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Abstract: Let KdV stand for the Nth Gelfand-Dickey reduction of the KP
hierarchy. The purpose of this paper is to show that any KdV solution leads
effectively to a solution of the q-approximation of KdV. Two different q-KdV
approximations were proposed, by E. Frenkel [7] and Khesin, Lyubashenko
and Roger [12]. We show there is a dictionary between the solutions of q-
KP and the 1-Toda lattice equations, obeying some special requirement; this
is based on an algebra isomorphism between difference operators and D-
operators, where Df(x) = f(qx). Therefore every notion about the 1-Toda
lattice can be transcribed into q-language. So, q-KdV is yet another Toda
discretization of KdV.

Consider the q-difference operators D and Dq, defined by

Df(y) = f(qy) and Dqf(y) :=
f(qy)− f(y)

(q − 1)y
,
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and the q-pseudo-differential operators

Q = D + u0(x)D0 + u−1D
−1 + ... and Qq = Dq + v0(x)D0

q + v−1(x)D−1
q + ...

The following q-versions of KP were proposed by E. Frenkel [7] and by Khesin,
Lyubashenko and Roger [12], for n = 1, 2, ...:

∂Q

∂tn
= [(Qn)+ , Q] (Frenkel system) (0.1)

∂Qq

∂tn
= [

(
Qn

q

)
+

, Qq], (KLR system) (0.2)

where ( )+ and ( )− refer to the q-differential and strictly q-pseudo-differential
part of ( ). The two systems are identical, after a (constant) upper-triangular
linear transformation from the ui’s to the vi’s, as will become clear from the
isomorphism between q-operators and difference operators, explained below.
The purpose of this paper is to give a large class of solutions to both systems.

The δ-function δ(z) :=
∑

i∈Z zi; enjoys the property f(λ, µ)δ(λ/µ) =
f(λ, λ)δ(λ/µ). Consider an appropriate space of functions f(y) representable
by “Fourier” series in the basis ϕn(y) := δ(q−nx−1y) for fixed q 6= 1,

f(y) =
∞∑

−∞
fnϕn(y);

the operators D, defined by Df(y) = f(qy), and multiplication by a function
a(y) act on the basis elements, as follows:

Dϕn(y) = ϕn−1(y) and a(y)ϕn(y) = a(xqn)ϕn(y).

Therefore, the Fourier transform,

f 7−→ f̂ = (..., fn, ...)n∈Z,

induces an algebra isomorphism, mapping D-operators onto a special class
of Λ-operators in the shift Λ :=

(
δi,j−1

)
i,j∈Z

, as follows:

∑

i

ai(y)Di 7−→ ∑

i

diag (..., ai(xqn), ...)n∈Z Λi; (0.3)
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conversely, any difference operator, depending on x, of the type (0.3) i.e.,
annihilated by D − AdΛ, where (AdΛ)a = ΛaΛ−1, maps into a D-operator.
This is the crucial basic isomorphism used throughout this paper.

To the shift Λ and to a fixed diagonal matrix λ = diag(λn+1)n∈Z, we
associate new operators

Λ̃ = −λΛ and
˜̃
Λ = Λ̃ + λ = −λ(Λ− 1).

Observe that, under the isomorphism (0.3),

D 7−→ Λ ,
1

(q − 1)x
D 7−→ Λ̃ and Dq 7−→ ˜̃

Λ,

upon setting λ−1
n = (1− q)xqn−1.

Defining the simple vertex operators

X(t, z) := e
∑∞

1
tiz

i

e
−

∑∞
1

z−i

i
∂

∂ti , (0.4)

we now make a statement concerning the so-called one-Toda lattice; the latter
describes deformations of of a bi-infinite matrix L, which is lower-triangular,
except for 1’s just above the main diagonal. The first formula (0.6) below
gives a solution to the Frenkel system (Theorem 0.1), upon replacing Λ̃ by Λ,
which amounts to conjugating L by a constant diagonal matrix ε; see (2.2).
The second formula (0.6) gives, via the isomorphism (0.3), a solution to the
KLR system (Theorem 0.2). Thus in the L-representation the two systems
are related by a trivial diagonal conjugation. Note, Theorem 0.1 is given for
arbitrary λ = (..., λ−1, λ0, λ1, ...).

