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Consider the two-dimensional Toda lattice, with certain skew-symmetric initial condition, which
is preserved along the locus s = −t of the space of time variables. Restricting the solution to
s = −t , we obtain another hierarchy called Pfaff lattice, which has its own tau function, being
equal to the square root of the restriction of 2D-Toda tau function. We study its bilinear and Fay
identities,W andVirasoro symmetries, relation to symmetric and symplectic matrix integrals and
quasiperiodic solutions.

0. Introduction

Consider the set of equations

∂m∞
∂tn

= Λnm∞ ,
∂m∞
∂sn

= −m∞(Λ�)n , n = 1, 2, . . . , (0.1)

on infinite matrices

m∞ = m∞(t, s) = (µi,j (t, s))0≤i,j<∞ ,
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where t = (t1, t2, . . . ) and s = (s1, s2, . . . ) are two sequences of scalar indepen-
dent variables, Λ = (δi,j−1)0≤i,j<∞ is the shift matrix, and Λ� its transpose. In
[2,4], it was shown that Borel decomposing1m∞ into lower- and upper-triangular
matrices S1 = S1(t, s) and S2 = S2(t, s) :

m∞(t, s) = (µij

)
0≤i,j<∞ = S−11 S2 , for “generic” t , s ∈ C∞ , (0.2)

leads to a two-Toda (two-dimensional Toda) system for L1 := S1ΛS−11 and
L2 = S2Λ

�S−12 ,

∂Li

∂tn
= [(Ln

1)+, Li] , ∂Li

∂sn
= [(Ln

2)−, Li] , i = 1, 2,

with A = A− + A+ being the decomposition into lower- and strictly upper-
triangular matrices. The solution L1 and L2 can be expressed entirely in terms
of a sequence of τ -functions τ = (τ0, τ1, . . . ) given by

τn(t, s) = detmn(t, s) , mn(t, s) = (µi,j (t, s))0≤i,j<n , (0.3)

for n ∈ Z≥0 := {0, 1, . . . }.
As readily seen from formula (0.1), the 2-Todaflow thenmaintains the relation

m∞(t, s) = −m∞(−s,−t)�, and hence, by formula (0.3)

τn(t, s) = (−1)nτn(−s,−t) . (0.4)

Themain point of this paper is to study equation (0.1)with skew-symmetric initial
condition m∞(0, 0) and the restriction of the system to s = −t . When s →−t ,
formula (0.4) shows that in the limit the odd τ -functions vanish, whereas the
even τ -functions are determinants of skew-symmetric matrices. In particular, the
factorization (0.2) fails; in fact in the limit the system leaves the main stratum
to penetrate a deeper stratum in the Borel decomposition. In this paper we show
this specialization s = −t leads to its own system, the Pfaff lattice on a successor
L to the 2-Toda Lax pair (L1, L2), whereas in [7], we have shown this system is
integrable by producing a Lax pair

∂L

∂ti
= [−πkL

i, L
] = [πnL

i, L
]
,

1 Here “t , s ∈ C
∞” is an informal way of saying that t and s are two sequences of independent

scalar variables. Under suitable assumptions,m∞(t, s) exists for all t , s ∈ C
∞ and the decompo-

sition holds for “generic” t , s ∈ C
∞, but in general a function of those variables may be defined

only in an open subset of C
∞ × C

∞, or may even be a formal power series in t and s.
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on semi-infinite matrices of the form

L =



0 1
−d1 a1 O

d1 1
−d2 a2

d2 1

∗ . . .
. . .


.

The projections πk and πn correspond to the Lie algebra splitting (in the formula
below, lower-triangular with special diagonal means: the diagonal consists of
2× 2 blocks, each of them proportional to the 2× 2 identity)

gl(∞) = k⊕ n

{
k = {lower-triangular matrices, with special diagonal }
n = sp(∞) = {a such that Ja�J = a},

where

J :=



0 1
−1 0 O

0 1
−1 0

O
0 1
−1 0

. . .


with J 2 = −I .

The precise projections take on the following form2

a = (a)k+ (a)n

=
(
(a− − J (a+)�J )+ 1

2
(a0 − J (a0)

�J )
)

+
(
(a+ + J (a+)�J )+ 1

2
(a0 + J (a0)

�J )
)
.

The solution to the Pfaff lattice can be expressed in terms of “Pfaff τ -functions"
τ̃ (t) as follows:

L(t) = Q(t)ΛQ(t)−1,

2 a± refers to projection onto strictly upper (strictly lower) triangular matrices, with all 2 × 2
diagonal blocks equal zero. a0 refers to projection onto the “diagonal", consisting of 2×2 blocks.
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whereQ(t) is the lower-triangular matrix whose entries are given by the coeffi-
cients of the polynomials in λ:

q2n(t, λ) :=
2n∑
j=0

Q2n,j (t)λ
j

= λ2n√
τ̃2nτ̃2n+2

τ̃2n(t − [λ−1])

q2n+1(t, λ) :=
2n+1∑
j=0

Q2n+1,j (t)λj

= λ2n√
τ̃2nτ̃2n+2

(λ+ ∂

∂t1
)τ̃2n(t − [λ−1])

where τ̃2n(t) are Pfaffians:

τ̃2n(t) := Pf m2n(t,−t) = (detm2n(t,−t))1/2 = τ2n(t,−t)1/2 , (0.5)

for every even n ∈ Z≥0. The qi are skew-orthonormal polynomialswith respect to
a skew inner-product 〈, 〉, namely 〈qi, qj 〉 = Jij in terms of the J -matrix defined
earlier; see [7]. The “Pfaffian τ̃ -function” is itself not a 2-Toda τ -function, but
it ties up remarkably with the 2-Toda τ -function τ (see (0.3)) as follows3:

τ2n(t,−t − [α] + [β]) = τ̃2n(t)τ̃2n(t + [α] − [β])
τ2n+1(t,−t − [α] + [β]) = (β − α)τ̃2n(t − [β])τ̃2n+2(t + [α]) . (0.6)

Whenβ → α, we approach the deeper stratum in theBorel decomposition ofm∞
in a very specific way. It shows that the odd τ -functions τ2n+1(t,−t −[α]+ [β])
approach zero linearly as β → α, at the rate depending on α:

lim
β→α

τ2n+1(t,−t − [α] + [β])/(β − α) = τ̃2n(t − [α])τ̃2n+2(t + [α]) .

Equations (0.6) are crucial in establishing bilinear relations for Pfaffian τ̃ -func-
tions: for all t, t ′ ∈ C∞ and m, n positive integers∮

z=∞
τ̃2n(t − [z−1])τ̃2m+2(t ′ + [z−1])e

∑∞
i=0(ti−t ′i )zi z2n−2m−2dz

+
∮
z=0

τ̃2n+2(t + [z])τ̃2m(t ′ − [z])e
∑∞

i=0(t ′i−ti )z
−i

z2n−2mdz = 0 , (0.7)

3 [α] := (α, α2/2, α3/3, . . . ).
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This bilinear identity leads to different types of relations, involving nearest
neighbors, like the “differential Fay identity”,

{τ̃2n(t − [u]), τ̃2n(t − [v])}
+ (u−1 − v−1)

(
τ̃2n(t − [u])τ̃2n(t − [v])− τ̃2n(t)τ̃2n(t − [u] − [v])

)
= uv(u− v)τ̃2n−2(t − [u] − [v])τ̃2n+2(t) , (0.8)

and the Hirota bilinear equations4,(
pk+4(D̃)− 1

2
D1Dk+3

)
τ̃2n · τ̃2n = pk(D̃)τ̃2n+2 · τ̃2n−2 . (0.9)

For k = 0, this equation can be viewed as an inductive expression of τ̃2n+2 in
terms of τ̃2n−2 and derivatives of τ̃2n.

In analogy with the 2-Toda or KP theory, we establish Fay identities for the
Pfaff τ̃ -functions. In this instance, they involvePfaffians rather thandeterminants:

Pf

(
(zj − zi)τ̃2n−2(t − [zi] − [zj ])

τ̃2n(t)

)
1≤i,j≤2k

= ∆(z)
τ̃2n−2k

(
t −∑2k

i=1[zi]
)

τ̃2n(t)
, (0.10)

In particular for k = 2,∑
1→2→3→1

(z1 − z0)(z2 − z3)τ̃2n(t − [z0] − [z1])τ̃2n(t − [z2] − [z3])

= −
 ∏
0≤i<j≤3

(zi − zj )

 τ̃2n+2(t)τ̃2n−2(t − [z0] − [z1] − [z2] − [z3])

which has a useful interpretation in terms of the Pfaffians of Christoffel-Darboux
kernels of the form

Kn(µ, λ)

= e
∑∞

i=1 ti (µi+λi)

n−1∑
k=0

(
q2k(t, λ)q2k+1(t, µ)− q2k(t, µ)q2k+1(t, λ)

)
, (0.11)

4 ∂̃ = (∂/∂t1, (1/2)∂/∂t2, (1/3)∂/∂t3, . . . ), D̃ = (D1, (1/2)D2, (1/3)D3, . . . ) is the corre-
sponding Hirota symbol: P(D̃)f · g := P(∂/∂y1, (1/2)∂/∂y2, . . . )f (t + y)g(t − y)|y=0, and
pk are the elementary Schur functions:

∑∞
k=0 pk(t)zk := exp(

∑∞
i=1 tizi ).
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where the qm(t, λ) form the system of skew-orthogonal polynomials, mentioned
above (see [7]). This is the analogue of the Christoffel-Darboux kernel for or-
thogonal polynomials. So, formula (0.10) can be rewritten as

Pf(Kn(zi, zj ))1≤i,j≤2k =
(
1

τ̃

2k∏
i=1

ordered

X(t; zi)τ̃
)
2n

, (0.12)

where

X(t; z) := Λ−1e
∑∞

i=1 ti zi e
−∑∞

i=1 z−i

i
∂
∂ti χ(z) ,

with χ(z) = (ziδij )i,j∈A a diagonal matrix, is a vertex operator for the corre-
sponding Pfaff lattice (see [7,6]). This vertex operator also has the remarkable
property that for a Pfaffian τ̃ -function,

τ̃2n(t)+ aX(t; λ)X(t;µ)τ̃2n(t) ≡
τ̃2n(t)+ a

(
1− µ

λ

)
λ2n−2µ2n−1e

∑
t1(λ

i+µi)τ̃2n−2(t − [λ−1] − [µ−1])
is again a Pfaffian τ̃ -function.
As was shown in [2,3], the 2-Toda lattice has four distinct vertex operators.

Upon setting s = −t , the 2-Toda vertex operators reduce to vertex operators
for the Pfaff lattice. This enables us to give the action of Virasoro generators on
Pfaff τ̃ -functions, in terms of the restriction (to s = −t) of actions on 2-Toda
τ -functions:(

J
(k)
i (t)+ (−1)kJ (k)

i (s)
)
τ2n(t, s)|s=−t = 2τ̃2n(t)J

(k)
i (t)τ̃2n(t) .

Finally, in Sect. 6 and 8 we discuss two examples. In the first example,
inherently semi-infinite, the Pfaff τ̃ -functions are integrals∫

Sk

etr(−V (X)+∑ tiX
i )dX and

∫
Tk

etr(−V (X)+∑ tiX
i )dX,

where dX denotes Haar measure over the spaces

Sk = {k × k symmetric matrices}
Tk = {k × k self-dual Hermitian matrices, with quaternionic entries},

appearing naturally in the theory of randommatrices; this is extensively discussed
in [6] and [25]. By studying two strings of bi-orthogonal polynomials in the 2-
Toda lattice case, we find “string equations"; upon setting t = −s and using
the above formulae, we derive “Virasoro constraints" for the symmetric matrix
integrals.

The second example, inherently bi-infinite, will be given in the context of
curves with fixed point free involution ι, equipped with a line bundle L having
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a suitable antisymmetry condition with respect to ι. This example is genuinely
bi-infinite, i.e., Si , Li , Λ etc., are Z× Z matrices, and Ψi , τ etc., are Z-vectors.
The bi-infinite Pfaff lattice has a quasi-periodic solution in terms of a Prym Θ-
function, which is essentially the square root ofthe Riemann Θ-function. The
case we discussed before, i.e., when those matrices and vectors are indexed by
Z≥0 × Z≥0 and Z≥0, respectively, will be called the semi-infinite case.

The Pfaff lattice already appear in the work of Jimbo and Miwa as one half
of the D′∞-hierarchy (compare ( 0.7) (or (3.2)) with the case l = l′ of formula
(7.7) in [15]), in the work of Hirota et al., in the context of the coupled KP
hierarchy (compare, e.g., (0.5) and (0.9) with formulas (3.5) and (3.25a) in [13],
respectively), in the work of Kac and van de Leur [16] in the context of the DKP
hierarchy (on the exact connection, see forthcomingwork by J. van de Leur [24]),
and in the recent work of S. Kakei [17,18], who realized Hirota et al.’s coupled
KP hierarchy as a restriction of the 2-component KP hierarchy instead of the
2-Toda lattice, and studied its relation to matrix integrals among other aspects.

1. Borel decomposition and the 2-Toda lattice

In this section we recall the theory of 2-Toda lattice.While the matrixm∞ and its
Borel decomposition may lookmore natural in the semi-infinite case, the general
theory of 2-Toda or Pfaff lattice works better in the bi-infinite case. However,
since the latter is actually independent of the former, this does not affect us in
developing the theory in its full generality. In what follows, unless otherwise
noted, we shall treat both cases in parallel, by denoting the index set for matrices
and vectors by

A :=
{

Z≥0 semi-infinite case,

Z bi-infinite case,

and make brief remarks without going into details when the two cases need be
treated differently.

In [4,2], we considered the following evolution equations for the (semi- or
bi-infinite) moment matrix m∞ ∈ MatA×A

∂m∞
∂tn

= Λnm∞ ,
∂m∞
∂sn

= −m∞(Λ�)n , n = 1, 2, . . . , (1.1)

whereΛ = (δi,j−1)i,j∈A is the shift matrix; then (1.1) has the following solution

m∞(t, s) = e
∑∞

n=1 tnΛn

m∞(0, 0)e−
∑∞

n=1 sn(Λ�)n (1.2)

in terms of the initial data m∞(0, 0).
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Assumem∞ = m∞(t, s) allows, for “generic” (t, s), theBorel decomposition
m∞ = S−11 S2, for

S1 ∈ G− :=
{
lower-triangular matrices
with 1’s on the diagonal

}
,

S2 ∈ G+ :=
{
upper-triangular matrices
with non-zero diagonal entries

}
,

with corresponding Lie algebras g−, g+. For anyX ∈ MatA×A, denote byX− and
X+ its strictly lower-triangular part and the upper-triangular part, respectively:
X = X− +X+, X± ∈ g±. Setting

L1 := S1ΛS−11 , (1.3)

we have5

S1
∂m∞
∂tn

S−12

{= S1(∂/∂t1)(S
−1
1 S2)S

−1
2 = −Ṡ1S−11 + Ṡ2S

−1
2 ,

= S1Λ
nm∞S−12 = S1Λ

nS−11 = Ln
1 .

Since −Ṡ1S−11 ∈ g− and Ṡ2S
−1
2 ∈ g+, the uniqueness of the decomposition

g− + g+ leads to

−∂S1

∂tn
S−11 = (Ln

1)− ,
∂S2

∂tn
S−12 = (Ln

1)+ .

Similarly, setting

L2 = S2Λ
�S−12 , (1.4)

we find

−∂S1

∂sn
S−11 = −(Ln

2)− ,
∂S2

∂sn
S−12 = −(Ln

2)+ .

