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sequence obtained by Darboux transforming an arbitrary KP solution recur-
sively forward and backwards, yields a solution to the discrete KP-hierarchy.
The latter is a KP hierarchy where the continuous space x-variable gets re-
placed by a discrete n-variable. The fact that these sequences satisfy the
discrete KP hierarchy is tantamount to certain bilinear relations connecting
the consecutive KP solutions in the sequence. At the Grassmannian level,
these relations are equivalent to a very simple fact, which is the nesting of the
associated infinite-dimensional planes (flag). The discrete KP hierarchy can
thus be viewed as a container for an entire ensemble of vertex or Darboux
generated KP solutions.

It turns out that many new and old systems lead to such discrete (semi-
infinite) solutions, like sequences of soliton solutions, with more and more
solitons, sequences of Calogero-Moser systems, having more and more parti-
cles, just to mention a few examples; this is developped in [3]. In this paper,
as an other example, we show that the q-KP hierarchy maps, via a kind of
Fourier transform, into the discrete KP hierarchy, enabling us to write down
a very large class of solutions to the q-KP hierarchy. This was also reported
in a brief note with E. Horozov[4].

Given the shift operator Λ = (δi,j−1)i,j∈Z, consider the Lie algebra

D =





∑

−∞<i¿∞
aiΛ

i, ai diagonal operators



 = D− +D+ (0.1)

with the usual splitting D = D− +D+, into subalgebras

D+ =





∑

0≤i¿∞
aiΛ

i ∈ D


 ,D− =





∑

−∞<i<0

aiΛ
i ∈ D



 . (0.2)

The discrete KP-hierarchy equations

∂L

∂tn
= [(Ln)+, L], n = 1, 2, ... (0.3)

are deformations of an infinite matrix

L =
∑

−∞<i≤0

ai(t)Λ
i + Λ ∈ D, with t = (t1, t2, ...) ∈ C∞. (0.4)
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If we represent L as a dressing up of Λ by a wave operator S ∈ I +D−
L = SΛS−1 = WΛW−1, W = Se

∑∞
1

tiΛ
i

, (0.5)

then the L-deformations are induced by S-deformations and W -deformations:

∂S

∂tn
= −(Ln)−S,

∂W

∂tn
= (Ln)+W, n = 1, 2, ...; (0.6)

In terms of vectors

χ(z) = (zn)n∈Z, χ∗(z) = χ(z−1), (0.7)

such that zχ(z) = Λχ(z), zχ∗(z) = Λ>χ∗(z), let us define wave and adjoint
wave vectors Ψ(t, z) and Ψ∗(t, z)

Ψ(t, z) = Wχ(z) and Ψ∗(t, z) = (W−1)>χ∗(z). (0.8)

We find, using (0.5), (0.8), (0.6), that

LΨ(t, z) = zΨ(t, z) L>Ψ∗(t, z) = zΨ∗(t, z),

∂Ψ

∂tn
= (Ln)+Ψ

∂Ψ∗

∂tn
= −((Ln)+)>Ψ∗. (0.9)

Theorem 0.1 If L satisfies the Toda lattice, then the wave vectors Ψ(t, z)
and Ψ∗(t, z) can be expressed in terms of one sequence of τ -functions τ(n, t) :=
τn(t1, t2, . . .), n ∈ Z, to wit:

Ψ(t, z) =
(
e
∑∞

1
tiz

i

ψ(t, z)
)

n∈Z
=

(
τn(t− [z−1])

τn(t)
e
∑∞

1
tiz

i

zn

)

n∈Z

,

Ψ∗(t, z) =
(
e−

∑∞
1

tiz
i

ψ∗(t, z)
)

n∈Z
=

(
τn+1(t + [z−1])

τn+1(t)
e−

∑∞
1

tiz
i

z−n

)

n∈Z

,

(0.10)
satisfying the bilinear identity

∮

z=∞
Ψn(t, z)Ψ∗

m(t′, z)
dz

2πiz
= 0 (0.11)

for all n > m. It follows that

Ψ = Wχ(z) = e
∑∞

1
tiz

i

Sχ(z),
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Ψ∗ =
(
W>)−1

χ∗(z) = e−
∑∞

1
tiz

i

(S−1)>χ∗(z),

with1

S =
∞∑

0

pn(−∂̃)τ(t)

τ(t)
Λ−n and S−1 =

∞∑

0

Λ−n Λ̃

(
pn(∂̃)τ(t)

τ(t)

)
. (0.12)

Then Lk has the following expression in terms of τ -functions2,

Lk =
∞∑

`=0

diag

(
p`(∂̃)τn+k−`+1 ◦ τn

τn+k−`+1τn

)

n∈Z

Λk−` (0.13)

with the τn’s satisfying
(

∂

∂tk
−

`−1∑

r=0

(`− r)pr(−∂̃)pk−r(∂̃)

)
τn ◦ τn−` = 0, for `, k = 1, 2, 3, ... (0.14)

and (
1

2

∂2

∂t1∂tk
− pk+1(∂̃)

)
τn ◦ τn = 0, for k = 1, 2, 3, ...

Remark: Equation (0.14) reads

Lk = Λk +

(
∂

∂t1
log

τn+k

τn

)

n∈Z

Λk−1 + ...

+

(
∂

∂tk
log

τn+1

τn

)

n∈Z

Λ0 +

(
∂2

∂t1∂tk
log τn

)

n∈Z

Λ−1 + ... ,

(0.15)

With each component of the wave vector Ψ, or, what is the same, with
each component of the τ -vector, we associate a sequence of infinite-dimensional
planes in the Grassmannian Gr(n)

Wn = spanC





(
∂

∂t1

)k

Ψn(t, z), k = 0, 1, 2, ...





= e
∑∞

1
tiz

i

spanC





(
∂

∂t1
+ z

)k

ψn(t, z), k = 0, 1, 2, ...





=: e
∑∞

1
tiz

iW t
n. (0.16)

1In an expression, like S =
∑

a(n)Λn, a(n) = diag(a(n)
k )k∈Z and (Λ̃a)k = ak+1Λ0.

2where the p` are elementary Schur polynomials and where p`(∂̃)f ◦g refers to the usual
Hirota operation, to be defined in section 1.
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Note that the plane z−nWn ∈ Gr(0) has so-called virtual genus zero, in
the terminology of [12]; in particular, this plane contains an element of order
1 + O(z−1). Setting {f, g} = f ′g − fg′ for ′ = ∂/∂t1, we have the following
statement:

Theorem 0.2 The following six statements are equivalent
(i) The discrete KP-equations (0.3)
(ii) Ψ and Ψ∗, with the proper asymptotic behaviour, given by (0.8), satisfy
the bilinear identities for all t, t′ ∈ C∞

∮

z=∞
Ψn(t, z)Ψ∗

m(t′, z)
dz

2πiz
= 0, for all n > m; (0.17)

(iii) the τ -vector satisfies the following bilinear identities for all n > m and
t, t′ ∈ C∞:

∮

z=∞
τn(t− [z−1])τm+1(t

′ + [z−1])e
∑∞

1
(ti−t′i)z

i

zn−m−1dz = 0; (0.18)

(iv) The components τn of a τ -vector correspond to a flag of planes in Gr,

... ⊃ Wn−1 ⊃ Wn ⊃ Wn+1 ⊃ .... (0.19)

(v) A sequence of KP-τ -functions τn satisfying the equations

{τn(t− [z−1]), τn+1(t)}+ z(τn(t− [z−1])τn+1(t)− τn+1(t− [z−1])τn(t)) = 0
(0.20)

(vi) A sequence of KP-τ -functions τn satisfying equations (0.14) for ` = 1,
i.e.,

(
∂

∂tk
− pk(∂̃)

)
τn+1 ◦ τn = 0 for k = 2, 3, ... and n ∈ Z. (0.21)

Remark: The 2-Toda lattice, studied in [14], amounts to two coupled 1-Toda
lattices or discrete KP-hierarchies, thus introducing two sets of times tn’s and
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sn’s. Actually, every 1-Toda lattice can naturally be extended to a 2-Toda
lattice; this is the content of Theorem 3.4.