We shall need the well-known Hirota symbol for a polynomial p,

p(±∂̃)f ◦ g := p

(
± ∂

∂y1

,±1

2

∂

∂y2

, ...

)
f(t + y)g(t− y)

∣∣∣∣∣
y=0

.

Note A+ refers to the upper-triangular part of a matrix A, including the
diagonal, and for α ∈ C, set [α] := (α, 1

2
α2, 1

3
α3, ...) ∈ C∞.

Theorem 0.1. Given an integer N ≥ 2, consider an arbitrary τ -function for
the KP equation such that ∂τ/∂tiN = 0 for i = 1, 2, 3, ... (N -KdV hierarchy).
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For a fixed λ, ν, c ∈ C∞, the infinite sequence of τ -functions 1

τn := X(t, λn)...X(t, λ1)τ(c + t), τ0 = τ(c + t), for n ≥ 0;

satisfies the 1-Toda bilinear identity for all t, t′ ∈ C∞ and all n > m:

∮

z=∞
τn(t− [z−1])τm+1(t

′ + [z−1])e
∑∞

1
(ti−t′i)z

i

zn−m−1dz = 0.

The bi-infinite matrix (a full matrix below the main diagonal), where p` are
the elementary Schur polynomials,

L =
∞∑

`=0

diag

(
p`(∂̃)τn+2−` ◦ τn

τn+2−`τn

)

n∈Z

Λ̃1−` (0.5)

has the following properties:

(i) LN satisfies the 1-Toda lattice

∂LN

∂tn
= [(Ln)+ , LN ], n = 1, 2, ..,

(ii) LN is upper triangular and admits the following expression in terms2

of Λ̃ and
˜̃
Λ:

LN = Λ̃N +
N∑

1

(λj + bj)Λ̃
p−1 +

(
N−1∑

0

aj +
∑

1≤i≤j≤N−1

(λi + bi)(λj + bj)

)
Λ̃N−2

+... + λN
1 Λ̃0

=
˜̃
Λ

N

+

(
N∑

1

bj

)
˜̃
Λ

N−1

+




N−1∑

0

aj −
N−1∑

1

(bN − bi)λi +
∑

1≤i≤j≤N−1

bibj


 ˜̃

Λ
N−2

+ ...(0.6)

1τn for n < 0 is defined later in (3.3).
2in the expressions below, the coefficients of the ˜̃Λ’s are diagonal matrices, whose

0th component is given by the expression appearing below; e.g.,
∑N

1 bj stands for
diag(

∑N
1 bj+n)n∈Z and λN

1 stands for diag(λN
1+n)n∈Z.
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with

bk =
∂

∂t1
log

τ(c + t−
k∑

1

[λ−1
i ])

τ(c + t−
k−1∑

1

[λ−1
i ])

, ak =

(
∂

∂t1

)2

log τ

(
c + t−

k∑

1

[λ−1
i ]

)
,

(0.7)
for k ≥ 1. These expressions for k ≤ 0 will be given in (3.4) and (3.5).

In view of (0.7), the shift

Λ : bk 7−→ Λbk = bk+1 and ak 7−→ Λak = ak+1

corresponds to the following transformation,

Λ : c 7→ c− [λ−1
1 ] and λi 7→ λi+1. (0.8)

Therefore, in order that LN satisfies the form of the right hand side of (0.3),
we must make c and λi depend on x and q, such that the map Λ on a, b, λ
corresponds to D, in addition to the fact that all λi must tend to ∞ simul-
taneously and c to (x, 0, 0, ...), when q goes to 1. So, c(x) and λ(x) must
satisfy: 




Dc(x) = c(x)− [λ−1
1 (x)]

Dλn(x) = λn+1(x)
limq→1 λi = ∞
lim
q→1

c(x) = x̄ := (x, 0, 0, ...);

(0.9)

its only solution is given by:

λ−1
n = (1− q)xqn−1 and c(x) =

(
(1− q)x

1− q
,
(1− q)2x2

2(1− q2)
,
(1− q)3x3

3(1− q3)
, ...

