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Consider the two-dimensional Toda lattice, with certain skew-symmetric initial condition, which
is preserved along the locus s = —t of the space of time variables. Restricting the solution to
s = —t, we obtain another hierarchy called Pfaff lattice, which has its own tau function, being
equal to the square root of the restriction of 2D-Toda tau function. We study its bilinear and Fay
identities, W and Virasoro symmetries, relation to symmetric and symplectic matrix integrals and
quasiperiodic solutions.

0. Introduction

Consider the set of equations

9 9
Moo — Atmy,, I (AT, n=1.2,..., 0.1)
ot, 08y

on infinite matrices

Moo = Meo(t, 5) = (Wi j (£, 5))o<i,j<o0 »
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where t = (t1, 12, ...) and s = (s1, 57, . . . ) are two sequences of scalar indepen-
dent variables, A = (8; j—1)o<i, j<oo 1 the shift matrix, and AT its transpose. In
[2,4], it was shown that Borel decomposing' 1, into lower- and upper-triangular
matrices S; = S;(¢, s) and S, = S, (¢, 5):

Meo(t, 8) = (1if),-; 0 = S;'S,, for “generic”t, s € C*, (0.2)
leads to a two-Toda (two-dimensional Toda) system for L; := S| AS; ! and
Ly=SATS;",

dL; " aL; n .
=[(L1)+’Li]a =[(L2)—7Li]a L= 152,

ot,, asy,

with A = A_ 4+ A, being the decomposition into lower- and strictly upper-
triangular matrices. The solution L; and L, can be expressed entirely in terms
of a sequence of t-functions t = (79, 7y, ...) given by

T,(t,s) =detm,(t,s), m,(t,s) = (i, 5))o<i j<n» (0.3)

forn € Z>9:=1{0,1,...}.
Asreadily seen from formula (0.1), the 2-Toda flow then maintains the relation
Moo (t, s) = —moo(—s, —t) ", and hence, by formula (0.3)

To(t,8) = (—D)" 1, (—s, —1) . 0.4)

The main point of this paper is to study equation (0.1) with skew-symmetric initial
condition m (0, 0) and the restriction of the system to s = —t. When s — —f,
formula (0.4) shows that in the limit the odd t-functions vanish, whereas the
even t-functions are determinants of skew-symmetric matrices. In particular, the
factorization (0.2) fails; in fact in the limit the system leaves the main stratum
to penetrate a deeper stratum in the Borel decomposition. In this paper we show
this specialization s = —t leads to its own system, the Pfaff lattice on a successor
L to the 2-Toda Lax pair (L, L,), whereas in [7], we have shown this system is
integrable by producing a Lax pair

% = [-mel', L] = [mal', L],

I Here “¢, s € C®” is an informal way of saying that t and s are two sequences of independent
scalar variables. Under suitable assumptions, m o (¢, s) exists for all ¢, s € C® and the decompo-
sition holds for “generic” ¢, s € C°°, but in general a function of those variables may be defined
only in an open subset of C% x C°°, or may even be a formal power series in ¢ and s.
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on semi-infinite matrices of the form

0 1
—d1 a (0]
d 1
L= —dy ay
dr, 1
*

The projections ¢ and 7, correspond to the Lie algebra splitting (in the formula
below, lower-triangular with special diagonal means: the diagonal consists of
2 x 2 blocks, each of them proportional to the 2 x 2 identity)

. € = {lower-triangular matrices, with special diagonal }
gl(oo) =t®n { n = sp(c0) = {a such that Ja'J = a},
where
(o1
—-10 0
01
J = —10 with J2 = —1.
01
0 -10

The precise projections take on the following form?
a=(a)e+ (@n
T 1 T
=((a_—J@)'J)+ E(ao = J(ao) J)

T 1 T
+ ((a+ +J@a)' ' J)+ E(ao—l- J (agp) J)).

The solution to the Pfaff lattice can be expressed in terms of “Pfaff 7-functions"
7(t) as follows:

L(t) = Q1)AQ(N) ",

2 a4 refers to projection onto strictly upper (strictly lower) triangular matrices, with all 2 x 2

diagonal blocks equal zero. ag refers to projection onto the “diagonal”, consisting of 2 x 2 blocks.
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where Q(¢) is the lower-triangular matrix whose entries are given by the coeffi-
cients of the polynomials in A:

2n
Gt 1) 1= Qo j(ON
j=0
XZn
= ———%,(t = [A7'])
Vv T2nT2n+2
2n+1
Gons1(t, X)) = Z Oony1,j (N
j=0
AZn 9 . )
= ———QA+ )t —[A7])
TonTon+2 0 1
where T,,(t) are Pfaffians:
Ton(t) 1= Pl ma, (t, —1) = (detmy, (t, —1)'* = 10, (t, —=1)'/?, (0.5)

forevery evenn € Zs. The g; are skew-orthonormal polynomials with respect to
a skew inner-product (, ), namely (g;, g;) = J;; in terms of the J-matrix defined
earlier; see [7]. The “Pfaffian T-function” is itself not a 2-Toda t-function, but
it ties up remarkably with the 2-Toda t-function 7 (see (0.3)) as follows?:

T (t, —t — [a] + [B]) = T2n () Ton (¢ + [a] — [B])

- - 0.6)
Tong1(t, =1 = [a] + [BD = (B — ) Tou (t = [BD Ton42(r + []) .

When 8 — «, we approach the deeper stratum in the Borel decomposition of m2.,
in a very specific way. It shows that the odd t-functions 75,1 (¢, —t — [@] + [8])
approach zero linearly as 8 — «, at the rate depending on «:

;ig; Ton1(t, =t — [a] + [BD/(B — &) = Ton(t — [0 Ton42(r + [t]) .

Equations (0.6) are crucial in establishing bilinear relations for Pfaffian T-func-
tions: for all 7, #' € C* and m, n positive integers

f To, (t — [Z_l])fz,n+2(t/ + [Z_l])eZizo(li—fi)ZlZZn—Zm—2dZ
=00

+7§ Tonga(t + [2]) Fom (1 — [2])eXimoi—D2 20=2myg 2 — () (0.7)
z=0

3 (o] = (o, @2/2,03/3,...).



Pfaff t-functions 5

This bilinear identity leads to different types of relations, involving nearest
neighbors, like the “differential Fay identity”,
{Ton(t = [ul), 20 (¢ — [vD}
@ = v (B = DTl = [0]) = B0 (O (0 — ] = [0]))
=uv(u — V)72t — [u] = [VD)Ton42(0) (0.8)

and the Hirota bilinear equations*,

- 1 ~ B ~ B
<Pk+4(D) - EDle+3) Top - Ton = Pr(D)Tons2 - Ton—2 - 0.9

For k = 0, this equation can be viewed as an inductive expression of 7,5 in
terms of 7,,,_» and derivatives of T,,.

In analogy with the 2-Toda or KP theory, we establish Fay identities for the
Pfaff 7-functions. In this instance, they involve Pfaffians rather than determinants:

Pf<(Zj — Zi)fzniz(f —[zi] — [Zj]))
Ton (1) 1<i,j<2k

Ton—2k (f - Z,»zil[zi])

on (t)

= A(2) , (0.10)

In particular for k = 2,

D (21— 2002 — 23) Bt — [20] — [11]) B (t — [22] — [23])

1-2—-3—>1

= - l_[ (zi —2j) | T2 T2n—2(t — [20] — [z1] — [22] — [23])

0<i<j<3

which has a useful interpretation in terms of the Pfaffians of Christoffel-Darboux
kernels of the form

Ky (p, )
n—1
= e EHO N (o (1, Mot (1, 1) — gt (G (1. 1) . (0.11)
k=0

45 = @/011, (1/2)3/d12, (1/3)3/013,..), D = (D1, (1/2)D2, (1/3)D3,.....) is the corre-
sponding Hirota symbol: P(D) f - g := P(3/dy1, (1/2)d/dy2,...) f(t + y)g(t — y)|y=0, and
pr are the elementary Schur functions: Z}?io ek = exp(Zﬁl )
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where the g,, (¢, ) form the system of skew-orthogonal polynomials, mentioned
above (see [7]). This is the analogue of the Christoffel-Darboux kernel for or-
thogonal polynomials. So, formula (0.10) can be rewritten as

1 2k .
PR(Kn (i sy = | = [ X527 ) (0.12)
2n

i=1
ordered

where

i

00 i — o Li
X(t,Z) - A—lezizllize Zl:l i drii(z)’

with x(z) = (76 )i, jea a diagonal matrix, is a vertex operator for the corre-
sponding Pfaff lattice (see [7,6]). This vertex operator also has the remarkable
property that for a Pfaffian 7-function,

Fan(0) + aX (05 WX ()T (1) =
B +a (1= 5) 22RO, o — 7 = ()

is again a Pfaffian T-function.

As was shown in [2,3], the 2-Toda lattice has four distinct vertex operators.
Upon setting s = —t, the 2-Toda vertex operators reduce to vertex operators
for the Pfaff lattice. This enables us to give the action of Virasoro generators on
Pfaff T-functions, in terms of the restriction (to s = —t) of actions on 2-Toda
t-functions:

(420 + P ®) s Dlies = 28 0T O 0.

Finally, in Sect. 6 and 8 we discuss two examples. In the first example,
inherently semi-infinite, the Pfaff T-functions are integrals

/ etr(—V(X)+Zz,~X")dX and f PUACAEC RS ’iXi)dX,
Sk T
where d X denotes Haar measure over the spaces

S = {k x k symmetric matrices}

Tr = {k x k self-dual Hermitian matrices, with quaternionic entries},

appearing naturally in the theory of random matrices; this is extensively discussed
in [6] and [25]. By studying two strings of bi-orthogonal polynomials in the 2-

Toda lattice case, we find “string equations"; upon setting t = —s and using
the above formulae, we derive “Virasoro constraints" for the symmetric matrix
integrals.

The second example, inherently bi-infinite, will be given in the context of
curves with fixed point free involution ¢, equipped with a line bundle £ having
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a suitable antisymmetry condition with respect to ¢. This example is genuinely
bi-infinite, i.e., S;, L;, A etc., are Z x 7 matrices, and ¥;, T etc., are Z-vectors.
The bi-infinite Pfaff lattice has a quasi-periodic solution in terms of a Prym ®-
function, which is essentially the square root ofthe Riemann &-function. The
case we discussed before, i.e., when those matrices and vectors are indexed by
Zso x Z>o and Zs, respectively, will be called the semi-infinite case.

The Pfaff lattice already appear in the work of Jimbo and Miwa as one half
of the D/_-hierarchy (compare ( 0.7) (or (3.2)) with the case / = [’ of formula
(7.7) in [15]), in the work of Hirota et al., in the context of the coupled KP
hierarchy (compare, e.g., (0.5) and (0.9) with formulas (3.5) and (3.25a) in [13],
respectively), in the work of Kac and van de Leur [16] in the context of the DKP
hierarchy (on the exact connection, see forthcoming work by J. van de Leur [24]),
and in the recent work of S. Kakei [17,18], who realized Hirota et al.’s coupled
KP hierarchy as a restriction of the 2-component KP hierarchy instead of the
2-Toda lattice, and studied its relation to matrix integrals among other aspects.

1. Borel decomposition and the 2-Toda lattice

In this section we recall the theory of 2-Toda lattice. While the matrix m, and its
Borel decomposition may look more natural in the semi-infinite case, the general
theory of 2-Toda or Pfaff lattice works better in the bi-infinite case. However,
since the latter is actually independent of the former, this does not affect us in
developing the theory in its full generality. In what follows, unless otherwise
noted, we shall treat both cases in parallel, by denoting the index set for matrices
and vectors by

A Zso semi-infinite case,
' Z bi-infinite case,

and make brief remarks without going into details when the two cases need be
treated differently.

