Group factorization, moment matrices and
Toda lattices®

M. Adler’  P. van Moerbeke?

The following differential equations have arisen in the study of two-matrix
integrals by the authors [2],

oM oM n
= A"M = —MA" =1,2,... 1
ot,, D, C TS (1)
where M is a semi-infinite matrix M = (M;j)o<ij<oo; the matrix A =

(0ij—1)ij>0 is the customary shift matrix.
A variation of the equations (1) have appeared in the study of Fredholm
determinants for Ising correlation functions by Harold Widom [22],

oM oM
8—%:[/\ , M] Bs.

=[AT",M], n=1,2, ... (2)

for a certain bi-infinite matrix M and the bi-infinite shift matrix A; for
background and references, see [18] and [5].

Using different methods, both studies [2] and [22] reach similar conclu-
sions: upon factorizing a moment-like matrix M, equations (1) and (2) lead
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to the two-Toda lattice equations, which are deformations of a couple of
matrices (L1, Lg).

Widom uses (rigorous) functional analysis to connect (2) with the two-
Toda lattice, whereas we use the theory of so-called string-orthogonal poly-
nomials. Such ideas go back to the early days, where integrable theory arose
naturally in the context of group factorization. A connection with inverse
scattering theory was made in [7, 17] and with the sine-Gordon equation in
[16].

The main result (section 1) of this paper is to show how a general set-
up, involving a group factorization and a set of commuting elements in the
corresponding Lie algebra, leads to a set of vector fields on the group, thus
unifying equations (1) and (2). These equations lead, upon factorizing an
element in the group, to a general two-Toda lattice. For the group G L(c0),
we find the customary two-Toda lattice and the related sine-Gordon like and
modified KP equations (section 2).

If the initial condition for equations (1) and (2) satisfies a certain com-
mutation relation, we are lead to two different reductions from 2-Toda to
1-Toda: equation (1) corresponds to the reduction L; = Lo, implying that
Ly = Ly is tridiagonal; this reduction is explained in Corollary 1.2. Equa-
tion (2) corresponds to the reduction L; + L{' = Ly + Ly, implying that
L+ L' = Ly + Ly is tridiagonal; this reduction was studied in [20].

We discuss, in some detail, the two kinds of equations (1) and (2). In the
case (1), discussed in section 3, M is a moment matrix with regard to a certain
weight. The Borel decomposition amounts to the study of string-orthogonal
polynomials. We give various representations for those polynomials and pro-
vide their evolution in time, compatible with equations (1). We also give
an example of a string-orthogonal polynomial for a Gaussian weight. Of
course, in this case, much more is known: the determinants, obtained from
the upper-left corner of M, satisfy partial differential equations, forming a
Virasoro algebra; see [2].

In the context of equation (2), we discuss in section 4 a weight, introduced
by Widom; this leads to a bi-infinite moment matrix p. The determinant
of the (semi-infinite) upper-left corner of M = I — u makes sense and is
connected with the Fredholm determinants of certain kernels, as Widom
points out in [22]. We also show that this Fredholm determinant can be
written in terms of a vertex operator, taylored to the particular reduction
from 2- to 1-Toda, mentioned above.



1 Group factorization and 2-Toda lattice

Given a Lie group G and its Lie algebra g, define for a € g and M € G,

0
M = taM = "
a 875(6 )t:O Ry« a € g,
5 (3)
Ma == (Me“)| =Ly
a at( e )t:O M a € g,

where R); and Lj; denote right and left multiplication in G.

Let ¢ = g— @ g+ be a (direct sum) vector space decomposition into Lie
subalgebras ¢g_ and g, with the induced (generic) factorization G = G_G.
Consider the corresponding vector space decomposition of g x g into Lie
subalgebras

gxg=(9%9)u®(9 X9 (4)

where

(z,y) = (@9)u+ (2,9)
= (4 +y—, x4 +y-) + (2o =y, —zy +yy).
For the sake of Theorem 1.1, define two sets of times t = (t1,1s,...) € C*®
and s = (s, 89, ...) € C*™.
Theorem 1.1. (i) Consider fixed scalars A and i, a Lie algebra decomposi-

tion g = g_ ® g+, and commuting a; and b; € g, as follows:

a; € g+,b¢ € g, (Z = 1,2, ) with [CLZ‘,CL]'] = [b“bj] = A[ai,bj] = /,L[(li,bj] =0.