)
,

(0.10)
and thus Dnc(x) = c(x)−∑n

1 [λ−1
i ]. With this choice of λn,

1

(q − 1)x
D 7−→ Λ̃ and Dq :=

D − 1

(q − 1)x
7−→ ˜̃

Λ. (0.11)

In analogy with (0.4), we define the simple q-vertex operators:

Xq(x, t, z) := exz
q X(t, z) and X̃q(x, t, z) :=

(
exz

q

)−1
X(−t, z). (0.12)
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in terms of (0.4) and the q-exponential ex
q := e

∑∞
1

(1−q)kxk

k(1−qk) . Therefore under
the isomorphism (0.3), Theorem 0.1 can be translated into q-language, to
read:

Theorem 0.2. Any KdV τ -function leads to a q-KdV τ -function τ(c(x)+t);
the latter satisfies the bilinear relations below, for all x ∈ R, t, t′ ∈ C∞, and
all n > m, which tends to the standard KP-bilinear identity, when q goes to
1:

∮

z=∞
Dn (Xq(x, t, z)τ(c(x) + t)) Dm+1

(
X̃q(x, t′, z)τ(c(x) + t′)

)
dz = 0

−→
∮

z=∞
X(t, z)τ(x̄ + t) X(t′, z)τ(x̄ + t′) dz = 0

(0.13)

Moreover, the q-differential operator QN
q has the form below and tends to

the differential operator LN of the KdV hierarchy, when q goes to 1:

QN
q = DN

q +
∂

∂t1
log

τ(DNc + t)

τ(c + t)
DN−1

q

+

(
N−1∑

i=0

∂2

∂t21
log τ(Dic + t)

−
N−2∑

i=0

λi+1

(
∂

∂t1
log

τ(DNc + t)

τ(DN−1c + t)
− ∂

∂t1
log

τ(Di+1c + t)

τ(Dic + t)

)

+
∑

0≤i≤j≤N−2

∂

∂t1
log

τ(Di+1c + t)

τ(Dic + t)

∂

∂t1
log

τ(Dj+1c + t)

τ(Djc + t)

)
DN−2

q + ...

−→
(

∂

∂x

)N

+ N
∂2

∂t21
log τ(x̄ + t)

(
∂

∂x

)N−2

+ ... . (0.14)

M.A. and PvM thank Edward Frenkel for kindly discussing this problem
during spring 1996. For a systematic study of discrete systems, see Kupersh-
midt [13] and Gieseker [8]. It is an old observation (see [11]) that the Toda
lattice discretizes the KdV equation, and this in many different ways. There-
fore it is not surprising that q-KdV is yet another Toda discretization of KdV.
In an elegant recent preprint, Iliev [10] has obtained q-bilinear identities and
q-tau functions, as well, purely within the KP theory.
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1 The KP τ-functions and Grassmannians

KP τ -functions satisfy the differential Fay identity for all y, z ∈ C, in terms
of the Wronskian {f, g} := f ′g − fg′, as shown in [1, 16]:

{τ(t− [y−1]), τ(t− [z−1])}
+(y−z)(τ(t− [y−1])τ(t− [z−1])−τ(t)τ(t− [y−1]− [z−1]) = 0.

(1.1)
In fact this identity characterizes the τ -function, as shown in [15]. We shall
need the following, shown in [1]:

Proposition 1.1. Consider τ -functions τ1 and τ2, the corresponding wave
functions

Ψi = e
∑

i≥1
tiz

i τi(t− [z−1])

τi(t)
= e

∑
i≥1

tiz
i (

1 + O(z−1)
)

(1.2)

and the associated infinite-dimensional planes, as points in the Grassmannian
Gr,

W̃i = span





(
∂

∂t1

)k

Ψi(t, z), for k = 0, 1, 2, ...