This leads to the 2-Toda equations [23] for S1, S2 and L1, L2:

∂

∂tn
S{1
2

} = ∓(Ln
1)∓S{1

2

} , ∂

∂sn
S{1
2

} = ±(Ln
2)∓S{1

2

} , (1.5)

∂Li

∂tn
= [(Ln

1)+, Li] , ∂Li

∂sn
= [(Ln

2)−, Li] , i = 1, 2, (1.6)

and conversely, reading this argument backwards, we observe that the 2-Toda
equations (1.5) imply the time evolutions (1.1) for m∞.

5 In the semi-infinite case, the left G−- and right G+-multiplications on MatA×A are well-
defined and associative: X(YZ) = (XY)Z if X, Y ∈ G− or Y , Z ∈ G+. In the bi-infinite case,
wemust require those properties, e.g., by putting conditions on the behavior ofµij as i, j →−∞,
in order to make sense of the following calculation.
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The pairs of wave and adjoint wave functions Ψ = (Ψ1, Ψ2) and Ψ ∗ =
(Ψ ∗

1 , Ψ
∗
2 ), defined by

Ψ{1
2

}(t, s; z) = e
∑∞

i=1
{
ti
si

}
z±i

S{1
2

}χ(z) ,
Ψ ∗{

1
2

}(t, s; z) = e
−∑∞

i=1
{
ti
si

}
z±i
(
S�{1
2

})−1χ(z−1) , (1.7)

where χ(z) is the column vector (zn)n∈A, satisfy6

L1Ψ1 = zΨ1 , L2Ψ2
.= z−1Ψ2 , L�

1 Ψ
∗
1

.= zΨ ∗
1 , L�

2 Ψ
∗
2 = z−1Ψ ∗

2 (1.8)

and

∂

∂tn
Ψ1 = (Ln

1)+Ψ1 ,
∂

∂tn
Ψ2 = (Ln

1)+Ψ2 ,

∂

∂sn
Ψ1 = (Ln

2)−Ψ1 ,
∂

∂sn
Ψ2

.= (Ln
2)−Ψ2 ,

∂

∂tn
Ψ ∗
1

.= −((Ln
1)+)�Ψ

∗
1 ,

∂

∂tn
Ψ ∗
2 = −((Ln

1)+)�Ψ
∗
2 ,

∂

∂sn
Ψ ∗
1 = −((Ln

2)−)�Ψ
∗
1 ,

∂

∂sn
Ψ ∗
2 = −((Ln

2)−)�Ψ
∗
2 ,

(1.9)

which are equivalent to (1.5), and are further equivalent to the following bilinear
identities,7 for all m, n ∈ A and t, s, t ′, s ′ ∈ C∞:∮

z=∞
Ψ1n(t, s; z)Ψ ∗

1m(t
′, s ′; z) dz

2πiz

=
∮
z=0

Ψ2n(t, s; z)Ψ ∗
2m(t

′, s ′; z) dz

2πiz
. (1.10)

By 2-Toda theory [23,4], the problem is solved in terms of a sequence of tau-
functions τn(t, s), which in the semi-infinite case (or in the bi-infinite case if we
can take a “nice” m∞) are given by

τn(t, s) = detmn(t, s) , mn(t, s) := (µij (t, s))i,j∈A;i,j<n (1.11)

6 Here and inwhat follows,wedenote by “
.=” any equalitywhich is true in the bi-infinite case, but

not true in general in the semi-infinite case. In the semi-infinite caseΛ�χ(z) = π+(z−1χ(z)) �=
z−1χ(z), where π+ maps zk to itself if k ≥ 0 and 0 otherwise; so the second and third formulas in
(1.8) should be replaced by L2Ψ2 = ψπ+(ψ−1z−1Ψ2) and L�1 Ψ ∗

1 = ϕ−1π−(ϕzΨ ∗
1 ), respec-

tively, whereψ = e
∑∞

i=1 siz−i , ϕ := e
∑∞

i=1 ti zi , and π− maps zk to itself if k ≤ 0 and 0 otherwise.
In (1.9), the second formula in the second line and the first formula in the third line need similar
corrections.
7 The contour integral around z = ∞ is taken clockwise about a small circle around z = ∞ ∈

P
1(C), while the one around z = 0 is taken counter-clockwise about z = 0.
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(τ0 ≡ 1 in the semi-infinite case), as

Ψ1(t, s; z) =
(
τn(t − [z−1], s)

τn(t, s)
e
∑∞
1 ti z

i

zn
)
n∈A

,

Ψ2(t, s; z) =
(
τn+1(t, s − [z])

τn(t, s)
e
∑∞
1 siz

−i

zn
)
n∈A

,

Ψ ∗
1 (t, s; z) =

(
τn+1(t + [z−1], s)

τn+1(t, s)
e−
∑∞
1 ti z

i

z−n

)
n∈A

,

Ψ ∗
2 (t, s; z) =

(
τn(t, s + [z])
τn+1(t, s)

e−
∑∞
1 siz

−i

z−n

)
n∈A

.

(1.12)

Note (1.7) and (1.12) yield

h(t, s) := (diagonal part of S2) = diag

(
τn+1(t, s)
τn(t, s)

)
n∈A

. (1.13)

Formulas (1.10) and (1.12) imply the following bilinear identities∮
z=∞

τn(t − [z−1], s)τm+1(t ′ + [z−1], s ′)e
∑∞

i=1(ti−t ′i )zi zn−m−1dz

=
∮
z=0

τn+1(t, s − [z])τm(t ′, s ′ + [z])e
∑∞

i=1(si−s′i )z−i

zn−m−1dz , (1.14)

where m, n ∈ A, satisfied by and characterizing the 2-Toda τ -functions.
Using the matrices ε := (iδi,j+1)i,j∈A and ε∗ := (−iδi,j−1)i,j∈A, which are

characterized by

εχ(z) = (∂/∂z)χ(z) , and ε∗χ(z) = (∂/∂(z−1))χ(z) , (1.15)

and using the notation

ξ(t, z) :=
∞∑
i=1

tiz
i , ξ ′(t, z) := (∂ξ/∂z)(t, z) =

∞∑
i=1

itiz
i−1 ,

we also define8

M1 := S1
(
ε + ξ ′(t,Λ)

)
S−11 = W1εW

−1
1 ,

M2 := S2
(
ε∗ + ξ ′(s,Λ�)

)
S−12

.= W2ε
∗W−1

2 ,

M∗
1 := S�−11

(
ε∗ − ξ ′(t,Λ�)

)
S�1

.= W�−1
1 ε∗W�

1 ,

M∗
2 := S�−12

(
ε − ξ ′(s,Λ)

)
S�2 = W�−1

2 εW�
2 ,

(1.16)

8 See footnote 6 for the notation “
.=”. In the semi-infinite case the last equality in the second and

third line of (1.16), and the second and third equalities in (1.18) fail because [Λ�, ε∗] = 1 fails
(note [Λ, ε] = 1 is true both in the semi- and bi-infinite cases). The failure in the semi-infinite case
of the second and the third equalities in (1.17) is due to that of the second and the third equalities
in (1.8).
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whereW1 := S1e
ξ(t,Λ) andW2 := S2e

ξ(s,Λ�). The operatorsMi andM∗
i satisfy

M1Ψ1 = ∂Ψ1

∂z
, M2Ψ2

.= ∂Ψ2

∂(z−1)
,

M∗
1Ψ

∗
1

.= ∂Ψ ∗
1

∂z
, M∗

2Ψ
∗
2 =

∂Ψ ∗
2

∂(z−1)
,

(1.17)

[L1,M1] = I , [L2,M2] .= I ,

[L�
1 ,M

∗
1 ] .= I , [L�

2 ,M
∗
2 ] = I .

(1.18)

The symmetry vector fields9 YN acting on Ψ and L,

Y
Mα

i L
β
i
Ψ1 := (−1)i(Mα

i L
β

i )−Ψ1 ,

Y
Mα

i L
β
i
Ψ2 := (−1)i−1(Mα

i L
β

i )+Ψ2 ,

Y
Mα

i L
β
i
L1 := (−1)i[(Mα

i L
β

i )−, L1
]
,

Y
Mα

i L
β
i
L2 := (−1)i−1[(Mα

i L
β

i )+, L2
]
.

(1.19)

for i = 1, 2 and α, β ∈ Z, α ≥ 0, lift to an action on τ , according to the
Adler-Shiota-van Moerbeke formula [9,10]:

Proposition 1.1 For n, k ∈ Z, n ≥ 0, and i = 1, 2, the symmetry vector fields
YMn

i L
n+k
i

acting on Ψ lead to the correspondences

−((Mn
1L

n+k
1 )−Ψ1)m
Ψ1,m

= 1

n+ 1
(e−η − 1)

W
(n+1)
m,k (τm)

τm
, (1.20)

((Mn
1L

n+k
1 )+Ψ2)m
Ψ2,m

= 1

n+ 1

(
e−η̃

W
(n+1)
m+1,k(τm+1)
τm+1

− W
(n+1)
m,k (τm)

τm

)
,

((Mn
2L

n+k
2 )−Ψ1)m
Ψ1,m

= 1

n+ 1
(e−η − 1)

W̃
(n+1)
m−1,k(τm)
τm

,

−((Mn
2L

n+k
2 )+Ψ2)m
Ψ2,m

= 1

n+ 1

(
e−η̃

W̃
(n+1)
m,k (τm+1)
τm+1

− W̃
(n+1)
m−1,k(τm)
τm

)
,

where η =∑∞
i=1(z

−i/ i)(∂/∂ti) and η̃ =∑∞
i=1(z

i/i)(∂/∂si), so that

eaη+bη̃f (t, s) = f (t + a[z−1], s + b[z]) .
9 Note the action of Y

Mα
i L

β
i

on L follows from that on Ψ , which in turn follows from (1.20).

In the semi-infinite case, note also the appearance in (1.19) of negative powers of Li , which do

not exist: It is natural to replace L
β
1 and L

β
2 for β < 0 by S1(Λ

�)−βS−11 and S2Λ
−βS−12 ,

respectively, but the appearance of projector π+ in Λ�χ(z) = π+(z−1χ(z)) (see footnote 6)
makes it nontrivial to apply the method of [10]. So in the semi-infinite case, we first define the
action of Y

Mα
i L

β
i

on Ψ by (1.20) (with ±(−1)i−1(Mn
i
Ln+k
i

)± replaced by Y
Mn

i L
n+k
i
), and then

check the validity of/deviation from (1.19).
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In Proposition 1.1, the W -generators take on the following form in terms of
the customaryW -generators

W
(k)
n,B =

k∑
j=0

(
n

j

)
(k)jW

(k−j)

B and W̃
(k)
n,B = W

(k)
−n,B

∣∣∣
t �→s

(1.21)

(see (4.5)). We shall need theW(k)
n,B -generators for 0 ≤ k ≤ 2:

W(0)
n = δn,0 , W(1)

n = J (1)
n ,

W(2)
n = J (2)

n − (n+ 1)J (1)
n ,

n ∈ Z , (1.22)

and

W
(1)
m,i = W

(1)
i +mW

(0)
i = J

(1)
i +mδi0 ,

W
(2)
m,i = W

(2)
i + 2mW

(1)
i +m(m− 1)W(0)

i

= J
(2)
i + (2m− i − 1)J (1)

i +m(m− 1)δi0 ,

(1.23)

expressed in terms of the Virasoro generators

J (0)
n = δn0 , J (1)

n =


∂/∂tn if n > 0

−nt−n if n < 0

0 if n = 0

,

J (2)
n =

∑
i+j=n

∂2

∂ti∂tj
+ 2

∑
−i+j=n

iti
∂

∂tj
+
∑

−i−j=n

(iti)(j tj ) .

(1.24)

The corresponding expression W̃ (k)
m,i can be read off from the above, using (1.21),

with J (k)
n replaced by J̃ (k)

n = J (k)
n

∣∣
t �→s

.

2. Two-Toda τ -functions versus Pfaffian τ̃ -functions

In this section, we exhibit the properties of the 2-Toda lattice, associated with a
skew-symmetric initial matrix m∞(0, 0), or τ -functions τn(t, s) satisfying

τn(t, s) = (−1)nτn(−s,−t) .
As in the last section, we use the notation A := Z≥0 or Z to treat both the semi-
and bi-infinite cases at once.

Theorem 2.1 The following five conditions for a 2-Toda solution are equivalent,
where (2.1) and (2.2) assume the solution arises from the matrix m∞ (e.g., the
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semi-infinite case), h in (2.3) and (2.4) is the diagonal matrix defined by (1.13),
and ε in (2.5) is either 0 or 1 (in the semi-infinite case ε = 0)10:

m∞(0, 0) = −m∞(0, 0)� , (2.1)

m∞(t, s) = −m∞(−s,−t)� , (2.2)

h−1S1(t, s) = −(S�2 )−1(−s,−t) ,
h−1S2(t, s) = (S�1 )

−1(−s,−t) , (2.3)

h−1Ψ1(t, s; z) = −Ψ ∗
2 (−s,−t; z−1) ,

h−1Ψ2(t, s; z) = Ψ ∗
1 (−s,−t; z−1) ,

(2.4)

τn(−s,−t) = (−1)n+ετn(t, s) . (2.5)

Those equivalent conditions imply, and in the semi-infinite case are equivalent
to, the following two conditions (2.6) and (2.7):

L1(t, s) = hL�
2 h

−1(−s,−t) ,
L2(t, s) = hL�

1 h
−1(−s,−t) , (2.6)

h(−s,−t) = −h(t, s) . (2.7)

Proof. Formula (2.1) clearly follows from (2.2). Conversely, (2.2) is an imme-
diate consequence of (1.2) and (2.1). Next, consider the Borel decomposition of
m∞(t, s) and −m∞(−s,−t):

m∞(t, s) = S−11 (t, s)S2(t, s) ,

−m∞(−s,−t)� = −S�2 (−s,−t)S−1�1 (−s,−t)
= (S�2 (−s,−t)h−1(−s,−t)) ·
· (−h(−s,−t)S−1�1 (−s,−t)) .

Hence (2.2) clearly follows from

S−11 (t, s) = S�2 (−s,−t)h−1(−s,−t) ∈ G− ,

S2(t, s) = −h(−s,−t)S−1�1 (−s,−t) ∈ G+ ,
(2.8)

which is (2.3) up to the substitution (t, s)→ (−s,−t). Conversely, (2.2) and the
uniqueness of the Borel decomposition imply (2.8). The equivalence of (2.3) and
(2.4) follows from (1.7). By the Definitions (1.3) and (1.4) of Li , (2.3) implies
(2.6). Comparing (2.3) with (2.8) again, we have (2.7). Using (1.12) to rewrite
condition (2.4) in terms of τ , we see (2.5) clearly implies (2.4), and conversely,

10 In what follows, shifting the index n in the bi-infinite case if necessary, we assume (2.5) holds
always with ε = 0.
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(2.4) implies that τ ′n(t, s) := (−1)nτn(−s,−t) plays the same role as τ(t, s),
i.e., it is also a τ -function associated to Ψ . Since Ψ determines τ uniquely up to
a constant, there exists c ∈ C \ {0} such that τ ′n(t, s) = cτn(t, s), i.e.,

(−1)nτn(−s,−t) = cτn(t, s) .

Comparing this formula, with itself with (t, s) replaced by (−s,−t), we have
c2 = 1, and hence c = ±1 = (−1)ε, showing (2.5).