(5)

The vector fields,

oM oM
— a4, M — A\Ma,, <%
Ot,, tn AMay, sy,

acting on the underlying group (M € G), all commute; their integral curves
are given by:

M(t7 S) — GZTO(tnan"F#Snbn)M(O’ 0)6_ Z?O(Snbn‘i‘)\tnan). (7)

(ii) Then, upon decomposing

M(t, S) = 51_152 with S; € G_, Sy € G+7 (8)
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the elements L = L% € g x ¢, defined for fixed a = a,, and b =b,, by

L= LY = (L, L) = (S1aS7 ", $bS; 1) € g x g, 9)
satisfy the 2-Toda lattice equations associated with the Lie algebra above:
oL an oL by
o = (L, 000, L) and 2= = [(0,L)u, L), n=12...  (10)

Proof: That the vector fields (6) all commute follows from (7) or, alterna-
tively, from the commutation relations (5); e.g.,

9 92
8Sk’ atn

We have that S} MS; ! € g for any of the vector fields 9/dt,, or /s, in (6).
Moreover, it can be decomposed in two different ways: on the one hand,

SIMS;t = 51(S718,) S5t = =518 + 8,8, € g + g4 (11)
and, on the other hand, one computes for the 9/9t, and 0/0s,, vector fields
separately:

oM

Slﬁsf;l = Si(aM — \Ma)S;*

] M = play, bg] M + M\[by, ay,].

= S1aS7! — A\SyaSy !, using M = S;1S,

(12)
= L\ — \S»aS; ", by definition (9)
= (L) + ((L7)s = AShaSy') € g+ .
Similarly, for the 0/0s vector fields, we compute
oM
= — S90Syt 4 uS1bST!, using M = S;1S,
(13)

= — LY + pSibS; !, by (9)
= (~@) +psST) = (1) € g+ g

4



Comparing formula (11) with (12) and (13) and using the uniqueness of the
direct sum decomposition g = g_ + g, we find

%s— —(L\y_, 88525— = (L'), — ASsaS;"
(14)
831 aSQ

ST = (L) — pSibSTY, 285 = (LY,

O0s s

Upon using the representation (9) of L§“) and Lgb) in terms of S; and S,, and
the commutation relations Ala;,b] = 0 and [L{*, L] = S|, o/]S;! = 0,
where o,/ = a for i =1 and o, &’ = b for i = 2, we find

aL(a) a; a a; a; a a; a
5 = @) L = 1 (L), L) = (L), L)
oLy’ (@) 7 - @n )

ot = [(L1")+, Ly’] = SaA[a;, b]Sy ™ = [(Li)+, Ly 7],

which establishes the first equation of (10), keeping in mind the decomposi-
tion (4). Similarly

oL A . - | .
S = (L9 LY = Sulbw,alSy = (25)-, L)
oLy )y 7O ®) _ p)y 1O (b)y 1)
Os. = [_(L2 )+7L2 ] = [LQ - (Lz )+7L2 ] = [(Lz )*7[’2 ]7

lead to the second equation (10), ending the proof of Theorem 1.1.

Corollary 1.2. Considering the data of Theorem 1.1, let M = S;'S, € G
be such that a;M = Mb; for pairs (a;,b;) with i = 1,2,.... Then, for each
of those pairs (a;,b;) and for that M, we have L( 9 = Léb), and this relation
is preserved under the vector fields 0/0t, and 8/ Osn. Moreover setting!

U, = t, — s, and v, = t, + s,, we have that Lﬁ“’ flows according to the
1-Toda lattice in the u,, and is invariant in the v,,:

a a a a a a
a—unLg )= [—(L§)-, L") and a—ang '=o0.

19 _1(o8 _ 0 o _1(o . @
aun—i(m asn) and 8vn_2<8tn+8sn)




Proof: At first, for that specific M = S;'S, € G and for each pair (a,b) :=
(a;, b;), we have

LY = $1a87" = S1aMS;"t = $1MbS, " = 5bSy " = Ly,

which is preserved under the vector fields 0/0t,, and 9/0sy:

a a b an a b
g (W = 1) = 1), LY = 1] =0,
d @ 10 )y () ()
aT(Ll - L2 ) = [(L2 )77L1 - LQ ] = 0.
Moreover,
a a a Qan a bn a
(37 aT) LY = (L), L)+ (), L)
= [(LS™)y + (L), L)
= [, L) =0
and

8 a a an an a an a
(%—a) L8 = (L)) — (L), L) = —2(L§™))_, L"),

ending the proof of Corollary 1.2.