 ;

then the following statements are equivalent
(i) zW̃2 ⊂ W̃1;

(ii) zΨ2(t, z) = ∂
∂t1

Ψ1(t, z)− αΨ1(t, z), for some function α = α(t);

(iii)

{τ1(t− [z−1]), τ2(t)}+ z(τ1(t− [z−1])τ2(t)− τ2(t− [z−1])τ1(t)) = 0 (1.3)

When (i), (ii) or (iii) holds, α(t) is given by

α(t) =
∂

∂t1
log

τ2

τ1

. (1.4)

Proof: To prove that (i) ⇒ (ii), the inclusion zW̃2 ⊂ W̃1 implies zW̃ t
2 ⊂

W̃ t
1, where W̃ t = W̃e−

∑∞
1

tiz
i

; it follows that

zψ2(t, z) = z(1 + O(z−1)) ∈ W t
1
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must be a linear combination, involving the wave functions Ψi = e
∑∞

1
tiz

i

ψi:

zψ2 =

(
∂

∂x
+ z

)
ψ1 − α(t)ψ1, and thus zΨ2 =

∂

∂t1
Ψ1 − α(t)Ψ1. (1.5)

The expression (1.4) for α(t) follows from equating the z0-coefficient in (1.5),
upon using the τ -function representation (1.2). To show that (ii) ⇒ (i), note
that

zΨ2 =
∂

∂t1
Ψ1 − αΨ1 ∈ W 0

1

and taking z-derivatives, we have

z

(
∂

∂t1

)j

Ψ2 =

(
∂

∂t1

)j+1

Ψ1 + β1

(
∂

∂t1

)j

Ψ1 + · · ·+ βj+1Ψ1,

for some β1, · · · , βj+1 depending on t only; this implies the inclusion (i). The
equivalence (ii) ⇐⇒ (iii) follows from a straight forward computation using
the τ -function representation (1.2) of (ii) and the expression for α(t).

2 The one-Toda lattice

For details on this sketchy exposition, see [3]. The one-Toda lattice equations

∂L

∂tn
= [(Ln)+, L], (2.1)

are deformations of an infinite matrix

L =
∑

−∞<i≤0

aiΛ̃
i + Λ̃, with Λ̃ := λΛ = εΛε−1, (2.2)

for diagonal matrices λ and ε, with non-zero entries, and diagonal matrices ai,
depending on t = (t1, t2, . . .). Note the conjugation by the constant diagonal
matrix ε is harmless, but it is necessary to capture the KLR-system. One
introduces wave and adjoint wave vectors Ψ(t, z) and Ψ∗(t, z), satisfying

LΨ = zΨ and L>Ψ∗ = zΨ∗
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and
∂Ψ

∂tn
= (Ln)+Ψ

∂Ψ∗

∂tn
= −((Ln)+)>Ψ∗. (2.3)

The wave vectors Ψ and Ψ∗ can be expressed in terms of one sequence of
τ -functions τ(n, t) := τn(t1, t2, . . .), n ∈ Z, to wit:

Ψ(t, z) =
(
e
∑∞

1
tiz

i

ψ(t, z)
)

n∈Z
=

(
τn(t− [z−1])

τn(t)
e
∑∞

1
tiz

i

εnzn

)

n∈Z

,

Ψ∗(t, z) =
(
e−

∑∞
1

tiz
i

ψ∗(t, z)
)

n∈Z
=

(
τn+1(t + [z−1])

τn+1(t)
e−

∑∞
1

tiz
i

ε−1
n z−n

)

n∈Z

(2.4)
It follows that, in terms of χ(z) := (zn)n∈Z and the notation aΛ := diag(ak+1)k∈Z:

Ψ = e
∑∞

1
tiz

i

Sεχ(z), with S =
∞∑

0

pn(−∂̃)τ(t)

τ(t)
Λ̃−n,

Ψ∗ = e−
∑∞

1
tiz

i

(S>)−1ε−1χ(z−1), with S−1 =
∞∑

0

Λ̃−n

(
pn(∂̃)τ(t)

τ(t)

)

Λ

.