How to construct discrete KP-solutions. A wide class of examples
of discrete KP-solutions is given in section 4 by the following construction,
involving the simple vertex operators,

X(t, z) := e
∑∞

1
tiz

i

e
−

∑∞
1

z−i

i
∂

∂ti , (0.22)

which are disguised Darboux transformations acting on KP τ -functions. We
now state:

Theorem 0.3 Consider an arbitrary τ -function for the KP equation and
a family of weights ..., ν−1(z)dz, ν0(z)dz, ν1(z)dz, ... on R. The infinite se-
quence of τ -functions: τ0 = τ and, for n > 0,

τn :=
(∫

X(t, λ)νn−1(λ)dλ...
∫

X(t, λ)ν0(λ)dλ
)

τ(t),

τ−n :=
(∫

X(−t, λ)ν−n(λ)dλ...
∫

X(−t, λ)ν−1(λ)dλ
)

τ(t),

form a discrete KP-τ -vector, i.e., the bi-infinite matrix

L =
∞∑

`=0

diag

(
p`(∂̃)τn+2−` ◦ τn

τn+2−`τn

)

n∈Z

Λ1−` (0.23)

satisfies the discrete KP hierarchy (0.3).

As an interesting special case of this situation, we study in section 6 the
q-KP equation.

A wide variety of examples are captured by this construction, like q-approximations
to KP, discussed in section 5, but also soliton formulas, matrix integrals,
certain integrals leading to band matrices, the Calogero-Moser system and
others, discussed in [3].
Remark: A semi-infinite discrete KP-hierarchy with τ0(t) = 1 is equivalent to
a bi-infinite discrete KP-hierarchy with τ−n(t) = τn(−t) and τ0(t) = 1; this
also amounts to W−n = W∗

n, with W0 = H+. In such cases, one only keeps
the lower right hand corner of L, while the lower left hand corner completely
vanishes.
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1 The KP τ-functions, Grassmannians and a

residue formula

As is well known [5], the bilinear identity

∮

z=∞
Ψ(t, z)Ψ∗(t, z)dz = 0, (1.1)

together with the asymptotics

Ψ(t, z) = e
∑∞

1
tiz

i
(
1 + O

(
1

z

))
, Ψ∗(t, z) = e−

∑∞
1

tiz
i
(
1 + O

(
1

z

))
(1.2)

force Ψ, Ψ∗ to be expressible in terms of τ -functions

Ψ(t, z) = e
∑∞

1
tiz

i τ(t− [z−1])

τ(t)
, Ψ∗(t, z) = e−

∑∞
1

tiz
i τ(t + [z−1])

τ(t)
;

moreover the KP τ -functions satisfy the differential Fay identity3, for all
y, z ∈ C, as shown in [1, 15]:

{τ(t− [y−1]), τ(t− [z−1])} (1.3)

+ (y − z)(τ(t− [y−1])τ(t− [z−1])− τ(t)τ(t− [y−1]− [z−1]) = 0.

In fact this identity characterizes the τ -function, as shown in [13].
From (1.1), it follows that

0 =
∮

τ(t− a− [z−1])τ(t + a + [z−1])e−2
∑∞

1
aiz

i dz

2πi

=
∞∑

k=1

ak

(
∂2

∂t1∂tk
− 2pk+1(∂̃)

)
τ ◦ τ + O(a2). (1.4)

The Hirota notation used here is the following: Given a polynomial p
(

∂
∂t1

, ∂
∂t2

, ...
)

in ∂
∂ti

, define the symbol

p

(
∂

∂t1
,

∂

∂t2
, ...

)
f ◦ g(t) := p

(
∂

∂u1

,
∂

∂u2

, ...

)
f(t + u)g(t− u)

∣∣∣∣∣
u=0

, (1.5)

3{f, g} := ∂f
∂t1

g − f ∂g
∂t1

.
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and

∂̃t :=

(
∂

∂t1
,
1

2

∂

∂t2
,
1

3

∂

∂t3
, ...

)
.

For future use, we state the following proposition shown in [1]:

Proposition 1.1 Consider τ -functions τ1 and τ2, the corresponding wave
functions

Ψj = e
∑

i≥1
tiz

i τj(t− [z−1])

τj(t)
= e

∑
i≥1

tiz
i (

1 + O(z−1)
)

(1.6)

and the associated infinite-dimensional planes, as points in the Grassmannian
Gr,

W̃i = span





(
∂

∂t1

)k

Ψi(t, z), for k = 0, 1, 2, ...



 with W̃ t

i = W̃ie
−

∑∞
1

tkzk

;

then the following statements are equivalent
(i) zW̃2 ⊂ W̃1;

(ii) zΨ2(t, z) = ∂
∂t1

Ψ1(t, z)− αΨ1(t, z), for some function α = α(t);

(iii)

{τ1(t− [z−1]), τ2(t)}+ z(τ1(t− [z−1])τ2(t)− τ2(t− [z−1])τ1(t)) = 0. (1.7)

When (i), (ii) or (iii) holds, α(t) is given by

α(t) =
∂

∂t1
log

τ2

τ1

. (1.8)

Proof: To prove that (i) ⇒ (ii), the inclusion zW̃2 ⊂ W̃1, hence zW̃ t
2 ⊂

W̃ t
1, implies by (0.16) that

zψ2(t, z) = z(1 + O(z−1)) ∈ W̃ t
1

must be a linear combination4

zψ2 =
∂ψ1

∂x
+ zψ1 − α(t)ψ1, and thus zΨ2 =

∂

∂t1
Ψ1 − α(t)Ψ1. (1.9)

4ψi is the same as Ψi, but without the exponential.
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The expression (1.8) for α(t) follows from equating the z0-coefficient in (ii),
upon using the τ -function representation (1.6). To show that (ii) ⇒ (i), note
that

zΨ2 =
∂

∂t1
Ψ1 − αΨ1 ∈ W̃1

and taking t1-derivatives, we have

z

(
∂

∂t1

)j

Ψ2 =

(
∂

∂t1

)j+1

Ψ1 + β1

(
∂

∂t1

)j

Ψ1 + · · ·+ βj+1Ψ1,

for some β1, · · · , βj+1 depending on t only; this implies the inclusion (i). The
equivalence (ii) ⇐⇒ (iii) follows from a straightforward computation using
the τ -function representation (1.6) of (ii) and the expression for α(t).