Finally, in the semi-infinite case, relation (2.5)with ε = 0 follows from (1.11),
(2.2), and the multilinearity of determinant; or from (2.7), using τ0(t, s) = 1:

τn(t, s)

τn(−s,−t) = − τn−1(t, s)
τn−1(−s,−t) = · · · = (−1)n τ0(t, s)

τ0(−t,−s) = (−1)n .

In particular, in the semi-infinite case (2.7) implies, and hence is equivalent to,
(2.5). Note also that in the semi-infinite case Li determines Si uniquely, so (2.3)
and (2.6) are also equivalent.  !

For a skew-symmetric initialmatrixm∞(0, 0), relation (2.2) implies the skew-
symmetry ofm∞(t,−t). Therefore the odd τ -functions vanish and the even ones
have a natural square root, the Pfaffian τ̃2n(t):

τ2n+1(t,−t) = 0 , τ2n(t,−t) = τ̃ 22n(t) , (2.9)

where the Pfaffian, together with its sign specification, is also determined by the
formula:

τ̃2n(t)dx0 ∧ dx1 ∧ · · · ∧ dx2n−1

:= 1

n!

 ∑
0≤i<j≤2n−1

µij (t,−t)dxi ∧ dxj

n

. (2.10)

Theorem 2.2 For τ satisfying (2.5), and hence for a skew-symmetric initial
condition m∞(0, 0), the 2-Toda τ -function τ(t, s) and the Pfaffians τ̃ (t) are
related by

τ2n(t + [α] − [β],−t) = τ̃2n(t)τ̃2n(t + [α] − [β]) ,
τ2n+1(t + [α] − [β],−t) = (α − β)τ̃2n(t − [β])τ̃2n+2(t + [α]) , (2.11)

or alternatively

τ2n(t − [β],−t + [α]) = τ̃2n(t − [α])τ̃2n(t − [β]) ,
τ2n(t + [α],−t − [β]) = τ̃2n(t + [α])τ̃2n(t + [β]) ,

τ2n+1(t − [β],−t + [α]) = (α − β)τ̃2n(t − [α] − [β])τ̃2n+2(t) ,
τ2n+1(t + [α],−t − [β]) = (α − β)τ̃2n(t)τ̃2n+2(t + [α] + [β]) .

(2.12)
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Proof. In formula (1.14), set n = m− 1, s = −t + [β], t ′ = t + [α] − [β] and
s ′ = s − [α] − [β] = −t − [α]; then using

1

2πi

∮
z=∞

τn(t − [z−1], s)τm+1(t ′ + [z−1], s ′)e
∑∞

i=1(ti−t ′i )zi zn−m−1dz

= 1

2πi

∮
z=∞

τm−1(t − [z−1], s)τm+1(t ′ + [z−1], s ′)1− αz

1− βz

dz

z2

= −Resz=β−1 τm−1(t − [z−1], s)τm+1(t ′ + [z−1], s ′)1− αz

1− βz

dz

z2

= (β − α)τm−1(t − [β], s)τm+1(t ′ + [β], s ′)
= (β − α)τm−1(t − [β],−t + [β])τm+1(t + [α],−t − [α]) ,

1

2πi

∮
z=0

τm(t, s − [z])τm(t ′, s ′ + [z])e
∑∞

i=1(si−s′i )z−i

zn−m−1dz

= 1

2πi

∮
z=0

τm(t, s − [z])τm(t ′, s ′ + [z]) 1

1− α/z

1

1− β/z

dz

z2

= (Resz=α +Resz=β)τm(t, s − [z])τm(t ′, s ′ + [z]) dz

(z− α)(z− β)

= 1

α − β

(
τm(t, s − [α])τm(t ′, s ′ + [α])
− τm(t, s − [β])τm(t ′, s ′ + [β]))

= 1

α − β

(
τm(t,−t + [β] − [α])τm(t + [α] − [β],−t)
− τm(t,−t)τm(t + [α] − [β],−t − [α] + [β])) ,

and (2.5), we have

− (β − α)2τm−1(t − [β],−t + [β])τm+1(t + [α],−t − [α])
= (−1)mτm(t + [α] − [β],−t)2

− τm(t,−t)τm(t + [α] − [β],−t − [α] + [β]) .
Setting first m = 2l and then m = 2l + 1, we find respectively, since odd
τ -functions vanish on {s = −t} in view of (2.5):
0 = τ2l(t + [α] − [β],−t)2

− τ2l(t,−t)τ2l(t + [α] − [β],−t − [α] + [β]) , (2.13)

and

− (β − α)2τ2l(t − [β],−t + [β])τ2l+2(t + [α],−t − [α])
= −τ2l+1(t + [α] − [β],−t)2 . (2.14)
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Taking the square root, with the consistent choice of sign11 (2.10) yields (2.11),
and then (2.12) upon setting t → t − [α] or t → t + [β].  !
Corollary 2.3 Under the assumption of Theorem 2.2, the wave and adjoint wave
functions Ψ , Ψ ∗ along the locus {s = −t} satisfy the relations

Ψ1,2n(t,−t; z) = − lim
s→−t

(
τ2n+1√
τ2nτ2n+2

Ψ1,2n+1(t, s; z)
)

= lim
s→−t

(
τ2n+1
τ2n

Ψ ∗
2,2n(t, s; z−1)

)
= lim

s→−t

(√
τ2n+2
τ2n

Ψ ∗
2,2n+1(t, s; z−1)

)
= τ̃2n(t − [z−1])

τ̃2n(t)
z2ne

∑∞
i=1 ti zi ,

Ψ ∗
1,2n−1(t,−t; z) = lim

s→−t

(
τ2n−1√
τ2n−2τ2n

Ψ ∗
1,2n−2(t, s; z)

)
= lim

s→−t

(
τ2n−1
τ2n

Ψ2,2n−1(t, s; z−1)
)

= − lim
s→−t

(√
τ2n−2
τ2n

Ψ2,2n−2(t, s; z−1)
)

= τ̃2n(t + [z−1])
τ̃2n(t)

z−(2n−1)e−
∑∞

i=1 ti zi .

Proof. These follow from (1.12), (2.11) and (2.12) by straightforward calcula-
tions.  !
Corollary 2.4 Under the assumption of Theorem 2.2, we have
(i) for k ≥ 1:

∂τ2n

∂tk

∣∣∣∣
s=−t

= τ̃2n(t)
∂τ̃2n

∂tk
(t) ,

∂τ2n+1
∂tk

∣∣∣∣
s=−t

= pk−1(−D̃t )τ̃2n · τ̃2n+2(t)

≡
∑

i+j=k−1
(pi(−∂̃t )τ̃2n(t))(pj (∂̃t )τ̃2n+2(t)) ,

11 It suffices to check that (2.10) yields the correct sign in the second equation of (2.11) at β = 0,
t = 0 and modulo O(α2), i.e.,

(∂/∂t1)τ2n+1(0, 0) = τ̃2n(0)τ̃2n+2(0) ,
for somem∞(0, 0) for which the right hand side does not vanish. This can be checked easily, e.g.,

for m∞(0, 0) made of 2× 2 blocks

(
0 1
−1 0

)
on the diagonal.
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(ii) for m ≥ 2:∑
k+l=m

∂2τ2n

∂tk∂tl

∣∣∣∣
s=−t

= τ̃2n(t)
∑

k+l=m

∂2τ̃2n

∂tk∂tl
(t) , (2.15)

∑
k+l=m

∂2τ2n

∂tk∂sl

∣∣∣∣
s=−t

= −
∑

k+l=m

∂τ̃2n

∂tk
(t)

∂τ̃2n

∂tl
(t) , (2.16)

∑
k+l=m

∂2τ2n+1
∂tk∂tl

∣∣∣∣
s=−t

=
∑

k+l=m−1
(k − l)pk(−∂̃t )τ̃2n(t) · pl(∂̃t )τ̃2n+2(t) ,

(iii) for k, l ≥ 0:

pk(∂̃t )pl(−∂̃t )τ2n(t, s)|s=−t = τ̃2n(t)pk(∂̃t )pl(−∂̃t )τ̃2n(t) ,
pk(∂̃t )pl(−∂̃t )τ2n+1(t, s)|s=−t = pl(−∂̃t )τ̃2n(t) · pk−1(∂̃t )τ̃2n+2(t)

− pl−1(−∂̃t )τ̃2n(t) · pk(∂̃t )τ̃2n+2(t) ,

where pk(·) are the elementary Schur functions, with p−1(·) = 0, and Dt =
(Dt1, (1/2)Dt2, . . . ) are Hirota’s symbols.

Proof. Relations (i) are obtained by differentiating formulas (2.11) in α, setting
β = α and identifying the coefficients of αk−1. The first two relations in (ii) are
obtained by differentiating formulas (2.11) in α and β (i.e., applying ∂2/∂α∂β),
setting β = α and identifying the coefficients of αm−2. The last relation in (ii) is
obtained by differentiating the first formula in (2.12) in α and β, setting β = α,
substituting t + [α] for t , and then identifying the coefficients of αm−2. Finally,
expanding both identities (2.11) in α and β, e.g.,

τ2n(t + [α] − [β], s) =
∞∑

k,l=0
αkβlpk(∂̃t )pl(−∂̃t )τ2n(t, s)

and identifying the powers of α and β yields relations (iii).  !
Variants of formulas (2.11) and the formulas in the corollary can be obtained

by using (2.5) and the following consequence of it:

∂ |I |+|J |

∂tI ∂sJ
τn

∣∣∣∣
s=−t

= (−1)|I |+|J |+n ∂
|J |+|I |

∂tJ ∂sI
τn

∣∣∣∣
s=−t

, (2.17)

where I = (i1, i2, . . . ) and J = (j1, j2, . . . ) aremultiindices, |I | = i1+i2+· · · ,
∂tI = ∂t

i1
1 ∂t

i2
2 · · · , etc. E.g., (∂2/∂tk∂sl + ∂2/∂tl∂sk)τ2n+1 = 0, so we get the

following (trivial) counterpart of (2.16):∑
k+l=m

∂2τ2n+1
∂tk∂sl

∣∣∣∣
s=−t

= 0 .
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3. Equations satisfied by Pfaffian τ̃ -functions

In this section, we exhibit the properties of the Pfaffian τ̃ -function introduced
above.

Theorem 3.1 For all t, t ′ ∈ C∞ and m, n positive integers, the τ̃ -functions
satisfy the bilinear relations

∮
z=∞

τ̃2n(t − [z−1])τ̃2m+2(t ′ + [z−1])e
∑∞

i=0(ti−t ′i )zi z2n−2m−2dz

+
∮
z=0

τ̃2n+2(t + [z])τ̃2m(t ′ − [z])e
∑∞

i=0(t ′i−ti )z
−i

z2n−2mdz = 0 , (3.1)

or equivalently

∑
j,k≥0

j−k=−2n+2m+1

pj(2y)e
∑∞

i=1 yiDipk(−D̃)τ̃2n · τ̃2m+2

+
∑
j,k≥0

k−j=−2n+2m−1

pj(−2y)e
∑∞

i=1 yiDipk(D̃)τ̃2n+2 · τ̃2m = 0 . (3.2)

Proof. Formula (3.1) follows from (1.14) upon replacing12 n by 2n and m

by 2m, using (2.11) and (2.12), with β = 0, to eliminate τ2n(t − [z−1],−t),
τ2m+1(t ′,−t ′ − [z]), τ2n+1(t,−t − [z]) and τ2m(t ′ − [z],−t ′) and, upon dividing
both sides by τ̃2n(t)τ̃2m(t).

Substituting t + y and t − y for t and t ′, respectively, into the left hand side
of (3.1) and Taylor expanding it in y, we obtain

∮
z=∞

e
∑∞

i=1 2yizi τ̃2n(t + y − [z−1])τ̃2m+2(t − y + [z−1])z2n−2m−2dz

+
∮
z=0

e−
∑∞

i=1 2yiz−i τ̃2n+2(t + y + [z])τ̃2m(t − y − [z])z2n−2mdz

=
∮
z=∞

e
∑∞

i=1 2yizi e
∑∞

i=1 yiDi e−
∑∞

i=1 z−iDi/i τ̃2n · τ̃2m+2z2n−2m−2dz

12 One can check that all the other choices of parities of n and m, i.e., the cases where one or
both of n, m are odd, yield the same bilinear identities.
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+
∮
z=0

e−
∑∞

i=1 2yiz−i e
∑∞

i=1 yiDi e
∑∞

i=1 ziDi/i τ̃2n+2 · τ̃2mz2n−2mdz

=
∮
z=∞

∞∑
j,k=0

pj(2y)z
je
∑∞

i=1 yiDipk(−D̃)z−kτ̃2n · τ̃2m+2z2n−2m−2dz

+
∮
z=0

∞∑
j,k=0

pj(−2y)z−j e
∑∞

i=1 yiDipk(D̃)zkτ̃2n+2 · τ̃2mz2n−2mdz

= 2πi

( ∑
j−k=−2n+2m+1

pj(2y)e
∑∞

i=1 yiDipk(−D̃)τ̃2n · τ̃2m+2

+
∑

k−j=−2n+2m−1
pj(−2y)e

∑∞
i=1 yiDipk(D̃)τ̃2n+2 · τ̃2m

)
,

showing the equivalence of (3.1) and (3.2).  !
The identity (3.1) gives various bilinear relations satisfied by τ̃ .We show that

the Pfaffian τ̃ -functions satisfy identities reminiscent of the Fay and differential
Fay identities for the KP or 2-Toda τ -functions (e.g., see [1]). From this we
deduce a sequence of Hirota bilinear equations for τ̃ , which can be interpreted
as a recursion relation for τ̃2n(t).

Theorem 3.2 The functions τ̃2n(t) satisfy the following “Fay identity”:

r∑
i=1

τ̃2n

(
t −

l∑
j=1

[zj ] − [ζi]
)
τ̃2m+2

(
t −

∑
1≤j≤r
j �=i

[ζj ]
) ∏l

k=1(ζi − zk)∏
1≤k≤r
k �=i

(ζi − ζk)

+
l∑

i=1
τ̃2n+2

(
t −

∑
1≤j≤l
j �=i

[zj ]
)
τ̃2m

(
t −

r∑
j=1

[ζj ] − [zi]
) ∏r

k=1(zi − ζk)∏
1≤k≤l
k �=i

(zi − zk)

= 0 , (3.3)

the “differential Fay identity”:

{τ̃2n(t − [u]), τ̃2n(t − [v])}
+ (u−1 − v−1)(τ̃2n(t − [u])τ̃2n(t − [v])− τ̃2n(t)τ̃2n(t − [u] − [v]))

= uv(u− v)τ̃2n−2(t − [u] − [v])τ̃2n+2(t) , (3.4)

and Hirota bilinear equations, involving nearest neighbors:(
pk+4(D̃)− 1

2
D1Dk+3

)
τ̃2n · τ̃2n = pk(D̃)τ̃2n+2 · τ̃2n−2 . (3.5)
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In (3.3), 2n, 2m ∈ A, l, r ≥ 0 such that r − l = 2n − 2m, zi (1 ≤ i ≤ l) and
ζi (1 ≤ i ≤ r) are scalar parameters near 0; in (3.4), 2n − 2 ∈ A (hence 2n,
2n+2 ∈ A), and u and v are scalar parameters near 0; and in (3.5), 2n−2 ∈ A,
k = 0, 1, 2, . . . , and {f, g} := f ′g − fg′ = D1f · g is the Wronskian of f and
g, where ′ = ∂/∂t1.