In [4,2], we considered the following evolution equations for the (semi- or
bi-infinite) moment matrix ms, € Mat 4

0M o
s,

Mo

5 = —mo(AD", n=12,..., (1.1)

= A”moo s

where A = (8; j—1)i jea is the shift matrix; then (1.1) has the following solution
Moo (1, 5) = eXn=1 4" (0, 0)e™ Lam (A" (1.2)

in terms of the initial data m., (0, 0).
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Assume my, = my (2, s) allows, for “generic” (¢, s), the Borel decomposition
Moo = Sl_lSz, for

S G — lower-triangular matrices
! = | with 1’s on the diagonal |’
upper-triangular matrices
SQ € G+ = . . . y
with non-zero diagonal entries

with corresponding Lie algebras g_, g. Forany X € Mat, 4, denote by X_ and
X, its strictly lower-triangular part and the upper-triangular part, respectively:
X=X_+ X, X+ € g4. Setting

Ly:=SiAS[, (1.3)

we have’

S

dme y [= S (3/01)(S7'8) 8y = =857 + 5,85,
oy 2 | =81 AMaSy = S1ATST =L

Since —S; Sl_l € g_ and 5252_ ' ¢ g, the uniqueness of the decomposition
g- + g+ leads to

8S1 -1 852 —1
- S - Ln — —S = Ln .

SoST = who SRS =,

Similarly, setting
Ly=SATS; !, (1.4)

we find a5 95

1 — n 2 — n

35, P=—h-, 8—sns21 =—(Ly)+.

This leads to the 2-Toda equations [23] for S;, S> and Ly, Lj:

d n 0 _ n
RS g S =Sy 0
oLi _rm.. L oLi _rm_ L =12 1.6
atn - [( 1)+7 i]’ asn - [( 2)77 i]’ =1,z ( . )

and conversely, reading this argument backwards, we observe that the 2-Toda
equations (1.5) imply the time evolutions (1.1) for m .

5 In the semi-infinite case, the left G_- and right G 4-multiplications on Mat 4« 4 are well-
defined and associative: X (YZ) = (XY)Z if X,Y € G_ or Y, Z € G+. In the bi-infinite case,
we must require those properties, e.g., by putting conditions on the behavior of u;; as i, j — —oo,
in order to make sense of the following calculation.
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The pairs of wave and adjoint wave functions ¥ = (¥, ¥,) and ¥* =
(¥, ¥)), defined by

Ui, s;2) = ez"oil{g}zﬂSl x(),
13 b (1.7)

* IS ad] FA Fly A S N
lI/H}(t,s,z)—e [] <SH}) x(@ ),

where x (z) is the column vector (z"),c4, satisfy6

L =z¥, Ly, =70, LIW =¥, Lyv =7"' (18)

and
8 n a n
o = (L)1, a = (L)+¥2,
O W = () w L
8asn 1= 2)—F1> aégn 2 = 2)—F2, (19)
E‘I’l* = —((LHy) "}, a—tnll’z* =—((LHy) ey,
0 0
E‘I’fﬁ =—((LH )T}, 8—%‘1’2* =—((LYH) "y,

which are equivalent to (1.5), and are further equivalent to the following bilinear
identities,” forall m,n € Aandt,s,t’, s’ € C®:

ES / / dZ
Vit s; W), @, 8" 1) ——
—o0 2miz

« 0 . dz
= Uou(t, s; )W, (', s 2)——. (1.10)
=0 2miz

By 2-Toda theory [23,4], the problem is solved in terms of a sequence of tau-
functions t,(¢, s), which in the semi-infinite case (or in the bi-infinite case if we
can take a “nice” my,) are given by

T,(t,s) =detm,(t,s), m,(t,s):= (i, 5))ijenij<n (L.1D)

w_

6 Here and in what follows, we denote by “="any equality which s true in the bi-infinite case, but
not true in general in the semi-infinite case. In the semi-infinite case AT x(z) = 7r+(z_l x () #
z- 1 x (z), where 74 maps zk toitself if k > 0 and O otherwise; so the second and third formulas in
(1.8) should be replaced by LoW, = 1#n+(1ﬁ_1z_11112) and LITWI* = ln_ (<pzll’1*), respec-
tively, where ¥y = eliz1 577 ,Q = eLisi it ,and T_ maps ZF toitselfif k < 0 and O otherwise.
In (1.9), the second formula in the second line and the first formula in the third line need similar
corrections.

7 The contour integral around z = oo is taken clockwise about a small circle around z = oo €
P! (C), while the one around z = 0 is taken counter-clockwise about z = 0.
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(to = 1 in the semi-infinite case), as

nll — - ’ 00 4 i
Yi(t,s;2) = (Mezl tiz Z") ’
neA

T (2, 5)
U(t,5;2) = (TnH(t s LD ot st ”)
(s $) neA (1.12)
Wit 53 2) = (I"H(”HZ 29) - B - ) :
Tar1(t, 8) neA
t, —i
wi(t, s; 2) ( Tt s + [2]) e~ Xl it z_”) )
t"+1(t S) neA
Note (1.7) and (1.12) yield
n tv
h(t, s) := (diagonal part of S,) = diag(L(s)> ) (1.13)
T’l(t’s) neA

Formulas (1.10) and (1.12) imply the following bilinear identities

f Tt — [27'], )T (2 + [271], s")elim =2 gn=m=1,
=00

—i

=f a1 (1,5 = [ZDTu (1, 8"+ [2)eZ= =0T imm=lgz - (1.14)
z=0

where m, n € A, satisfied by and characterizing the 2-Toda t-functions.
Using the matrices ¢ := (i8; j4+1)i jea and £* := (—i8; j_1); jea, Which are
characterized by

ex(@) = (3/32)x(z), and &*x(z) = (3/3(z""Nx(2), (1.15)

and using the notation

o0

E(,2) =Y 47, £(,2 = 08/00, ) =y it

i=1 i=1
we also define®
My = Si(e +&'(t, A))S;' = WieW; !,
My = S(e* +&'(s, A1) S, = Wae™W, ',
My =S Ne* =&, AT))S] =W, W,
My =8, (e —E'(s, N)S, =W, eW,",

(1.16)

8 See footnote 6 for the notation “=". In the semi-infinite case the last equality in the second and
third line of (1.16), and the second and third equalities in (1.18) fail because [AT, &*] = 1 fails
(note [A, ] = 1 is true both in the semi- and bi-infinite cases). The failure in the semi-infinite case
of the second and the third equalities in (1.17) is due to that of the second and the third equalities
in (1.8).
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where Wy := S;5¢4Y and W, := Sgeg("AT). The operators M; and M satisfy
8IP1 . 81P2
MY =—, MW, =_—F,
a(z™h

0z
ko k alIjl* PN/ 8[1/2*
Miwr =L M= 2
[Ly, Mil=1, [Ly,M2]=1,

(LI, M{1=1, [L,, M}]=1.

1.17)

(1.18)

The symmetry vector fields® Yy acting on ¥ and L,
Yo %1 o= (=1 (ML),
Yy opp ¥ = (=D (MELE) 0
Y iy B (1.19)
YMI{XL;SLI = (_1) [(Ml Li )—7 Ll] )
Yo sl o= (=D [(MILD), La].

fori = 1,2 and o, B € Z,a > 0, lift to an action on 7, according to the
Adler-Shiota-van Moerbeke formula [9,10]:

Proposition 1.1 Forn,k € Z, n > 0, andi = 1, 2, the symmetry vector fields
Y yn ntk acting on ¥ lead to the correspondences

MnLrH—k R m 1 er;l-H)(fm)
(ML) %) _ (e —1)—mk "7 (1.20)
‘Ifl’m n+1 Tm
n n+1 n+1
((M?Ll+k)+l1/2)m _ 1 (eﬁ W,;_:_L;((fm+l) _ W,;;j )(tm)>
WQ’m n+1 Tim+1 Tm ’
o = (n41)
(M5 L2+k)—l1/1)m — 1 (e — 1)M
‘Ifl’m n+1 Tm ’
_((MSL;—H()#I@)M _ ! (eﬁ W’;’le)(rmg) - Wlilnjll}(tm))
Y m n+1 Tn+1 Tm ’

where n =Y 0 (z7'/i)(@/0t;) and i) = Y 0, (2" /i)(d/3s;), so that
(1t s) = f(t +alz”' s+ blzl) .

9 Note the action of Y yapf On L follows from that on ¥, which in turn follows from (1.20).
In the semi-infinite case, note also the appearance in (1.19) of negative powers of L;, which do
not exist: It is natural to replace L’f and Lg for B < 0 by Sl(AT)_ﬂSf1 and SZA_ﬁSE],
respectively, but the appearance of projector 74 in ATx(z) = T4 (z7'x(2)) (see footnote 6)
makes it nontrivial to apply the method of [10]. So in the semi-infinite case, we first define the
action of YMQL'.S on ¥ by (1.20) (with :I:(—l)"_1 (Ml.”L;‘J“k)i replaced by Y L:.”")’ and then

M!
check the validity of/deviation from (1.19).
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In Proposition 1.1, the W-generators take on the following form in terms of
the customary W-generators

k
wh=> (’7)(k)j wE D and WH =w®, (1.21)
’ =0 J ’ ltess
(see (4.5)). We shall need the W,fke) -generators for 0 < k < 2:
wo — 8,00, wh — J(l)’
! ’ " " ner, (1.22)

WP =J@ —(n4+1)JD,
and
Wot = W +mW® = IO 4 mso,
w2 =w? +2mw + mm — DWW (1.23)
= I+ @m —i = DI +mm 1o

expressed in terms of the Virasoro generators

3/dt, ifn >0

JO =60, JV=1—-nr_, ifn<0,
0 ifn=0 (1.24)
J@ = Z > +2 Z ilii-f- Z (i) (jt) .
’ ity 0107 e WM LT '

The corresponding expression W,;ki can be read off from the above, using (1.21),
with J{ replaced by J® = J®|

t—>s’

2. Two-Toda t-functions versus Pfaffian 7-functions

In this section, we exhibit the properties of the 2-Toda lattice, associated with a
skew-symmetric initial matrix m (0, 0), or t-functions 7, (¢, s) satisfying

7,(t,8) = (—=1)"t,(—s, —1).

As in the last section, we use the notation A := Z or Z to treat both the semi-
and bi-infinite cases at once.

Theorem 2.1 The following five conditions for a 2-Toda solution are equivalent,
where (2.1) and (2.2) assume the solution arises from the matrix my, (e.g., the
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semi-infinite case), h in (2.3) and (2.4) is the diagonal matrix defined by (1.13),
and ¢ in (2.5) is either 0 or 1 (in the semi-infinite case ¢ = 0)'°:

Moo(0,0) = —moo(0,0) 7, 2.1)
Moo (t, §) = —Moo(—s, —1) 1, (2.2)
—1 _ Ty—1 _ _
h_ Si(t,s) = (52_) (—s, —1), 23)
'Syt s) = (S)) 7 (=s, —1),
-1 . WY —« 4+ 1
h lllfl(t,s,z) =¥ (-s, t,zl ), 2.4)
h™ W (t,s;2) =¥ (—s, —t;27 ),
T, (=s, —1) = (= )" 1, (¢, 5) . (2.5)

Those equivalent conditions imply, and in the semi-infinite case are equivalent
to, the following two conditions (2.6) and (2.7):

Li(t,s) =hLyh™'(=s, —1),

2.6
La(t,s) = hL[h™ ' (s, —1), 0

h(—s, —t) = —h(t,s) . Q2.7

Proof. Formula (2.1) clearly follows from (2.2). Conversely, (2.2) is an imme-
diate consequence of (1.2) and (2.1). Next, consider the Borel decomposition of
Moo (t, s) and —mqo(—s, —1):
moo(t, s) = 871 (1, 9)8:(1,5)
—Moo(—s, 1) = —=8) (=5, —1)S; T (=s, —1)
= (8] (=8, =D~ (=s, —1)) -
(—h(=s,—0)S; ' T (=s, —1)).
Hence (2.2) clearly follows from
S, s) = 8] (=s, —)h Y (=s, —1) € G_,
p @,s) =5 ( ) lT( ) 2.8)
SZ(t7 S) = _h(—S, _t)Sl_ (—S, _t) € G+s

which is (2.3) up to the substitution (¢, s) — (—s, —t). Conversely, (2.2) and the
uniqueness of the Borel decomposition imply (2.8). The equivalence of (2.3) and
(2.4) follows from (1.7). By the Definitions (1.3) and (1.4) of L;, (2.3) implies
(2.6). Comparing (2.3) with (2.8) again, we have (2.7). Using (1.12) to rewrite
condition (2.4) in terms of T, we see (2.5) clearly implies (2.4), and conversely,

10 1n what follows, shifting the index # in the bi-infinite case if necessary, we assume (2.5) holds
always with ¢ = 0.
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(2.4) implies that 7, (¢, s) := (—1)"t,(—s, —t) plays the same role as (¢, s),
i.e., it is also a T-function associated to ¥. Since ¥ determines 7 uniquely up to
a constant, there exists ¢ € C\ {0} such that 7, (¢, s) = c1,(¢, 5), i.e.,

(=D"1,(=s, —t) = c1,(8, 5) .

