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Abstract. The finite Pfaff lattice is given by commuting Lax pairs involving a finite
matrix L (zero above the first subdiagonal) and a projection onto Sp (V). The lattice admits
solutions such that the entries of the matrix L are rational in the time parameters #1, t2, . . .,
after conjugation by a diagonal matrix. The sequence of polynomial t-functions, solving
the problem, belongs to an intriguing chain of subspaces of Schur polynomials, associated
to Young diagrams, dual with respect to a finite chain of rectangles. Also, this sequence of
t-functions is given inductively by the action of a fixed vertex operator.

As an example, one such sequence is given by Jack polynomials for rectangular Young
diagrams, while another chain starts with any two-column Jack polynomial.

1. Introduction
1.1.  Self-dual partitions. For positive integers n and n|k, define the following sets of
partitions,

A=A, A2,...), Al = A2 >---> 0}

Y
Yy = AeY,|A|=ZAi=k}

)\':()"laA'27~'~a)"n) GY,’(, 5\'1 fn,
Y(")_
E=

2k . n+1
Ait+dpypi—i=—, 1 =i <
n 2

with
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These are a few examples:

Yo = [ |

¥ = N

— ’ b

Let s, (¢) := det(s;,—i+j())1<i,j be the Schur polynomials corresponding to A, with s; (t)

being the elementary Schur polynomials, defined by
) . .
exp <Ztiz’) = si(t)z" withs;(r) = 0fori <0.
1 i>0

The linear space

L/(Cn) = { Z a)s) | a) € (C}

(n)
reYy

will play an ubiquitous role in this work.

1.2.  The finite Pfaff lattice. The (N x N) skew-symmetric matrices

0 1
0
-1 0
, for N even,
0 1
0
-1 0
J =
0 1
0
-1 0
, for N odd,
0 1
0
-1 0
0

satisfy
—1Iy, for N even,

JP={(-In-1 O
N=l , for N odd.
(0] 0

(1.1)

(1.2)
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Also consider the Lie algebra £ of lower-triangular matrices of the form

a O
o
0 a
, for N even,
0
% a[N/2]
0 any
t= (1.3)
a O
(0]
0 a
, for N odd.
angz 0
0  awy
* A(N+1)/2
For each a € gl(N), consider the decomposition
a=(a)+ (@n

= mTga + Tna

_ T 1 T

= ((a- = J(ay) J) + 3(a0 — J(ao) J))

+ ((ay + J(ap) ") + Yao + J(ao) " ). (1.4)

For N even, this corresponds to a Lie algebra splitting, given by

¢ = {lower-triangular matrices of the form (1.3)}
gl(N)=¢t+n (1.5)
n=sp(N) = {a such that Ja ' J = a}.

For N odd, this is merely a vector space splitting

t = {lower-triangular matrices of the form (1.3)}
gl(N)=%t+n (1.6)
n = span{my(a) witha € gl(N)}.

T a+ refers to projection onto strictly upper (strictly lower) triangular matrices, with all (2 x 2) diagonal blocks
equal to zero. aq refers to projection onto the ‘diagonal’, consisting of (2 x 2) blocks.
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The Pfaff lattice is defined on (N x N) matrices L of the form

namely,

0

1
—d| a1
dp 1

—d>

—d| a1
dp 1

_d2

JL
3tl'

Given arbitrary, but fixed, parameters

consider the skew-symmetric antidiagonal initial condition,

my(0) =

—bw-2)2

]

0}
as
> , for N even,
a(N-2)/2
—dn-22 1
0
1.7
0
as
& , for N odd,
1
—diN-np2 aw-1),2
div-1)/2
— =[—(L"), L] (the Pfaff lattice). (1.8)
bo,...,b(N,Q)/z € (C, (1.9)
b(n-2)2
b
y , for N even,
_bo
(0]
(1.10)
0 b(n-3)/2
by
0 ,  for N odd,
—by
0

—bn-3)2
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and its time evolution (respecting the skew-symmetry),
me(t) = Eo n(Omy(0)E] v (D), (1.11)

where

Ein() = <exp(ZnAi>>l " (1.12)
1 e

1,...,N
The Pfaffian pf m,(¢) of the skew-symmetric matrix m¢(z) will play an important role in
this paper.

1.3.  Rational solutions to the Pfaff lattice.

THEOREM 1.1. Modulo conjugation by an (N x N) diagonal matrix D(t) (see the remark
below), the finite Pfaff lattice

oL ]
Pl [—(LYe, L1 (the Pfaff lattice)
i
has rational solutions in t1, to, . . ., i.e. the matrix
D' L@OD@) = 0WAQ(N) ™! (1.13)
is rational inty, ta, . . ., with Q(t) a lower-triangular (N x N) matrix with rational entries,

obtained by Taylor expanding to,(t — [z7)inz7 L, witht = 1,

2n
~ ~ ; _ . N -1
Gon(t:2) =Y Qony1,j11(02 =210 (t = [z7']) with0 <n < [T}
j=0
2n+1

i . o 9 _
Qo1 (52) =Y Oong jr1 (2 =27 <z + —) Tt = [27'D), (1.14)
=0 It

with (see the definition of the L-space at the beginning of this section)

7(t) = pf(Ee n(Omy (0)E/ (1))

Int 0<e¢<N-1
= Z ( l_[ b)\ii+@[(N+l)/2]>SA(t), for '

@ 1 even
reYyiv_o

©
€ Lity_gy2- (1.15)

The polynomials qx = Diqr (in z) of degree 0 < k < N — 1 are ‘skew-orthonormal’ with
respect to the skew inner-product (7', z/) = m;j(t), i.e.