Lemma 1.2 The following integral along a clockwise circle in the complex
plane encompassing z = ∞ and z = α−1, can be evaluated as follows

∮

z=∞
f(t + [α]− [z−1])g(t− [α] + [z−1])

zm+1

(z − α−1)2

dz

2πiz

= α1−m
∞∑

k=1

αk

(
− ∂

∂tk
+

m−1∑

r=0

(m− r)pr(−∂̃)pk−r(+∂̃)

)
f ◦ g.

Proof: By the residue theorem, the integral above is the sum of residue
at z = ∞ and at z = α−1:

∮

z=∞
f(t + [α]− [z−1])g(t− [α] + [z−1])

zm+1

(z − α−1)2

dz

2πiz

=
1

(m− 1)!

(
d

du

)m−1

f(t + [α]− [u])g(t− [α] + [u])
1

(1− uα−1)2

∣∣∣∣∣
u=0

(1.10)

− d

dz
zmf(t + [α]− [z−1])g(t− [α] + [z−1])

∣∣∣∣∣
z=α−1

. (1.11)

Evaluating each of the pieces requires a few steps.

9
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Step 1.

1

k!

(
d

du

)k

f(t + [α]− [u])g(t− [α] + [u])

∣∣∣∣∣
u=0

=
∞∑

`=0

α`pk(−∂̃)p`(∂̃)f ◦ g.

At first note (
d

du

)k

F ([u])

∣∣∣∣∣
u=0

= k!pk(∂̃s)F (s) (1.12)

and, by (1.5) and (1.12),

1

k!

(
d

du

)k

f(t + [u])g(t− [u])

∣∣∣∣∣
u=0

= pk(∂̃)f ◦ g

= pk(−∂̃)g ◦ f

=
∑

i+j=k

pi(−∂̃)g.pj(∂̃)f. (1.13)

Indeed

1

k!

(
d

du

)k

f(t + [α]− [u])g(t− [α] + [u])

∣∣∣∣∣
u=0

= pk(∂̃s)g(t− [α] + s)f(t + [α]− s)

∣∣∣∣∣
s=0

, using (1.12)

= pk(∂̃s)
∞∑

`=0

α`p`(∂̃t)f(t− s) ◦ g(t + s)

∣∣∣∣∣
s=0

, using (1.13)

=
∞∑

`=0

α`pk(∂̃s)p`(∂̃w)f(t + w − s)g(t− w + s)

∣∣∣∣∣
s=w=0

, expressing Hirota,

=
∞∑

`=0

α`pk(∂̃s)p`(−∂̃w)f(t− w − s)g(t + w + s)

∣∣∣∣∣
s=w=0

, flipping signs,

=
∞∑

`=0

α`pk(∂̃v)p`(−∂̃v)f(t− v)g(t + v)

∣∣∣∣∣
v=0

=
∞∑

`=0

α`pk(−∂̃)p`(∂̃)f ◦ g, using(1.13).

Step 2. Residue at ∞.

10
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Note

(
d

du

)` (
1

1− uα−1

)2
∣∣∣∣∣
u=0

=

(
d

du

)` ∞∑

i=1

i(uα−1)i−1

∣∣∣∣∣
u=0

= (` + 1)!α−`; (1.14)

then we find

1

(m− 1)!

(
d

du

)m−1

f(t + [α]− [u])g(t− [α] + [u])
1

(1− uα−1)2

∣∣∣∣∣
u=0

=
1

(m− 1)!

m−1∑

r=0

(
m− 1

r

) (
d

du

)r

f(t + [α]− [u])g(t− [α] + [u])

(
d

du

)m−1−r
1

(1− uα−1)2

∣∣∣∣∣
u=0

=
m−1∑

r=0

(m− r)
∞∑

`=0

α`−m+r+1pr(−∂̃)p`(∂̃)f ◦ g, using step 1 and (1.14)

= mα1−mf(t)g(t) + α1−m
∞∑

k=1

αk
m∑

r=0

(m− r)pr(−∂̃)pk−r(∂̃)f ◦ g, using p0 = 1.

(1.15)

Step 3. Residue at z = α−1.

d

dz
zmf(t + [α]− [z−1])g(t− [α] + [z−1])

∣∣∣∣∣
z=α−1

= −u2 d

du
u−mf(t + [α]− [u])g(t− [α] + [u])

∣∣∣∣∣
u=α

= mα−m+1f(t)g(t)− α2−m d

du
f(t + [α]− [u])g(t− [α] + [u])

∣∣∣∣∣
u=α

= mα1−mf(t)g(t) +
∞∑

k=1

α1−m+k ∂

∂tk
f ◦ g, by explicit differentiation.

(1.16)

Finally, putting step 2 and step 3 in (1.11) yields Lemma 1.2.
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Lemma 1.3 The Hirota symbol acts as follows on functions f(t1, t2, ...) and
g(t1, t2, ...):

1

fg

∂n

∂t1...∂tn
f ◦ g = a polynomial Pn in





∂k

∂ti1 ...∂tik
log f

g
for k odd

∂k

∂ti1 ...∂tik
log fg for k even

(1.17)
over all subsets {i1, ..., ik} ⊂ {1, ..., n}. Upon granting degree 1 to each partial
in ti, the polynomial Pn is homogeneous of degree n.

Proof: By induction, we assume the statement to be valid for an Hi-
rota symbol, involving ` partials, and we prove the statement for a symbol
involving ` + 1 partials:

1

fg

∂

∂t`+1

∂`

∂t1...∂t`
f(t) ◦ g(t)

=
1

fg

∂

∂u`+1

f(t + u)g(t− u)
∂`

∂t1...∂t`
f(t + u) ◦ g(t− u)

f(t + u)g(t− u)

∣∣∣
u=0

=

(
∂

∂t`+1

log
f

g

)
1

fg

∂`

∂t1...∂t`
f(t + u) ◦ g(t− u)

+
∂

∂u`+1

P

(
...,

∂m

∂ti1 ...tim
log

f(t + u)

g(t− u)
, ...,

∂n

∂tj1 ...∂tjn

log f(t + u)g(t− u), ...

) ∣∣∣
u=0

,

(1.18)

where m is odd and n even. The result follows from the simple computation:

∂

∂u`+1

∂m

∂ti1 ...∂tim
log

f(t + u)

g(t− u)

∣∣∣
u=0

=
∂m+1

∂ti1 ...∂tim .∂t`+1

log f(t)g(t)

∂

∂u`+1

∂n

∂ti1 ...∂tin
log f(t + u)g(t− u)

∣∣∣
u=0

=
∂n+1

∂ti1 ...∂tin .∂t`+1

log
f(t)

g(t)

(1.19)

Remark: The induction formula (1.18) can be made into an explicit for-
mula for Pn, involving partitions of the set {1, 2, ..., n}.

12
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2 The existence of a τ-vector and the discrete

KP bilinear identity

Before proving Theorem 0.1, we shall need two lemmas, which are analogues
of basic lemmas in the theory of differential operators. So the main purpose of
this section is threefold, namely, to prove the bilinear identities for the wave
and adjoint wave vectors, to prove the existence of a τ -vector and finally to
give a closed form for Lk.

