1

1 S2 leads to bi-infinite matrices L1

and L2 satisfying the 2-Toda-equations.

6where χ(z) = diagonal(..., z−1, z0, z1, ...) and X(t, y) := e
∑∞

1 tiy
i

e
∑∞

1
y−i

i
∂

∂ti
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Proof: The simple computation

∂µij

∂tn
= 〈yi+n, zj〉 − 〈yi, zj−n〉 = (Λnµ− µΛn)ij

∂µij

∂sn

= 〈yi−n, zj〉 − 〈yi, zj+n〉 = (Λ>nµ− µΛ>n)ij, (45)

together with Theorem 2.1, establishes Theorem 4.1.

Replacing, with Widom, ρ0(y, z) by ρ0(z)δ(y− z) in (43) leads to a mea-
sure which has its support on the diagonal y = z :

ρ(z) := ρt−s(z) := e
∑∞

1 (tn−sn)(zn−z−n)ρ0(z). (46)

Corollary 4.2. Given the weight (46), the Borel decomposition of M = I−µ
leads to the 1-Toda lattice and qn = log(τn+1/τn), satisfies equations (24) and
(25). Moreover τn has three alternative expressions: at first

τn = det Mn = det(I − µn);

secondly, τn can be expressed in terms of a Fredholm determinant

τn = det(I −Kn)

of an integral operator associated with the kernel

Kn(y, z) = −ynρ
1
2 (y)ρ

1
2 (z)zn

1− yz
. (47)

Finally, it can also be expressed as a kind of continuous “soliton” formula,
in terms of the vertex operator above, acting on the function 1:

τn = e−
∫
Xn(t,z,z−1)ρ0(z)dz1, (48)

where Xn(t, z, z−1) is the vertex operator realization of a Virasoro-type cen-
tral extension:

∂

∂z
(zk+1−z−k+1)Xn(t, z, z−1) = [

1

2
(W

(2)
k −W

(2)
−k )+(2n+1)W

(1)
k ,Xn(t, z, z−1)].

(49)
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Proof: The Borel decomposition of M = I − µ = S−1
1 S2, together with

equations (16), lead to the 1-Toda lattice, since ρt−s(z) defined in (46) only
depends on t − s; hence, so does M, S1 and S2. Note, in this case, the
reduction from 2-Toda to 1-Toda is given by the requirement that L :=
L1 + L−1

1 = L2 + L−1
2 be tridiagonal.

Moreover, the kernel

KN(y, z) = −yNρ
1
2 (y)ρ

1
2 (z)zN

1− yz

=
yN−1ρ

1
2 (y)ρ

1
2 (z)zN−1

1− y−1z−1

= yN−1ρ
1
2 (y)ρ

1
2 (z)zN−1

∑
i≥0

1

yizi

=
∑

`≤N−1

y`ρ
1
2 (y)ρ

1
2 (z)z`

defines an integral operator acting on the space

H = span {ϕi(z),−∞ < i < ∞}, ϕi(z) = ρ
1
2 (z)zi,

as follows

ϕ 7→ KNϕ(y) =

∫
KN(y, z)ϕ(z) dz.

Then

(KNϕi)(y) =

∫
dz

∑

`≤N−1

y`ρ
1
2 (y)ρ

1
2 (z)z`ρ

1
2 (z)zi

=
∑

`≤N−1

µi`ϕ`(y),

with µi` as in (44). Therefore we have det(I−µN) = det(I−KN). The proof
of (48) and (49) is a special case of a theorem relating Fredholm determinants
and vertex operators; see [4]. This ends the proof of corollary 4.2.
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