The solution to the q-KdV equation®
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Abstract: Let KdV stand for the Nth Gelfand-Dickey reduction of the KP
hierarchy. The purpose of this paper is to show that any KdV solution leads
effectively to a solution of the g-approximation of KdV. Two different ¢-KdV
approximations were proposed, by E. Frenkel [7] and Khesin, Lyubashenko
and Roger [12]. We show there is a dictionary between the solutions of g¢-
KP and the 1-Toda lattice equations, obeying some special requirement; this
is based on an algebra isomorphism between difference operators and D-
operators, where Df(z) = f(qx). Therefore every notion about the 1-Toda
lattice can be transcribed into g-language. So, ¢-KdV is yet another Toda
discretization of KdV.

Consider the g-difference operators D and D,, defined by

flqy) — f(y)

Df(y) = flqy) and  Dyf(y) := TESTE
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and the g-pseudo-differential operators
Q=D +ug(x)D° +u_ D7 + ... and  Qy = Dy + vo(x) D2+ v_y(2) D" + ...

The following g-versions of KP were proposed by E. Frenkel [7] and by Khesin,
Lyubashenko and Roger [12], for n = 1,2, ...:

glf? _ [(Qn>+ ’ Q] (FTGTL]{}@Z system) (01)
aaiq _ [(Q2)+ L Q4 (KLR system) (0.2)

where ()4 and ()_ refer to the ¢g-differential and strictly g-pseudo-differential
part of (). The two systems are identical, after a (constant) upper-triangular
linear transformation from the wu;’s to the v;’s, as will become clear from the
isomorphism between g-operators and difference operators, explained below.
The purpose of this paper is to give a large class of solutions to both systems.

The d-function §(z) := 3 ,cz 2% enjoys the property f(\, u)d(\/pn) =
F(A, A)d(A/p). Consider an appropriate space of functions f(y) representable
by “Fourier” series in the basis ¢, (y) := d(¢ "2z 1y) for fixed ¢ # 1,

16) = 3 Fenlo)

the operators D, defined by Df(y) = f(qy), and multiplication by a function
a(y) act on the basis elements, as follows:

Dpn(y) = on1(y) and a(y)en(y) = a(zq")pn(y)-

Therefore, the Fourier transform,

f '—>f: ('-'7fn7'-')n€Z>

induces an algebra isomorphism, mapping D-operators onto a special class
of A-operators in the shift A := (5i,j,1), g 35 follows:
7’7]

Zai(y)Di — Z diag (..., a;(2q"), ...)eq A (0.3)



conversely, any difference operator, depending on z, of the type (0.3) i.e.,
annihilated by D — Ady, where (Ady)a = AaA~!, maps into a D-operator.
This is the crucial basic isomorphism used throughout this paper.

To the shift A and to a fixed diagonal matrix A\ = diag(\,11)nez, We
associate new operators

A=-2 and A=A+X=-AA-1).

Observe that, under the isomorphism (0.3),

D+— A, #D»—n& and qu—>/:\,
(¢g— 1z

upon setting A1 = (1 — ¢)xg™ L.

Defining the simple vertex operators

oo Lt

X(t,2) 1= €21 e 20 e (0.4)

Y

we now make a statement concerning the so-called one-Toda lattice; the latter
describes deformations of of a bi-infinite matrix L, which is lower-triangular,
except for 1’s just above the main diagonal. The first formula (0.6) below
gives a solution to the Frenkel system (Theorem 0.1), upon replacing A by A,
which amounts to conjugating L by a constant diagonal matrix £; see (2.2).
The second formula (0.6) gives, via the isomorphism (0.3), a solution to the
KLR system (Theorem 0.2). Thus in the L-representation the two systems
are related by a trivial diagonal conjugation. Note, Theorem 0.1 is given for
arbitrary A = (..., A_1, Ao, A1, ...).
We shall need the well-known Hirota symbol for a polynomial p,

o 10

+0 =p ko .
p(£0)fog p( TRREY

)f@+ym&—w

y=0

Note A, refers to the upper-triangular part of a matrix A, including the
diagonal, and for a € C, set [o] := (o, 307, 30°,...) € C.