Lemma 2.1 For z-independent U, V ∈ D, the following matrix identities
hold 5

UV =
∮

z=∞
Uχ(z)⊗ V >χ∗(z)

dz

2πiz
, (2.1)

Proof: Set
U =

∑
α

uαΛα and V =
∑

β

Λβvβ,

where uα and vα are diagonal matrices. To prove (2.1), it suffices to compare
the (i, j)-entries on each side. On the left side of (2.1), we have

(UV )ij =
(∑

α,β

uαΛα+βvβ

)
ij

=
∑

α,β

uα(i)(Λα+β)ijvβ(j)

=
∑
α,β

α+β=j−i

uα(i)vβ(j).

On the right side of (2.1), we have
∮

z=∞

(
Uχ(z)

)
i

(
V >χ(z−1)

)
j

dz

2πiz

=
∮

z=∞

(∑
α

uαzαχ(z)
)

i

(∑

β

vβzβχ(z−1)
)

j

dz

2πiz

=
∮

z=∞

∑

α,β

uα(i)vβ(j)zα+β+i−j dz

2πiz

=
∑
α,β

α+β=j−i

uα(i)vβ(j),

5(A ⊗ B)ij = AiBj and remember χ∗(z) = χ(z−1). The contour in the integration
below runs clockwise about ∞; i.e., opposite to the usual orientation.

13
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establishing (2.1).

Lemma 2.2 For W (t) a wave operator of the discrete KP-hierarchy,

W (t)W−1(t′) ∈ D+, ∀t, t′. (2.2)

Proof: Setting h(t, t′) = W (t)W−1(t′), compute from (0.6)

∂h

∂tn
= (Ln(t))+h,

∂h

∂t′n
= −h(Ln(t′))+, (2.3)

since h(t, t) = I ∈ D+, it follows that h(t, t′) evolves in D+.

Consider the wave function, already defined in the introduction, and the
adjoint wave function:

Ψ(t, z) = Wχ(z) = e
∑∞

1
tiz

i

Sχ(z) = e
∑

tiz
i

(
zn +

∑

i<n

si(n)zi

)

n∈Z

Ψ∗(t, z) = (W−1)>χ∗(z) = e−
∑∞

1
tiz

i

(S−1)>χ∗(z)

= e−
∑

tiz
i


z−n +

∑

i<−n

s∗i (n)zi




n∈Z

. (2.4)

Proof of Theorem 0.1:
Step 1: Setting

U := W (t) and V > := (W−1(t′))>

in formula (2.1) of Lemma 2.1, and using formula (0.8) of Ψ and Ψ∗ in terms
of W , one finds for all t, t′ ∈ C∞,

W (t)W (t′)−1 =
∮

z=∞
Ψ(t, z)⊗Ψ∗(t′, z)

dz

2πiz
. (2.5)

But, according to Lemma 2.2, W (t)W (t′)−1 ∈ D+ and thus (2.5) is upper-
triangular, yielding

∮

z=∞
Ψn(t, z)Ψ∗

m(t′, z)
dz

2πiz
= 0 for all n > m. (2.6)

14
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Defining

Φn(t, z) := z−nΨn(t, z) = e
∑

tiz
i

(1 + O(z−1))

Φ∗
n(t, z) := zn−1Ψ∗

n−1(t, z) = e−
∑

tiz
i

(1 + O(z−1)),

upon using the asymptotics (0.8), we have, by setting m = n− 1 in (2.6)

∮

z=∞
Φn(t, z)Φ∗

n(t′, z)dz =
∮

z=∞
Ψn(t, z)Ψ∗

n−1(t
′, z)

dz

z
= 0.

From the KP-theory, there exists a τ -function τn(t) for each n, such that

Φn(t, z) = e
∑

tiz
i τn(t− [z−1])

τn(t)
, Φ∗

n(t, z) = e−
∑

tiz
i τn(t + [z−1])

τn(t)
,

yielding the τ -function representation (0.10) for Ψn and Ψ∗
n.

Step 2: The following holds for n ∈ Z:
(

1

2

∂2

∂t1∂tk
− pk+1(∂̃)

)
τn ◦ τn = 0, for k = 1, 2, 3, ... (2.7)

(
∂

∂tk
−

`−1∑

r=0

(`− r)pr(−∂̃)pk−r(∂̃)

)
τn ◦ τn−` = 0, for `, k = 1, 2, 3, ... (2.8)

Indeed the bilinear identity (2.6), upon setting m = n − ` − 1, shifting
t 7→ t + [α], t′ 7→ t− [α], using the τ -function representation (0.10) of Ψ and
Ψ∗, and lemma 1.2 with m = `, yield6

0 = −α2
∮

z=∞
Ψn(t + [α], z)Ψ∗

n−`−1(t− [α], z)
dz

2πiz
τn(t + [α])τn−`(t− [α])

= −
∮

z=∞
τn(t + [α]− [z−1])τn−`(t− [α] + [z−1])e2

∑∞
1

(αz)i/iα2z`+1 dz

2πiz

= α1−`
∞∑

k=1

αk

(
∂

∂tk
−

`−1∑

r=0

(`− r)pr(−∂̃)pk−r(∂̃)

)
τn ◦ τn−`,

establishing the second relation of (2.8). As for the first one, set m = n− 1,
t 7→ t− a and t′ 7→ t + a in the bilinear identity, and use (1.4), thus yielding
(0.14).

6em
∑∞

1
(αz)i/i = (1− αz)−m

15
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Step 3: To check the formulas (0.12) for S, compute

e
∑∞

1
tiz

i

Sχ(z) =: Ψ(t, z)

= e
∑∞

1
tiz

i τ(t− [z−1])

τ(t)
χ(z) (by (0.10))

= e
∑∞

1
tiz

i
∞∑

n=0

pn(−∂̃)τ(t)

τ(t)
z−nχ(z)

= e
∑∞

1
tiz

i
∞∑

0

pn(−∂̃)τ(t)

τ(t)
Λ−nχ(z).

Similarly one checks the formula for S−1 using the formulas for Ψ∗(t, z) in
terms of S−1 and τ(t). Finally to check the formula (0.13) for Lk, use the
formulas (0.12) for S and S−1 (for Λ̃, see footnote 1):

Lk = SΛkS−1

=
∞∑

i,j≥0

pi(−∂̃)τ

τ
Λ−i−j+k

(
Λ̃

pj(∂̃)τ

τ

)

=
∞∑

i,j≥0

pi(−∂̃)τ

τ

(
Λ̃−i−j+k+1pj(∂̃)τ

τ

)
Λ−i−j+k

=
∑

`≥0




∑
i,j≥0
i+j=`

pi(−∂̃)τnpj(∂̃)τn+k−`+1)

τnτn+k−`+1




n∈Z

Λk−`

=
∑

`≥0

(
p`(∂̃)τn+k−`+1 ◦ τn

τn+k−`+1τn

)

n∈Z

Λk−` (using (1.13))

yielding (0.13) and (0.15), upon noting,

coefΛk−1Lk =

(
p1(∂̃)τn+k ◦ τn

τn+kτn

)

n∈Z

=

(
∂

∂t1
log

τn+k

τn

)

n∈Z

coefΛ0Lk =

(
pk(∂̃)τn+1 ◦ τn

τn+1τn

)

n∈Z

=

(
∂

∂tk
log

τn+1

τn

)

n∈Z

by (2.8)

coefΛ−1Lk =

(
pk+1(∂̃)τn ◦ τn

τnτn

)

n∈Z

=

(
∂2

∂t1∂tk
log τn

)

n∈Z

, by (2.7),

concluding the proof of the Theorem 0.1.
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Corollary 2.3 Setting γ(t) := (Λ̃τ(t)/τ(t)), the wave operator W (t) for the
discrete KP-hierarchy has the following property

(W (t)W−1(t′))− = 0, (W (t)W−1(t′))0 =
γ(t)

γ(t′)
.