2 Application to GL(c0) and its Borel decom-
position

Here we apply Theorem 1.1 and Corollary 1.2 to an appropriate closure of
GL(o0) and gf(00); the a; and b; will be represented by powers of the shift
matrix A = (§;;_1)ijez € gf(c0) and its transpose AT respectively. We now
consider matrices M such that

Tn(M> = det(Mn), with Mn = (Mi')—oo<i,j§n—1

makes sense.



Theorem 2.1. Consider the equations on G'L(c0)

oM oM

=A"M =-MAT", n=12,.. 15
ot Dsn T s (15)
. OM oM
=[A", M =AM =1,2,..; 1
ol SRS a-12es ()
then the Borel decomposition M = S;'S,, with
Sy € G- = {lower-triangular invertible matrices, with 1’s on the diagonal}
Sy € G, = {upper-triangular invertible matrices}
(17)
leads to matrices
Ly = SiAST! and Ly = SoA 'Sy ! (18)
satisfying the (standard) 2-Toda equations
oL, N oL, "
ot, = [(L1)+7Ll] and a_sn = [(L2)77Li]7 n=12 .., (19>
e ZAEY) )
LMYy = =—1 TotA ) L) = —=—1 Tn1 20
( 1) atk 0g Tn<M> ( 2) aSk og 7_n<]\4) ) ( )

expressible in terms of T, = 7,,(M). In particular

a n n— n — a n
Li=t—log 4N and Ly = 27imHip-1 @ jog Tty (01)

0ty Tn T2 051 Tn

Proof: The statement follows at once from Theorem 1, by picking a, = A"
and b, = AT" for n = 1,2, ..., for which assumption (5) holds. Note, the first
set (15) of equations corresponds to (6) with A = 0 and u = 0, whereas the
second set (16) corresponds to A = p = 1.

Finally the matrix M admits the following Borel decomposition

M = Sy'8y = STHM)MM)(STH (M), (22)



with S; := S(M) and Sy := h(M)(S~H(MT))T, where

1 0 - @)
S(M) = oo and h(M) = =
e me O o

(23)
with 7,,(M) defined in the beginning of this section and

Tin(M) := (=1)""™ det(minor of (i,n)™ entry in the last column of M,,).

From (22), the diagonal of Sy is given by the entries of the diagonal matrix
h(M); therefore (20) follows at once from the equations (14) for da—f;S; ! and

3—55551, ending the proof of Theorem 2.1.

Remark: It is important to note that equations (15) make sense also for
truncated M’s: B

M = (Mij)i >0,
but equations (16) cease to make sense for truncated M’s. Indeed, in the

truncated situation and for A, # 0, the conditions A|a;, b;] = pla;,b;] = 0
are not met, since [A*, ATJ] # 0 for i,5 > 1.

In the next statement, we show that the sinh-Gordon-like and modified
KP equations appear very naturally in the 2-Toda lattice context; For the
sake of completeness, we reproduce the proof of these facts; see, for instance,
[20] and [11].

Corollary 2.2. The functions g, = logT’;—Il satisfy the sinh-Gordon-like
equation,
82
0518751 n
and the modified KP equation,

04, P, P O'an (00" Pt
ot ) o

— 6‘1n“1n71 _ eqn+1_Qn7 (24)

0%,
I | g

3 ——
ot3 Oty Ot3 ot,0ts Ot}

= 0. (25)



Proof: Since the t- and s-vector fields all commute, we have

%<L1>+ _ 8%@2)_ (L), (La)-] =0,

which upon using (21), keeping the diagonal terms only and upon setting

qn = log Tn“, leads to (24).
Tn
To prove the modified KP equation for u,,, one uses the fact that the 7,,’s

satisfy a bilinear equation

7{ To(t = [27, 8) T (O + [271], s')ezf(ti*té)zizn*mfld’z

= j{ Toi1(t, s — [2]) T (t, 8 + [2])e=t (ims0)2 7" pn=m=1g,
z=0

Setting t — t —a,t/ —t+a, s— s—b, s — s+ b, and using the standard
Hirota symbol?, one finds

o)

> < 0o, D iy B
me_,_k(—Qa)pk(@t)ezo (e ot o asi)Tn—&-m-i-l O Tn
k=0

9]
~ o, 0 yp. O
= E p—m+k(_2b)pk(as)ezo (alati+blasi)7—n+mo7—n+1‘
k=0

Setting m = 0, the coefficient of the aj-term in the (a,b)-Taylor expansion
of this expression leads to

o\* 02 0
((a_tl> + 3—81';182';2 — 46_2';3> Tn+1 O Tp = O,

which amounts to equation (25) for ¢, = log T’;—Il, ending the proof of Corol-
lary 2.2.
2For an arbitrary polynomial p,
99
PO ogt) =p(5 g - ) (E+9)g(t = y)ly=o.