Comparing this formula, with itself with (¢, s) replaced by (—s, —t), we have
c?> =1, and hence ¢ = 1 = (—1)?, showing (2.5).
Finally, in the semi-infinite case, relation (2.5) with ¢ = 0 follows from (1.11),

(2.2), and the multilinearity of determinant; or from (2.7), using ty(¢, s) = 1:

) @) e 068

Ty (=S, —1) Tp—1(—s, —1) To(—1, —5)
In particular, in the semi-infinite case (2.7) implies, and hence is equivalent to,
(2.5). Note also that in the semi-infinite case L; determines S; uniquely, so (2.3)
and (2.6) are also equivalent. O

For a skew-symmetric initial matrix m, (0, 0), relation (2.2) implies the skew-
symmetry of m (¢, —t). Therefore the odd t-functions vanish and the even ones
have a natural square root, the Pfaffian 7, (¢):

Tous1(t, —1) =0, T,(t, —t) = T3,(), (2.9)

where the Pfaffian, together with its sign specification, is also determined by the
formula:

‘Ezn(t)d)co Adxi A+ ANdxoy—_1

n

1

= > it —ndx; ndx; | . (2.10)
! 0<i<j<2n-—1

Theorem 2.2 For t satisfying (2.5), and hence for a skew-symmetric initial

condition my(0,0), the 2-Toda t-function t(t,s) and the Pfaffians T (t) are

related by

T (1 + [a] = [B], —1) = T2u () T2 (t + [a] = [B])

- - (2.11)
o1 (1 + [a] = [B], =1) = (@ = B)Ton (t = [BD T2n2(t + []),
or alternatively
2, (t = [Bl, =1 + [@]) = T (t — [a]) T2, (t — [BD),
(1 + [a], =t = [B]) = Tou(t + [@DT2n (r + [BD), (2.12)
o1t — [Bl, =t + [a]) = (@ = B)Ton(t — ] — [BD T2n42(0) '
Tons1 (1 + [a], =1 = [B]) = (@ — B)Ton () Ton12(t + [a] + [B]) .
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Proof. Informula (1.14),setn =m — 1,s = —t + [B],t' =t + [a] — [B] and
s’ =5 — [a] — [B] = —t — [«]; then using

1 ~ N
— Tt — (27, )Tt (¢ + [271], s)eZim1 707 gnmm=l gy
27 J,— 0o
1 - P -1y L azdz
= m—1( — s ) Tm+1 (I ) —
i z:oof 1t =27 )Tt (' + [z ]S)l—ﬁzzz
_ , 1, sl —azdz
= —Res,_p1 Tuo1 (¢ — [27' 1, )Tt (' + [27 '], s )1——,322_2
=B — )1t = [Bl. )T (¢ + [BL. 5
=B —a)tu_1(t — [Bl, =t + [BD)Twt1 (t + [a], —t — [@]),
1 o) 7N\, —i
=P Tt s — [T, 8+ [2heXm DT g
27 7=0

L s — ot s +p—— L%
m\l, S — m , S DY
‘ ‘ 1—a/z 1—B/z 22

2mi 7=0

dz
= (Res,—y +Res,_p) 7, (2, s — (@, s’ (z—a)(z—B)
(Res,— +Res._p) T, (t, s — [2DT0(t', 5" + [2]) z—a)(z-B)

= o i ,B (Tm(ty s — [(X])Tm(t/, s’ + [O[])
— Tu(t, s — [BD T (', 5"+ [B])
1
= o5 (ot~ + 1B~ [ + o] = [B1, =)
— T (t, =) Ty (1 + [a] — [B], =t — [@] + [B])
and (2.5), we have

— (B = )Tt (t = [BL, =t + [BDTws1 (¢ + [e]. =1 — [at])
= (=D"tu(t + [@] =[], —1)?
— T, =0Ty (t + [a] = [B], =1 — [a] + [B]) .
Setting first m = 2/ and then m = 2[ + 1, we find respectively, since odd
t-functions vanish on {s = —t} in view of (2.5):
0=z (t + ] — [B], —1)?
—o(t, =)ty (t + [a] = [B], =t =[] + [BD, (2.13)

and

— (B =)t — [Bl, =t + [BDrasa(t + [a], —t — [a])
=~y (t + [a] = [Bl, —1)*. (2.14)
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Taking the square root, with the consistent choice of sign!! (2.10) yields (2.11),
and then (2.12) upon setting t — t — [@] or t — ¢ + [B]. O

Corollary 2.3 Under the assumption of Theorem 2.2, the wave and adjoint wave
functions ¥, W* along the locus {s = —t} satisfy the relations

Ton+1

————Y 12, 55 z))
N 2nTon+2

. Ton+1 _
= 11n1< :+ z*jzn(t,s;z ]))

s—>—t

lpl’zn(l, —t; Z) = — lim (

§—>—t n
. Ton+2 ; « -1
= lim —Y s 7)
s—>—t Ton ’

~ —1 .
/AUl I VTP v VR
f2n(t)

Ton—1

— Y (t,s; z))
1,2n—2\"> 9>
~ T2n—2T2n "
. Ton—1 _
= hm< " i (t, 85 2 1))

s——t Ton

lpl*,Zn—l(ta —t;z) = lim (

s—>—t

) Ton_ _
= — lim ( 2 2‘Pz,2n72(l,S§Z 1))

s—>—t TZn
_ ‘EZn(t~+ [Z_l])z,(zn,l)e, Y2 hd
Ton (t)
Proof. These follow from (1.12), (2.11) and (2.12) by straightforward calcula-
tions. O

Corollary 2.4 Under the assumption of Theorem 2.2, we have
(i) fork > 1:

a‘cZn ~ ([) aon (t)
=T n ’
oty S=—t 2 oty
0To, S ~
A = Dk—1 (—Dt)fzn . t2n+2(t)
Otk s=—t

> (i(=0) T ) (P () Fans2(1))

i+j=k—1

1 1t suffices to check that (2.10) yields the correct sign in the second equation of (2.11) at 8 = 0,
t = 0 and modulo 0(012), ie.,

(3/3t1)1214-1(0, 0) = 72, (0) T2, 42(0) ,
for some m o (0, 0) for which the right hand side does not vanish. This can be checked easily, e.g.,

for moo (0, 0) made of 2 x 2 blocks (_01 (1)> on the diagonal.
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(ii) form > 2:

921y, 92 T2n
= T3, (1) 2.15)
k%;;a&ansz . 22 a&at
9212, 3 " 3 "
D R SR LT 216
korimm OhOSI =t kti=m
9210, . .
Yoo IR = Y k= Dp(=0)F (@) - pi(@) Fanga (1),
01,0t -
k+l=m § k+l=m—1

(iii) for k, | > 0:

i) pr(—0) T (t, $) =1 = Tou (1) () pr(=0,) Tan (1),
@) pr(=3)Tans1 (t, )ls=—r = Pr(—3)Fan(t) - pr_1(3:) Fansa(t)
— P11 (=) Tan (1) - Pr(3) Fanga(t)

where pi(-) are the elementary Schur functions, with p_(-) = 0, and D, =
(Dy,, (1/2) Dy, .. .) are Hirota’s symbols.

Proof. Relations (i) are obtained by differentiating formulas (2.11) in «, setting
B = o and identifying the coefficients of o*~!. The first two relations in (ii) are
obtained by differentiating formulas (2.11) in & and B (i.e., applying 8°/3adp),
setting B = « and identifying the coefficients of o ~2. The last relation in (ii) is
obtained by differentiating the first formula in (2.12) in @ and g, setting = «,
substituting ¢ + [«] for ¢, and then identifying the coefficients of & 2. Finally,
expanding both identities (2.11) in « and B, e.g.,

(1 + ] = [Bl,$) = D & B pe(@) p(=0)Tan (1, 5)

k,I=0

and identifying the powers of o and B yields relations (iii). O

Variants of formulas (2.11) and the formulas in the corollary can be obtained
by using (2.5) and the following consequence of it:
gl I+
91795 ™

g1

—7, = (=1 [T]+]J|+n
or'as/ =D

, (2.17)

s=—t

s=—t

where I = (i1, i2,...)and J = (ji, jo, ...) are multiindices, [I| = i; +ir+-- -,
at! = o1,'9t? - - -, etc. B.g., (32/01,0s; + 8°/01/05¢)Tans1 = 0, so we get the
following (trivial) counterpart of (2.16):

Z 92 Ton+1
Kiiom Ot0s

=0.

s=—t
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3. Equations satisfied by Pfaffian 7-functions

In this section, we exhibit the properties of the Pfaffian 7-function introduced
above.

Theorem 3.1 For all t,t' € C* and m, n positive integers, the T-functions
satisfy the bilinear relations

f f2n (t - [Z_l])f2m+2(t/ + [Z_l])eZiﬁ)(ti_ti)ZIZzn_zm_zdz
=00

F P Bt DT — DR gz 20, G
z=0
or equivalently

Y p2y)eEE P p (=D - Famia
j k=0
Jj—k=—2n+2m+1
+ Y (2R (D) - Fan = 0. (3.2)

J:k=0
k—j==2n+2m—1

Proof. Formula (3.1) follows from (1.14) upon replacing'> n by 2n and m
by 2m, using (2.11) and (2.12), with B8 = 0, to eliminate 1, (t — [z~'], —1),
Tomar1 (', —t' — [2]), T2ns1 (¢, —t — [2]) and 13, (¢’ — [z], —¢') and, upon dividing
both sides by 75, (¢) T2, (¢).

Substituting ¢ + y and ¢ — y for ¢ and ¢, respectively, into the left hand side
of (3.1) and Taylor expanding it in y, we obtain

y§ XE g (4 y = [ DEaa(t = y + [ D" dz

7=00

FP IR bty (2D Eane — y = (D
z=0

oo 5ol 0 D N =i/~ ~ — —
— f eZi:l 2yiz eZz:l i Di e Yz Difi To, + T2m+2Z2n 2m Zdz
=00

12 One can check that all the other choices of parities of n and m, i.e., the cases where one or
both of n, m are odd, yield the same bilinear identities.
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—¥Y® 2yiz7t YR D YR D )ix ~ -
+\¢ e Z[:I Q’ylz eZ[:l }lDleZt=1 4 Dl/lf2n+2 . ‘L'anzzn zmdz
z=0

o0
i 3% y:D; ANo—k~ =~ 2n—2m—2
E Pi(2y)27eX=1Pi i (= D)z %y - Taprn 2?2
=00 -
J. k=0

“f
z=0 .

Js

oo
pi(=2)2 T X (D) g - o™z
k=0

= Zni( Z Dj (2y)eZ?il yiDi pk(_b)on - Tomg2

j—k=—2n+2m+1
+ Y 2R g (D) fzm> ,
k—j=—2n+2m—1

showing the equivalence of (3.1) and (3.2). O

The identity (3.1) gives various bilinear relations satisfied by 7. We show that
the Pfaffian T-functions satisfy identities reminiscent of the Fay and differential
Fay identities for the KP or 2-Toda t-functions (e.g., see [1]). From this we
deduce a sequence of Hirota bilinear equations for 7, which can be interpreted
as a recursion relation for 7,, ().