Proof. The Fay identity (3.3) follows from the bilinear identity (3.1) by substi-
tutions

t �→ t − [z1] − · · · − [zl] and t ′ �→ t − [ζ1] − · · · − [ζr ] .

Indeed, since r − l = 2n− 2m, we have

exp

( ∞∑
i=1

(ti − t ′i )z
i

)
z2n−2m−2dz =

∏l
k=1(1− zzk)∏r
k=1(1− zζk)

zr−l−2dz

= −
∏l

k=1((1/z)− zk)∏r
k=1((1/z)− ζk)

d(1/z)

and

exp

( ∞∑
i=1

(t ′i − ti)z
−i

)
z2n−2mdz =

∏r
k=1(1− ζk/z)∏l
k=1(1− zk/z)

zr−ldz

=
∏r

k=1(z− ζk)∏l
k=1(z− zk)

dz ,

so the first and second terms on the left hand side of (3.1), divided by 2πi,
become, respectively,

1

2πi

∮
z=∞

τ̃2n(t − [z−1])τ̃2m+2(t ′ + [z−1])e
∑∞

i=0(ti−t ′i )zi z2n−2m−2dz

= −
r∑

i=1
Resz=ζ−1i

τ̃2n

(
t −

l∑
j=1

[zj ] − [z−1]
)

τ̃2m+2
(
t −

r∑
j=1

[ζj ] + [z−1]
)∏l

k=1(1− zzk)∏r
k=1(1− zζk)

dz
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=
r∑

i=1
Resζ=ζi τ̃2n

(
t −

l∑
j=1

[zj ] − [ζ ]
)
τ̃2m+2

(
t −

r∑
j=1

[ζj ] + [ζ ]
)

·
∏l

k=1(ζ − zk)∏r
k=1(ζ − ζk)

dζ (ζ := z−1)

=
r∑

i=1
τ̃2n

(
t −

l∑
j=1

[zj ] − [ζi]
)
τ̃2m+2

(
t −

r∑
j=1

[ζj ] + [ζi]
)

·
∏l

k=1(ζi − zk)∏
1≤k≤r
k �=i

(ζi − ζk)
,

and
1

2πi

∮
z=0

τ̃2n+2(t + [z])τ̃2m(t ′ − [z])e
∑∞

i=0(t ′i−ti )z
−i

z2n−2mdz

=
l∑

i=1
Resz=zi τ̃2n+2

(
t −

l∑
j=1

[zj ] + [z]
)

τ̃2m

(
t −

r∑
j=1

[ζj ] − [z]
)∏r

k=1(z− ζk)∏l
k=1(z− zk)

dz

=
l∑

i=1
τ̃2n+2

(
t −

l∑
j=1

[zj ] + [zi]
)
τ̃2m

(
t −

r∑
j=1

[ζj ] − [zi]
)

·
∏r

k=1(zi − ζk)∏
1≤k≤l
k �=i

(zi − zk)
,

showing (3.3).
Note that when 2m = 2n − 2, l = 1 and r = 3, denoting zi = ζi−1 for

2 ≤ i ≤ 4, and multiplying both sides of (3.3) by
∏

2≤j<k≤4(zj − zk), we obtain

(z2 − z1)(z3 − z4)τ̃2n(t − [z1] − [z2])τ̃2n(t − [z3] − [z4]) (3.6)

−(z3 − z1)(z2 − z4)τ̃2n(t − [z1] − [z3])τ̃2n(t − [z2] − [z4])
+(z4 − z1)(z2 − z3)τ̃2n(t − [z1] − [z4])τ̃2n(t − [z2] − [z3]) (3.7)

+
( ∏
1≤i<j≤4

(zi − zj )

)
τ̃2n+2(t)τ̃2n−2(t − [z1] − [z2] − [z3] − [z4]) = 0 .

The differential Fay identity (3.4) follows from (3.6) by taking a limit (set z4 = 0,
divide by z3 and let z3 → 0).Alternatively, we can prove (3.4) directly from (3.1):
Set t− t ′ = [u]−[v], 2m = 2n−2 in (3.1) and in the clockwise integral13 about
13 See footnote 7.
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z = ∞, set z �→ 1/z (and reverse the orientation of contour), yielding∮
z=0

τ̃2n(t − [z])τ̃2n(t ′ + [z])1− v/z

1− u/z

dz

z2

= −
∮
z=0

τ̃2n+2(t + [z])τ̃2n−2(t ′ − [z])1− u/z

1− v/z
z2dz .

The first integral has a simple pole at z = u and a double pole at z = 0, while
the second integral has a simple pole at z = v only, yielding, after substitution
t ′ = t − [u] + [v],

τ̃2n(t − [u])τ̃2n(t + [v])(u− v)
1

u2

+ d

dz

(
τ̃2n(t − [z])τ̃2n(t − [u] + [v] + [z])z− v

z− u

)∣∣∣∣
z=0

= −τ̃2n+2(t + [v])τ̃2n−2(t − [u])(v − u)v2,

or, after carrying out d/dz|z=0 on the left hand side,

τ̃2n(t − [u])τ̃2n(t + [v])(u− v)
1

u2

+ τ̃2n(t) · τ̃2n(t − [u] + [v])v − u

u2
−D1 τ̃2n(t) · τ̃2n(t − [u] + [v])v

u

= −τ̃2n+2(t + [v])τ̃2n−2(t − [u])(v − u)v2 . (3.8)

Shifting t �→ t − [v] and multiplying both sides by u/v yield (3.4) .
Since P(−D)f · f = P(D)f · f by the definition of Hirota operator, (3.5)

is the same as (0.8)nothing but the coefficients of yk+3 in (3.2). It also follows
from (3.4), since, for any power series F(t, t ′) which satisfies F(t, t) ≡ 0,

coefficient of yk+3 in F(t − y, t + y) =
(

∂

∂t ′n
− ∂

∂tn

)
F(t, t)

= 2
∂

∂t ′n
F (t, t ′) = 2× coefficient of uk+2 in

d

dv
F(t, t − [u] + [v])

∣∣∣∣
v=u

.

Indeed, differentiating (3.8), which is equivalent to (3.4), in v, setting v = u and
using D1f · f = 0,

∂

∂v
(D1f (t) · g(t + [v])) = −1

2
D1Dvf (t) · g(t + [v])

= −1
2

∞∑
j=1

vj−1D1Djf (t) · g(t + [v]) ,
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etc., we have

−τ̃2n(t − [u])τ̃2n(t + [u]) 1
u2

+ τ̃2n(t)
2 1

u2
+ 1

2

∞∑
j=1

uj−1D1Dj τ̃2n · τ̃2n(t)

= −τ̃2n+2(t + [u])τ̃2n−2(t − [u])u2 ,
which, notingf (t+[u])g(t−[u]) =∑∞

k=0 u
kpk(D̃)f ·g, is a generating function

for (3.5).  !
As in the case of KP or 2-Toda τ -functions, Pfaffian τ̃ -functions satisfy higher

degree identities:

Theorem 3.3

Pf

(
(zj − zi)τ̃2n−2(t − [zi] − [zj ])

τ̃2n(t)

)
1≤i,j≤2k

= ∆(z)
τ̃2n−2k

(
t −∑2k

i=1[zi]
)

τ̃2n(t)
, (3.9)

where k ≥ 1, 2n− 2k ∈ A, z1, . . . , z2k are scalar parameters near 0, and ∆(z)

is the Vandermonde determinant
∏

1≤i<j≤2k(zj − zi).

Proof. This may be obtained, up to the sign, from the second identity in Theo-
rem 4.2 of [3]:

det

(
τN−1(t − [zi], s + [yj ])

τN(t, s)

)
1≤i,j≤k

= ∆(y)∆(z)
τN−k

(
t −∑k

i=1[zi], s +
∑k

i=1[yi]
)

τN(t, s)
,

by setting N �→ 2n, k �→ 2k, yi = zi , taking the square roots of both sides and
using (2.12). Rather than taking this route, here we prove (3.9) by induction on
k, using the bilinear Fay identity (3.3). First, (3.9) is trivial when k = 1. (Note
also that it gives (3.6) when k = 2.) Suppose (3.9) holds for k − 1. Then we
have, for every p ∈ {2, . . . , 2k},

Pf

(
(zj − zi)τ̃2n−2(t − [zi] − [zj ])

τ̃2n(t)

)
2≤i,j≤2k
i,j �=p

= ∆(z2, . . . , ẑp, . . . , z2k)
τ̃2n−2k+2

(
t −∑2≤i≤2k,i �=p[zi]

)
τ̃2n(t)

.
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Multiplying both sides by (−1)p(zp−z1)τ̃2n−2(t−[z1]−[zp])/τ̃2n(t), summing
it up for p = 2, . . . , 2k, and using

(−1)p(zp − z1)∆(z2, . . . , ẑp, . . . , z2k)

= ∆(z)∏
2≤i≤2k(zi − z1)

(zp − z1)∏
2≤i≤2k
i �=p

(zp − zi)

and the identity

Pf(aij )1≤i,j≤2k =
2k∑
p=2

(−1)pa1p Pf(aij )2≤i,j≤2k
i,j �=p

, ∀(aij ) s.t. aji = −aij

which follows from Definition (2.10) of the Pfaffian, we have

Pf

(
(zj − zi)τ̃2n−2(t − [zi] − [zj ])

τ̃2n(t)

)
1≤i,j≤2k

= ∆(z)∏
2≤i≤2k(zi − z1)

· 1

τ̃2n(t)2

2k∑
p=2

(zp − z1)∏
2≤i≤2k
i �=p

(zp − zi)

· τ̃2n−2(t − [z1] − [zp])τ̃2n−2k+2
(
t −

∑
2≤i≤2k
i �=p

[zi]
)

using the bilinear Fay identity (3.3) with r = 2k− 1, l = 1, ζi := zi+1 (1 ≤ i ≤
2k − 1) and (2n, 2m) replaced by (2n− 2, 2n− 2k) this becomes

= ∆(z)∏
2≤i≤2k(zi − z1)

· 1

τ̃2n(t)2

· (−1)
( 2k∏

i=2
(z1 − zi)

)
τ̃2n(t)τ̃2n−2k

(
t −

2k∑
i=1

[zi]
)

= ∆(z)
τ̃2n−2k

(
t −∑2k

i=1[zi]
)

τ̃2n(t)
,

completing the proof of (3.9) by induction.  !

4. Vertex operators for Pfaffian τ̃ -functions

In terms of the operators

X(t, λ) := e
∑∞

k=1 tkλk e
−∑∞

k=1 λ−k

k
∂
∂tk ,

X∗(t, λ) := e−
∑∞

k=1 tkλk e
∑∞

k=1 λ−k

k
∂
∂tk
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acting on functions f (t) of t = (t1, t2, . . . ) ∈ C∞, define the following four
operators14 acting on column vectors g = (gn(t))n∈A,

X1(µ) := X(t, µ)χ(µ) , X
∗
1(λ) := −χ∗(λ)X∗(t, λ) ,

X2(µ) := −X(s, µ)χ∗(µ)Λ , X
∗
2(λ) := Λ�χ(λ)X∗(s, λ) ,

and their compositions15

Xij (µ, λ) := X
∗
j (λ)Xi(µ) , i, j = 1, 2.

They forma set of four vertex operators associatedwith the 2-Toda lattice.Among
those,X12 is important in the semi-infinite case, related to the study of orthogonal
polynomials. In [3], we showed that

∑
m≤j<n

Ψ1,j (µ)Ψ
∗
2,j (λ

−1) = (X12(µ, λ)τ)n

τn
− (X12(µ, λ)τ)m

τm
(4.1)

for any n,m ∈ A, n ≥ m. Note on the right hand side the limit exists as s →−t
if n and m are even, so in particular, taking n = m + 1, we see the poles along
s = −t cancel out in Ψ1,2m(µ)Ψ ∗

2,2m(λ
−1)+ Ψ1,2m+1(µ)Ψ ∗

2,2m+1(λ−1). We shall
come back to this point after proving the following theorem and its corollary.

Suppose τ satisfies (2.5), and let τ̃ be the vector of corresponding Pfaffian
τ̃ -functions. LetX1,X∗

1 andX11 act on τ̃ as if they are acting on the vector (τ̃n)n∈A
padded with zeros, i.e., τ̃n ≡ 0 if n is odd, so that χ(µ) (resp. χ∗(λ)) acts on τ̃2n
by multiplication of µ2n (resp. λ−2n). Then we have16

14 Here X(s, λ) has si in place of ti , as well as ∂/∂si in place of ∂/∂ti , in the definition of
X(t, λ), etc.; χ(µ) := (µiδij )i,j∈A, and χ∗(µ) = χ(µ−1).
15 When i = j , X

∗
j
interacts with Xi nontrivially, yielding the factor exp(

∑
(µ/λ)k/k) =

1/(1 − µ/λ) if we bring the multiplication operators to the left and the shift operators in t or s
to the right. So if we denote by : : the usual normal ordering of operators in t , s (but not in the
discrete index n), we have

Xii (µ, λ) = 1/(1− µ/λ)) :X∗i (λ)Xi (µ): = −1/(1− µ/λ)φ(µ, λ)X(u, µ, λ) ,

where u = t and φ(µ, λ) = χ(µ/λ) if i = 1; u = s and φ(µ, λ) = Λ�χ(λ/µ)Λ = µ/λχ(λ/µ)

if i = 2; and

X(u,µ, λ) := e
∑∞

k=1 uk(µk−λk)e

∑∞
k=1

λ−k−µ−k

k
∂

∂uk .

16 The product X1(λ)X1(µ) in (4.4) is computed in the same way as in footnote 15.
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Theorem 4.1

(X11(µ, λ)τ)N |s=−t =
{
τ̃2n(t)X11(µ, λ)τ̃2n(t) (N = 2n)

−λ(X1(µ)τ̃2n(t))X
∗
1(λ)τ̃2n+2 (N = 2n+ 1)

(4.2)

(X22(µ, λ)τ)N |s=−t =
{
−τ̃2n(t)X11(λ, µ)τ̃2n(t) (N = 2n)

−µ(X1(λ)τ̃2n)(X
∗
1(µ)τ̃2n+2) (N = 2n+ 1)

(4.3)

(X12(µ, λ)τ)N |s=−t =
{
−λτ̃2n(t)X1(λ)X1(µ)τ̃2n−2(t) (N = 2n)

(X1(µ)τ̃2n)(X
∗
1(λ)τ̃2n) (N = 2n+ 1)

(4.4)

Corollary 4.2 For k = 1, 2, the following holds: (for notation see (1.24))

J
(k)
i (t)τ2n(t, s)|s=−t = τ̃2n(t)J

(k)
i (t)τ̃2n(t) ,

J
(k)
i (s)τ2n(t, s)|s=−t = (−1)kτ̃2n(t)J (k)

i (t)τ̃2n(t) ,

and so

(J
(k)
i (t)+ (−1)kJ (k)

i (s))τ2n(t, s)|s=−t = 2τ̃2n(t)J
(k)
i (t)τ̃2n(t) .

Remark 4.3 The appendix (Sect. 9) contains an alternate proof of this corollary.