For the Schur polynomials p,,, defined by €, t,,2" = > 2"py(t), introduce the follow-

ing standard notation:
PG =P Oty 20ty 30t37 )



Corollary 2.3. If M satisfies any of the two equations (15) or (16), and
if M satisfies AM = MAT, then, in particular, M is symmetric and the
tridiagonal matrices L := Ly = Ly satisfy the 1-Toda equations

oL
ou,

[—=(L")-, L],

for the u,-variables introduced in Corollary 1.2.

Proof: The statement follows at once from Corollary 1.2, except for the
symmetry; indeed My, = My, with k > ¢, by settingi =j=F¢andn =k —/
in

Mitn; = (A"M)i; = (MAT")yj = M; 40,

establishing Corollary 2.3.

Moment matrices, viewed in the context of Hermitean matrix integrals or
viewed as solutions to the 1-Toda lattice, have been considered in the ran-
dom matrix literature, for instance in [13, 14], but also in the Grassmannian
context in [9] and [15].

3 A solution to the semi-infinite Toda lattice
and string-orthogonal polynomials

An example of a semi-infinite matrix M, satisfying the equation (15), is
constructed as follows. Consider a weight on R”,

p(y,2) == prs(y, 2) == pol(y, z)e=T E'=s:=) (26)

and the corresponding inner product between functions of one real variable:

(f.9) = /)ﬁ dydzp(y, 2) f(y)g(2).
R
Define also the semi-infinite moment matrix

M = (pij)o<ijeoo = (U5 27))o<ijcoo (27)

and the finite matrix M,, := (1;j)o<i j<n—1-

10



Theorem 3.1. The moment matrix M with regard to the weight (26) sat-
isfies the equations (15), i.e.,
oM oM

— A"M = —MAT": 2
. and 7. : (28)

for generic s and t, the matrix M admits a decomposition M = S;'S;,
leading to semi-infinite matrices Ly and Lo, as in (18), satisfying the two-
Toda lattice equations (19). Also ¢, = log (det M,/ det M,) satisfies the
sinh-Gordon-like equation (24) and the modified KP equation (25).

Proof: The proof follows at once from Theorem 2.1 and Corollary 2.2, upon
noting that

oM o . . o
Y i N b G (AT
(50, = i) =) = e,

oM o, . . o
el Iy Jay A S S A A _MATn
(5, = pacts' ) =~ = (™,
The finite matrix M,, admits generically a Borel decomposition and its de-
terminant 7, satisfies (24) and (25), ending the proof of theorem 3.1.

In the next theorem, we show that performing the Borel decomposition
of a semi-infinite matrix M is tantamount to the process of constructing
string-orthogonal polynomials with regard to M.

They are defined as two sets of monic polynomials of degree ¢, each de-
pending on one variable (y and z € R)

PP W, and  {p(2)}2,

orthogonal in the following sense
(i py) = iy,

Note, since p;; = (y',2?), the string-orthogonality of polynomials or entire
functions can purely be expressed in terms of the entries of the matrix M, re-
gardless of the weight pdy dz. To the best of our knowledge, string-orthogonal
polynomials were considered for the first time, in the context of symmetric
weights p(y, z)dydz, by Mehta (see [13] and [6]). The ideas in Theorem 3.2
are mainly due to [1].

11



Theorem 3.2. (i) For gf(c0), the matrices Sy and Sy in® the Borel decom-
position M = S;'S, of the semi-infinite matrix M, lead to vectors®

PV (y) = Six(y) and h~'p®(2) = (53)'x(2) (29)
of monic string-orthogonal polynomials with regard to the matrix M, i.e.
P, PPy = hidy. (30)

and conversely.