Theorem 3.2 The functions T,,(t) satisfy the following “Fay identity”:

r 1

Zfz (t — Z[Z'] — [g.]>52 2<t _ Z [f‘]) ngczl(é_i — )
n J 14 m—+ J 1—[1%5&5’«({’ — é‘k)

i=1 j=1 1=j=r
J#
! r
) ~ l_[r= (Zi - {k)
F Rt D (- D) o=
= <j< j= k#£i
J#
o 3.3)

the “differential Fay identity”:

{T2n (0 = [u]), Ton(r — [V])}
+ " = v @t = WD) Ton (1 = [V]) = T2 () Tan (8 — [u] — [V]))
=uv(u — V)T — [u] = [VDTons2(), (3.4

and Hirota bilinear equations, involving nearest neighbors:

- 1 ~ B ~ B
(Pk+4(D) - §D1Dk+3) Ton - Ton = Pi(D)Tong2 - Ton—2 - (3.5)
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In(3.3),2n,2m € A, I, r > Osuchthatr —1 =2n —2m, z; (1 <i <1) and
¢ (1 <i < r)are scalar parameters near 0; in (3.4), 2n — 2 € A (hence 2n,
2n+2 € A), and u and v are scalar parameters near 0; and in (3.5), 2n—2 € A,
k=0,1,2,...,and{f, g} := f'g — fg' = D1 f - g is the Wronskian of f and
g, where’ = 9/01.

Proof. The Fay identity (3.3) follows from the bilinear identity (3.1) by substi-
tutions

t>t—[zl— =zl and >t —[a] - =[]

Indeed, since r — [ = 2n — 2m, we have

l_[k 1(1 - Zé‘k)

]_[k 1((1/2)
[T ((1/2) — Ck)

00
, 1 -
exp (Z(ti _ ti/)zt) Z2n—2m—2d Hk 1( sz) r —I— ZdZ
i=1

d(l/ )

and

t— 1)z ) 2 de
exp (Z( )z ) S z

Hk 1(Z_§k)
l_[k 1(Z_Zk)

’

so the first and second terms on the left hand side of (3.1), divided by 2mi,
become, respectively,

1
2mi

- 1
= ZResZ:Q-l Ton (t — Z[Zj] - [z—l]>
i=1 Jj=1

) T (1= zz0)
T2m+2< Z[§J]+[ ]) i 1(1—Z§1<)d

~ —1y = —1 0 (ti—t)z' _2n—2m—2
Ton(t — [27 D Fomga(t’ + [z )eXimoiD 21 =2m=2 g
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= ZRes;ZQ f2n< Z[Z] é’]) T2m+2( — Z[Cj] + [§]>
i=l1 j=1

M 1
[Tz € — ) @ =)
= fzn< Z[Z, [&i] )sz+2 (l - Z[Cj] + [Ci])
i=1 =1
' T (& — 20)
[Ti<k<r G —20)°
ki
and

L. Tonia(t + [2]) Tom (1 — [z])ezfio(f,-/—t,-)z*"Zzn—zmdZ
2wi J.—

l

!
— ZResZ:Zi fzn+2( Z zjl+ Z])
i=1

m( Zm— )Hk Kl O

Hk 1(Z - Zk)
I I r
=y fzn+2< D Izl + [z )rzm (r =Y gl - [z,-]>
i=1 j=1 j=1
nk=l (Zi - é‘k)

Hlskgl(Zi - Zk) ’
k#i

showing (3.3).
Note that when 2m = 2n — 2,1 = 1 and r = 3, denoting z; = ¢;_; for
2 <i < 4, and multiplying both sides of (3.3) by [ [, ; ;<4 (z; — z&), e obtain

(22 — z21)(z3 — 24) Ton (t — [z1] — [22D) T2n (t — [23] — [24]) (3.6)
—(z23 — 21) (22 — 74) Ton (t — [z1] — (23] T2n (t — [22] — [24])
+(z4 — 21)(22 — 23) Ton(t — [21] — [24]D) T2n (t — [22] — [23]) (3.7
+< l_[ (zi — Zj))fzwz(t)fzn—z(t —[z1] = [z2] = [z3] — [z4]) = 0.
I<i<j<4

The differential Fay identity (3.4) follows from (3.6) by taking a limit (set z4 = 0,
divide by z3 and let z3 — 0). Alternatively, we can prove (3.4) directly from (3.1):
Sett —t' = [u]—[v],2m = 2n —2in (3.1) and in the clockwise integrall3 about

13 See footnote 7.
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7 = 00, set z — 1/z (and reverse the orientation of contour), yielding

. - 1l —v/z dz
fi:o T (t — [2DTon (P + [Z])m oy
1 _
- —y{ Bt + DT’ = [2D)7 uz 2.
z=0 - U/Z

The first integral has a simple pole at z = u and a double pole at z = 0, while
the second integral has a simple pole at z = v only, yielding, after substitution
t'=1—[ul +[v],

- - 1

Ton (1 — [ T2 (¢ + [VD (u — v);

—

d
+ &(on(t — [2D Tt = [u] + [v] + [zD)

v)
u z=0

= — T2t + [V Tana(t — [u]) (v — u)v?,

Z

or, after carrying out d/dz|,—o on the left hand side,

1
on(t - [u])le'l(t + [v])(u - v)ﬁ

+ B (t) - Fon( — [u] + [0])

DB (1) - ot — (] + VD)~
u u
= —Tp2(t + D T2t = [ (v — )1 . (3.8)
Shifting ¢ — ¢ — [v] and multiplying both sides by u /v yield (3.4).
Since P(—=D)f - f = P(D)f - f by the definition of Hirota operator, (3.5)
is the same as (0.8)nothing but the coefficients of y;,3 in (3.2). It also follows
from (3.4), since, for any power series F (¢, t") which satisfies F (¢, 1) = 0,

0 0
coefficient of y; 3in F(t — y,t + y) = <— - —)F(t, t)
ot, 0ty

0 d
= 2§F(t, ') = 2 x coefficient of u**? in d—F(t, t — [u] +[v)
i v

v=u
Indeed, differentiating (3.8), which is equivalent to (3.4), in v, setting v = u and
using D, f - f =0,

0 1

%(le(t) gt + ) = —EDlef(t) g+ [v])

1 &
= > vITIDD f(1) - gt + [v]),
j=1
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etc., we have

5 N | R ..
—on(t = DTt + WD) + B0 + 5 ]; w = DDy, - T, (1)

= —Topra(t + [u))Ton ot — [uu?,

which, noting f (¢+[ul)g(t—[ul) =Y ;o u* pr (D) f -g, is a generating function
for (3.5). O

Asin the case of KP or 2-Toda t-functions, Pfaffian T-functions satisfy higher
degree identities:

Theorem 3.3
Pf<(Zj — Zi)Ton—2(t — [2i] — [Zj]))
To, (1) 1<i,j<2k
Ton—2k (l - Zl'zi][zi])
= A(z) E , (3.9
where k > 1,2n — 2k € A, zy, ..., 2ok are scalar parameters near 0, and A(z)

is the Vandermonde determinant [ |, _; _ jeu (@i = 2i)

Proof. This may be obtained, up to the sign, from the second identity in Theo-
rem 4.2 of [3]:

det(fzvl(f —[zil,s + [)’j])>
I<i,j<k

'L'N(l, s)

TNk (l - Zle[zi]a s+ Zf;ﬂ)ﬁ])

= A()AQ2) o

El

by setting N +— 2n, k — 2k, y; = z;, taking the square roots of both sides and
using (2.12). Rather than taking this route, here we prove (3.9) by induction on
k, using the bilinear Fay identity (3.3). First, (3.9) is trivial when k£ = 1. (Note
also that it gives (3.6) when k = 2.) Suppose (3.9) holds for &k — 1. Then we
have, for every p € {2, ..., 2k},

Pf<(Zj — Zi)oniZ([ —[zi] = [Zj]))
T2, (1) 2<i,j<2k

iL,j#p
52n72k+2 <t - 2251'521{,1'7&17 [Zi]>

on (t)

= A2, .- Zpy s 22k)
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Multiplying both sides by (—1)”(z, — 21)Top—2(t — [z1] = [2p]) /T2, (), summing
itup for p =2, ..., 2k, and using

(=D (zp —20)AR2, -3 Zps -+ -5 220)
. A(2) (zp — 21)
 TlocicoGi — 20) [Ta<i<n(zp — 2i)
i#p
and the identity
2%
Pf(aij)i<ij<x = ) _(—D’ay, Pf(ai,»)zg,»),;-fpzk . V(i) stoaj = —aj
p=2 "

which follows from Definition (2.10) of the Pfaffian, we have

Pf<(Zj — Zi)f2n—~2(t —[zi] — [Zj])>
T (1) 1<i, j<2k

2k
P Z])

_ A(z2) _ 1 Z (
H2§i§2k(zi —21) 'EZn(f)z = H2§ Szk(Zp —Zi)
i#p

Z
=
oot = [21] = [2p) Fanaira (r - > [zi])

2<i<2k
i#p

using the bilinear Fay identity (3.3) withr =2k — 1,1 =1,¢ =z, (1 <i <
2k — 1) and (2n, 2m) replaced by (2n — 2, 2n — 2k) this becomes

_ A(z) o1
- HZSifzk(Zi —21) Taa(1)?

2% 2%
. (—1)<1_[(Z1 - Zi))fzn(l‘)f2n—2k (l - Z[Zi])

i=2 i=1
f2;172k (t - Z,zil[Zz])

‘E2n (t )
completing the proof of (3.9) by induction. O

= A(2)

9’

4. Vertex operators for Pfaffian 7-functions

In terms of the operators

oo A7k g

) [ N

X (£, 1) 1= eXi=1 Wh o7 2k=1 T
1k o
kot

X*(t,\) :=e” TRk 62211
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acting on functions f(¢) of t = (t1,1,...) € C*, define the following four
operators'# acting on column vectors g = (g, (t))nea,

Xi(u) =X, wWx(n, Xi) == —x "W)X, 1),
Xo(u) = =X (s, Wy (A, X500 = ATx()X"(s, 4),

and their compositions'”

Xij(u, 1) =X WX (), i,j=1,2.
They form a set of four vertex operators associated with the 2-Toda lattice. Among

those, X, is important in the semi-infinite case, related to the study of orthogonal
polynomials. In [3], we showed that

Kot D Kl M)y
Tl’l Tm

> w0 =

m<j<n

.1)

for any n, m € A, n > m. Note on the right hand side the limit exists as s — —¢
if n and m are even, so in particular, taking n = m + 1, we see the poles along
s = —t cancel out in ¥ 5, (1) 55, (A7) + W1 2mp1 (W WS 5,41 (A7) We shall
come back to this point after proving the following theorem and its corollary.
Suppose 1 satisfies (2.5), and let T be the vector of corresponding Pfaffian
T-functions. Let X, X} and X acton 7 as if they are acting on the vector (7,),ca
padded with zeros, i.e., T, = 0 if n is odd, so that y (@) (resp. x *(A)) acts on 7y,

by multiplication of u?* (resp. A=2"). Then we have!¢

14 Here X (s, A) has s; in place of #;, as well as 9/ds; in place of d/91;, in the definition of
X(t,2), ete; x (1) = (1'8;j); jea. and x*(n) = x(u™1).