Proof: That h(t, t′) = W (t)W−1(t′) ∈ D+ was shown in Lemma 2.2.
Concerning its diagonal h0, we deduce from (2.3) that7

∂

∂tk
log h0 = (Lk(t))0,

∂

∂tk
log h0 = −(Lk(t′))0, with h0(t, t) = I.

Note that γ(t)/γ(t′) satisfies the same differential equations as h0(t) with the
same initial condition, upon using (0.15):

(
∂

∂tk
log

γ(t)

γ(t′)

)

n

=
∂

∂tk
log

τn+1(t)

τn(t)
= Lk(t)nn

(
∂

∂t′k
log

γ(t)

γ(t′)

)

n

= − ∂

∂t′k
log

τn+1(t
′)

τn(t′)
= −Lk(t′)nn,

with γ(t)/γ(t′)

∣∣∣∣∣
t=t′

= I.

3 Sequences of τ-functions, flags and the dis-

crete KP equation

In this section, we prove Theorem 0.2; it will be broken up into three propo-
sitions: the first one is very similar to the analogous statement for the KP
theory (see [5, 15]). One could make an argument unifying both cases, in the
context of Lie theory. The second statement uses Grassmannian technology.

Proposition 3.1 The following equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) hold.

Proof: (i) ⇒ (ii) was already shown in Theorem 0.1. Regarding the
converse (ii) ⇒ (i), we show vectors Ψ(t, z) and Ψ∗(t, z) having the asymp-
totics (0.8) and satisfying the bilinear identity (ii) are discrete KP-hierarchy
vectors.

7M0 := diagonal part of M .
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The point of the proof is to show that the matrices S and T t ∈ I + D−
defined through

Ψ(t, z) =: e
∑∞

1
tiz

i

Sχ(z), Ψ∗(t, z) =: e−
∑∞

1
tiz

i

Tχ∗(z)

satisfy the vector fields (0.6) with T t = S−1.

Step 1. T t = S−1.
Assuming the bilinear identities (assumption (ii) of Theorem 0.2),

0 =

(∮

z=∞
Ψ(t, z)⊗Ψ∗(t, z)

dz

2πiz

)

−

=

(∮

z=∞
e
∑∞

1
tiz

i

S χ(z)⊗ e−
∑∞

1
tiz

i

T χ(z−1)
dz

2πiz

)

−
= (ST>)−, by (2.1)

but since S, T t ∈ I +D−, ST t = I, yielding T t = S−1.

Step 2. W (t)W−1(t′) ∈ D+, upon defining W (t) := S(t)e
∑

tiΛ
i
.

According to the bilinear identity, the left hand side of

∮

z=∞
Ψ(t, z)⊗Ψ∗(t′, z)

dz

2πiz

=
∮

z=∞
e
∑

tiz
i

S χ(z)⊗ e−
∑∞

1
t′iz

i

(S−1)>χ(z−1)
dz

2πiz

=
∮

z=∞
S(t)e

∑
tiΛ

i

χ(z)⊗ (S−1(t′))>e−
∑

t′iΛ
>−i

χ(z−1)
dz

2πiz

= S(t)e
∑

tiΛ
i

e−
∑

t′iΛ
i

S−1(t′), using Lemma 2.1

= W (t)W−1(t′);

belongs to D+, and hence so is the right hand side.

Step 3.
(

∂

∂tn
− (Ln)+

)
Ψ(t, z) =

(
∂

∂tn
− (Ln)+

)
Sχ(z)e

∑∞
1

tiz
i

=

(
∂S

∂tn
− (Ln)+S + S zn

)
χ(z)e

∑∞
1

tiz
i

18
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=

(
∂S

∂tn
− (Ln)+S + S Λn(S−1S)

)
χ(z)e

∑∞
1

tiz
i

=

(
∂S

∂tn
− (Ln)+S + LnS

)
χ(z)e

∑∞
1

tiz
i

=

(
∂S

∂tn
+ (Ln)−S)

)
χ(z)e

∑∞
1

tiz
i

.

Step 4. From W (t)W−1(t′) ∈ D+, since D+ is an algebra, deduce

D+ 3
((

∂

∂tn
− (Ln)+

)
W (t)

)
W−1(t′)

∣∣∣∣∣
t′=t

=
∮

z=∞

(
∂

∂tn
− (Ln)+

)
Ψ(t, z)⊗Ψ∗(t, z)

dz

2πiz
, by step 2

=
∮

z=∞

(
∂S(t)

∂tn
+ (Ln)−S(t)

)
χ(z)e

∑∞
1

tiz
i ⊗ (S>(t))−1χ(z−1)e−

∑∞
1

tiz
i dz

2πiz
,

by step 3

=

(
∂S(t)

∂tn
+ (Ln)−S(t)

)
S(t)−1, by Lemma 2.1

and thus, since S ∈ I +D− and D− is an algebra,

(
∂S(t)

∂tn
+ (Ln)−S(t)

)
S(t)−1 ∈ D+ ∩ D− = 0;

therefore, we have the discrete KP-hierarchy equations on S

∂S(t)

∂tn
+ (Ln)−S = 0, n = 1, 2, ...,

and on L = SΛS−1,
∂L

∂tn
= [−(Ln)−, L],

ending the proof that (ii) ⇒ (i).

Finally (ii) ⇐⇒ (iii) upon using the equivalence (i) ⇐⇒ (ii) and the
τ -function representation (0.10) of Ψ and Ψ∗, shown in Theorem 0.1; this
establishes Proposition 3.1.
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With each component of the wave vector Ψ, given in (0.10), or, what is
the same, with each component of the τ -vector, we associate a sequence of
infinite-dimensional planes in the Grassmannian Gr(n)

Wn = spanC





(
∂

∂t1

)k

Ψn(t, z), k = 0, 1, 2, ...





= e
∑∞

1
tiz

i

spanC





(
∂

∂t1
+ z

)k

ψn(t, z), k = 0, 1, 2, ...





=: e
∑∞

1
tiz

iW t
n. (3.1)

and planes

W∗
n = spanC





1

z

(
∂

∂t1

)k

Ψ∗
n−1(t, z), k = 0, 1, 2, ...



 , (3.2)

which are the orthogonal complements of Wn in Gr(n), by the residue pairing

〈f, g〉∞ :=
∮

z=∞
f(z)g(z)

dz

2πi
. (3.3)

Proposition 3.2 (ii) ⇐⇒ (iv) ⇐⇒ (v) holds.

Proof: The inclusion ... ⊃ Wn−1 ⊃ Wn ⊃ Wn+1 ⊃ ... in (iv) implies that
Wn, given by (3.1) and (0.10), is also given by

Wn = spanC{Ψn(t, z), Ψn+1(t, z), ...}.
Moreover the inclusions ... ⊃ Wn ⊃ Wn+1 ⊃ ... imply, by orthogonality, the
inclusions ... ⊂ W∗

n ⊂ W∗
n+1 ⊂ ..., and thus W∗

n, given by (3.2) and (0.10)
and thus specified by Ψ∗

n−1 and τn, is also given by

W∗
n = {Ψ∗

n−1(t, z)

z
,
Ψ∗

n−2(t, z)

z
, ...}.