Moreover, as will follow from Proposition 2.1 below, Ψ and Ψ∗ satisfy the
bilinear identities:

∮

z=∞
Ψn(t, z)Ψ∗

m(t′, z)
dz

2πiz
= 0, for all n > m.

From the representation of S and S−1 above, it follows that

Lk = SΛ̃kS−1

=
∞∑

`=0

diag

(
p`(∂̃)τn+k−`+1 ◦ τn

τn+k−`+1τn

)

n∈Z

Λ̃k−`

= Λ̃k + diag

(
∂

∂t1
log

τn+k

τn

)

n∈Z

Λ̃k−1 + ...

+ diag

(
∂

∂tk
log

τn+1

τn

)

n∈Z

Λ̃0 + diag

(
∂2

∂t1∂tk
log τn

)

n∈Z

Λ̃−1 + ...

(2.5)
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For instance, the Λ0-term in the last expression follows from setting m =
n− 2, t 7→ t + [α], t′ 7→ t− [α] in the bilinear identity above, yielding

0 =
τn(t + [α])τn−1(t− [α])

τn(t)τn−1(t)

∮

z=∞
Ψn(t + [α], z)Ψ∗

n−2(t− [α], z)
dz

2πiz

=
1

τnτn−1

∑

j≥0

αj

(
∂

∂tj+2

− pj+2(∂̃)

)
τn ◦ τn−1,

and thus,
∂

∂tk
log

τn+1

τn

=
pk(∂̃)τn+1 ◦ τn

τn+1τn

=
(
Lk

)
nn

.

With each component of the wave vector Ψ, we associate a sequence of
infinite-dimensional planes in the Grassmannian Gr

Wn = spanC





(
∂

∂t1

)k

Ψn(t, z), k = 0, 1, 2, ...





= e
∑∞

1
tiz

i

spanC





(
∂

∂t1
+ z

)k

ψn(t, z), k = 0, 1, 2, ...



 (2.6)

and planes

W ∗
n = spanC





(
∂

∂t1

)k

Ψ∗
n−1(t, z), k = 0, 1, 2, ...



 ,

which are orthogonal to Wn by the residue pairing

∮

z=∞
f(z)g(z)

dz

2πiz
. (2.7)

Note that the plane z−nWn has so-called virtual genus zero, in the terminol-
ogy of [14]; in particular, this plane contains an element of order 1+ O(z−1).
The following statement is contained in [3]:

Proposition 2.1. The following five statements are equivalent
(i) The 1-Toda lattice equations (2.1)
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(ii) Ψ and Ψ∗, with the proper asymptotic behaviour, given by (2.4), satisfy
the bilinear identities for all t, t′ ∈ C∞

∮

z=∞
Ψn(t, z)Ψ∗

m(t′, z)
dz

2πiz
= 0, for all n > m; (2.8)

(iii) the τ -vector satisfies the following bilinear identities for all n > m and
t, t′ ∈ C∞:

∮

z=∞
τn(t− [z−1])τm+1(t

′ + [z−1])e
∑∞

1
(ti−t′i)z

i

zn−m−1dz = 0; (2.9)

(iv) The components τn of a τ -vector correspond to a flag of planes in Gr,

⊃ Wn−1 ⊃ Wn ⊃ Wn+1 ⊃ .... (2.10)

(v) A sequence of KP-τ -functions τn satisfying the equations

{τn(t− [z−1]), τn+1(t)}+ z(τn(t− [z−1])τn+1(t)− τn+1(t− [z−1])τn(t)) = 0
(2.11)

Proof: The proof that (i) is equivalent to (ii) follows from the methods in
[4, 16]. That (ii) is equivalent to (iii) follows from the representation (2.4) of
wave functions in terms of τ -functions. Finally, we sketch the proof that (ii)
is equivalent to (iv). The inclusion in (iv) implies that Wn, given by (2.6), is
also given by

Wn = spanC {Ψn(t, z), Ψn+1(t, z), ...};
Since each τn is a τ -function, we have that