15 When i = Js X}k interacts with X; nontrivially, yielding the factor exp(Z(u/k)k /k) =
1/(1 — u/A) if we bring the multiplication operators to the left and the shift operators in ¢ or s
to the right. So if we denote by : : the usual normal ordering of operators in 7, s (but not in the
discrete index n), we have

Xij (e, 1) = 1/(1 = p/0) XF X 0 = —1/(1 = /N (1, W)X (w1, 1)

where u =t and ¢ (1, A) = x (/M) ifi = l;u = s and ¢ (i, A) = ATK(A/M)A = p/Ax(A/p)
if i = 2; and
Ak k

Xu, u, A) = ekl ”"(”k_}‘k)ez’?o:l I

16 The product X1 (A)X7(w) in (4.4) is computed in the same way as in footnote 15.
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Theorem 4.1

) OX (e, A) T2 (1) (N =2n)
X, NN ls=—r = {—)»(Xl(M)fzn(f))XT()»)fszrz (N =20+ 1) 4.2)

~ B (OX11 G B () (N =2n)
X s A sm—t = - N 4.3
(it 20w {—u(Xmmfzn)(XT(m@nH) W=+ &

T (DX X1 (W) ara (1) (N = 2n)
X ) )\, s=—1 — - - 4.4
(e 2] {(XIW)@”)(XT(Mm) W=+ P

Corollary 4.2 For k = 1, 2, the following holds: (for notation see (1.24))

Ji(k) (Z)TZn (t, S)ls:—t = ‘E2n(t)']i(k) (t)on (t) >
TS T (6, ) ses = (=D Ean () TP ()T (1) |

and so
U0 + D )10 (1, 9)i=r = 28O T ()T (1)
Remark 4.3 The appendix (Sect. 9) contains an alternate proof of this corollary.

Proof. The theorem follows from (2.11) and (2.12) by straightforward calcula-
tions:

X1 (, VTN ls=—r

M>N : Y (=) -1 -1
=—|—- i=1 i t— —[A7], —t
(A l—u/ke vt =[] =[A7], 1)

for N = 2n:

[L)N 1 % (i —A) = - _1 1
=—(= =i NOEHGS »
(X 1= ¢ T ()T (1 = [0 T+ 277D

= f2n(l‘)X11(lL, )M)on(t) s

for N =2n+1:

MN)\._I—/L_I 00 i iy L s~ _
= (%) T T B = T DB+ B

= —A (X () T2) (XT (M) T2n42) 5
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(X (i, M TN ls=—

A N-1 1 0 i i
- _<_> e TR Dy — [+ 1)

% 1 — /2
A N-1 —1 N 00 i i
= —(—> (=D e_Zi=lti(/‘L _)“)‘L’N(l‘-i-[,u_l] —[k_l],—t)
% L — /A
for N = 2n:

A 2n—1 1 ~ .
N _(ﬁ> e EEn 0, (0T + (17— 71D
== _on(t)Xll()‘" M)on(t) )

for N =2n +1:

)uzn,bfl—)fl_oo_i_i~ s~ _
N <_) e X W TOE (¢ — T D Bt + ']

2 1L —p/2
A N0 i iy e~ _
= e TR = DT DTl + 1)

= —u (X (1, M) T2) X (f, W) Ton42) 3

X2 (i, VTN |s=—1
= (AT X (M) X* (s, WX, W) Ty ls=—
= ()N X =Dy [, = )

for N = 2n:

= (uA) e X WD G g = T = [ ) Fn ()
= AKX )X (W) Fan—2 (1) Fan (1)

for N =2n+1:

= (uA)eX= WD (1 [ ) (1 — A1)
= (X1 (W) T2) X1 (M) T2y) -

The corollary is shown by expanding X;; in A and ;& — . Recall that
1 JTANL
2Y X ()
1 ,LL/A((A) w2) s

o0 gk
_ _L(Z% D AlkW;f;)(t)) . @)

A \iD I=—c0 neA

X, A) = —
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where X (i, &) = eXizt i =20 o321 (1/DG7 = ™)(@/34) g the vertex operator in
the KP theory [11]'7, and

k
n .
j=0

with Wl(k) the coefficients of similar expansion of X (u, ).
Expanding X; in (4.2) as above leads to

Wi (D720 (t, ) |s——s = T2a () Wy () T2a(2) .

In particular, since Ji(k) (k < 2)and W((,f)l.) (k < 2) are linear combinations of
each other [3]:

Wn(ol) = "i(o) =380, er,li) — Ji(l) 4 nji(()) ’
we see for k = 1, 2 that

F A [ NOVAL OB

Consider the following vertex operator'®

oo i oo Ql
X(2) = ATX (2) = AT e ZR T y (o)

and define the kernel

1
Ky(y,z) = (;X(y)X(z)f>

2n
It is easy to see that (X(y)X(2)7T)2, = yX1 (V)X (2)T2u—2, S0 by (4.3)

_(Xlz(Z, Y)T)2n _ Xp2(y, 2)T)2m

Ton s=—t Ton

Kn(y’ 7) =

s=—t

and by (4.1)

( 3 w],,-wwz,-(rl))‘ = Ku(it. 1) — K1t ).

2m<j<2n

17 The order of variables is reversed: our X(u, A)is X (A, w)in [11].

18 Asnoted in p- 25, X'treats T as a vector (7;),c4 padded with zeros, i.e., T, = 0 for n odd. So
« (z) appearing in X(z) acts on 7, as multiplication by z"*, and AT actson 7 as (A ©), = Tp_1.
In practice, we always apply X’s to 7 even number of times, so there is always an even power of
AT, and %, for odd n will never appear.
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Here each term ¥y ; ()% j(k_l) on the left hand side blows up along s = —¢,
but the poles from two successive terms (for j = 2k and j = 2k + 1) cancel, as
we saw earlier.

Forn € A, let

J2m Tom(t — [A71])
g (l }») o AV me(t)me+2(t) (4 6)
n\l, = .
8/t + M) Ty (t — [A7!
AZm(/ 1-|- )Tz~( (A7'D fn—om 1
V Tom () Tom+2(1)
In the semi-infinite case, the ¢,,’s form a system of skew-orthogonal polynomials

[7].
Theorem 4.4 The following holds:

ifn=2m,

| X
Pf(K,(zi, 2j)1<i j<ok = <§ 1_[ X(Zi)f) , 4.7
- 5

i= n
ordered

Kn+1 (/-'Lv )“) - Kn(/-’l“v )")
= X 1D (g (1, W) qonir (£, 1) — Gon(ts (1) Gans1 (1, 1)) . (4.8)

so in the semi-infinite case

Ky(u, 2)
) _N—l
= X DN (o (8, Mot (1 10) — qoa(t, (1)Gans1 (£, 2)) . (4.9)
n=0

Proof. Using (3.9) and

Ko (. 1) (4.10)
_ (XwX)T
- (5,
(1= ) (a2 i T2 = L = AT
TZn(t)
= T = (K e T2t = W=D
T2n(t)

the left hand side of (4.7) becomes

Tt — Yk 127D
%2n (t)

% yoo i
(21 -+ 20) " eZi= 2= i A7
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This equals the right hand side of (4.7), because
(X(z20)X(z2k-1) - - X(22)X(21) 7)),

n—1_2n—2 m=2k X (g etz
=l k o2 i (@t ay)
Z 2k
i ~ -1
[ I1 (1——>]T2n—2k(t— > [z ])
1<i<j<2k % i=1

2k

W1 g eI 52 g (g ) .
= (z1---z0) " AT eZm i +ZZk)T2n—2k(t - Z[Zi ]> '

i=1

To prove (4.8), we have

~ -1 -1
Y /\znrzn(t—[u I—[A7"D
(m )((M ) D)
~ -1 -1
— (un a2 Ton—2(t — [ ] —[A ]))
(1) Fon(1)

G e
N f2n+2(f)f2n(l‘) <T2n(t)t2n(t (W 1—=[A""D

— (UA) ot — [ — [K_l])fznu(t))

__ e

Ton+2(1) T2 (1)

({2200 = 117D B = 27D

+ (= Wt = [ Dl — 7D
using (3.4),
_ (kz,, Bt = (11D w20/ + Wt = (17D

V Ton (1) Tonga (1) V Ton (1) Tan4a(t)
= (22 (t, M) G2ns1(t, ) — q2a(t, W)G2n11(2, A))

in terms of the skew-orthogonal polynomials (4.6). Multiplying this with an
exponential and noting (4.11), we obtain (4.8). Summing up this telescoping
sum yields (4.9). O

—(Keu))

5. The exponential of vertex operator maintains 7-functions

The purpose of this section is to show the following theorem:
Theorem 5.1 For any constant a and a Pfaffian T-function T,
T 4+ aX(W)X(w)T 6D

is again a Pfaffian T-function.
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Remember that X(1)X (1) acts on T,,(¢), as follows:
(X)X () T)2n (1)
= (1= ) a2t E R0, o0 - Y - ()

A
P

=0 _M)(A162,9;,,.(”%—2%( , )%uzuzﬁ)

A

= %(x — WXL e (5.2)

2n

Lemma 5.2 We have:

-1 -1
A=2r2) ' —pz) ' = : (1 — L) (1 - i)
Apz? Az 754

Proof. See for instance [8, p. 248], [11, p. 62]. O

Lemma 5.3

yf Koo (t — [27 " D Foman (i + [~ PeXm Gz 2n=2m=2
7=

+ Xon-‘rZ(t + [zDTom (2’ — [Z])ezlil(ti/*ti)zfizhﬂmdz

z=0

1 -

= _(MZn)\‘Zm"L:zn(l‘ — [M_l])me(t/ _ [)\,_1])@21=1(ti)‘ +1;1h)
M f—

>

= W (1 = 2T D — [ DEEF D) (53)
Proof. Upon performing the following operations

replacingn by n — 1, and ¢ by t — _[Mfl] — A7,
multiplication by (Ap)2* et (W' +1D),

the bilinear identity (3.1) yields
0= f T2t = [z 1= [ = W DB (@ + 27 DO 2
=00

1— z 1 — z )‘_“ ez,-oi|((t,'—t,-/)zi+t,-(;Li+)»i))22n—2m—2dz
A w) z?
+ ?g Tt 4+ [2] = [0 = IV DT (@ + [2D ()™
z=0
1 1
1—1/uz Auz?

1—1/az

ezfil((z;—z,«)z—’ﬁrz,- (ui+)»i))z2n—2mdz '




32 M. Adler et al.

Subtracting this expression (which is = 0), the left hand side of (5.3) equals

yg Tt — 27 1=V = [ DEmaat + 271D
eZ[Oil ((ti—t,-’)zi+<ti—z,;~i)()\"+ﬂi)) ()LM)Z(’l_l)Zzn_zm_de
+ f Dot + 2] = A7 = [ DT (' — [2])
z=0

eZ?il ((f,-/_fi)z_i+(ti+zTi)()hi+Mi)) ()LM)anbz—Zde

= f Tt — 27 1=V = [ Do + 1271

eZ}’il (@ —t,»’)z" +1; (A +Mi)) (Aﬂ)zn—2Z2n—2m—2

(=5 (=52 0-D(-0)e

—l—f Tt + (2] = AT = [ D (@ — [2])
z=0

X (=2 Gl (5 )20 2n=2m

1 1 1 1 1
- dz
1—2z1—puz Auz21—-1/az1-1/uz

1 00 i/ai i
=— (K232 %00 (1 = [0 Do (1 = (A7 X1 410
w—
— WP B, (t — [V DT () — [Mil])ezfil(fil”r’f“i)) ,
ending the proof of the lemma. |

Proof of Theorem 5.1. 1t suffices to prove
0= f (a+bX) o (t — [z D(a + bX) Faia(t' + [z7'])
=00
eZ?il(Iifti/)ziZZn72m72dZ

+ f (@ + bX) Eonsa(t + [2))(a + bR Ton (@’ — [2])
z=0

eZ?il(f,!*ti)z”'ZanZde '
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The coefficient of a* and b* vanishes, on view of the fact that 7,, and szn are
Pfaffian t-functions. So it suffices to show the vanishing of the ab-term.

coefficient of ab
_ ?{ Kot — [ DEamsa ' + 27D
.
+ Tt — [ DK gy (¢ + [271])) e D 222
+ f (Eearialt + D~ (2]
.