Theorem 0.1. Given an integer N > 2, consider an arbitrary T-function for
the KP equation such that Ot /0t;x =0 fori = 1,2,3,... (N-KdV hierarchy).



For a fixed )\, v, ¢ € C*, the infinite sequence of T-functions *
Tn = X(t, An).. X, A\)T(c+1t), T9=7(c+1t), forn>0;

satisfies the 1-Toda bilinear identity for all t,t' € C*> and all n > m:
j{ (t _ [ ])Tm+1(t/ + [ *1})€Zf(ti*t;)zizn*m*1dz =0.

The bi-infinite matrix (a full matrix below the main diagonal), where p, are
the elementary Schur polynomials,

I — Zdlag (pf(a)Tn—i-Q—f o Tn) ]\1*@ (05>
neZ

/=0 Tn+2—£Tn

has the following properties:

(i) LY satisfies the 1-Toda lattice

OLN
ot,,

= [(Ln)+7LN]a n=12.,

(ii) LY is upper triangular and admits the following expression in terms?
of A and A:

N
LY = AV 43 (O + o)At 4 (Za] > (Ai+bi>(Aj+bj)>]\N—2
1 1<i<j<N-1
+.. + AVAO
~N N ~N-1
A+ (Z bj> A
1
N-1 N— 1 ~N-2
0 1 1§z‘§j§N—1

L7, for n < 0 is defined later in (3.3).

2in the expressions below, the coefficients of the A’s are diagonal matrices, whose
Oth component is given by the expression appearing below; e.g., Ziv b; stands for

diag(X Y bjtn)nez and AY stands for diag(AN,,,)nez-



with

k
5 e+t =Y A\ 9 \2 k
b = 8—tlog kil . ap = <8t> log 7 (c—i— t— Z[Af]) :
Corlert= XN 1 1
1
(0.7)
for k > 1. These expressions for k < 0 will be given in (3.4) and (3.5).
In view of (0.7), the shift
A: b — Aby, =bryy and  ap — Aap = ag
corresponds to the following transformation,
A:cr—c— MY and A\ Aigq (0.8)

Therefore, in order that LY satisfies the form of the right hand side of (0.3),
we must make ¢ and \; depend on z and ¢, such that the map A on a, b, A
corresponds to D, in addition to the fact that all \; must tend to oo simul-
taneously and ¢ to (z,0,0,...), when ¢ goes to 1. So, ¢(x) and A(x) must
satisfy:

De(z) = c(x) — [\ (2)]

D\, (x) = Ny (2)

limq_,l )\Z = O

(lliir% c(z) =7 = (2,0,0,...);

(0.9)

its only solution is given by:

(1-g)r (1-¢)%* (1-q)%® )

-1 _ . n—1 —
A, =(1—q)zq and c(x) ( =g 20-) 30-g) "

(0.10)
and thus D"c(z) = c(x) — X7[\;!]. With this choice of \,,
1 ~ D—1 ~
—D+— A and D, = ——+— A (0.11)
(¢ =1z (¢ =Dz

In analogy with (0.4), we define the simple g-vertex operators:

Xy(z,t,2) =€ X(t,2z) and X, (2,t,2) = (ezz)_l X(—t, 2). (0.12)

5



=] (1—q)kzk
in terms of (0.4) and the g-exponential ef := e~ *1-" . Therefore under

the isomorphism (0.3), Theorem 0.1 can be translated into g-language, to
read:

Theorem 0.2. Any KdV 7-function leads to a g-KdV t-function 7(c(x)+t);
the latter satisfies the bilinear relations below, for all x € R, t,t' € C*, and
all n > m, which tends to the standard KP-bilinear identity, when q goes to

1:
D" (Xy(a t,2)7(e(x) + 1)) D™ (X (.t 2)7(c(x) + 1)) dz = 0

- — f: X(t,2)r(@+t) X, 2)r(z+t) dz=0
(0.13)

Moreover, the q-differential operator Qflv has the form below and tends to
the differential operator LN of the KdV hierarchy, when q goes to 1:

0 7(DNc+t _
QN _ DN—i-ilOg ( )D(JIV 1

“ ot T(c+1)
N-1 o2 '
+ (Z 2 log7(D'c +t)
izo 9t

Nz < 0 7(DNc+t) 0 T(D”lc—l—t)>

— Yy —log— 7 '
; + oty ©8 T(DN=lc+1t) 0y 08 7(Dic+1)