(ii) The string-orthogonal polynomials pgll)(y) and pv(f)(z) are explicitly given
either in terms of T, = det M, or in terms of the measure p(u, v)du dv defining
the moments, as follows®

1
1 M, y
W () — 1
Hno - - Hnn—1 ‘ y"
1 n n
- — up) A(u)A du dv (32
det M, //( ny2 g(y u) A(u)A(v) HP(Uk,Uk) udv (32)
Tn<t — [y_l]a S)
=V 33
/ Tn(ta 5) (33)
and
MT
1 z
@), _

n
Oon .- Hn—1n ‘ <

n

Mo,
- dethn / /( n)QH(Z_vk)A(u)A(v)Hp(uk,vk)dudv (35)

1

nTn(t,s + [271])
To(t, s)
3with S; and S5 as in Theorem 2.1; the diagonal matrix h is defined, such that h=1S,
has 1’s on the diagonal.
()= (1,2,2%,..)
°A(a) == H (a; —a;) and [a] == (o, 0?/2,03/3,...)

1<i<j<n

12



where T, has the integral representation

dett, =M, = //( . A(u)A(v) Hpt,s(uk,vk)du dv. (37)

k=1

Proof: Given string orthogonal polynomials

i J
1 2
V) =3 Put 2P ) =Y Qe
k=0 £=0

thus satisfying <p§1),p§2)> = h;;;, we have upon setting h := diag(ho, h1, ...),

h = ((pz(l) (), pgz) <Z>>) 0<i,j<o0

= | D Pald" 2@y

0<k<i
0st<j 0<i,j<00

= PMQ"

with P and @) being lower-triangular matrices, yielding the Borel decompo-
sition of M. The converse is true as well: given the Borel decomposition
M = P'hQT " of the matrix M of moments wij = (y*, 27), we find polyno-
mials pgl) and p§.2), defined as above, such that h;6;; = (pgl)(y), 5-2)(2)).

To show the expressions (31) and (34) for p* and p®, it suffices to
compute

(1,27)
1 :
(1) o det M, .
<pn (y)az > det Mn e <yn—1>z'r’>
,unO ,un,nfl <yn7 ZT>
Ho,r
1 M. :
= det n :
det Mn ¢ Pn—1,r
Hno Hnn—1 Mo
0 if r <mn —1, (matrix with two equal columns)
= det Mn+1 f
ifr=n
det M, ’



and thus
det Mn+1

" det M,
The proof of (32) and (35) is quite similar, whereas (33) and (36) follows
from replacing t; by t; —y~*/i and s; by s; + 27%/i in (37), and using

(M. P2y =6

_y oo al
Xl T =1—aq

Y

ending the proof of Theorem 3.2.

Theorem 3.3. The string-orthogonal polynomials are eigenvectors of the
matrices Ly and L, :

up V() = LipPD(y)  2h7'pP(2) = Ly 'pP(z) (38)
and flow in t and s according to the equations
op) o T
g~ G ()T
opH 0  _ _
Dsr = (L’;)fp(l) 8_5kh p? = (L5)+1h p®.

Proof: one computes
yp D (y) = ySix(y) = SiAx(y) = S1AST pW(y) = LipW(y)
zh7'pP(2) = 2(57) 'x(2) = (S3)'AST L pP(2) = LI 1p@(2),

establishing (38). Finally, using (14) and the definition (29) of p* and
h=1p@, we have (set (L¥)] := ((Lf)+)T)

ap;t):Z) - aailX(z) = —(IM_S1x(2) = —(IF)_pW(2)

8%1;52) - gf,ixw = (L§)-Six(2) = (L§)-p™M(2)

8h_1ai(:)(z) _ 3((592::_1x(z) (TS () = —(I TR ()
ah;i(:)(z) = a(g> —(2) = (EHI(ST) " x(=) = (L) Thp(2),

establishing Theorem 3.3.

14



Example: string-orthogonal polynomials for a Gaussian weight.

Monic string-orthogonal polynomials with respect to the Gaussian weight

. 1 -
p(l,’y) —e —1 (a2 4y?—2cay) _ e—%(m,Cz)7 with C' = ( -, 1C )

are given by

1\" 2mnlct
~(1) ~(2) ; o entre
oy (x) =p,7 (x) = (204) H,(ax), with h, = (1= )iz (40)

where

2

are the standard Hermite polynomials, with generating function

1— 2\ V2
a= < ) and H,(y) =2"y" + ...