The formula (0.10) for Ψn and Ψ∗
n−1 imply the bilinear identities (1.1), since

each τn is a τ -function, yielding W∗
n = W⊥

n , with respect to the residue
pairing and so:

〈Ψn(t, z),
Ψ∗

n−1(t
′, z)

z
〉∞ =

∮

z=∞
Ψn(t, z)Ψ∗

n−1(t
′, z)

dz

2πiz
= 0.
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Since
Wn ⊂ Wm+1 = (W∗

m+1)
∗, all n > m

we have the orthogonality Wn ⊥ W∗
m+1 for all n > m, with respect to the

residue pairing; since Ψn(t, z) ∈ Wn,
Ψ∗m(t′,z)

z
∈ W∗

m+1(t
′, z), we have

0 = 〈Ψn(t, z),
Ψ∗

m(t′, z)

z
〉∞ =

∮

z=∞
Ψn(t, z)Ψ∗

m(t′, z)
dz

2πiz
, all n > m,

(3.4)
which is (ii).

Now assume (ii); then, for fixed n > m, we have

0 =
∮

z=∞

(
∂

∂t1

)k

Ψn(t, z)

(
∂

∂t′1

)`

Ψ∗
m(t′, z)

dz

2πiz
, n > m

and thus by (3.1) and (3.2),

Wn ⊆ (W∗
m+1)

∗ = Wm+1, for n > m,

which implies the flag condition ... ⊃ Wn−1 ⊃ Wn ⊃ Wn+1 ⊃ ..., stated in
(iv).

(iv) ⇐⇒ (v), follows from the equivalence of (i) and (iii) in Proposition
1.1, by setting τ1 := τn−1, τ2 = τn, W̃1 = z−n+1Wn−1 and W̃2 = z−nWn and
noting

z(z−nWn) ⊂ (z−n+1Wn−1), i.e. Wn ⊂ Wn−1,

concluding the proof of the proposition.

Proposition 3.3 (v) ⇐⇒ (vi) holds.

Proof:
Step 1. For a given n ∈ Z, statement (v), namely

R
(n)
k := {pk−1(−∂̃)τn, τn+1}+ τn+1pk(−∂̃)τn − τnpk(−∂̃)τn+1 = 0, k ≥ 2

implies

R
(n)′
k =

(
∂

∂tk
− pk(∂̃)

)
τn+1 ◦ τn = 0, k ≥ 2.

Since R
(n)
k are the Taylor coefficients of relation (v) in Theorem 0.2, statement

(v)n is equivalent to (iv)n (i.e. Wn ⊃ Wn+1). The latter is equivalent to the
bilinear identity (iii)n (i.e., (0.18) with n → n+1 and m → n−1). According

to the arguments used in the proof of Theorem 0.1, (iii)n implies R
(n)′
k = 0.

21



Adler-van Moerbeke:Discrete KP August 24, 1998 §4, p.22

Step 2. The converse holds, because, upon using an inductive argument,

R
(n)
k = αR

(n)′
k + partials of (R

(n)′
1 , ..., R

(n)′
k−1);

thus the vanishing of the R
(n)′
1 , ..., R

(n)′
k implies the vanishing of R

(n)
k .

Theorem 3.4 Every 1-Toda lattice is equivalent to a 2-Toda lattice.

Proof: The 1-Toda theory implies for S1 := S ∈ I +D−, L1 := L

∂S1

∂tn
= −(Ln

1 )−S1(t), where L1 = S1ΛS−1
1 .

Then, in view of the 2-Toda theory, define S2(t) ∈ D+ by means of the
differential equations

∂S2(t)

∂tn
= (Ln

1 )+S2(t), n = 1, 2, ...,

with initial condition S2(0) = (an invertible element d+ ∈ D+). Then define8

S1,2(t, s) and L1,2 = S1,2Λ
±1S−1

1,2 , flowing according to the commuting differ-
ential equations

∂S1,2(t, s)

∂sn

= ±(Ln
2 (t, s))∓S1,2(t, s) with S1,2(t, 0) = S1,2(t). (3.5)

S1,2(t, s) satisfies the t-equations of 2-Toda for s = 0, by construction; now
we must check that this holds for s 6= 0; therefore, set

F
(n)
1,2 (t, s) =

∂S1,2

∂tn
(t, s)± (Ln

1 (t, s))∓S1,2(t, s), for n = 1, 2, ... (3.6)

Compute, using (3.5) and [∂/∂tn, ∂/∂sn] = 0, the system of two differential
equations

∂F
(n)
1,2

∂sk

(t, s) = ±[F
(n)
2,1 S−1

2 , Lk
2]∓S1,2 ± (Lk

2)∓F
(n)
1,2 , k, n = 1, 2, ...;

since F
(n)
1,2 (t, 0) = 0, we have F

(n)
1,2 (t, s) = 0 for all s. Thus, by (3.5) and (3.6),

S1,2(t, s) flow according to 2-Toda.

8The first index in L1,2 and S1,2 corresponds to the upper-sign.
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4 Discrete KP-solutions generated by vertex

operators

An important construction leading to Toda solutions is contained in Theorem
0.3, which is based on the following Lemma:

Lemma 4.1 Particular solutions to equation

{τ1(t− [z−1]), τ2(t)}+ z(τ1(t− [z−1])τ2(t)− τ2(t− [z−1])τ1(t)) = 0 (4.1)

are given, for arbitrary λ ∈ C∗, by pairs (τ1, τ2), defined by:

τ2(t) =
(∫

X(t, λ)ν(λ)dλ
)

τ1(t) =
∫

e
∑

tiλ
i

τ1(t− [λ−1])ν(λ)dλ, (4.2)

or

τ1(t) =
(∫

X(−t, λ)ν ′(λ)dλ
)

τ2(t) =
∫

e−
∑

tiλ
i

τ2(t + [λ−1])ν ′(λ)dλ. (4.3)

Proof: Using

e−
∑∞

1
1
i
(λ

z
)i

= 1− λ

z
,

it suffices to check,before even integrating, that τ2(t) = X(t, λ)τ1(t) satisfies
the above equation (4.1)

e−
∑

tiλ
i
(
{τ1(t− [z−1]), τ2(t)}+ z(τ1(t− [z−1])τ2(t)− τ2(t− [z−1])τ1(t))

)

= e−
∑

tiλ
i{τ1(t− [z−1]), e

∑
tiλ

i

τ1(t− [λ−1])}
+ z(τ1(t− [z−1])τ1(t− [λ−1])− (1− λ

z
)τ1(t)τ1(t− [z−1]− λ−1]))

= {τ1(t− [z−1]), τ1(t− [λ−1])}
+ (z − λ)(τ1(t− [z−1])τ1(t− [λ−1])− τ1(t)τ1(t− [z−1]− [λ−1]))

= 0,

using the differential Fay identity (1.3) for the τ -function τ1; a similar proof
works for the second solution, given by τ1(t) = X(−t, λ)τ2(t). Since equation
(4.1) is linear in τ1(t), and also in τ2(t), the equation remains valid after
integrating with regard to λ.
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Proof of Theorem 0.3: Note, from the definition of τ±n in Theorem 3, that
each τn is defined inductively by

τn+1 =
∫

X(t, λ)νn(λ)dλ τn and τ−n−1 =
∫

X(−t, λ)ν−n−1(λ)dλ τ−n;

thus by Lemma 4.1, the functions τn+1 and τn are a solution of equation (v)
of Theorem 0.2. Therefore, theorem 0.2 implies that the τn’s form a τ -vector
of the discrete KP hierarchy.