9, 7(D™*te+t) 0 (D e +1)\ yo
+ - - . < < - . < D cee
OSZ.S%N_2 06, 8 r(Dic+t) 06 8 r(Dietp) )T
8 N 82 a N-2
— (= N—=— log 7(z — 14
(8:5) + o7 og T(ZT +t) (83:) + (0.14)

M.A. and PvM thank Edward Frenkel for kindly discussing this problem
during spring 1996. For a systematic study of discrete systems, see Kupersh-
midt [13] and Gieseker [8]. It is an old observation (see [11]) that the Toda
lattice discretizes the KAV equation, and this in many different ways. There-
fore it is not surprising that ¢-KdV is yet another Toda discretization of KdV.
In an elegant recent preprint, Iliev [10] has obtained g-bilinear identities and
g-tau functions, as well, purely within the KP theory.



1 The KP 7-functions and Grassmannians

KP 7-functions satisfy the differential Fay identity for all y, 2z € C, in terms
of the Wronskian {f, g} := f'g — f¢’, as shown in [1, 16]:

{rt =l "D, 7t - [=7'])}

Hy—2) (1t =y Nrt—[" ) =)t =y -[z7']) = 0.
(1.1)

In fact this identity characterizes the 7-function, as shown in [15]. We shall
need the following, shown in [1]:

Proposition 1.1. Consider T-functions 71 and T, the corresponding wave
functions

U, = ezm“ziw — ez B¥ (1+0(z) (1.2)

and the associated infinite-dimensional planes, as points in the Grassmannian
Gr,

k
W; = span {( 0 ) V,(t,z), for k=0, 1,2,...} ;
oty

then the following statements are equivalent
(1) ZWQ C Wl,
(ii) 2WUy(t, 2) = 8%1\111(15, z) —aWy(t, z), for some function a = «(t);
(iii)
{n(t =71, n()} + 2(n(t = [T Dnt) =t — [ Dn() =0 (1.3)

When (i), (ii) or (iii) holds, a(t) is given by

0 log z (1.4)

a(t) B aih 1

Proof: To prove that (i) = (ii), the inclusion zW, C Wi implies W} C
W, where W' = We™ 21 %', it follows that

“(t,2) = 2(1+ O(="1)) € W

7



must be a linear combination, involving the wave functions ¥,; = e tiz Wy

21y = E + 2 |1 — a(t)yq, and thus 2Wy = iwl —a(t)¥y. (1.5)
8x 8751

The expression (1.4) for a(t) follows from equating the 2%-coefficient in (1.5),
upon using the 7-function representation (1.2). To show that (ii) = (i), note
that

0
20 U, —al, € WP

2:37751

and taking z-derivatives, we have

o J o Jj+1 o J
Z(@h) Uy = ((%1) U1+ 6 <8t1> U+ -+ GV,

for some [, - - -, Bj41 depending on ¢ only; this implies the inclusion (i). The
equivalence (ii) <= (iii) follows from a straight forward computation using
the 7-function representation (1.2) of (ii) and the expression for a(t). n

2 The one-Toda lattice

For details on this sketchy exposition, see [3]. The one-Toda lattice equations

oL

o = .1, 21)

are deformations of an infinite matrix

L= Y aN +A with A=)\ =eAe™!, (2.2)

—00<1<0

for diagonal matrices A and €, with non-zero entries, and diagonal matrices a;,
depending on t = (t1,ts,...). Note the conjugation by the constant diagonal
matrix e is harmless, but it is necessary to capture the KLR-system. One
introduces wave and adjoint wave vectors ¥(¢, z) and ¥*(¢, z), satisfying

LV =2V and LTU* = 0"



and ov o
— = (L"), U = —((L"),) v 2.3
= (L S () (23)
The wave vectors ¥ and ¥U* can be expressed in terms of one sequence of
T-functions 7(n,t) := 7,(t1,ta,...), n € Z, to wit:

U(t, 2) = (QZT tiziw(t Z)) — (Tn(t_[z_l])ez(fo tizignzn> :
neZ

nezZ Tn(t)