+ Ty (1 + (DK (1 — [2])) 2 G0 212 g 7

The first terms in each of the integrals can be evaluated by means of lemma. The
sum of the two terms equals

1 00 /i i
w—a (12327 2200 = [ D (t' = (27 DX s

A 1 = T DB (1 [T DeER I ) (5.4
Performing the exchange
n<—m, t<—1~1t, 7<—>12

gives an expression for the sum of the second terms in the integrals; the sum of
expression (5.4) and the same expression with the exchange above is obviously
Zero. ]

6. Example 1: symmetric and symplectic matrix integrals

Consider the matrix m, (¢, s) of (¢, s)-dependent moments,

Lie(t, $) :=f/ xkyleZT G =i pox Vdxdy, t,seC®, (6.1
]RZ

with regard to a weight function F(x, y). Then m, satisfies (0.1), so we get a
2-Toda t-function

T,(t,s) ;= detm, (¢, s)
= / f [T(eZ=0H0b F s 0 ) An) A, (v)dxdy
RZH k=1

where the last equality is due to an identity involving Vandermonde determinants
that can be found in [2, Sect. 3]. If F is skew-symmetric, F(x, y) = —F(y, x),
then m (0, 0) is also skew-symmetric; so by Theorem 2.1 we have u;;(t, s) =
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—pji(—s, —t), and get a solution of the Pfaff lattice, with the corresponding
Pfaff 7-function

%2n(t) = me2n(t’ _t) .

Specializing the inner-product above to the case where F(x, y) = 2(D*$)
- (y — x)p(x)p(y) leads to the three typical cases of symmetric and skew-
symmetric weight (F(x,y) = £F(y, x)), which are known to be related to
the Hermitian, symmetric and “symplectic” matrix integrals.

Namely, the inner-product

S8 = // L F@smED 8= X)eXT 1@ () p(y)dx dy.

forae =0, 1, —1 leads to

det(<xi, yj>z/2)0§i,j§k—l — fHk etr(72V(X)+ZtiXi)dX
fora =0,k>0

. ' = r(=V(X I.xi
TT(t) = PE((x", y))o<ij<k—1 = fSk PTEVOO+HY G XD g x

6.2
fora = —1,k > 0 even 6.2)

Pf(<xi, yj>t)0§l.’j§k_1 - fﬁ etr(*ZV(X)JrZZtiXi)dX
foraa = +1,k > Oeven

where d X denotes Haar measure on

Hi = {k x k Hermitian matrices}
S; = {k x k symmetric matrices}

Tr = {k x k self-dual Hermitian matrices, with quaternionic entries}

Ther second and third cases (@« = *£1) are solutions to the Pfaff lattice, whereas,
for the first case (¢ = 0), the T-functions are solutions to the Toda lattice. For
more details, see [S] and [25]. o

— For a = 0, we have (omitting eX ' +")

// fg()2D8)(y = x)p(x)p(y)dx dy = 2/ f@)gx)px)’dx,

leading to the first integral in (6.2).
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— Fora = —1,let e(x) = sign(x) = x/|x|. Denoting &(x) = 2(3/9x)~'8(x),
we have

/ / DD = pxIp () dy

= /fR2 fg(yelx —y)px)p(y)dxdy

_ / / FE8(P@p(dx dy — / / FE8(0)P@p(dx dy
x>y x<y

[ e - rorsenpweedrdy

_ /R dx (f(x)p(x) f ¢MPpOdy — g(X)p() f f(y)p(y)dy> ,

leading to the second integral in (6.2).
— For o = +1, since

/f(x)(S’(y —x)dx = f'(y),

we compute

/ F)g2D&)(y —x)p(x)p(y)dxdy
-/ < [ oo - x)dx) Py
+ / fx)p(x) (/ gMp(S'(y —X)dy> dx
= f(f(y)p(y))’g(y)p(y)dy - /(g(X)p(X))’f(x)p(x)dx

= [ (10180 = 01807y

leading to the third integral in (6.2).

In [5], we worked out the Virasoro constraints satisfied by integrals of the
type (6.2), but integrated over subspaces of matrices C H, S or 7 having their
spectrum < x , which then leads to Painlevé-like differential equations for those
integrals. In the next section, we give an alternative derivation of the Virasoro
constraints for symmetric matrix integrals, via the string equation.
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7. String equations and Virasoro constraints
for symmetric matrix integrals

In this section we consider the moments (6.1), with regard to the skew-symmetric
weight

F(x,y)=e Ot We(x —y), (7.1)
assuming the following form for the potential V:

o
, g i—o bi7'
Vi) =< = 2+

f Zi:OaiZl

with eV ® decaying to 0 fast enough at the boundary of its domain.

According to [2,4], in the semi-infinite case the Borel decomposition of the
moment matrix, mq (¢, s) = S| 1'S,, leads to the (monic) string-orthogonal poly-
nomials

(7.2)

PP(@) = Six(2) and p?(2) :=hS; " x (). (7.3)
satisfying the orthogonality relations
(P, PD) = Bumhn

for the skew-symmetric inner product

(f, g) = //Rz dydze(y _ Z)eV(y)JrV(zHZ?il(tiyi,sizi)f(y)g(z) . (7.4)

Besides L, and L,, we also define strictly lower-triangular (i.e., with zero
diagonal) matrices Q;, O, by

Ql = S]8S1_1 s Q2 = hS;_ISS;/’l_l . (75)

where ¢ = (i8; j11)i j>0 as in Sect. 1, satisfying (1.15).
Note that (1.7) and (7.3) imply

U =X p() g = e RO (76
so from (1.8)
V@ =LipP@. w?@=hLh PP ). 7.7)

Also, from (1.15), (7.3) and (7.5)

2 p0@ = 0pV@) . pP() = 02pP(). (7.8)
0z 0z
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Comparing (1.16) with (7.5), we have

M= Q1+ S1E'(t, S = 01 +&'(t, Ly),

8 L 3 / (7.9)
M; =h"'Q,h— 8, '€ (s, A)S, =hT'Qsh —E'(s,L;),

where we set

£, z) = Ztizi , E(t,2):= ?)_i(t’ 2)

i=1
as in Sect. 1. Note that (1.17), (7.6) and (7.9) yield (7.8) again. Note also that,
since e* = —e " + A, we have

My =S(s* +&'(s, AT))S, = —hQ  h ™' + Ly +€'(s, L), (7.10)

where Lz_1 is defined to be SZASZ_I. Since AAT = I, this is a left inverse of L,,
ie,L,'L,=1.

We now state the two main theorems of this section, namely string and Vira-
soro equations for the symmetric case. Similar equations can be obtained for the
“symplectic” case (third integral (6.2)).

Theorem 7.1 (String equations) The semi-infinite matrices L; and M; satisfy
the following matrix identities in terms of f and gin V' = g/f, forallk > —1:

M LA ALy — Mo LS (L)
+ Lt e(Ly) + L5 g(Loy) + (LT (L)Y + LAf(L2) =0, (7.11)
where ' means 0/0L;.

This fact, together with the ASV-correspondence (Proposition 1.1) and corol-
lary 4.2 (Proposition 9.1), leads at once to the constraints for the 2-Toda t-
functions and the Pfaffian 7-functions:

Theorem 7.2 (Virasoro constraints) The multiple integrals

T, (2, 5) = det (u;; (t, 5))05i,j§n—1

n
— f . ./H(eV(Xk)JrV()'kHZ?o](liX};Sfy,’;)g(xk _ yk)> .
k=1

R2n
A () A, (y)dxdy, =1,

form a t-vector for the 2-Toda lattice and satisfy the following Virasoro con-
straints for all k > —1 and n > 0:

di (1) 22 | =)
Z{E(JH»k,n + JEJr)k,n) + b; (J;ﬁkﬁﬂ — J,-JrkH‘n)}rn =0, (7.12)

i>0
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where (with Jk(i) and .]Nk(i) defined in (1.24))

Jo =12+ @n+k+ DI + 0+ DI,
J,(lel = 7"+,
Jo =02 —@n+k+ DI +nn+ DI,
IO =00 - ns?.

(7.13)

The Pfaffian
N .
By () = Tyt —1)" 2 = / [T(evoo=mmt)jaycolx, N even,
RN o1

satisfy the Pfaff lattice, together with the following Virasoro constraints, for all
k > —1and even N > 0O:

o0
a ~
Z <EEJ/E2J:E,N + lel(cl—i)-lH,N) v(1) =0, (7.14)

=0

)

n

where J,(f’ are defined by the same formulas as in (7.13).

Proof of Theorem 7.1. Using
a
—e(y—2)=28(y —2),
dy

setting V;(z) = V(z) + &(t, z), and using the hypothesis that e vanishes fast
enough at the boundary of its domain'®, we first compute

0= f dyaiiy"f(y)( f dze(y—z)ev-s@pﬁ,%’(z))evf(”p,?)(y)}
R y R

- [ (/ dzely - Z)eV‘(Z)Pﬁf)(z)> M
R R

LV, F Y+ OFFO)) pLO) + pV )y £ ()

+ 2 // . th(y)+V7X(Z)ykf(Y)P,gl)(Y)P,(nz) (Z)S(y _ Z)dydz
R

19 we imagine doing the calculation for all #; and s; vanishing beyond 54 and 574 and letting
the latter be strictly negative and positive respectively.
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= / / o dvdze(y = 2 OO (g(L1) + &'t L) f (L) LS
+ (L@ + L Lo}V ;)] PP )
2 [ OO0 505" ()
={(Q1 +& . L)LY f(Ly) + gL)LY + (L f (L))}, hm

) fR VOV () () b3 () 3k £(3)dy |

Next, setting L, := hL) h~" so that zp® = (L,p?),, we find similarly

0= f dzai{z"f@( / dye(y—z)eV'“’)pf,“(y))eV-s“)p,S%)(z)}
R Z R

—2 / / eV Q £k pD (1) piP(2)8(y — 2)dydz
RZ

- //RZ dydze(y — Z)ev,(y)+v,x(z)[{(g(]:2) (s, L) f(L)) X
+ (f(L)LY) + Q2 f (L) L5} p® (Z)]mp,gl)(y)
_ zf/Rz OV £ (1) yk pD (1) @ (3)dly
= {(Q2 — &G L)Ly f (L) + (L) L5 + (L3 f (L))},
_ 2//R2 ev,(y)+v,s(y)f(y)ykp’(ll)(y)p’(nz)(y)dy.
Adding the two expressions yields the matrix identity

{(Q1 + &, L)LY F(Ly) + g(L)LY + (LY F(L1)'}h
+ h{(Qa2 — E(s, L)) L5 f(Ly) + g(La) LA + (L5 f(L2))}T = 0. (7.15)
Replacing k by k + 1, and using

W 'Loh=Ly, Qi+&(t L)=M,
(WO —E'(s, L)) =M;T =L, — My,
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we observe that identity (7.15) leads to

ML F(Ly) 4 g(L) LA + (L F(Ly)
F LA F(L)M;T + L5 e(Ly) + (L5 F (L)) = 0;

Finally, since [L,, M;‘T] = —1 by the last identity in (1.18), and since L lisa
left inverse of L, (see the comment after formula (7.10)), we have

L5 f(La)yM;T = M3 TLE™ f(Lo) — (L5 F(L2))
= (Ly' — Mo)LAT f(Ly) — (L5T f(Ly))
= L5 f(Ly) — MoLE f(Ly) — (L5T £ (Ly)),

leading to the identity, announced in Theorem 7.1. O

Proof of Theorem 7.2. Using the a; and b; as in representation (7.2) of V'(z),
we obtain from (7.11) that

> @M L — MyLEP 4 G k4 DL 4 L5
i>0
+ Zbi (Lil+k+1 + Lé+k+1) —0.

i>0

We now apply Proposition 1.1. The vanishing of the matrix expression above
implies obviously that the ( )_ and ( ), parts vanish as well, so that acting
respectively on the wave vectors ¥ and ¥, lead to the vanishing of the four right
hand sides of (1.20) in Proposition 1.1, for the corresponding combination of
W’s. Therefore we have