2yz 22

(41)

The proof of this fact relies on the moment generating function (see [8])

<€a1m’aa2y>p — Z a2M (0 O)

= ’L'J'
= // awetary (g y)de dy = 2n(det C) " 2e 3(@.0” )(42)
RQ

We compute

S L Haan) Huly))y = (3 S Halaw), Y o Halag),

nlm)!
n,m>0 n>0
22 .
= e Y <62w“,620‘y”> using (41)
271' 2

2 2 .2, 2 .
= e e T yging (42)

V1 —c?
\/1—02;

15



Therefore

and thus

(55" Hula). () Ho) = s,

establishing formula (40) for the polynomials ﬁ%l)(:v) = ﬁg)(:c).

4 A solution to the bi-infinite Toda lattice

In contrast with (26), consider now the weight, introduced by Widom [22]

Py, 2) = pra(y, 2) i= poly, 2)et (@' =="bonl™"=2") (43)

and the corresponding inner product

(r9) = [ dydzplo. )7 wyglo)
R
Consider the bi-infinite moment matrix

M=1-pu:=(6;— <yi7 Zj>)—oo<i,j<oo (44)

and the matrix M, := (M;;)—co<ij<n—1. The Fredholm determinant of M
makes sense for good weights po(y, 2); see [22].

Also, consider one of the four 2-Toda vector vertex operators and its
expansion in W-generators, defined by us in [1]°,

X@v@/v Z) L= (XTL(tayVZ))nGZ = X(Zil))dy)X(—t,Z)X(t,y)
_ 1 & (y —2)" - —t—kyy(k y"

Theorem 4.1. The moment matrix M for the weight (43) satisfies the equa-
tions (16); the decomposition of M = S;*S, leads to bi-infinite matrices L,
and Lo satisfying the 2-Toda-equations.

=i
1 0 oo Y 1]

Swhere x(z) = diagonal(...,z7%, 20, 21, ...) and X(t,y) 1= eX1 L¥' et "7 0

16



Proof: The simple computation

c‘)tj =y 20) = (Y, 27" = (A" — pA")s
O
ds,,

together with Theorem 2.1, establishes Theorem 4.1.

=y ") — (27T = (AT — pAT) (45)

Replacing, with Widom, po(y, z) by po(2)d(y — 2) in (43) leads to a mea-
sure which has its support on the diagonal y = 2 :

p(2) = proy(z) 1= @27 7o) g (), (46)

Corollary 4.2. Given the weight (46), the Borel decomposition of M = I—p
leads to the 1-Toda lattice and q,, = log(7,,+1/7,), satisfies equations (24) and
(25). Moreover T, has three alternative expressions: at first

T, = det M,, = det(I — pup);
secondly, T, can be expressed in terms of a Fredholm determinant
T, = det(I — K,,)

of an integral operator associated with the kernel

1 1 n
_Ypz(y)p2(2)z

Kn(y, 2) = T

(47)

Finally, it can also be expressed as a kind of continuous “soliton” formula,
in terms of the vertex operator above, acting on the function 1:

T’I’L = e—an(t,z,zfl)po(z)dzL (48)
where X,,(t, 2z, z71) is the vertex operator realization of a Virasoro-type cen-

tral extension:

1
9 (M1 (1,2, 271) = GOV =WED+@nt )W Xt 2,27 ).

0z
(49)
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Proof: The Borel decomposition of M = I — p = S;'S,, together with
equations (16), lead to the 1-Toda lattice, since p;_s(z) defined in (46) only
depends on t — s; hence, so does M, S; and S5. Note, in this case, the
reduction from 2-Toda to 1-Toda is given by the requirement that L :=
Li+ L' = Ly + Ly" be tridiagonal.

Moreover, the kernel

1 1
_yVp(y)pz ()2
1—-yz

KN(?J? Z) =

N-1 N-1

yN1p3(y)pE(2)2
1yt

1 1 1 _
= YN p2(y)p2(2)N Y
i>0
- T

(2)2"
(<N—1

1
yizi

[NIES
[NIES

(y)p

defines an integral operator acting on the space

)

H = span {;(2), —00 <i < 00}, @i(z) = p3(2)7,

as follows
o Kyiply) = [ Knly. 2ol dz

Then

(Kng)y) = / de S o)t ()2t ()2

(<N-1

= Z tiee(y),

I<N-1

with ;, as in (44). Therefore we have det(I — puy) = det(/ — Ky). The proof
of (48) and (49) is a special case of a theorem relating Fredholm determinants
and vertex operators; see [4]. This ends the proof of corollary 4.2.
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