∮

z=∞
Ψn(t, z)Ψ∗

n−1(t
′, z)

dz

2πiz
= 0,

implying that, for each n ∈ Z, Ψ∗
n−1(t, z) ∈ W ∗

n . Moreover the inclusions
... ⊃ Wn ⊃ Wn+1 ⊃ ... imply, by orthogonality, the inclusions ... ⊂ W ∗

n ⊂
W ∗

n+1 ⊂ ..., and thus

W ∗
n = {Ψ∗

n−1(t, z), Ψ∗
n−2(t, z), ...}.
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Since
Wn ⊂ Wm = (W ∗

m)∗ , all n ≥ m,

we have the orthogonality Wn⊥W ∗
m by the residue pairing (2.7) for all n ≥ m,

i.e., ∮

z=∞
Ψn(t, z)Ψ∗

m−1(t
′, z)

dz

2πiz
= 0, all n ≥ m.

Note (ii) implies W ∗
m ⊂ W ∗

n , n > m, hence Wn ⊂ Wm, n > m, yielding
(iv). That (iv)⇐⇒(v) follows from proposition 1.1, by setting τ1 := τn and
τ2 = τn+1. Then (v) is equivalent to the inclusion property

z(z−n−1Wn+1) ⊂ (z−nWn), i.e. Wn+1 ⊂ Wn,

thus ending the proof of proposition 2.1.

3 Proof of Theorems 0.1 and 0.2

At first, we exhibit particular solutions to equation (2.11), explained in [1].

Lemma 3.1. Particular solutions to equation

{τ1(t− [z−1]), τ2(t)}+ z(τ1(t− [z−1])τ2(t)− τ2(t− [z−1])τ1(t)) = 0

are given, for arbitrary λ ∈ C∗, by pairs (τ1, τ2), defined by:

τ2(t) = X(t, λ)τ1(t) = e
∑

tiλ
i

τ1(t− [λ−1]), (3.1)

or
τ1(t) = X(−t, λ)τ2(t) = e−

∑
tiλ

i

τ2(t + [λ−1]). (3.2)

Proof: Using

e−
∑∞

1
1
i
(λ

z
)i

= 1− λ

z
,

it suffices to check that τ2(t) satisfies the above equation (2.11)

e−
∑

tiλ
i
(
{τ1(t− [z−1]), τ2(t)}+ z(τ1(t− [z−1])τ2(t)− τ2(t− [z−1])τ1(t))

)

= e−
∑

tiλ
i{τ1(t− [z−1]), e

∑
tiλ

i

τ1(t− [λ−1])}
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+ z(τ1(t− [z−1])τ1(t− [λ−1])− (1− λ

z
)τ1(t)τ1(t− [z−1]− λ−1]))

= {τ1(t− [z−1]), τ1(t− [λ−1])}
+ (z − λ)(τ1(t− [z−1])τ1(t− [λ−1])− τ1(t)τ1(t− [z−1]− [λ−1]))

= 0,

using the differential Fay identity (1.1) for the τ -function τ1; a similar proof
works for the second solution, given by (3.2).

Proof of Theorems 0.1 and 0.2: From an arbitrary N -KdV τ -function,
construct, for λ, c, ν ∈ C∞, the following sequence of τ -functions, for n ≥ 0,
as announced in Theorem 0.1:

τ0(t) = τ(c + t)

τn = X(t, λn)...X(t, λ1)τ(c + t)

=
∆(λ1, ..., λn)

∏n
1 λi−1

i

n∏

k=1

e
∑∞

i=1
tiλ

i
kτ(c + t−

n∑

1

[λ−1
i ]),

τ−n = X(−t, λ−n+1)...X(−t, λ0)τ(c + t)

=
∆(λ0, ..., λ−n+1)∏n

1 λi−1
−i+1

n∏

k=1

e−
∑∞

i=1
tiλ

i
−k+1τ(c + t +

n∑

1

[λ−1
−i+1])

(3.3)

and so, each τn is defined inductively by

τn+1 = X(t, λn+1)τn;

thus by Lemma 3.1, the functions τn+1 and τn are a solution of equation (v)
of proposition 2.1. Therefore, by the same proposition 2.1, the τn’s form a
τ -vector of the 1-Toda lattice. By removing the harmless exponential factor∏n

k=1 exp(
∑∞

1 tiNλiN
k ), each τn has the property that ∂τn/∂tiN = 0 for i =

1, 2, ...; therefore
zNWn ⊂ Wn.