Proof. The theorem follows from (2.11) and (2.12) by straightforward calcula-
tions:

(X11(µ, λ)τ)N |s=−t
= −

(µ
λ

)N 1

1− µ/λ
e
∑∞

i=1 ti (µi−λi)τN(t − [µ−1] − [λ−1],−t)

for N = 2n:

= −
(µ
λ

)N 1

1− µ/λ
e
∑∞

i=1 ti (µi−λi)τ̃2n(t)τ̃2n(t − [µ−1] + [λ−1])
= τ̃2n(t)X11(µ, λ)τ̃2n(t) ,

for N = 2n+ 1:

=
(µ
λ

)N λ−1 − µ−1

1− µ/λ
e
∑∞

i=1 ti (µi−λi)τ̃2n(t − [µ−1])τ̃2n+2(t + [λ−1])
= −λ(X1(µ)τ̃2n)(X

∗
1(λ)τ̃2n+2) ;
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(X22(µ, λ)τ)N |s=−t
= −
(
λ

µ

)N−1 1

1− µ/λ
e−
∑∞

i=1 ti (µi−λi)τN(t,−t − [µ−1] + [λ−1])

= −
(
λ

µ

)N−1
(−1)N
1− µ/λ

e−
∑∞

i=1 ti (µi−λi)τN(t + [µ−1] − [λ−1],−t)

for N = 2n:

= −
(
λ

µ

)2n−1 1

1− µ/λ
e−
∑∞

i=1 ti (µi−λi)τ̃2n(t)τ̃2n(t + [µ−1] − [λ−1])
= −τ̃2n(t)X11(λ, µ)τ̃2n(t) ,

for N = 2n+ 1:

=
(
λ

µ

)2n
µ−1 − λ−1

1− µ/λ
e−
∑∞

i=1 ti (µi−λi)τ̃2n(t − [λ−1])τ̃2n+2(t + [µ−1])

= λ2n

µ2n+1
e−
∑∞

i=1 ti (µi−λi)τ̃2n(t − [λ−1])τ̃2n+2(t + [µ−1])
= −µ(X1(t, λ)τ̃2n)(X1(t, µ)τ̃2n+2) ;

(X12(µ, λ)τ)N |s=−t
= (Λ�χ(µλ)X∗(s, λ)X(t, µ)τ)N |s=−t

= (µλ)N−1e
∑∞

i=1(tiµi−(−ti )λ
i )τN−1(t − [µ−1],−t + [λ−1])

for N = 2n:

= (µλ)2n−1e
∑∞

i=1 ti (µi+λi)(λ−1 − µ−1)τ̃2n−2(t − [λ−1] − [µ−1])τ̃2n(t)
= −λ(X1(λ)X1(µ)τ̃2n−2(t))τ̃2n(t) ,

for N = 2n+ 1:

= (µλ)2ne
∑∞

i=1 ti (µi+λi)τ̃2n(t − [µ−1])τ̃2n(t − [λ−1])
= (X1(µ)τ̃2n)(X1(λ)τ̃2n) .

The corollary is shown by expanding X11 in λ and µ− λ. Recall that

X11(µ, λ) = − 1

1− µ/λ

((µ
λ

)n
X(µ, λ)

)
n∈A

= − λ

λ− µ

( ∞∑
k=0

(µ− λ)k

k!
∞∑

l=−∞
λ−l−kW

(k)
n,l (t)

)
n∈A

, (4.5)
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where X(µ, λ) = e
∑∞

i=1 ti (µi−λi)e
∑∞

i=1(1/i)(λ−i−µ−i )(∂/∂ti ) is the vertex operator in
the KP theory [11]17, and

W
(k)
n,l (t) =

k∑
j=0

(
n

j

)
(k)jW

(k−j)

l ,

withW(k)
l the coefficients of similar expansion of X(µ, λ).

Expanding X11 in (4.2) as above leads to

W
(k)
2n,l(t)τ2n(t, s)|s=−t = τ̃2n(t)W

(k)
2n,l(t)τ̃2n(t) .

In particular, since J (k)
i (k ≤ 2) and W

(k)

(n,i) (k ≤ 2) are linear combinations of
each other [3]:

W
(0)
n,i = J

(0)
i = δi,0 , W

(1)
n,i = J

(1)
i + nJ

(0)
i ,

W
(2)
n,i = J

(2)
i + (2n− i − 1)J (1)

i + n(n− 1)J (0)
i ,

we see for k = 1, 2 that

J
(k)
i (t)τ2n(t, s)|s=−t = τ̃2n(t)J

(k)
i τ̃2n(t) .

 !
Consider the following vertex operator18

X(z) := Λ�
X1(z) = Λ�e

∑∞
i=1 ti zi e

−∑∞
i=1 z−i

i
∂
∂ti χ(z) ,

and define the kernel

Kn(y, z) :=
(
1

τ̃
X(y)X(z)τ̃

)
2n

.

It is easy to see that (X(y)X(z)τ̃ )2n = yX1(y)X1(z)τ̃2n−2, so by (4.3)

Kn(y, z) = −(X12(z, y)τ )2n

τ2n

∣∣∣∣
s=−t

= (X12(y, z)τ )2n

τ2n

∣∣∣∣
s=−t

,

and by (4.1)( ∑
2m≤j<2n

Ψ1,j (µ)Ψ
∗
2,j (λ

−1)
)∣∣∣∣

s=−t

= Kn(µ, λ)−Km(µ, λ) .

17 The order of variables is reversed: our X(µ, λ) is X(λ,µ) in [11].
18 As noted in p. 25, X treats τ̃ as a vector (τ̃n)n∈A padded with zeros, i.e., τ̃n ≡ 0 for n odd. So
χ(z) appearing in X(z) acts on τ̃n as multiplication by zn, andΛ� acts on τ̃ as (Λ�τ̃ )n = τ̃n−1.
In practice, we always apply X’s to τ̃ even number of times, so there is always an even power of
Λ�, and τ̃n for odd n will never appear.
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Here each term Ψ1,j (µ)Ψ
∗
2,j (λ

−1) on the left hand side blows up along s = −t ,
but the poles from two successive terms (for j = 2k and j = 2k + 1) cancel, as
we saw earlier.

For n ∈ A, let

qn(t, λ) :=


λ2m

τ̃2m(t − [λ−1])√
τ̃2m(t)τ̃2m+2(t)

if n = 2m,

λ2m
(∂/∂t1 + λ)τ̃2m(t − [λ−1])√

τ̃2m(t)τ̃2m+2(t)
if n = 2m+ 1 .

(4.6)

In the semi-infinite case, the qn’s form a system of skew-orthogonal polynomials
[7].

Theorem 4.4 The following holds:

Pf(Kn(zi, zj ))1≤i,j≤2k =
(
1

τ̃

2k∏
i=1

ordered

X(zi)τ̃

)
2n

, (4.7)

Kn+1(µ, λ)−Kn(µ, λ)

= e
∑∞

i=1 ti (µi+λi) (q2n(t, λ)q2n+1(t, µ)− q2n(t, µ)q2n+1(t, λ)) , (4.8)

so in the semi-infinite case

KN(µ, λ)

= e
∑∞

i=1 ti (µi+λi)

N−1∑
n=0

(q2n(t, λ)q2n+1(t, µ)− q2n(t, µ)q2n+1(t, λ)) . (4.9)

Proof. Using (3.9) and

Kn(µ, λ) (4.10)

=
(

X(µ)X(λ)τ̃

τ̃

)
2n

= (µ− λ)(µλ)2n−2e
∑∞

i=1 ti (µi+λi) τ̃2n−2(t − [µ−1] − [λ−1])
τ̃2n(t)

= (λ−1 − µ−1)(µλ)2n−1e
∑∞

i=1 ti (µi+λi) τ̃2n−2(t − [µ−1] − [λ−1])
τ̃2n(t)

,

the left hand side of (4.7) becomes

(z1 · · · z2k)2n−1e
∑2k

j=1
∑∞

i=1 ti zij∆(z−1)
τ̃2n−2k(t −∑2k

j=1[z−1j ])
τ̃2n(t)

.
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This equals the right hand side of (4.7), because

(X(z2k)X(z2k−1) · · ·X(z2)X(z1)τ̃ )2n

= z2n−12k z2n−22k−1 · · · z2n−2k1 e
∑∞

i=1 ti (zi1+···+zi2k)

·
[ ∏
1≤i<j≤2k

(
1− zi

zj

)]
τ̃2n−2k

(
t −

2k∑
i=1

[z−1i ]
)

= (z1 · · · z2k)2n−1∆(z−1)e
∑∞

i=1 ti (zi1+···+zi2k)τ̃2n−2k
(
t −

2k∑
i=1

[z−1i ]
)
.

To prove (4.8), we have

(µ− λ)

(
(µλ)2n

τ̃2n(t − [µ−1] − [λ−1])
τ̃2n+2(t)

− (µλ)2n−2
τ̃2n−2(t − [µ−1] − [λ−1])

τ̃2n(t)

)
= (µ− λ)(µλ)2n

τ̃2n+2(t)τ̃2n(t)

(
τ̃2n(t)τ̃2n(t − [µ−1] − [λ−1])

− (µλ)−2τ̃2n−2(t − [µ−1] − [λ−1])τ̃2n+2(t)
)

= (µλ)2n

τ̃2n+2(t)τ̃2n(t)

(
{τ̃2n(t − [µ−1]), τ̃2n(t − [λ−1])}

+ (µ− λ)τ̃2n(t − [µ−1])τ̃2n(t − [λ−1])
)

using (3.4),

=
(
λ2n

τ̃2n(t − [λ−1])√
τ̃2n(t)τ̃2n+2(t)

µ2n(∂/∂t1 + µ)τ̃2n(t − [µ−1])√
τ̃2n(t)τ̃2n+2(t)

− (λ↔ µ)

)
= (q2n(t, λ)q2n+1(t, µ)− q2n(t, µ)q2n+1(t, λ))

in terms of the skew-orthogonal polynomials (4.6). Multiplying this with an
exponential and noting (4.11), we obtain (4.8). Summing up this telescoping
sum yields (4.9).  !

5. The exponential of vertex operator maintains τ̃ -functions

The purpose of this section is to show the following theorem:

Theorem 5.1 For any constant a and a Pfaffian τ̃ -function τ̃ ,

τ̃ + aX(λ)X(µ)τ̃ (5.1)

is again a Pfaffian τ̃ -function.
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Remember that X(λ)X(µ) acts on τ̃2n(t), as follows:

(X(λ)X(µ)τ̃ )2n(t)

=
(
1− µ

λ

)
λ2n−2µ2n−1e

∑∞
i=1 ti (λi+µi)τ̃2n−2(t − [λ−1] − [µ−1])

= µ

λ
(λ− µ)

(
Λ−1e

∑∞
i=1 ti (λi+µi)e

−∑∞
i=1
(
λ−i+µ−i

i

)
∂
∂ti χ(λ2µ2)τ̃

)
2n

=: µ
λ
(λ− µ)X̃(λ, µ)τ̃2n . (5.2)

Lemma 5.2 We have:

(1− λz)−1(1− µz)−1 − 1

λµz2

(
1− 1

λz

)−1 (
1− 1

µz

)−1
= 1

µ− λ
δ

(
z− 1

λ

)
+ 1

λ− µ
δ

(
z− 1

µ

)
.

Proof. See for instance [8, p. 248], [11, p. 62].  !
Lemma 5.3∮

z=∞
X̃τ̃2n(t − [z−1])τ̃2m+2(t ′ + [z−1])e

∑∞
i=1(ti−t ′i )zi z2n−2m−2dz

+
∮
z=0

X̃τ̃2n+2(t + [z])τ̃2m(t ′ − [z])e
∑∞

i=1(t ′i−ti )z
−i

z2n−2mdz

= 1

µ− λ

(
µ2nλ2mτ̃2n(t − [µ−1])τ̃2m(t ′ − [λ−1])e

∑∞
i=1(t ′i λi+tiµ

i )

− λ2nµ2mτ̃2n(t − [λ−1])τ̃2m(t ′ − [µ−1])e
∑∞

i=1(tiλi+t ′iµi )
)

(5.3)

Proof. Upon performing the following operations{
replacing n by n− 1, and t by t − [µ−1] − [λ−1] ,
multiplication by (λµ)2n−1e

∑∞
1 ti (µ

i+λi),

the bilinear identity (3.1) yields

0 =
∮
z=∞

τ̃2n−2(t − [z−1] − [µ−1] − [λ−1])τ̃2m+2(t ′ + [z−1])(λµ)2n−2(
1− z

λ

)(
1− z

µ

)
λµ

z2
e
∑∞

i=1((ti−t ′i )zi+ti (µ
i+λi))z2n−2m−2dz

+
∮
z=0

τ̃2n(t + [z] − [µ−1] − [λ−1])τ̃2m(t ′ + [z])(λµ)2n 1

1− 1/λz
·

· 1

1− 1/µz

1

λµz2
e
∑∞

i=1((t ′i−ti )z−i+ti (µ
i+λi))z2n−2mdz .
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Subtracting this expression (which is = 0), the left hand side of (5.3) equals

∮
z=∞

τ̃2n−2(t − [z−1] − [λ−1] − [µ−1])τ̃2m+2(t ′ + [z−1])

e
∑∞

i=1
(
(ti−t ′i )zi+

(
ti− z−i

i

)
(λi+µi)

)
(λµ)2(n−1)z2n−2m−2dz

+
∮
z=0

τ̃2n(t + [z] − [λ−1] − [µ−1])τ̃2m(t ′ − [z])

e
∑∞

i=1
(
(t ′i−ti )z

−i+
(
ti+ zi

i

)
(λi+µi)

)
(λµ)2nz2n−2mdz

=
∮
z=∞

τ̃2n−2(t − [z−1] − [λ−1] − [µ−1])τ̃2m+2(t ′ + [z−1])

e
∑∞

i=1((ti−t ′i )zi+ti (λ
i+µi))(λµ)2n−2z2n−2m−2((

1− λ

z

)(
1− µ

z

)
− λµ

z2

(
1− z

λ

)(
1− z

µ

))
dz

+
∮
z=0

τ̃2n(t + [z] − [λ−1] − [µ−1])τ̃2m(t ′ − [z])

e
∑∞

i=1((t ′i−ti )z
−i+ti (λ

i+µi))(λµ)2nz2n−2m(
1

1− λz

1

1− µz
− 1

λµz2

1

1− 1/λz

1

1− 1/µz

)
dz

= 1

µ− λ

(
µ2nλ2mτ̃2n(t − [µ−1])τ̃2m(t ′ − [λ−1])e

∑∞
i=1(t ′i λi+tiµ

i )

− λ2nµ2mτ̃2n(t − [λ−1])τ̃2m(t ′ − [µ−1])e
∑∞

i=1(tiλi+t ′iµi )
)
,

ending the proof of the lemma.  !

Proof of Theorem 5.1. It suffices to prove

0 =
∮
z=∞

(a + bX̃)τ̃2n(t − [z−1])(a + bX̃)τ̃2m+2(t ′ + [z−1])

e
∑∞

i=1(ti−t ′i )zi z2n−2m−2dz

+
∮
z=0

(a + bX̃)τ̃2n+2(t + [z])(a + bX̃)τ̃2m(t
′ − [z])

e
∑∞

i=1(t ′i−ti )z
−i

z2n−2mdz .
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The coefficient of a2 and b2 vanishes, on view of the fact that τ̃2n and X̃τ̃2n are
Pfaffian τ -functions. So it suffices to show the vanishing of the ab-term.

coefficient of ab

=
∮
z=∞

(
X̃τ̃2n(t − [z−1])τ̃2m+2(t ′ + [z−1])

+ τ̃2n(t − [z−1])X̃τ̃2m+2(t ′ + [z−1]))e∑∞
i=1(ti−t ′i )zi z2n−2m−2dz

+
∮
z=0

(
X̃τ̃2n+2(t + [z])τ̃2m(t ′ − [z])

+ τ̃2n+2(t + [z])X̃τ̃2m(t
′ − [z]))e∑∞

i=1(t ′i−ti )z
−i

z2n−2mdz .