Ek,me
= Z{ai(Wf,3<+i + erzzll,kﬂ +20+k+ I)erzl,;+k - 2er1111,:‘+1<)
i>0
+ 2bi(Wn(11}c+i+1 - er’llll,k-f—i-'r])}tm
= CkTi s

the point is that ¢, is independent of ¢, using the first and third relations of
Proposition 1.1, and independent of s and # using the second and fourth relations.
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Finally, in view of the relations (1.23), we have
'Ck,mfm
- {Zai(Jif)k I Cm—i—k—1JI,
i>0
+ @1 —m)—i—k—1J +2m(m — 1)5,<+k,0)
+2 Zai ((i +k+ 1)(J,~(43( + mdiir,0)
i=0
— T+ (1 =m)siieo) )
+2 Z b; <(Ji(-il-}c+l + méitk+1.0)

i>0

- (‘ii(-Bc-i-l +d - m)5i+k+1,0)>}fm

- {Z“i(%ﬁ + I Cm i+ k+ DI =T

i>0

+Qmm +1) — 2)5,%0)

+2 30 (s = I ) + @m = 1>6i+k+1,o)}rm .

i>0

Since ¢ is independent of m and 7y = 1, and since most of Ly, vanish when
acting on a constant, we have

LimTm  LioTo

= =2 (@410 + bidisrs10) »

T 70 i=0
and so
(Lk,m +2) (@iSipro + bi5i+k+1,0))fm =0,
i>0
yielding the identity (7.12). The proof of the Virasoro constraints (7.14) for 7 (¢)
follows at once from (7.12) and corollary 4.2 (or Proposition 9.1). O

8. Example 2: Quasiperiodic solutions

In this section, we shall combine the construction of quasi-periodic solutions of 2-
Toda lattice [20,23] and the theory of Prym varieties [21] to obtain quasiperiodic
solutions of the Pfaff lattice. While we put stress on the semi-infinite case in the
present paper, this gives a non-trivial example in the bi-infinite case.
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A 2-Toda quasiperiodic solution is given by some deformation of a line bun-
dle £ on a complex curve (Riemann surface) C, with the time variables play-
ing the role of deformation parameters, so the orbit under the 2-Toda flows is
parametrized by the Jacobian of C. If C is equipped with an involutiont:: C — C,
and if £ satisfies a suitable antisymmetry condition with respect to ¢, then the 2-
Toda flows can be restricted to preserve the antisymmetry of £, giving a solution
of Pfaff lattice. The Prym variety P of (C, ) naturally appears as the restricted
parameter space. The vanishing of every other 7, (¢, —¢) (see (0.4) or (2.5)) indi-
cates that the space of £’s which satisfy the antisymmetry condition must consist
of two connected components, P and P~. This means the involution ¢ has no
fixed points. So, in general a quasiperiodic solution of the Pfaff lattice does not
satisfy the BKP equation and vice versa, since the orbit of a quasiperiodic so-
lution of the BKP equation is isomorphic to the Prym variety of a curve with
involution having at least two fixed points.

Preliminary on the geometry of curves

A line bundle on a complex curve C is defined by adivisor D = Zi m;pi,m; € 7,
pi € C,i.e., asetof points p; on C with (positive or negative) multiplicities m;,
as L = O(D). Its local sections (on an open set U C C, say) are meromorphic
functions on U which have poles of order at most m; (zeros of order at least —m;)
at p;. The number d := ), m; is called the degree of L. For £ = O(D) and
m,n € Z, p,q € C,we denote L(mp + nqg) = O(D + mp + nq) etc. A defor-
mation of £ can be described as a deformation of D, like D, ; = ), m; p;(t, s),
but in the 2-Toda theory it is more convenient to describe it by requiring its local
sections to have some exponential behaviors at prescribed points, as we shall see
later.

Two line bundles O (D) and O(D,) are isomorphic if the divisors D; and D,
are “linearly equivalent,” i.e., if they differ by the divisor of a global meromorphic
function on C. Jacobian?® J of C is the space (Lie group) of isomorphism classes
of degree 0 line bundles on C. It becomes a principally polarized abelian variety
of dimension g := genus of C, i.e., J is a complex torus C¢/I", C8 DO I' =~
Z2¢, for which there is a divisor (codimension 1 subvariety) ® C J, such that
some positive integer multiple of @ defines an embedding of J into a complex
projective space, and @ is “rigid” in the sense that it has no deformation in J
except parallel translations. A complex torus C$/I" is a principally polarized
abelian variety if and only if, after some change of coordinates by GL(g, C),
the lattice I" becomes Z8 + 278 for some complex symmetric g X g matrix 2
with positive definite imaginary part. On a principally polarized abelian variety
Cs/(Z8 + $2Z8), there is a special quasiperiodic function (i.e., holomorphic

20 n this section J means Jacobian, not a Virasoro generator.
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function on C¢ that satisfies some quasiperiodicity condition with respect to
78 + $27.8) called Riemann’s theta function 9, defined by

¥ (z) = Z expQuim'z + wim' Q2m) .
meZ&
The theta divisor & becomes the zero divisor of .

If C has a (holomorphic) involution t: C — C (i.e., > = id), J gets an
involution ¢* induced by ¢. The Jacobian J' of the quotient curve C' = C/t, and
the Prym variety P of the pair (C, ) (or (C, C’)) appear in J roughly as the
+1 eigenspaces of ¢z J' := J'/(some subgroup of order 2) c J and P C J
are subabelian varieties of J, such that t|;; = +1, ¢|[p = —1,and J =~ (J' x
P)/(finite subgroup). When ¢ has at most two fixed points, the restriction of ®&
on P gives twice some principal polarization on P (the restriction ¥ |p becomes
the square of the Riemann theta function on P defined by this polarization).

Quasiperiodic solutions of 2-Toda lattice

Let C be anonsingular complete curve on C (compact Riemann surface) of genus
g, let £ be a line bundle of degree g — 1 on C, let p, g € C be distinct points.
Let us choose local coordinates z ! at p and z at ¢, and trivializations of £(p)
at p and ¢,
op: L,(p) =0, and o,: L, =0, .

Fort,s € C™,let L, be the line bundle whose (local holomorphic) sections are
(local holomorphic) sections of £ away from p and ¢, and at p (resp. ¢) have sin-
gularities of the form eXizi iz (holomorphic) (resp. eXizisiz . (holomorphic)).
For “generic”?' (n,t,s) € Z x C® x C*, the wave functions Y, s, are
obtained from a (unique) section @, (¢, s) of

L:s((n+1)p—nq),
which has the form z"¢2=15< (1 + O(z™")) at p via 0, i.e.,
Wi (1. 5:2) 1= 0, (gu(t. $)) = "eXF 7 (14 0(7)
U u(t, s;2) 1= 0,(p(t, s)) = et s (h,(t,8) + 0(2)) .
The adjoint wave functions

Wr = e SR (] 4 0z DY).

1,n

Wy, =z e T (1, 9) ! + 0(2)

21 Here generic means that I"(L; s(np — nq)) = {0} holds. For a degree g — 1 line bundle £,
this condition holds for almost all (n, 7, s) € Z x C*° x C°°, and implies that dim I" (£; s ((n +
Dp—nq)) = 1.
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are defined similarly, by using
(L) (=np + (n+ 1)q) = (L5~ —s(—np + (n + 1)q) ,
in place of £, ;((n + 1)p — ng), where we denote
L :=Hom(L,0)=L"'"Qw,

with o being the dualizing sheaf (the canonical bundle, i.e., the line bundle of
holomorphic 1-forms), and, in place of o, and o, trivializations

a;‘: E;:Op and 0;: £Z(q):(’)q,

for which the maps

Ly(p) ® L33 (. 9) > 0,($)o(¥)dz/z € w(p), .
L, ®Liq) 3 (@, V) = 0o} (W)dz/z € w(q),

extend to the canonical map

(8.1)

L(p)® L*(g) = o(p+q).
Hence for general (n, ¢, s), (m,t',s") € Z x C® x C*,
Wit s )W, (5" 2dz/z, i=1,2

become expansions at p and g, respectively, of a holomorphic 1-form on C \
{p, q}, so by the residue calculus the pair ¥, ¥* satisfies the bilinear identities
(1.10).

Quasiperiodic solutions of Pfaff lattice

In the above construction, suppose C has an involution ¢: C — C with no fixed
point. In this case g is odd, g = 2¢’ — 1, with g’ being the genus of the quotient
curve C' = C/t. Suppose g = t(p), and L satisfies

FL)~ LY, sothat LRUFL>w. (8.2)

Choose the local coordinates z¥' and the trivializations Op, 0gs a;, a; at p and
g = u(p), such that z - *z = 1 and 0, = ¢* 0 0, o (" hold. (We then have
o, = —t" o 0p o ¥, with the minus sign due to the fact that dz/z, which appear
in (8.1), satisfy (*(dz/z) = —dz/z.) Then the wave and adjoint wave functions
constructed above satisfy (2.4), so they lead to a quasiperiodic solution of the
Pfaff lattice when s = —t (and skipping every other n).

The orbit of the 2-Toda flows is parametrized by the Jacobian J of C, and
the 7-functions are written in terms of Riemann’s theta function of J. The orbit
of the Pfaff flows will become the Prym variety P of (C,t), with T given by



Pfaff t-functions 45

the Prym theta function. To be more precise, let J,_; be the moduli space of the
isomorphism classes of line bundles of degree ¢ — 1 on C. This is a principal
homogeneous space®? over J, on which the theta divisor

O :={Le 1| TL)+#©O)}

is canonically defined. The set of £ € J,_; satisfying (8.2) becomes the disjoint
union P,_; U Pgil, where

Py = {E € Jo ‘ L satisfies (8.2) and dim I" (L) is even},
- {L£ € J,_1 | L satisfies (8.2) and dim I"(£) is odd}

g1 =
are principal homogeneous spaces over the Prym P. We have
Pgil CO and P, -0 =2&,

for some divisor £ C P,_; which gives a principal polarization on P,_;. Since
® is the zero locus of Riemann’s theta function ¢ of the Jacobian J, this means
¥ vanishes identically on P,_, and the restriction #|p,_, becomes the square of
Riemann’s theta function 9 p of (P, Z'), which is called the Prym theta function.

For a 2-Toda quasiperiodic solution, the discrete time flow (shift of n by 1)
is given by the shift £ — L(p — ¢). In the present case, since g = t(p), this
flow preserves condition (8.2). Moreover, we have

LePei=Lp—up)e P,

VpeC, VL e J,i: {£€ P,y = L(p—up)) € Pey,

so that L(np — nt(p))’s alternate between P,_; and Pg__l, and every other 7
function vanishes identically when s = —¢. Shifting the discrete index n by 1 if
necessary, we may assume that t, (¢, s) satisfies (0.4) or (2.5).

Explicit formulas

Explicit formulas for ¥, ¥* and 7 can be given in terms of Riemann’s theta
function for J, and hence explicit formulas for T can be given in terms of the
Prym theta function for P.

Taking a basis A;, B; (i = 1,...,g) of H(C,Z) such that A; - B; = §; ;
and A; -A; = B; - B; = 0,letw; (i = 1,...,¢g) be a basis of the space of
holomorphic 1-forms such that

/ w; = (Si,j .
A

22 Hence J, o—1 is (non-canonically) isomorphic to J. We choose this isomorphism in such a way
that ® C Jg_ is identified with the zero locus of Riemann’s theta function for J.
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/ wj = $2i
B;

gives a complex symmetric matrix §2 with positive definite imaginary part, and
J = C8/(Z8 + §27%) becomes the Jacobian of C. Choosing a point p € C, the

map i i
a:CaxH(/ wl/ a)g)eJ
P P

is well-defined and gives an embedding of C into J. Composing « with a translate
of Riemann’s theta function:

Then

B(x) ==V (a(x) +a), aecC8, (8.3)

we obtain a multi-valued function on C which is single-valued around the A-
cycles.