Tn+1 (t)

. -1 o
\I’*(t, Z) _ (6_ ZT tizlw*(t’ Z)>nez _ (TnJrl(t + [Z ]>€_Zl tizlgglz—n>
nez

(2.4)
It follows that, in terms of x(z) := (2"),ez and the notation ay := diag(agi1)rez:
o, © 0, (=07 (1) ~
U = Xt b2 Sex(z), with S=>" M/\_",
0 7(t)

U =e" Zioltizi(S'T)_le_lx(,z_l), with S7! = i[\_” <W> .
0 () Ja

Moreover, as will follow from Proposition 2.1 below, ¥ and U* satisfy the
bilinear identities:

dz

2mz

% U, (¢, 2)0r (¢, 2) =0, forall n>m.

From the representation of S and S—! above, it follows that
LF = SARSTH
_ idiag <p5(8)7n+k—€+1 o Tn> Akt
neZ

/=0 Tntk—0+1Tn

= A* + diag 9 log Tnth A4
atl Tn neZ

2

6t18tk

+ diag 9 log Tntl A + diag log 7, A+
Ot Tn /) ez nez

(2.5)



For instance, the A%term in the last expression follows from setting m =
n—2, t—t+|a], ' — t—[a] in the bilinear identity above, yielding

Tu(t 4+ [0]) 0 (8 — [04])% . dz
= v, (t e L (t—
! T ()71 (1) o et ol 2) ot = ol 2)5
1 , 0 -
= o’ — Pjs2(0) | Th 0 Tho1,
T Tn—1 JZ;B (atj+2 Pyl )> '
and thus, 3
0 Tn+l Pr(0)Tni1 0Ty _(7k
atk lOg T - Tni1Tn - (L )nn ’

With each component of the wave vector ¥, we associate a sequence of
infinite-dimensional planes in the Grassmannian Gr

k
W, = spang {<8> U,(t, z), k:0,1,2,...}
Oty
- B K
= el ¥ spalc {(atJrz) Unl(t, 2), k:0,1,2,...} (2.6)
1

and planes

k
wr = Spanc{<aatl> vr L (t, 2), k:0,172,...},

which are orthogonal to W,, by the residue pairing

F(2)g(2) -2

z=00 2miz )

(2.7)

Note that the plane z7"W,, has so-called virtual genus zero, in the terminol-
ogy of [14]; in particular, this plane contains an element of order 1+ O(z71).
The following statement is contained in [3]:

Proposition 2.1. The following five statements are equivalent
(i) The 1-Toda lattice equations (2.1)

10



(ii)) ¥ and V*, with the proper asymptotic behaviour, given by (2.4), satisfy
the bilinear identities for all t,t' € C*>

d
f;:m U, (¢, 2)Wr (¢, 2)27;2 =0, forall n>m; (2.8)

(iii) the T-vector satisfies the following bilinear identities for all n > m and
t,t' e C>:

j{ Tt — 27 )T (' + [2_1])GZT(ti_t;)zizn_m_ldz = 0; (2.9)

(iv) The components T, of a T-vector correspond to a flag of planes in Gr,

ODOWo 4 DW, D Wy D ... (2.10)

(v) A sequence of KP-T-functions T, satisfying the equations

{7t = (7], T ()} + 2(7a(t = 27 D) T0sa (B) = Tua (= [z ])7(t)) = 0
(2.11)

Proof: The proof that (i) is equivalent to (ii) follows from the methods in
[4, 16]. That (ii) is equivalent to (iii) follows from the representation (2.4) of
wave functions in terms of 7-functions. Finally, we sketch the proof that (ii)
is equivalent to (iv). The inclusion in (iv) implies that W, given by (2.6), is
also given by
W,, = spang {V,(t, 2), Vyi1(t, 2), ... };

Since each 7, is a 7-function, we have that

d
j[ W, 2) W (¢, 2) -2 =0,

2wz

implying that, for each n € Z, V! ,(t,z) € W}. Moreover the inclusions
. D W, D Wy D ... imply, by orthogonality, the inclusions ... C W,y C
Wy, C ..., and thus

W;: = {qu—1<t7 Z), \Il;kl—2(ta 2)7 }

11



Since

W, CW,=W2:)", aln>m,

we have the orthogonality W,, LW by the residue pairing (2.7) for all n. > m,
ie.,

. dz
f;:oo U, (t, 2)Wr L (t, Z)Qm'z =0, all n >m.