The first terms in each of the integrals can be evaluated by means of lemma. The
sum of the two terms equals

1

µ− λ

(
µ2nλ2mτ̃2n(t − [µ−1])τ̃2m(t ′ − [λ−1])e

∑∞
i=1(t ′i λi+tiµ

i )

−λ2nµ2mτ̃2n(t − [λ−1])τ̃2m(t ′ − [µ−1])e
∑∞

i=1(tiλi+t ′iµi )
)
. (5.4)

Performing the exchange

n←→ m, t ←→ t ′ , z ←→ z−1

gives an expression for the sum of the second terms in the integrals; the sum of
expression (5.4) and the same expression with the exchange above is obviously
zero.  !

6. Example 1: symmetric and symplectic matrix integrals

Consider the matrix mn(t, s) of (t, s)-dependent moments,

µkB(t, s) :=
∫∫

R2
xkyBe

∑∞
1 (tix

i−siy
i )F (x, y)dx dy , t, s ∈ C

∞ , (6.1)

with regard to a weight function F(x, y). Then mn satisfies (0.1), so we get a
2-Toda τ -function

τn(t, s) := detmn(t, s)

=
∫
· · ·
∫

R2n

n∏
k=1

(
e
∑∞

i=1(tixik−siy
i
k)F (xk, yk)

)
∆n(x)∆n(y)dx dy ,

where the last equality is due to an identity involvingVandermonde determinants
that can be found in [2, Sect. 3]. If F is skew-symmetric, F(x, y) = −F(y, x),
then m∞(0, 0) is also skew-symmetric; so by Theorem 2.1 we have µij (t, s) =
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−µji(−s,−t), and get a solution of the Pfaff lattice, with the corresponding
Pfaff τ̃ -function

τ̃2n(t) := Pf m2n(t,−t) .
Specializing the inner-product above to the case where F(x, y) = 2(Dkδ)

· (y − x)ρ(x)ρ(y) leads to the three typical cases of symmetric and skew-
symmetric weight (F(x, y) = ±F(y, x)), which are known to be related to
the Hermitian, symmetric and “symplectic" matrix integrals.

Namely, the inner-product

〈f, g〉t =
∫∫

R2
f (x)g(y)(2Dαδ)(y − x)e

∑∞
1 ti (x

i+yi )ρ(x)ρ(y)dx dy.

for α = 0, 1,−1 leads to

T Tk(t) =



det(〈xi, yj 〉t/2)0≤i,j≤k−1 =
∫
Hk

etr(−2V (X)+∑ tiX
i )dX

for α = 0, k ≥ 0

Pf(〈xi, yj 〉t )0≤i,j≤k−1 = ∫
Sk

etr(−V (X)+∑ tiX
i )dX

for α = −1, k ≥ 0 even

Pf(〈xi, yj 〉t )0≤i,j≤k−1 = ∫Tk
etr(−2V (X)+∑ 2tiXi )dX

for α = +1, k ≥ 0 even

(6.2)

where dX denotes Haar measure on

Hk = {k × k Hermitian matrices}
Sk = {k × k symmetric matrices}
Tk = {k × k self-dual Hermitian matrices, with quaternionic entries}

Ther second and third cases (α = ±1) are solutions to the Pfaff lattice, whereas,
for the first case (α = 0), the τ -functions are solutions to the Toda lattice. For
more details, see [5] and [25].
– For α = 0, we have (omitting e

∑
ti (x

i+yi ))∫∫
f (x)g(y)(2D0δ)(y − x)ρ(x)ρ(y)dx dy = 2

∫
f (x)g(x)ρ(x)2dx ,

leading to the first integral in (6.2).
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– For α = −1 , let ε(x) = sign(x) = x/|x|. Denoting ε(x) = 2(∂/∂x)−1δ(x),
we have

∫∫
R2

f (x)g(y)(2D−1δ)(y − x)ρ(x)ρ(y)dx dy

=
∫∫

R2
f (x)g(y)ε(x − y)ρ(x)ρ(y)dx dy

=
∫∫

x>y

f (x)g(y)ρ(x)ρ(y)dx dy −
∫∫

x<y

f (x)g(y)ρ(x)ρ(y)dx dy

=
∫∫

x>y

(f (x)g(y)− f (y)g(x))ρ(x)ρ(y)dx dy

=
∫

R

dx

(
f (x)ρ(x)

∫ x

−∞
g(y)ρ(y)dy − g(x)ρ(x)

∫ x

−∞
f (y)ρ(y)dy

)
,

leading to the second integral in (6.2).
– For α = +1, since ∫

f (x)δ′(y − x)dx = f ′(y) ,

we compute

∫∫
f (x)g(y)(2Dδ)(y − x)ρ(x)ρ(y)dx dy

=
∫ (∫

f (x)ρ(x)δ′(y − x)dx

)
g(y)ρ(y)dy

+
∫

f (x)ρ(x)

(∫
g(y)ρ(y)δ′(y − x)dy

)
dx

=
∫
(f (y)ρ(y))′g(y)ρ(y)dy −

∫
(g(x)ρ(x))′f (x)ρ(x)dx

=
∫ (

f ′(y)g(y)− f (y)g′(y)
)
ρ(y)2dy ,

leading to the third integral in (6.2).
In [5], we worked out the Virasoro constraints satisfied by integrals of the

type (6.2), but integrated over subspaces of matrices ⊆ H, S or T having their
spectrum≤ x , which then leads to Painlevé-like differential equations for those
integrals. In the next section, we give an alternative derivation of the Virasoro
constraints for symmetric matrix integrals, via the string equation.
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7. String equations and Virasoro constraints
for symmetric matrix integrals

In this sectionwe consider themoments (6.1), with regard to the skew-symmetric
weight

F(x, y) := eV (x)+V (y)ε(x − y) , (7.1)

assuming the following form for the potential V :

V ′(z) = g

f
=
∑∞

i=0 biz
i∑∞

i=0 aizi
, (7.2)

with eV (z) decaying to 0 fast enough at the boundary of its domain.
According to [2,4], in the semi-infinite case the Borel decomposition of the

moment matrix,m∞(t, s) = S−11 S2, leads to the (monic) string-orthogonal poly-
nomials

p(1)(z) := S1χ(z) and p(2)(z) := hS�−12 χ(z) , (7.3)

satisfying the orthogonality relations

〈p(1)
n , p(2)

m 〉 = δn,mhn

for the skew-symmetric inner product

〈f, g〉 :=
∫∫

R2
dydzε(y − z)eV (y)+V (z)+∑∞

i=1(tiyi−siz
i )f (y)g(z) . (7.4)

Besides L1 and L2, we also define strictly lower-triangular (i.e., with zero
diagonal) matricesQ1,Q2 by

Q1 := S1εS
−1
1 , Q2 := hS�−12 εS�2 h

−1 , (7.5)

where ε = (iδi,j+1)i,j≥0 as in Sect. 1, satisfying (1.15).
Note that (1.7) and (7.3) imply

Ψ1 = e
∑∞

k=1 tkzkp(1)(z) , Ψ ∗
2 = e−

∑∞
k=1 skz−k

h−1p(2)(z−1) , (7.6)

so from (1.8)

zp(1)(z) = L1p
(1)(z) , zp(2)(z) = hL�

2 h
−1p(2)(z) . (7.7)

Also, from (1.15), (7.3) and (7.5)

∂

∂z
p(1)(z) = Q1p

(1)(z) ,
∂

∂z
p(2)(z) = Q2p

(2)(z) . (7.8)
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Comparing (1.16) with (7.5), we have

M1 = Q1 + S1ξ
′(t,Λ)S−11 = Q1 + ξ ′(t, L1) ,

M∗
2 = h−1Q2h− S�−12 ξ ′(s,Λ)S�2 = h−1Q2h− ξ ′(s, L�

2 ) ,
(7.9)

where we set

ξ(t, z) :=
∞∑
i=1

tiz
i , ξ ′(t, z) := ∂ξ

∂z
(t, z)

as in Sect. 1. Note that (1.17), (7.6) and (7.9) yield (7.8) again. Note also that,
since ε∗ = −ε� +Λ, we have

M2 ≡ S2
(
ε∗ + ξ ′(s,Λ�)

)
S−12 = −hQ�

2 h
−1 + L−1

2 + ξ ′(s, L2) , (7.10)

where L−1
2 is defined to be S2ΛS−12 . SinceΛΛ� = I , this is a left inverse of L2,

i.e., L−1
2 L2 = I .

We now state the two main theorems of this section, namely string and Vira-
soro equations for the symmetric case. Similar equations can be obtained for the
“symplectic" case (third integral (6.2)).

Theorem 7.1 (String equations) The semi-infinite matrices Li and Mi satisfy
the following matrix identities in terms of f and g in V ′ = g/f , for all k ≥ −1:
M1L

k+1
1 f (L1)−M2L

k+1
2 f (L2)

+ Lk+1
1 g(L1)+ Lk+1

2 g(L2)+ (Lk+1
1 f (L1))

′ + Lk
2f (L2) = 0 , (7.11)

where ′ means ∂/∂L1.

This fact, together with theASV-correspondence (Proposition 1.1) and corol-
lary 4.2 (Proposition 9.1), leads at once to the constraints for the 2-Toda τ -
functions and the Pfaffian τ̃ -functions:

Theorem 7.2 (Virasoro constraints) The multiple integrals

τn(t, s) = det
(
µij (t, s)

)
0≤i,j≤n−1

=
∫
· · ·
∫

R2n

n∏
k=1

(
eV (xk)+V (yk)+∑∞

i=1(tixik−siy
i
k)ε(xk − yk)

)
·

·∆n(x)∆n(y)dx dy , τ0 = 1 ,

form a τ -vector for the 2-Toda lattice and satisfy the following Virasoro con-
straints for all k ≥ −1 and n ≥ 0:∑

i≥0

{ai
2

(
J
(2)
i+k,n + J̃

(2)
i+k,n

)
+ bi

(
J
(1)
i+k+1,n − J̃

(1)
i+k+1,n

)}
τn = 0 , (7.12)
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where (with J (i)
k and J̃ (i)

k defined in (1.24))

J
(2)
k,n := J

(2)
k + (2n+ k + 1)J (1)

k + n(n+ 1)J (0)
k ,

J
(1)
k,n := J

(1)
k + nJ

(0)
k ,

J̃
(2)
k,n := J̃

(2)
k − (2n+ k + 1)J̃ (1)

k + n(n+ 1)J (0)
k ,

J̃
(1)
k,n := J̃

(1)
k − nJ

(0)
k .

(7.13)

The Pfaffian

τ̃N (t) = τN(t,−t)1/2 =
∫

RN

N∏
k=1

(
eV (xk)+∑∞

i=1 tixik
)
|∆N(x)|dx , N even ,

satisfy the Pfaff lattice, together with the following Virasoro constraints, for all
k ≥ −1 and even N ≥ 0:

∞∑
B=0

(aB
2

J
(2)
k+B,N + bBJ

(1)
k+B+1,N

)
τ̃N (t) = 0 , (7.14)

where J
(i)
k,n are defined by the same formulas as in (7.13).

Proof of Theorem 7.1. Using

∂

∂y
ε(y − z) = 2δ(y − z) ,

setting Vt(z) = V (z) + ξ(t, z), and using the hypothesis that eV vanishes fast
enough at the boundary of its domain19, we first compute

0 =
∫

R

dy
∂

∂y

{
ykf (y)

(∫
R

dz ε(y − z)eV−s (z)p(2)
m (z)

)
eVt (y)p(1)

n (y)

}
=
∫

R

dy

(∫
R

dz ε(y − z)eV−s (z)p(2)
m (z)

)
eVt (y){(

V ′
t (y)f (y)y

k + (ykf (y))′
)
p(1)
n (y)+ p(1)′

n (y)ykf (y)
}

+ 2
∫∫

R2
eVt (y)+V−s (z)ykf (y)p(1)

n (y)p(2)
m (z)δ(y − z)dydz

19 We imagine doing the calculation for all ti and sj vanishing beyond t2k and s2k and letting
the latter be strictly negative and positive respectively.
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=
∫∫

R2
dydz ε(y − z)eVt (y)+V−s (z)

[{(
g(L1)+ ξ ′(t, L1)f (L1)

)
Lk
1

+ (Lk
1f (L1))

′ +Q1L
k
1f (L1)

}
p(1)(y)

]
n
p(2)
m (z)

+ 2
∫

R

eVt (y)+V−s (y)p(1)
n (y)p(2)

m (y)ykf (y)dy

= {(Q1 + ξ ′(t, L1))Lk
1f (L1)+ g(L1)L

k
1 + (Lk

1f (L1))
′}

nm
hm

+ 2
∫

R

eVt (y)+V−s (y)p(1)
n (y)p(2)

m (y)ykf (y)dy .

Next, setting L̄2 := hL�
2 h

−1 so that zp(2) = (L̄2p
(2))n, we find similarly

0 =
∫

R

dz
∂

∂z

{
zkf (z)

(∫
R

dy ε(y − z)eVt (y)p(1)
n (y)

)
eV−s (z)p(2)

m (z)

}
=
∫

R

dz

(∫
R

p(1)
n (y)eVt (y)ε(y − z)dy

)
eV−s (z){(

V ′
−s(z)f (z)z

k + (zkf (z))′
)
p(2)
m (z)+ p(2)′

m (z)zkf (z)
}

− 2
∫∫

R2
eVt (y)+V−s (z)f (z)zkp(1)

n (y)p(2)
m (z)δ(y − z)dydz

=
∫∫

R2
dydz ε(y − z)eVt (y)+V−s (z)

[{(
g(L̄2)− ξ ′(s, L̄2)f (L̄2)

)
L̄k
2

+ (f (L̄2)L̄
k
2)
′ +Q2f (L̄2)L̄

k
2

}
p(2)(z)

]
m
p(1)
n (y)

− 2
∫∫

R2
eVt (y)+V−s (y)f (y)ykp(1)

n (y)p(2)
m (y)dy

= {(Q2 − ξ ′(s, L̄2))L̄k
2f (L̄2)+ g(L̄2)L̄

k
2 + (L̄k

2f (L̄2))
′}

mn
hn

− 2
∫∫

R2
eVt (y)+V−s (y)f (y)ykp(1)

n (y)p(2)
m (y)dy .

Adding the two expressions yields the matrix identity

{(Q1 + ξ ′(t, L1))Lk
1f (L1)+ g(L1)L

k
1 + (Lk

1f (L1))
′}h

+ h{(Q2 − ξ ′(s, L̄2))L̄k
2f (L̄2)+ g(L̄2)L̄

k
2 + (L̄k

2f (L̄2))
′}� = 0 . (7.15)

Replacing k by k + 1, and using

h−1L̄2h = L�
2 , Q1 + ξ ′(t, L1) = M1 ,

(h−1Q2h)
� − ξ ′(s, L2) = M∗�

2 = L−1
2 −M2 ,
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we observe that identity (7.15) leads to

M1L
k+1
1 f (L1)+ g(L1)L

k+1
1 + (Lk+1

1 f (L1)
)′

+ Lk+1
2 f (L2)M

∗�
2 + Lk+1

2 g(L2)+
(
Lk+1
2 f (L2)

)′ = 0 ;

Finally, since [L2,M∗�
2 ] = −I by the last identity in (1.18), and since L−1

2 is a
left inverse of L2 (see the comment after formula (7.10)), we have

Lk+1
2 f (L2)M

∗�
2 = M∗�

2 Lk+1
2 f (L2)− (Lk+1

2 f (L2))
′

= (L−1
2 −M2)L

k+1
2 f (L2)− (Lk+1

2 f (L2))
′

= Lk
2f (L2)−M2L

k+1
2 f (L2)− (Lk+1

2 f (L2))
′ ,

leading to the identity, announced in Theorem 7.1.  !