In particular, the representation

Wn = span{Ψn(t, z), Ψn+1(t, z), ...},

13



which follows from the inclusion ... ⊃ Wn ⊃ Wn+1 ⊃ ..., implies that, since
LΨ = zΨ,

zNΨk =
∑

j≥k

ajΨj = (LNΨ)k,

and thus LN is upper-triangular.
Therefore, we conclude that the matrix L, defined by (2.5), from the

sequence of τ -functions (3.3),

L = Λ̃ +

(
∂

∂t1
log

τn+1

τn

)

n∈Z

+




(
∂

∂t1

)2

log τn




n∈Z

Λ̃−1 + ...

= Λ̃ + (λn+1 + bn+1)n∈ZΛ̃0 + (an)n∈ZΛ̃−1 + ...,

satisfies the 1-Toda lattice equations, where

bn+1 =
∂

∂t1
log

τ(c + t−∑n+1
1 [λ−1

i ])

τ(c + t−∑n
1 [λ−1

i ])
for n ≥ 1

=
∂

∂t1
log

τ(c + t− [λ−1
1 ])

τ(c + t)
, for n = 0,

=
∂

∂t1
log

τ(c + t +
∑n+2

0 [λ−1
i ](1− δ−1,n))

τ(c + t +
∑n+1

0 [λ−1
i ])

, for n ≤ −1, (3.4)

and

an =
∂2

∂t21
log τ(c + t−

n∑

1

[λ−1
i ]) for n ≥ 1

=
∂2

∂t21
log τ(c + t) for n = 0

=
∂2

∂t21
log τ(c + t +

n+1∑

0

[λ−1
i ]) for n ≤ −1, (3.5)

confirming (0.7). Using the fact that, in view of (2.5), the diagonal terms of
LN are given by

∂

∂tN
log

τn+1

τn

= λN
n+1,

and the fact that, in the notation of footnote 2,

˜̃
Λ

n

= (Λ̃ + λ)n = Λ̃n +

(
n∑

1

λi

)
Λ̃n−1 +


 ∑

1≤i≤j≤n−1

λiλj


 Λ̃n−2 + ...,
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one finds that the upper-triangular matrix LN has the following expression:

LN = Λ̃N +
N∑

1

(λj + bj)Λ̃
p−1 +

(
N−1∑

0

aj +
∑

1≤i≤j≤N−1

(λi + bi)(λj + bj)

)
Λ̃N−2

+... + λN
1 Λ̃0

=
˜̃
Λ

N

+

(
N∑

1

bj

)
˜̃
Λ

N−1

+




N−1∑

0

aj −
N−1∑

1

(bN − bi)λi +
∑

1≤i≤j≤N−1

bibj


 ˜̃

Λ
N−2

+ ...

(3.6)

in terms of bk and ak defined in (0.7), thus proving Theorem 0.1.

To prove Theorem 0.2, note at first:

zn−m−1

∏n
k=m+2(−λk)

n∏

k=m+2

e
−

∑∞
i=1

1
i

(
λk
z

)i

=
zn−m−1

∏n
k=m+2(−λk)

n∏

k=m+2

(
1− λk

z

)

=
n∏

k=m+2

(
1− z

λk

)

=
n∏

k=m+2

e
−

∑∞
i=1

1
i

(
z

λk

)i

=
exzqn

q

exzqm+1

q

= Dnexz
q Dm+1

(
exz

q

)−1
.