5 Example of vertex generated solutions: the

q-KP equation

Consider the class of q-pseudo-difference operators, with y-dependent coeffi-
cients, acting on functions f(y)

Dq = {∑ ai(y)Di}, with Df(y) := f(qy).

and the q-derivative Dq, defined by

Dqf(y) :=
f(qy)− f(y)

(q − 1)y
= −λ(y)(D − 1)f(y), with λ(y) := − 1

(q − 1)y
;

Consider the following q-pseudo-difference operators

Q = D + u0(x)D0 + u−1D
−1 + ... and Qq = Dq + v0(x)D0

q + v−1(x)D−1
q + ...

and the following q-deformations, which were proposed respectively by E.
Frenkel [6] and Khesin, Lyubashenko and Roger [10], for n = 1, 2, ...:

∂Q

∂tn
= [(Qn)+ , Q] (Frenkel system) (5.1)

∂Qq

∂tn
= [

(
Qn

q

)
+

, Qq], (KLR system) (5.2)

where ( )+ and ( )− refer to the q-difference and strictly q-pseudo-differential
part of ( ). Define

c(x) =

(
(1− q)x

1− q
,
(1− q)2x2

2(1− q2)
,
(1− q)3x3

3(1− q3)
, ...

)
∈ C∞ and λ−1

n = (1−q)xqn−1,

(5.3)
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one checks for n ≥ 1, Dnλ0(x) = λn(x), and

Dnc(x) = c(x)−
n∑

1

[λ−1
i (x)]

D−nc(x) = c(x) +
n∑

1

[λ−1
−i+1(x)] (5.4)

Details about these theorems were reported in a joint work with E. Horozov[4].

Theorem 5.1 There is an algebra isomorphism

ˆ : Dq −→ D,

which maps the Frenkel and KLR system into the discrete KP-hierarchy

∂L

∂tn
= [(Ln)+ , L], n = 1, 2, ... (5.5)

Theorem 5.2 The matrices

L = Λ +
∑

−∞<`≤0

diag

(
p1−`(∂̃)τn+`+1 ◦ τn

τn+`+1τn

)

n∈Z

Λ`

and
L̃ = εLε−1

with ε as in (5.11), τ0 = τ(c(x) + t) and

τn = X(t, λn)...X(t, λ1)τ(c(x) + t)

= rn(λ)

(
n∏

k=1

e
∑∞

i=1
tiλ

i
k

)
Dnτ(c(x) + t) (5.6)

τ−n = X(−t, λ−n+1)...X(−t, λ0)τ(c(x) + t)

= r−n(λ)

(
n∏

k=1

e−
∑∞

i=1
tiλ

i
−k+1

)
D−nτ(c(x) + t)

transform, using the map ,̂ respectively into solutions to the q-KP deforma-
tions (5.1) and (5.2) of

Q = D +
∑

−∞<i≤0

ai(y)Di or Qq = Dq +
∑

−∞<i≤0

bi(y)Di
q,
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where the bi are related to the ai by (5.12) and9

a`(y) = polynomial in





∂k

∂ti1 ...∂tik
log

(
τ(c(y) + t)π(k)D`+1τ(c(y) + t)

)
for k ≥ 2

`+1∑

i=1

λj
i (y) +

∂

∂tj
log

D`+1τ(c(y) + t)

τ(c(y) + t)
, for k = 1

The proofs of these theorems, which rely heavily on the next lemma, will
be given later. In an elegant recent paper, Iliev [9] has obtained q-bilinear
identities and q-tau functions, as well, purely within the KP theory.

Consider an appropriate space of functions f(y) representable by “Fourier”
series

f(y) =
∞∑

−∞
fnϕn(y)

in the basis10 ϕn(y) := δ(q−nx−1y) for fixed q 6= 1, and a parameter x ∈ R.
Also, remember

λi := Diλ0 = λ(xqi). (5.7)

Lemma 5.3 Then the Fourier transform,

f 7−→ Ff = (..., fn, ...)n∈Z,

induces an algebra isomorphism ,̂ mapping D-operators into Λ-operators

ˆ : Dq −→ D∑

i

ai(y)Di 7−→ ∑
âiΛ

i :=
∑

i

diag (..., ai(xqn), ...)n∈Z Λi. (5.8)

Moreover

n∑

i=0

bi(y)Di
q =

n∑

i=0

ai(y)(−λD)i 7−→ ε

(
n∑

i=0

âiΛ
i

)
ε−1, (5.9)

where the Λ-operator in brackets is monic, with11

λ̂ = (..., λ−1(x), λ0(x), λ1(x), ...) = (..., D−1λ, λ, Dλ, ...) (5.10)

9π(k) = parity of k = 1, when k is even, and = −1, when k is odd.
10The δ-function δ(z) :=

∑
i∈Z zi; enjoys the property f(za)δ(z) = f(a)δ(z)

11with [j] := 1−qj

1−q and
[n

k
]

:= [n] [n−1] ...[n−k+1]
[k] [k−1] ...[1]
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ε := diag
(
..., λ−2λ−1,−λ−1, 1,− 1

λ0

,
1

λ0λ1

,− 1

λ0λ1λ2

, ...
)

with ε0 = 1,

(5.11)

ai(y) :=
∑

0≤k≤n−i

[
k+i

k ]

(−y(q − 1)qi)k
bk+i(y). (5.12)

Proof: The operators D and multiplication by a function a(y) act on basis
elements, as follows:

Dϕn(y) = ϕn−1(y) and a(y)ϕn(y) = a(xqn)ϕn(y).

Therefore Dk and a(y) act on functions f(y), as

f(y) =
∑

n∈Z

fnϕn(y) 7−→ Dkf(y) =
∑

n∈Z

fnD
kϕn(y)

=
∑

n∈Z

fnϕn−k(y)

=
∑

n∈Z

fn+kϕn(y), (5.13)

and

f(y) =
∑

n∈Z

fnϕn(y) 7−→ a(y)f(y) =
∑

n∈Z

fna(y)ϕn(y)

=
∑

n∈Z

fna(xqn)ϕn(y), (5.14)

from which it follows that
(Dk )̂ = Λk (5.15)

â(y) = diag (..., a(xqn), ...)n∈Z. (5.16)

To establish the algebra isomorphism (5.8), one checks that

(
a(y)Di

)
ˆ

(
b(y)Dj

)
ˆ = â(y)Λi b̂(y)Λj

= â(y)
(
Λib̂(y)Λ−i

)
Λi+j

= diag(..., a(xqn)b(xqn+i), ...)n∈ZΛi+j

=
(
a(y)b(yqi)Di+j

)
ˆ

=
(
a(y)Di b(y)Dj

)
.̂ (5.17)
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Using the inductively established identity

Dn
q =

1

yn(q − 1)nq
n(n−1)

2

n∑

k=0

(−1)kqk(k−1)/2
[n

k
]
Dn−k,

the first identity (5.9) is immediate.
Then, using, by virtue of (5.10) and (5.11), λ̂Λ = −εΛε−1 and εâε−1 = â

(since â is diagonal), one computes, using the established isomorphism,
(
ai(y)(−λ(y)D)i

)
ˆ = âi

(
−λ̂D̂

)i

= âi

(
−λ̂Λ

)i

= âi

(
εΛε−1

)i

= ε
(
âiΛ

i
)
ε−1 (5.18)

establishing (5.9).