Proof of Theorem 7.2. Using the ai and bi as in representation (7.2) of V ′(z),
we obtain from (7.11) that

∑
i≥0

ai(M1L
k+i+1
1 −M2L

k+i+1
2 + (i + k + 1)Li+k

1 + Li+k
2 )

+
∑
i≥0

bi(L
i+k+1
1 + Li+k+1

2 ) = 0 .

We now apply Proposition 1.1. The vanishing of the matrix expression above
implies obviously that the ( )− and ( )+ parts vanish as well, so that acting
respectively on the wave vectorsΨ1 andΨ2 lead to the vanishing of the four right
hand sides of (1.20) in Proposition 1.1, for the corresponding combination of
W ’s. Therefore we have

Lk,mτm

:=
∑
i≥0

{
ai(W

(2)
m,k+i + W̃

(2)
m−1,k+i + 2(i + k + 1)W(1)

m,i+k − 2W̃ (1)
m−1,i+k)

+ 2bi(W
(1)
m,k+i+1 −W

(1)
m−1,k+i+1)

}
τm

= ckτm ;

the point is that ck is independent of t , using the first and third relations of
Proposition 1.1, and independent of s and n using the second and fourth relations.
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Finally, in view of the relations (1.23), we have

Lk,mτm

=
{∑

i≥0
ai

(
J
(2)
i+k + J̃

(2)
i+k + (2m− i − k − 1)J (1)

i+k

+ (2(1−m)− i − k − 1)J̃ (1)
i+k + 2m(m− 1)δi+k,0

)
+ 2
∑
i≥0

ai

(
(i + k + 1)(J (1)

i+k +mδi+k,0)

− (J̃
(1)
i+k + (1−m)δi+k,0)

)
+ 2
∑
i≥0

bi

(
(J

(1)
i+k+1 +mδi+k+1,0)

− (J̃
(1)
i+k+1 + (1−m)δi+k+1,0)

)}
τm

=
{∑

i≥0
ai

(
J
(2)
i+k + J̃

(2)
i+k + (2m+ i + k + 1)(J (1)

i+k − J̃
(1)
i+k)

+ (2m(m+ 1)− 2)δi+k,0

)
+ 2
∑
i≥0

bi

(
(J

(1)
i+k+1 − J̃

(1)
i+k+1)+ (2m− 1)δi+k+1,0

)}
τm .

Since ck is independent of m and τ0 = 1, and since most of Lk,m vanish when
acting on a constant, we have

Lk,mτm

τm
= Lk,0τ0

τ0
= −2

∑
i≥0

(aiδi+k,0 + biδi+k+1,0) ,

and so (
Lk,m + 2

∑
i≥0

(aiδi+k,0 + biδi+k+1,0)
)
τm = 0 ,

yielding the identity (7.12). The proof of the Virasoro constraints (7.14) for τ̃ (t)
follows at once from (7.12) and corollary 4.2 (or Proposition 9.1).  !

8. Example 2: Quasiperiodic solutions

In this section,we shall combine the construction of quasi-periodic solutions of 2-
Toda lattice [20,23] and the theory of Prym varieties [21] to obtain quasiperiodic
solutions of the Pfaff lattice. While we put stress on the semi-infinite case in the
present paper, this gives a non-trivial example in the bi-infinite case.
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A 2-Toda quasiperiodic solution is given by some deformation of a line bun-
dle L on a complex curve (Riemann surface) C, with the time variables play-
ing the role of deformation parameters, so the orbit under the 2-Toda flows is
parametrized by the Jacobian ofC. IfC is equippedwith an involution ι : C → C,
and if L satisfies a suitable antisymmetry condition with respect to ι, then the 2-
Toda flows can be restricted to preserve the antisymmetry ofL, giving a solution
of Pfaff lattice. The Prym variety P of (C, ι) naturally appears as the restricted
parameter space. The vanishing of every other τn(t,−t) (see (0.4) or (2.5)) indi-
cates that the space ofL’s which satisfy the antisymmetry condition must consist
of two connected components, P and P−. This means the involution ι has no
fixed points. So, in general a quasiperiodic solution of the Pfaff lattice does not
satisfy the BKP equation and vice versa, since the orbit of a quasiperiodic so-
lution of the BKP equation is isomorphic to the Prym variety of a curve with
involution having at least two fixed points.

Preliminary on the geometry of curves

Aline bundle on a complex curveC is definedby a divisorD =∑i mipi ,mi ∈ Z,
pi ∈ C, i.e., a set of points pi on C with (positive or negative) multiplicitiesmi ,
as L = O(D). Its local sections (on an open set U ⊂ C, say) are meromorphic
functions onU which have poles of order at mostmi (zeros of order at least−mi)
at pi . The number d := ∑i mi is called the degree of L. For L = O(D) and
m, n ∈ Z, p, q ∈ C, we denote L(mp + nq) = O(D +mp + nq) etc. A defor-
mation of L can be described as a deformation ofD, likeDt,s =∑i mipi(t, s),
but in the 2-Toda theory it is more convenient to describe it by requiring its local
sections to have some exponential behaviors at prescribed points, as we shall see
later.

Two line bundlesO(D1) andO(D2) are isomorphic if the divisorsD1 andD2

are “linearly equivalent,” i.e., if they differ by the divisor of a globalmeromorphic
function onC. Jacobian20 J ofC is the space (Lie group) of isomorphism classes
of degree 0 line bundles on C. It becomes a principally polarized abelian variety
of dimension g := genus of C, i.e., J is a complex torus Cg/Γ , Cg ⊃ Γ ,
Z2g, for which there is a divisor (codimension 1 subvariety) Θ ⊂ J , such that
some positive integer multiple of Θ defines an embedding of J into a complex
projective space, and Θ is “rigid” in the sense that it has no deformation in J

except parallel translations. A complex torus Cg/Γ is a principally polarized
abelian variety if and only if, after some change of coordinates by GL(g,C),
the lattice Γ becomes Zg +ΩZg for some complex symmetric g × g matrixΩ
with positive definite imaginary part. On a principally polarized abelian variety
Cg/(Zg + ΩZg), there is a special quasiperiodic function (i.e., holomorphic

20 In this section J means Jacobian, not a Virasoro generator.
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function on Cg that satisfies some quasiperiodicity condition with respect to
Zg +ΩZg) called Riemann’s theta function ϑ , defined by

ϑ(z) =
∑
m∈Zg

exp(2πimtz+ πimtΩm) .

The theta divisor Θ becomes the zero divisor of ϑ .
If C has a (holomorphic) involution ι : C → C (i.e., ι2 = id), J gets an

involution ι∗ induced by ι. The Jacobian J ′ of the quotient curve C ′ = C/ι, and
the Prym variety P of the pair (C, ι) (or (C,C ′)) appear in J roughly as the
±1 eigenspaces of ι: J̃ ′ := J ′/(some subgroup of order 2) ⊂ J and P ⊂ J

are subabelian varieties of J , such that ι|J̃ ′ = +1, ι|P = −1, and J , (J ′ ×
P)/(finite subgroup). When ι has at most two fixed points, the restriction of Θ
on P gives twice some principal polarization on P (the restriction ϑ |P becomes
the square of the Riemann theta function on P defined by this polarization).

Quasiperiodic solutions of 2-Toda lattice

LetC be a nonsingular complete curve onC (compact Riemann surface) of genus
g, let L be a line bundle of degree g − 1 on C, let p, q ∈ C be distinct points.
Let us choose local coordinates z−1 at p and z at q, and trivializations of L(p)
at p and q,

σp : Lp(p) , Op and σq : Lq , Oq .

For t , s ∈ C∞, let Lt,s be the line bundle whose (local holomorphic) sections are
(local holomorphic) sections ofL away from p and q, and at p (resp. q) have sin-
gularities of the form e

∑∞
i=1 ti zi · (holomorphic) (resp. e∑∞

i=1 siz−i · (holomorphic)).
For “generic”21 (n, t, s) ∈ Z × C∞ × C∞, the wave functions Ψ1,n, Ψ2,n are
obtained from a (unique) section ϕn(t, s) of

Lt,s((n+ 1)p − nq) ,

which has the form zne
∑∞

i=1 ti zi (1+O(z−1)) at p via σp, i.e.,

Ψ1,n(t, s; z) := σp(ϕn(t, s)) = zne
∑∞

i=1 ti zi (1+O(z−1)) ,

Ψ2,n(t, s; z) := σq(ϕn(t, s)) = zne
∑∞

i=1 siz−i

(hn(t, s)+O(z)) .

The adjoint wave functions

Ψ ∗
1,n = z−ne−

∑∞
i=1 ti zi (1+O(z−1)) ,

Ψ ∗
2,n = z−ne−

∑∞
i=1 siz−i (hn(t, s)

−1 +O(z))

21 Here generic means that Γ (Lt,s (np − nq)) = {0} holds. For a degree g − 1 line bundle L,
this condition holds for almost all (n, t, s) ∈ Z× C

∞ × C
∞, and implies that dim Γ (Lt,s ((n+

1)p − nq)) = 1.
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are defined similarly, by using

(Lt,s)
∗(−np + (n+ 1)q) = (L∗)−t,−s(−np + (n+ 1)q) ,

in place of Lt,s((n+ 1)p − nq), where we denote

L∗ := Hom(L, ω) = L−1 ⊗ ω ,

with ω being the dualizing sheaf (the canonical bundle, i.e., the line bundle of
holomorphic 1-forms), and, in place of σp and σq , trivializations

σ ∗
p : L∗

p , Op and σ ∗
q : L∗

q(q) , Oq ,

for which the maps

Lp(p)⊗ L∗
p . (φ, ψ) �→ σp(φ)σ

∗
p (ψ)dz/z ∈ ω(p)p ,

Lq ⊗ L∗
q(q) . (φ, ψ) �→ σq(φ)σ

∗
q (ψ)dz/z ∈ ω(q)q

(8.1)

extend to the canonical map

L(p)⊗ L∗(q) ,→ ω(p + q) .

Hence for general (n, t, s), (m, t ′, s ′) ∈ Z× C∞ × C∞,

Ψi,n(t, s; z)Ψ ∗
i,m(t

′, s ′; z)dz/z , i = 1, 2

become expansions at p and q, respectively, of a holomorphic 1-form on C \
{p, q}, so by the residue calculus the pair Ψ , Ψ ∗ satisfies the bilinear identities
(1.10).

Quasiperiodic solutions of Pfaff lattice

In the above construction, suppose C has an involution ι : C → C with no fixed
point. In this case g is odd, g = 2g′ − 1, with g′ being the genus of the quotient
curve C ′ = C/ι. Suppose q = ι(p), and L satisfies

ι∗(L) , L∗ , so that L⊗ ι∗L , ω . (8.2)

Choose the local coordinates z∓1 and the trivializations σp, σq , σ ∗
p , σ

∗
q at p and

q = ι(p), such that z · ι∗z ≡ 1 and σq = ι∗ ◦ σ ∗
p ◦ ι∗ hold. (We then have

σ ∗
q = −ι∗ ◦ σp ◦ ι∗, with the minus sign due to the fact that dz/z, which appear
in (8.1), satisfy ι∗(dz/z) = −dz/z.) Then the wave and adjoint wave functions
constructed above satisfy (2.4), so they lead to a quasiperiodic solution of the
Pfaff lattice when s = −t (and skipping every other n).

The orbit of the 2-Toda flows is parametrized by the Jacobian J of C, and
the τ -functions are written in terms of Riemann’s theta function of J . The orbit
of the Pfaff flows will become the Prym variety P of (C, ι), with τ̃ given by
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the Prym theta function. To be more precise, let Jg−1 be the moduli space of the
isomorphism classes of line bundles of degree g − 1 on C. This is a principal
homogeneous space22 over J , on which the theta divisor

Θ := {L ∈ Jg−1
∣∣ Γ (L) �= (0)

}
is canonically defined. The set of L ∈ Jg−1 satisfying (8.2) becomes the disjoint
union Pg−1 ∪ P−

g−1, where

Pg−1 :=
{L ∈ Jg−1

∣∣ L satisfies (8.2) and dim Γ (L) is even},
P−
g−1 :=

{L ∈ Jg−1
∣∣ L satisfies (8.2) and dim Γ (L) is odd}

are principal homogeneous spaces over the Prym P . We have

P−
g−1 ⊂ Θ and Pg−1 ·Θ = 2Ξ ,

for some divisor Ξ ⊂ Pg−1 which gives a principal polarization on Pg−1. Since
Θ is the zero locus of Riemann’s theta function ϑ of the Jacobian J , this means
ϑ vanishes identically on P−

g−1, and the restriction ϑ |Pg−1 becomes the square of
Riemann’s theta function ϑP of (P,Ξ), which is called the Prym theta function.

For a 2-Toda quasiperiodic solution, the discrete time flow (shift of n by 1)
is given by the shift L �→ L(p − q). In the present case, since q = ι(p), this
flow preserves condition (8.2). Moreover, we have

∀p ∈ C, ∀L ∈ Jg−1 :
{L ∈ Pg−1 ⇒ L(p − ι(p)) ∈ P−

g−1 ,
L ∈ P−

g−1 ⇒ L(p − ι(p)) ∈ Pg−1 ,

so that L(np − nι(p))’s alternate between Pg−1 and P−
g−1, and every other τ

function vanishes identically when s = −t . Shifting the discrete index n by 1 if
necessary, we may assume that τn(t, s) satisfies (0.4) or (2.5).

Explicit formulas

Explicit formulas for Ψ , Ψ ∗ and τ can be given in terms of Riemann’s theta
function for J , and hence explicit formulas for τ̃ can be given in terms of the
Prym theta function for P .

Taking a basis Ai , Bi (i = 1, . . . , g) of H1(C,Z) such that Ai · Bj = δi,j
and Ai · Aj = Bi · Bj = 0, let ωi (i = 1, . . . , g) be a basis of the space of
holomorphic 1-forms such that ∫

Ai

ωj = δi,j .

22 Hence Jg−1 is (non-canonically) isomorphic to J .We choose this isomorphism in such a way
that Θ ⊂ Jg−1 is identified with the zero locus of Riemann’s theta function for J .
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Then ∫
Bi

ωj = Ωi,j

gives a complex symmetric matrix Ω with positive definite imaginary part, and
J = Cg/(Zg +ΩZg) becomes the Jacobian of C. Choosing a point p ∈ C, the
map

α : C . x �→
(∫ x

p

ω1, . . . ,

∫ x

p

ωg

)
∈ J

is well-defined and gives an embedding ofC into J . Composingαwith a translate
of Riemann’s theta function:

ϑ(x) := ϑ(α(x)+ a) , a ∈ C
g, (8.3)

we obtain a multi-valued function on C which is single-valued around the A-
cycles.