Next, let ;,fp ), n=1,2,...,be the differentials of the second kind (mero-
morphic 1-forms with no residues) with poles only at p of the form d(z" + O(1))
and no A-periods ([ A, ) — 0), and let o n=1,2,...,bedefined similarly,
with p replaced by ¢ and z by z~! (recall that z=! (resp. z) is the local coor-
dinate at p (resp. q)). Let ¢y be the differential of the third kind (meromorphic
1-form with simple poles) with no A-periods and poles only at p and g of the
form dz/z + O(1). Then, given (n,t,s) € Z x C® x C*, the multi-valued
holomorphic function

Coxp>e() = exp( f (nzo + g+ Zs,»g““)) (8.4)
i=1 i=1

has singularities at p and g of the form X117 and Zre it i respectively,
and is single-valued around A-cycles. The product of the form

Gu(t, 55 x) = e(x)2(x)/2(p),
where ¥ (x) and (x) are as in (8.3) and (8.4), with

o o0
a=ua(n,t,s) =na(q) + ZtiUi + Zs,-V,- +ag, Vage C#, (8.5)
i=1 i=1

and U; = —(d/d(z"")) a(p)/(i — D!, V; = —(d/dz)'a(q)/( — 1!, has the
desired properties:

— the function ¢, (¢, s; x) is single-valued around the A;, and when x goes
around the B;, it is multiplied by a factor independent of (n, t, 5);

— we have ¢, (1, s; x) ~ Z"eXi=1 "' (1 + O(z™")) at x =~ p, and
@n(t, 57 %) = 2"eXi=15 (h,(t,s) + O(2)) atx =~ q.
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and hence gives the wave functions ¥ via its expansions around p and ¢. The ad-
joint wave functions ¥ * are obtained similarly, from &(x) ™' (a(x) —a) /9 (—a)
with the same a as above.

The 2-Toda t-function can be computed from those formulas as

T,(t,5) = exp(Q(n,t,s))d(a(n,t,s)) (8.6)

for some quadratic form Q(n, ¢, ), i.e.,

o o0 o0
Qn,t,8) =Y Qijtity+ > O} sisi+ Y _n(giti + /s
i,j=1 ij=1 i=1
with Q; ; = Q;; appearing in the Laurent expansion of the integral of ;l.(p ) or

é_j(p) as

x 00
/ fi(p) =7 - 22 Qi jz’'/j for x~p,
j=1
Q; i= Q}’ ; appearing similarly in the Laurent expansion of the integral of §i(q)

or ;;q) as
X o0
[ =1 -2) 0 for v,
j=1
and ¢; and ¢/ appearing similarly in the expansions

x 00
/ gozlogz—quz*’/j for x>~ p

j=1

and
X o
/§0=logz—2q;zf/j for x ~gq.
j=1

Suppose C has an involution ¢ with no fixed points, so that g = 2¢" — 1 with
g’ being the genus of the quotient curve C’ = C/t. Suppose g = t(p). Take the
cyclesA;, Bi (i =1, ..., g)insuchaway thatt(A;) ~ Ay 1_i, t(B;) >~ Bgy1.
Then 1*(w;) = wg41—i, and 2 satisfies £2; j = 2,41—j g+1—j. The map i: C8 >
(215 -+, 2g) P> (2g, .., 21) € C8 maps the lattice I" := Z8 + 278 onto itself,
and the embeddings

J' =J)(Z]2Z)cJ and PCJ

are given by the images under r;,: C8 — C8/I" of the £1-eigenspaces of i
Setting

SI=E1=)=>

SI=8,1=)=
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so that C8 := R'C¢ and C* := R"C¢~! are the +1-eigenspaces of 7, and for
any z € C8, 7/ := (1/2)(R")'z and 7" := (1/2)(R")'z give the decomposition
z=R7 + R"'7" € C} & C%, we have
J =C8 )(eZf + R'78) ~ 7 (R'CE) C C8 /(28 + R'7F)
Z/ — R/Z/

and

P=CS )z + 278 ~ n (R'CE Y € C2 /(28 + R2'7%)

Z// — R// " , (87)

where ¢ = diag(1, 1, ...,1,1/2),

(4368 )X+38j¢) /) 1< j<g
Q" =(82i; — Qi gr1-j)1=i,j<g'~1 -

In (8.5), suppose ap = R"aj € R"C#¢~!. Since, by definition, a(g) = a(g) —
a(p) € 7 (C%) and 1(U;) = V;, we then have a(n, t, —t) = R"a"(n, t), where

1 1 >
a'(n.1) = S(R"Ya(n. 1, 1) = (R (ne(q) + l;ti U) +aj.

Hence by using (8.6) and (8.7), and noting that Qg’j = Q,; and g = —gq;, we
have

(1) = exp(Q(n, 1))Vp(a’(n, 1)),
where
o0 o
On,t) = Z Qi jtitj + Z%‘mi )
i,j=1 i=1
and
Pp(z) = Z expQrim'z + wim'2"m), for ze C& ",

meZg' ~1

9. Appendix: 2-Toda and Pfaff Virasoro constraints
(another proof of Corollary 4.2)

In this appendix we give an alternative proof of corollary 4.2 in the semi-infinite
case. The three formulas in the corollary are equivalent to each other due to
(2.17), so it suffices to prove only the last one:
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Proposition 9.1 Fork =1, 2,

(J;“ + (—1)ff;“) Ton(t, ) ls=—t = 280, (1) I X T (1) . 9.1)

The proof is based on identities, involving skew-symmetric matrices and
Pfaffians. To a skew-symmetric matrix A,,_; of size 2n — 1 augmented with an
arbitrary row and column

X0
M = A2n—l ,
Xon—2
—Yo.-- —Ym-2| <

we associate, in a natural way, skew-symmetric matrices

X0 Yo
A = A2n_1 s B = A2n—1
Xop—2 Yon—2
—X0 ... —X2,2| O —Yo .- —}’2n—2‘ 0

Similarly, to a skew-symmetric matrix A,,_, of size 2n — 2 augmented with two
arbitrary rows and columns

X0 Yo
Ao
N = Xop—3  Yan-3 ’
—Uy ... —Up-3|—U2-2 Y2n-2
—Vo ... —U2p-3| X2n—1 —VU2n—1

we associate the four skew-symmetric matrices

X0 Vo
Azy_s
C= Xon—3 Vau—3 |~
—X0 ... —X2p-3] 0 —x2,4
—Vg ... —Up-3/X2p—1 O
uo Yo
Ary_s
D= Upp—3 Y3 | °
—up ... =33 0 Yy
—Y0 --o —Ym-3|—Yum—2 0
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X0 Uo
Azy_s
E= Xon—3 Uom—3 | *
—X0 ... = X253 0 w2
—ug ... —U_3|—Uz,—2 0
Vo Yo
Ao
F= Von—3 Yon—3
—Vy ... —Up-3] 0 —vy_
—Yo ... —Y2a-3|V2n-1 0

Lemma 9.2 Given the matrices M and N above, we have

det M = Pf(A) Pf(B),
det N = Pf(C) Pf(D) — Pf(E) Pf(F).

Proof of Proposition 9.1. Note that J;k) and J;(k) are differential operators of
order k (see (1.24)). Foreachi = 0, ..., k, we call the ith order part of (9.1)
the equality obtained by replacing Jl(k) and fz(k) on both sides of (9.1) by their
ith order terms.

Since 1y, (¢, —t) = T,(t)?, the Oth order part of (9.1) is obvious. Since

d d “.5)
ot; as; nll, S

the same is true for the first order part. For instance, for k = 2 the left hand side
of the first order part of (9.1):

> 9
Z(lt, +is; )TZn(ta s)
0tite 08it¢

=1

_d ) 9
- d_tit2n(t t) - T2n(t)<atl>7:2n(t)

s=—t

s=—t

0
z,
<3fz+z 3Si+z>rzn( g

- T (t )
t+€

s=—t

i

_2 n l ~n L)
% (t)(Zzt Z+K>Tz (1)

thus becomes the right hand side of the first order part of the same.



Pfaff t-functions 51

Let us proceed to the second, the highest, order part of (9.1), which appears
for k = 2 and £ > 2. This time we shall use

d d ad a
LA T D)
ot; 0s; al‘, aSj

s=—t
2 2

3" o
= n t, —1) = t .
dt;dt; Tty =1) 31,0t % (8)

The second order part of (9.1) is equivalent to the vanishing of the first line (9.2)
of the following:

2

a
= 200, (1) ——Tan (1) } 9.2)

92 92
- - t,
Z {(8@-8@ + 8s,-8sj)tzn( S)

e - 31,91,
Z {( 82 82
= + )TZn(t7 S)
it 8li8lj 8s,~8sj P
32 37,'2,, 8%2,1
 onr, anay 2O 25, o1, }
9? Ch )
= + (2, 5)
a9 3 3 dTon 3Ton
R PN | I A
81‘,’ as; atj 8Sj s——t ot; E)tj
92 dTon 0o
= Z {( )rzn(t,S) gl }
= Wanas, T asor, T oy

9.3)

8:":211 aon
at; alj '

s=—t

-2 3 Lo

The vanishing of (9.2) follows from (2.15) and (2.17), and the vanishing of the
last line (9.3) follows from (2.16). Here we shall prove, in the semi-infinite case,
the vanishing of (9.3) using only the identities on Pfaffians in Lemma 9.2.

The action of 9/9¢; (respectively, d/9s;) on the determinant of matrix m,,
amounts to a sum (over 0 < k < 2n — 1) of determinants of the same matrices,
but with the kth row (respectively, the kth column) replaced by (ti+io,-- -,
Wi+i2n—1) (respectively, by —(wor+j, - -, mn_l,kJrj)T). Thus, the matrices in
the sum are matrices of size 2n, which are skew-symmetric except for one row
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and column. So, using the first relation of Lemma 9.2, we find*?

2n—1
ath ~ .
:TZn(t) Pf2,1(£|—>€+l),
8t,- =t ;
and hence
afzn 8f2n . 1 8r2n 1 81’2,,
at; alj - Ton Ot Ton Btj s——t
2n—1
= Y Phy,(m > m+ j) Py (L > £+i). (9.4)
£,m=0

Similarly, the second derivative 9%/3s;3¢; amounts to a sum of determinants
(over 0 < m, £ < 2n — 1) of skew-symmetric matrices, except that the £th row
and mth column got replaced by the ¢ + ith row and the negative of the m + jth
column, respectively. So, all in all, we get a sum of determinants of the second
type (and the first type when £ = m) in Lemma 9.2, thus leading to

82'[2,1
3t,-8sj s——t
_ Z det £th row — (£ + i)th row
- 4 mth column — (m + j)th column

= > {Plau(m > m, £ > )Py (m > m+ j, > € +1)

L#m
+ Pfo,(m > m, € m+ j) Py (m—> €+i, £ 0)}

+ Y Pl (L > £+ i) Pl (L > £+ )
14
=Y () Ploy(m > m+ j, L~ £+1)
L#m
+ Y Pl (L > m A+ ) Plyy(m > £+1). 9.5)

t,m

23 We denote by Pfy, (£ — k) the Pfaffian of the skew-symmetric matrix mo, (t, —t), with the
£th row and column replaced by the kth row and column, respectively, of moo (¢, —). We define
Pf7, (¢ — p,m +— q) etc., similarly.
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Therefore, summing both contributions (9.4) and (9.5), we find:

— Z {8:5271 0T T 827:2n }
ek dt; Btj 8ti3Sj =t

- Z Ton Pou(m = m + j, £ +— €+ 10)
O#£m,i+j=k

+ > (P2t > m+ j)Ploy(m > £+1)
Lm,i+j=k

— Pl (m > m + j) P, (£ > £ +i)} (9.6)

The expression above consists of two sums; we now show each of them
vanishes separately. The first sum vanishes, because it is a sum of zero pairs>*

Pfy,(m—>m+ j, L L+i)+Ply,m—m+j,L—£+i)=0,

upon picking m + j' = £ +1i, £ +i’ = m + j, thus respecting the requirement
i+ j =i+ j' = k. The argument is similar for the second sum in (9.6). O
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