Proof of Theorem 5.1: Indeed the Frenkel system (5.1) maps at once into
(5.5), whereas, using (5.9), the KLR-system maps into

∂εLε−1

∂tn
= [

(
εLnε−1

)
+

, εLε−1] (5.19)

= ε[(Ln)+ , L]ε−1, (5.20)

which upon conjugation by ε leads to (5.5) as well.

Proof of Theorem 5.2: From Theorem 0.3, it follows that L with the τn’s
defined by (5.6), satisfies the Toda lattice; the second equality in (5.6) follows
from (5.4). According to Lemma 1.3,

p1−`(∂̃)τn+`+1 ◦ τn

τn+`+1τn

= a polynomial in
(

∂k

∂ti1 ...∂tik
log(τn+`+1τ

π(k)
n )

)
,

where by (5.6), for k ≥ 2,
(

∂k

∂ti1 ...∂tik
log(τn+`+1τ

π(k)
n )

)

n∈Z

=

(
Dn ∂k

∂ti1 ...∂tik
log

(
τ(c(y) + t)π(k)D`+1τ(c(y) + t)

))

n∈Z

=

(
∂k

∂ti1 ...∂tik
log τ(c(y) + t)π(k)D`+1τ(c(y) + t)

)∧
,
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and(
∂

∂tj
log

τn+`+1

τn

)

n∈Z

=




∂

∂tj
log

(
n+`+1∏

α=1

e
∑∞

i=1tiλ
i
α

)
Dn+`+1τ(c(y) + t)

(
n∏

α=1

e
∑∞

i=1tiλ
i
α

)
Dnτ(c(y) + t)




n∈Z

=




n+`+1∑

α=n+1

λj
α(y) +

∂

∂tj
log

Dn+`+1τ(c(y) + t)

Dnτ(c(y) + t)




n∈Z

=

(
Dn

(
`+1∑

i=1

λj
i (y) +

∂

∂tj
log

D`+1τ(c(y) + t)

τ(c(y) + t)

))

n∈Z

=

(
`+1∑

i=1

λj
i (y) +

∂

∂tj
log

D`+1τ(c(y) + t)

τ(c(y) + t)

)∧
,

establishing Theorem 5.2.

Remark: Note the ε-conjugation has no counterpart in Dq-world.
Defining the simple q-vertex operators:

Xq(x, t, z) := exz
q X(t, z) and X̃q(x, t, z) := (exz

q )−1X(−t, z)

in terms of the vertex operator (6.1) and the q-exponential ex
q = e

∑∞
1

(1−q)kxk

k(1−qk)

we now state:

Corollary 5.4 Any K-P τ -function leads to a q-K-P τ -function τ(c(x) + t)
satisfying q-bilinear relations below for all x ∈ R, t, t′ ∈ C∞ and all n > m,
which tends to the standard K-P bilinear identity when q goes to 1:

∮

z=∞
Dn(Xq(x, t, z)τ(c(x) + t))Dm+1(X̃q(x, t′, z)τ(c(x) + t′)dz = 0

−→
∫

z=∞
X(t, z)τ(x̄ + t)X(t′, z)τ(x̄ + t′)dz = 0.
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Proof: The τ -functions τn defined in Theorem 5.2 satisfy the usual bilinear
identity (0.18), and so, using the following identity

zn−m−1

∏n
k=m+2(−λ)k

n∏

k=m+2

e
−

∑∞
i=1

1
i

(
λk
z

)i

=
n∏

k=m+2

(
1− z

λk

)

=
n∏

k=m+2

e
−

∑∞
i=1

1
i

(
z

λk

)i

= Dnexz
q Dm+1(exz

q )−1

in computing τn(t− [z−1]) in the usual bilinear identity yields, up to a mul-
tiplicative factor α(λ, ν):

α(λ, ν)
∮

z=∞
τn(t− [z−1])τm+1(t

′ + [z−1])e
∑∞

1
(ti−t′i)z

i

zn−m dz

z

=
∮

z=∞
τ(c(x) + t− [z−1]−

n∑

1

[λ−1
i ])τ(c(x) + t′ + [z−1] +

m+1∑

1

[λ−1
i ])

n∏

k=m+2

(
1− z

λk

)
e
∑∞

1
(ti−t′i)z

i

dz

=
∮

z=∞
Dn(Xq(x, t, z)τ(c(x) + t))Dm+1(X̃q(x, t′, z)τ(c(x) + t′))dz = 0,

the latter tending as q → 1 to the usual KP bilinear identity, upon using
(5.3).

Corollary 5.5 If we take τ0(t) = τ(c(x) + t) in Theorem 5.2, with τ(t) a
N-KdV τ -function, i.e., ∂τ/∂tiN = 0, i = 1, 2, ..., then

(LN) = (LN)+ and L̃N = (L̃N)+ (5.21)

yielding the N-Frenkel and N-KLR system:

QN = (QN)+ and QN
q = (QN

q )+. (5.22)

The q-differential operator QN
q has the form below and tends to the differential

operator of the N-KdV hierarchy as q goes to 1:

QN
q = DN

q +
∂

∂t1
log

τ(DNc + t)

τ(c + t)
DN−1

q
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+

(
N−1∑

i=0

∂2

∂t21
log τ(Dic + t)

−
N−2∑

i=0

λi+1

(
∂

∂t1
log

τ(DNc + t)

τ(DN−1c + t)
− ∂

∂t1
log

τ(Di+1c + t)

τ(Dic + t)

)

+
∑

0≤i≤j≤N−2

∂

∂t1
log

τ(Di+1c + t)

τ(Dic + t)

∂

∂t1
log

τ(Dj+1c + t)

τ(Djc + t)


 DN−2

q + ...

−→
(

∂

∂x

)N

+ N
∂2

∂t21
log τ(x̄ + t)

(
∂

∂x

)N−2

+ ... (5.23)

Proof: Note that for W ∈ Gr(0), zNW ⊂ W if and only if its tau function
is of the form e

∑∞
1

citiN τ(t), with ∂τ(t)/∂tiN = 0, i = 1, 2, .... Thus by
hypothesis, we have for each

Wk = span{ψk(t, z), ψk+1(t, z), ...}
zNWk ⊂ Wk and since Lψ = zψ,

zNψk =
N−1∑

j=0

ajψk+j + ψk+N = (LNψ)k,

and so LN is upper-triangular, yielding (5.21), which by the isomorphism ∧

of Lemma 5.3 yields (5.22). From (0.13) and the relationship between ai(y)
and bi(y) given in (5.12), deduce (5.23).
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