Next, let ζ (p)
n , n = 1, 2, . . . , be the differentials of the second kind (mero-

morphic 1-forms with no residues) with poles only at p of the form d(zn+O(1))
and noA-periods (

∫
Ai
ζ
(p)
n = 0), and let ζ (q)

n , n = 1, 2, . . . , be defined similarly,
with p replaced by q and z by z−1 (recall that z−1 (resp. z) is the local coor-
dinate at p (resp. q)). Let ζ0 be the differential of the third kind (meromorphic
1-form with simple poles) with no A-periods and poles only at p and q of the
form dz/z + O(1). Then, given (n, t, s) ∈ Z × C∞ × C∞, the multi-valued
holomorphic function

C . x �→ ε(x) := exp

(∫ x
(
nζ0 +

∞∑
i=1

tiζ
(p)

i +
∞∑
i=1

siζ
(q)

i

))
(8.4)

has singularities at p and q of the form zne
∑∞

i=1 ti zi and zne
∑∞

i=1 siz−i

, respectively,
and is single-valued around A-cycles. The product of the form

φn(t, s; x) := ε(x)ϑ(x)/ϑ(p) ,

where ϑ(x) and ε(x) are as in (8.3) and (8.4), with

a = a(n, t, s) = nα(q)+
∞∑
i=1

tiUi +
∞∑
i=1

siVi + a0 , ∀a0 ∈ C
g , (8.5)

and Ui = −(d/d(z−1))iα(p)/(i − 1)!, Vi = −(d/dz)iα(q)/(i − 1)!, has the
desired properties:

– the function ϕn(t, s; x) is single-valued around the Ai , and when x goes
around the Bi , it is multiplied by a factor independent of (n, t, s);

– we have ϕn(t, s; x) , zne
∑∞

i=1 ti zi (1+O(z−1)) at x , p, and
ϕn(t, s; x) , zne

∑∞
i=1 siz−i (hn(t, s)+O(z)) at x , q.
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and hence gives the wave functionsΨ via its expansions around p and q. The ad-
joint wave functionsΨ ∗ are obtained similarly, from ε(x)−1ϑ(α(x)−a)/ϑ(−a)
with the same a as above.

The 2-Toda τ -function can be computed from those formulas as

τn(t, s) = exp(Q(n, t, s))ϑ(a(n, t, s)) (8.6)

for some quadratic formQ(n, t, s), i.e.,

Q(n, t, s) =
∞∑

i,j=1
Qi,j ti tj +

∞∑
i,j=1

Q′
i,j sisj +

∞∑
i=1

n(qiti + q ′isi) ,

with Qi,j = Qj,i appearing in the Laurent expansion of the integral of ζ
(p)

i or
ζ
(p)

j as ∫ x

ζ
(p)

i = zi − 2
∞∑
j=1

Qi,j z
−j /j for x , p ,

Q′
i,j = Q′

j,i appearing similarly in the Laurent expansion of the integral of ζ
(q)

i

or ζ (q)

j as ∫ x

ζ
(q)

i = z−i − 2
∞∑
j=1

Q′
i,j z

j /j for x , q ,

and qi and q ′i appearing similarly in the expansions∫ x

ζ0 = log z−
∞∑
j=1

qjz
−j /j for x , p

and ∫ x

ζ0 = log z−
∞∑
j=1

q ′j z
j /j for x , q .

Suppose C has an involution ι with no fixed points, so that g = 2g′ − 1 with
g′ being the genus of the quotient curve C ′ = C/ι. Suppose q = ι(p). Take the
cyclesAi ,Bi (i = 1, . . . , g) in such a way that ι(Ai) , Ag+1−i , ι(Bi) , Bg+1−i .
Then ι∗(ωi) = ωg+1−i , and Ω satisfies Ωi,j = Ωg+1−i,g+1−j . The map ι̃ : Cg .
(z1, . . . , zg) �→ (zg, . . . , z1) ∈ Cg maps the lattice Γ := Zg +ΩZg onto itself,
and the embeddings

J̃ ′ = J ′/(Z/2Z) ⊂ J and P ⊂ J

are given by the images under πL : Cg → Cg/Γ of the ±1-eigenspaces of ι̃:
Setting

R′ := (δi,j + δi,g+1−j )1≤i≤g,1≤j≤g′ ,
R′′ := (δi,j − δi,g+1−j )1≤i≤g,1≤j≤g′−1 ,
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so that C
g
+ := R′Cg′ and C

g
− := R′′Cg′−1 are the ±1-eigenspaces of ι̃, and for

any z ∈ Cg, z′ := (1/2)(R′)tz and z′′ := (1/2)(R′′)tz give the decomposition
z = R′z′ + R′′z′′ ∈ C

g
+ ⊕ C

g
−, we have

J̃ ′ = C
g′/(εZg′ +Ω ′

Z
g′) , πL(R

′
C

g′) ⊂ C
g/(Zg +Ω ′

Z
g)

z′ �→ R′z′

and

P = C
g′−1/(Zg′−1 +Ω ′′

Z
g′−1) , πL(R

′′
C

g′−1) ⊂ C
g/(Zg +Ω ′

Z
g)

z′′ �→ R′′z′′ ,
(8.7)

where ε = diag(1, 1, . . . , 1, 1/2),

Ω ′ =
(

Ωi,j +Ωi,g+1−j
(1+ δi,g′)(1+ δj,g′)

)
1≤i,j≤g′

and

Ω ′′ = (Ωi,j −Ωi,g+1−j )1≤i,j≤g′−1 .

In (8.5), suppose a0 = R′′a′′0 ∈ R′′Cg′−1. Since, by definition, α(q) = α(q) −
α(p) ∈ πL(C

g
−) and ι̃(Ui) = Vi , we then have a(n, t,−t) = R′′a′′(n, t), where

a′′(n, t) = 1

2
(R′′)ta(n, t,−t) = (R′′)t

(1
2
nα(q)+

∞∑
i=1

tiUi

)
+ a′′0 .

Hence by using (8.6) and (8.7), and noting that Q′
i,j = Qi,j and q ′i = −qi , we

have
τ̃ (t) = exp(Q̃(n, t))ϑP (a

′′(n, t)) ,

where

Q̃(n, t) =
∞∑

i,j=1
Qi,j ti tj +

∞∑
i=1

qinti ,

and
ϑP (z) =

∑
m∈Zg′−1

exp(2πimtz+ πimtΩ ′′m) , for z ∈ C
g′−1 .

9. Appendix: 2-Toda and Pfaff Virasoro constraints
(another proof of Corollary 4.2)

In this appendix we give an alternative proof of corollary 4.2 in the semi-infinite
case. The three formulas in the corollary are equivalent to each other due to
(2.17), so it suffices to prove only the last one:
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Proposition 9.1 For k = 1, 2,(
J
(k)
B + (−1)i J̃ (k)

B

)
τ2n(t, s)|s=−t = 2τ̃2n(t)J

(k)
B τ̃2n(t) . (9.1)

The proof is based on identities, involving skew-symmetric matrices and
Pfaffians. To a skew-symmetric matrix A2n−1 of size 2n− 1 augmented with an
arbitrary row and column

M =


x0

A2n−1
...

x2n−2
−y0 . . . −y2n−2 z

 ,

we associate, in a natural way, skew-symmetric matrices

A =


x0

A2n−1
...

x2n−2
−x0 . . . −x2n−2 0

 , B =


y0

A2n−1
...

y2n−2
−y0 . . . −y2n−2 0

 .

Similarly, to a skew-symmetric matrixA2n−2 of size 2n−2 augmented with two
arbitrary rows and columns

N =


x0 y0

A2n−2
...

...

x2n−3 y2n−3
−u0 . . . −u2n−3 −u2n−2 y2n−2
−v0 . . . −v2n−3 x2n−1 −v2n−1

 ,

we associate the four skew-symmetric matrices

C =


x0 v0

A2n−2
...

...

x2n−3 v2n−3
−x0 . . . −x2n−3 0 −x2n−1
−v0 . . . −v2n−3 x2n−1 0

 ,

D =


u0 y0

A2n−2
...

...

u2n−3 y2n−3
−u0 . . . −u2n−3 0 y2n−2
−y0 . . . −y2n−3 −y2n−2 0

 ,
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E =


x0 u0

A2n−2
...

...

x2n−3 u2n−3
−x0 . . . −x2n−3 0 u2n−2
−u0 . . . −u2n−3 −u2n−2 0

 ,

F =


v0 y0

A2n−2
...

...

v2n−3 y2n−3
−v0 . . . −v2n−3 0 −v2n−1
−y0 . . . −y2n−3 v2n−1 0

 .

Lemma 9.2 Given the matricesM and N above, we have

detM = Pf(A)Pf(B) ,

detN = Pf(C)Pf(D)− Pf(E)Pf(F ) .

Proof of Proposition 9.1. Note that J (k)
B and J̃

(k)
B are differential operators of

order k (see (1.24)). For each i = 0, . . . , k, we call the ith order part of (9.1)
the equality obtained by replacing J

(k)
B and J̃

(k)
B on both sides of (9.1) by their

ith order terms.
Since τ2n(t,−t) = τ̃2n(t)

2, the 0th order part of (9.1) is obvious. Since(
∂

∂ti
− ∂

∂si

)
τ2n(t, s)

∣∣∣∣
s=−t

= d

dti
τ2n(t,−t) = 2τ̃2n(t)

(
∂

∂ti

)
τ̃2n(t) ,

the same is true for the first order part. For instance, for k = 2 the left hand side
of the first order part of (9.1):

∞∑
i=1

(
iti

∂

∂ti+B

+ isi
∂

∂si+B

)
τ2n(t, s)

∣∣∣∣
s=−t

=
∞∑
i=1

iti

(
∂

∂ti+B

− ∂

∂si+B

)
τ2n(t, s)

∣∣∣∣
s=−t

=
∞∑
i=1

iti
d

dti+B

τ2n(t,−t)

= 2τ̃2n(t)

( ∞∑
i=1

iti
∂

∂ti+B

)
τ̃2n(t) ,

thus becomes the right hand side of the first order part of the same.
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Let us proceed to the second, the highest, order part of (9.1), which appears
for k = 2 and B ≥ 2. This time we shall use

(
∂

∂ti
− ∂

∂si

)(
∂

∂tj
− ∂

∂sj

)
τ2n(t, s)

∣∣∣∣
s=−t

= d2

dtidtj
τ2n(t,−t) = ∂2

∂ti∂tj
τ̃ 22n(t) .

The second order part of (9.1) is equivalent to the vanishing of the first line (9.2)
of the following:

∑
i+j=k

{(
∂2

∂ti∂tj
+ ∂2

∂si∂sj

)
τ2n(t, s)

∣∣∣∣
s=−t

− 2τ̃2n(t)
∂2

∂ti∂tj
τ̃2n(t)

}
(9.2)

=
∑
i+j=k

{(
∂2

∂ti∂tj
+ ∂2

∂si∂sj

)
τ2n(t, s)

∣∣∣∣
s=−t

− ∂2

∂ti∂tj
τ̃ 22n(t)+ 2

∂τ̃2n

∂ti

∂τ̃2n

∂tj

}
=
∑
i+j=k

{(
∂2

∂ti∂tj
+ ∂2

∂si∂sj

)
τ2n(t, s)

∣∣∣∣
s=−t

−
(

∂

∂ti
− ∂

∂si

)(
∂

∂tj
− ∂

∂sj

)
τ2n(t, s)

∣∣∣∣
s=−t

+ 2
∂τ̃2n

∂ti

∂τ̃2n

∂tj

}
=
∑
i+j=k

{(
∂2

∂ti∂sj
+ ∂2

∂si∂tj

)
τ2n(t, s)

∣∣∣∣
s=−t

+ 2
∂τ̃2n

∂ti

∂τ̃2n

∂tj

}

= 2
∑
i+j=k

{
∂2τ2n

∂ti∂sj
(t, s)

∣∣∣∣
s=−t

+ ∂τ̃2n

∂ti

∂τ̃2n

∂tj

}
. (9.3)

The vanishing of (9.2) follows from (2.15) and (2.17), and the vanishing of the
last line (9.3) follows from (2.16). Here we shall prove, in the semi-infinite case,
the vanishing of (9.3) using only the identities on Pfaffians in Lemma 9.2.

The action of ∂/∂ti (respectively, ∂/∂sj ) on the determinant of matrix m2n

amounts to a sum (over 0 ≤ k ≤ 2n− 1) of determinants of the same matrices,
but with the kth row (respectively, the kth column) replaced by (µk+i,0, . . . ,

µk+i,2n−1) (respectively, by −(µ0,k+j , . . . , µ2n−1,k+j )
�). Thus, the matrices in

the sum are matrices of size 2n, which are skew-symmetric except for one row
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and column. So, using the first relation of Lemma 9.2, we find23

∂τ2n

∂ti

∣∣∣∣
s=−t

= τ̃2n(t)

2n−1∑
B=0

Pf2n(B �→ B+ i) ,

and hence

∂τ̃2n

∂ti

∂τ̃2n

∂tj
= 1

τ̃2n

∂τ2n

∂ti
· 1
τ̃2n

∂τ2n

∂tj

∣∣∣∣
s=−t

=
2n−1∑
B,m=0

Pf2n(m �→ m+ j)Pf2n(B �→ B+ i) . (9.4)

Similarly, the second derivative ∂2/∂si∂tj amounts to a sum of determinants
(over 0 ≤ m, B ≤ 2n− 1) of skew-symmetric matrices, except that the Bth row
andmth column got replaced by the B+ ith row and the negative of them+ j th
column, respectively. So, all in all, we get a sum of determinants of the second
type (and the first type when B = m) in Lemma 9.2, thus leading to

− ∂2τ2n

∂ti∂sj

∣∣∣∣
s=−t

=
∑
B,m

det

(
Bth row �→ (B+ i)th row
mth column �→ (m+ j)th column

)
=
∑
B�=m

{
Pf2n(m �→ m, B �→ B)Pf2n(m �→ m+ j, B �→ B+ i)

+ Pf2n(m �→ m, B �→ m+ j)Pf2n(m �→ B+ i, B �→ B)
}

+
∑
B

Pf2n(B �→ B+ i)Pf2n(B �→ B+ j)

=
∑
B�=m

τ̃2n(t)Pf2n(m �→ m+ j, B �→ B+ i)

+
∑
B,m

Pf2n(B �→ m+ j)Pf2n(m �→ B+ i) . (9.5)

23 We denote by Pf2n(B �→ k) the Pfaffian of the skew-symmetric matrix m2n(t,−t), with the
Bth row and column replaced by the kth row and column, respectively, of m∞(t,−t). We define
Pf2n(B �→ p,m �→ q) etc., similarly.
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Therefore, summing both contributions (9.4) and (9.5), we find:

−
∑
i+j=k

{
∂τ̃2n

∂ti

∂τ̃2n

∂tj
+ ∂2τ2n

∂ti∂sj

}
s=−t

=
∑

B�=m,i+j=k

τ̃2n Pf2n(m �→ m+ j, B �→ B+ i)

+
∑

B,m,i+j=k

{
Pf2n(B �→ m+ j)Pf2n(m �→ B+ i)

− Pf2n(m �→ m+ j)Pf2n(B �→ B+ i)
}

(9.6)

The expression above consists of two sums; we now show each of them
vanishes separately. The first sum vanishes, because it is a sum of zero pairs24

Pf2n(m �→ m+ j, B �→ B+ i)+ Pf2n(m �→ m+ j ′, B �→ B+ i ′) = 0 ,

upon pickingm+ j ′ = B+ i, B+ i ′ = m+ j , thus respecting the requirement25

i + j = i ′ + j ′ = k. The argument is similar for the second sum in (9.6).  !
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