Note (ii) implies W} C W}*, n > m, hence W,, C W,,, n > m, yielding
(iv). That (iv)<=(v) follows from proposition 1.1, by setting 7, := 7, and
Ty = Tpy1- Then (v) is equivalent to the inclusion property

227" W) C (27"W,), ie. Wi C W,

thus ending the proof of proposition 2.1. |

3 Proof of Theorems 0.1 and 0.2

At first, we exhibit particular solutions to equation (2.11), explained in [1].

Lemma 3.1. Particular solutions to equation

{rnt =D, n®} +2(n(t = [T )n(t) = nt — [T )n(t) =0

are given, for arbitrary A € C*, by pairs (11, 72), defined by:

7(t) = X (6, N7 (t) = et — A7), (3.1)
or )
(1) = X(=t, )a(t) = e 28N (¢ + A7), (3.2)
Proof: Using
XA g A
z

it suffices to check that 7, (t) satisfies the above equation (2.11)

e 2N ({n(t = [, ()} + 2(n(t = [T Dm(t) — ma(t — [ )m(1))
= e 2t = [71]) e n(t = )

12



A
+2(nt=[ETDnlt =) = (1= DnMnt -7 =A7])
={n(t—[""]),nt- "D}
+E =Nt =D - - n@nE - - )
using the differential Fay identity (1.1) for the 7-function 7; a similar proof
works for the second solution, given by (3.2). n

Proof of Theorems 0.1 and 0.2: From an arbitrary N-KdV 7-function,
construct, for A, ¢, v € C*, the following sequence of 7-functions, for n > 0,
as announced in Theorem 0.1:

T0(t) = 1(c+ 1)

T = X(t,\n)..X(t, \)71(c+1)

AN, \) £ % i °
= Al TS (e 41— I,
Hl )\Z k=1 1

0 = X(—t A i) X (=t Ao)T(c + 1)
_ A(/\Oy...,)\_n+1> H 6_221“)\1’“*17(C+t+Z[)\:g+1])
1

n yi—1
Hl )‘fi+1 k=1

(3.3)
and so, each 7, is defined inductively by
Tn+1 = X(t, )\n—i-l)Tn;

thus by Lemma 3.1, the functions 7,41 and 7, are a solution of equation (v)
of proposition 2.1. Therefore, by the same proposition 2.1, the 7,,’s form a
T-vector of the 1-Toda lattice. By removing the harmless exponential factor
[17_; exp(X5° tinAY), each 7, has the property that 07, /0t;y = 0 for i =
1,2, ...; therefore

NW, C W,

In particular, the representation

W, = span{V¥,(t, 2), V,i1(t, 2), ...},

13



which follows from the inclusion ... D W, D W,,.1 D ..., implies that, since
LV = 2V,
Ny =3 a0 = (LNU),,
>k
and thus LV is upper-triangular.
Therefore, we conclude that the matrix L, defined by (2.5), from the
sequence of 7-functions (3.3),

L= At Zrog ™ + iZlOT A+
n 8251 o8 Tn nez 8t1 & Tn

neZz
= A+ (Ant1 + bn+1)nez/~\0 + (an)nez[\_l + ...,

satisfies the 1-Toda lattice equations, where

0 ) e+t —STHN)

bt = — for n>1
T 0 ety e
9, (c+t M)
ot 8 rexny o or =0
0 Tlett+ gL = 01))
= log f < -1, (34
oty e+t + g AT  for n< =1, (34)
and
82 n .
an = smlogT(c+t—=> [N']) for n>1
ot N
9
= a—t%logT(c—i-t) for n=0
52 nt1
= o 210g7'(c+t—|—z for n < -1, (3.5)

confirming (0.7). Using the fact that, in view of (2.5), the diagonal terms of
LY are given by

0 log 7L — \N
61’5]\[ n ntl
and the fact that, in the notation of footnote 2,

A=A+ An (ZA)A”W( ) mj) A2y

1<i<j<n—1

14



one finds that the upper-triangular matrix L" has the following expression:

LV = AN+Z>\ + b)) AP 4 (Z aj+ Y. (Ai+bi)(Aj+bj)>]\N2

1<i<j<N-1

o AVAC

1§iéj§N—1

~N N ~N-1 N-1 N-1 ~N-2
= A +<ij>A +(Za] > (by — bi)A > bibj)A + ...
1 0 1

in terms of by, and ay, defined in (0.7), thus proving Theorem 0.1. m

To prove Theorem 0.2, note at first:

s (o

n n
Hk:m+2(_>‘k) k=m-+2 Hk:m—i—Q(_)\k) k=m-+2 z
n
¥4
LG5
k=m+2 )\k
n e’} i
— H 6_ Zi:l % (ﬁ)
k=m-2
er#d" —1
_ q _ n_xz m—+1 Tz
= Lo = Drey D (ef)

The function 7,, defined in Theorem 0.1, satisfies the bilinear identity of
Theorem 0.1; therefore, using (3.3) and the above in the computation of 7, (t—
[271]), the following relations hold, up to a multiplicative factor depending
on A and v:

OO0 Tult = [ D1+ [ e g
n m+1
=9 m(c(x) +t—[z71 - 21:[)\;1])7(0(@ +t 4+ [+ 21: A1)
L (1) e
= D" (Xy(x,t, 2)7(c(x) + 1) D™ (Xy(x, ¥, 2)7(c(x) + ) dz = 0.

Z=00

15



When ¢ — 1, the second expression above tends to the standard KP-bilinear
equation, upon using (0.10). Moreover, one checks by induction, using the
expression (2.5) for L and (3.3), that (L"), for N = 1,2, 3, ... has the ¢-form
(0.3). Also, note that aj and by can be expressed in terms of the D-operator,
using (0.7); to wit:

B 7(D¥c +t) A i
bk atll m, ap = <at1> ].Og'T (D C+t) .

So, the expression for Qf]V in Theorem 0.2 follows at once from (3.6). The
fact that ,
5, 7(Di e+ t) 0?

S WA P e S0 t
9 %8 rDictn)  oa BTETY)

oty

implies that all terms in (0.14) vanish in the limit ¢ — 1, except for the
term SN ! g—; log 7(D'c + t); so we have that
1

g\~ 82 5\ N2
N _
(llliI%Q (89&) (9 ——5 log 7(T + 1) <8x> + ..,

thus ending the proof of theorem 0.2. |

4 Examples and vertex operators

The isomorphism (0.3) enables one to translate every 1-Toda statement, hav-
ing the form (0.3) into a D or D, statement. Also every 7-function of the
KdV hierarchy leads automatically to a solution of ¢-KdV. For instance, by
replacing ¢ — c¢(z) +t in the Schur polynomials, one finds g-Schur polynomi-
als. The latter were obtained by Haine and Iliev [9] by using the g-Darboux
transforms; the latter had been studied by Horozov and coworkers in [5, 6].

The n-soliton solution to the KAV (for N = 2) (for this formulation, see

[4]),

7(t) _.det<5@j—- L eEjmodd%@f+yﬁ> ,
Yi + Y; 1<4,5<n

leads to a g-soliton by the shift ¢ — c(z) + ¢, with ¢(z) as in (0.8), namely
(ezyz eryi

T(Jl,t) - det 62] — Cqu—i_)e Zk 1 yz +y])
Yi T Yj

1<i,j<n

16



Moreover the vertex operator for the 1-Toda lattice is a reduction of the
2-Toda lattice vertex operator (see [2]), given by

X(ty,z) = —xX"(2)X(~t,2)X(ty)x(y)

o o, i i1 8 n
— Tty g 2 T = ey <y> ;
y—z 2" ) nez

in particular, if 7 is a 1-Toda vector, then a7+ bX(¢,y, z)7 is a 1-Toda vector
as well. Using the dictionary, this leads to g-vertex operators

X, (2, tiy,2) = 2 (er?) et Nem ZUTTIIE for g KP,

and, for any Nth root w of 1,

1

Qi _ 2w t—1)L 0=
X, (x,t;2) = eﬁ‘”z(e?z)’lez e P DL s q-KdV,

having the typical vertex operator properties.
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