The function τn, defined in Theorem 0.1, satisfies the bilinear identity of
Theorem 0.1; therefore, using (3.3) and the above in the computation of τn(t−
[z−1]), the following relations hold, up to a multiplicative factor depending
on λ and ν:

α(λ, ν)
∮

z=∞
τn(t− [z−1])τm+1(t

′ + [z−1])e
∑∞

1
(ti−t′i)z

i

zn−m dz

z

=
∮

z=∞
τ(c(x) + t− [z−1]−

n∑

1

[λ−1
i ])τ(c(x) + t′ + [z−1] +

m+1∑

1

[λ−1
i ])

n∏

k=m+2

(
1− z

λk

)
e
∑∞

1
(ti−t′i)z

i

dz

=
∮

z=∞
Dn (Xq(x, t, z)τ(c(x) + t)) Dm+1

(
X̃q(x, t′, z)τ(c(x) + t′)

)
dz = 0.
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When q −→ 1, the second expression above tends to the standard KP-bilinear
equation, upon using (0.10). Moreover, one checks by induction, using the
expression (2.5) for L and (3.3), that (LN)+ for N = 1, 2, 3, ... has the q-form
(0.3). Also, note that ak and bk can be expressed in terms of the D-operator,
using (0.7); to wit:

bk =
∂

∂t1
log

τ(Dkc + t)

τ(Dk−1c + t)
, ak =

(
∂

∂t1

)2

log τ
(
Dkc + t

)
.

So, the expression for QN
q in Theorem 0.2 follows at once from (3.6). The

fact that

−λ1
∂

∂t1
log

τ(Dj+1c + t)

τ(Djc + t)
−→ ∂2

∂x2
log τ(x̄ + t)

implies that all terms in (0.14) vanish in the limit q −→ 1, except for the
term

∑N−1
i=0

∂2

∂t21
log τ(Dic + t); so we have that

lim
q→1

QN
p =

(
∂

∂x

)N

+ N
∂2

∂x2
log τ(x̄ + t)

(
∂

∂x

)N−2

+ ...,

thus ending the proof of theorem 0.2.

4 Examples and vertex operators

The isomorphism (0.3) enables one to translate every 1-Toda statement, hav-
ing the form (0.3) into a D or Dq statement. Also every τ -function of the
KdV hierarchy leads automatically to a solution of q-KdV. For instance, by
replacing t 7→ c(x)+ t in the Schur polynomials, one finds q-Schur polynomi-
als. The latter were obtained by Haine and Iliev [9] by using the q-Darboux
transforms; the latter had been studied by Horozov and coworkers in [5, 6].

The n-soliton solution to the KdV (for N = 2) (for this formulation, see
[4]),

τ(t) = det

(
δi,j − aj

yi + yj

e−
∑

k:odd tk(yk
i +yk

j )

)

1≤i,j≤n

,

leads to a q-soliton by the shift t 7→ c(x) + t, with c(x) as in (0.8), namely

τ(x, t) = det


δij − aj

(
exyi

q exyi
q

)−1

yi + yj

e−
∑∞

k=1
tk(yk

i +yk
j )




1≤i,j≤n

.
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Moreover the vertex operator for the 1-Toda lattice is a reduction of the
2-Toda lattice vertex operator (see [2]), given by

X(t, y, z) = −χ∗(z)X(−t, z)X(t, y)χ(y)

=
z

y − z
e
∑∞

1
ti(y

i−zi)e
−

∑∞
1

(y−i−z−i) 1
i

∂
∂ti

(
yn

zn

)

n∈Z
;

in particular, if τ is a 1-Toda vector, then aτ +bX(t, y, z)τ is a 1-Toda vector
as well. Using the dictionary, this leads to q-vertex operators

Xq(x, t; y, z) = exy
q (exz

q )−1e
∑

ti(y
i−zi)e

−
∑

(y−i−z−i) 1
i

∂
∂ti for q-KP,

and, for any Nth root ω of 1,

Xq(x, t; z) = exωz
q (exz

q )−1e
∑

tiz
i(ωi−1)e

−
∑

z−i(ω−i−1) 1
i

∂
∂ti for q-KdV,

having the typical vertex operator properties.
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