(gi>q;) = Jij, (1.16)

and the N-vector (qo, ...,qn—1)" is an eigenvector for the matrix L, with modified
boundary conditions. The fact that Q2 2,—1 = 0 defines the skew-orthogonal polynomials
in a unique way, up to £1.

T A is the finite shift matrix A := (§; j—1)1<i, j<n and (A) 1, ¢ denotes the matrix formed by the first £ rows
and first N columns of A. L..N
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Example. For £ = 2, we have

(N=2)/2
Z bis(N-2)/21+i,[(N—2)/21-i (t), for N even,
—
o =1 (1.17)
(N=3)/2
Z bisy(N—1)/21+i,[(N-3)/21-i (), for N odd.
i=0
Remark.
di < 1 1 1 1 1 1 )
1a ) tl b [IRIEICIE) ’ b
& VT2 /T0T2 /T2T4 /T2T4 VIN-2TN /TN-2TN
for N even,
D(t) =

1 1 1 1 1
diag < , e, , s ) ,
JT0T2 /T2 VIN=3TN=1 +/TN-3TN—-1 +/TN-1
for N odd.

1.4. Duality. For the case of odd N, we can even define 7,(¢) for odd ¢, by slightly
deforming the initial moment matrix m y (0). In §6, we prove a duality between these t’s
for k even and odd, as follows:

(N-3)/2

f((t):(—l)Z(N_Z)ﬂ( I1 b,’)(‘[[\/((—tﬂbi_)b.l), for £ odd.
0 i

1.5. Fay identities.

THEOREM 1.2. The sequence of functions

[£/2]
0<¢<N-1,
T(r) = Z < l_[ b;\,-—i+£—[(N+1)/2]>Sx(l), T (1.18)

£ even
(0) 1 ?
)“EYZ(N—Z)/Z

together with the ‘boundary condition’

(N-2)/2

N = H bi, for N even,
0

=1 and (1.19)

tv+1 =0, for N odd,

satisfies the the ‘differential Fay identity’:

{Tan(t—Tu]), Tan (t —[WD}+ @™ =07 (220 (£ = [U]) 720 (t = [V]) = T20 () T2 (t =[] —[]))
=uv(u — V)220t — [u] — [V 12042(2). (1.20)

+ Define the Wronskian {f, g} = (3f/dt1)g — (9g/dt1) f.
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1.6. Vertex operator constructions of the rational solutions. Consider the vertex
operator acting on functions f(¢) of t = (¢, t2,...) € C*, namely

X(t;2) :exp(ztizl) exp <‘ZZ,_£) (1.21)
1 1 L

and the vector vertex operator

X(t; 2) = AT exp(Ztizi) exp (—Z%%)x(z), (1.22)
1 1

1

acting on vectors of functions F = (fo(t), fi(t),...), with x(z) := (z')i>0. Then the
composition X(#; A)X(#; ) is a vertex operator for the Pfaff lattice, i.e. for any t-vector
= (19, T2, T4, . . . ) of the Pfaff lattice,

() + aX(t; WX(t; M)t(@), aeC

is again a t-vector of the Pfaff lattice, or coordinatewise

A . .
Ty +a (1 - ;) AP exp (Z HOS + u’)) T2t — 71— [

provides a new sequence of Pfaff t-functions.
In terms of the distributional weight, with the b; as in (1.9),

,Oie)(x) = Zbi(x7i71 —x"), for N even,

i>0
Pb(x) 1= o _ _
py) (x) =x~12Y " bi(x 7 — X for N odd.

i>0

and
N
,3::5—£+1, (1.23)

we define the integrated vertex operator, in terms of the vertex operator (1.21), as

- X (5 gy PO/ Ay dz
Yp(t) = s io ioX(t, VXG5

and the integrated vector vertex operator, in terms of (1.22), as

] dyd
YN0 = o foo foo X(1: y)X(r; z)p”z((yy/j)i)wyzzz. (1.24)

In both cases, the double integral around two contours about co amounts to computing
the coefficient of 1/yz.

THEOREM 1.3. For a given set of b;, the sequence of T-functions vy, 12, T4, . .., defined
in (1.15), is generated by the vertex operators Y ,; to be precise, inductively

Y(n/2)—er1Te—2 = L4
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COROLLARY 1.4. The vector of T-functions

L
I =Wy, I, 1a,...), withly = (E)!W
is a fixed point for the vertex operator Y n, namely
XYnID)e=1¢, forl even.

The rational solutions to the Pfaff lattice can be g-deformed; this will be reported on at
a later stage.

1.7. Example 1: Rectangular Jack polynomials. Jack polynomials are symmetric
polynomials in the variables x;, which are orthogonal with respect to the inner-product
mpHm A
(Pas pu) = 85 (AT1272 - mylma! - - a1

where m; = m;(}) is the number of times that i appears in the partition A and where
2 2
PaGen, X2, ) = paypay =y XY ki
i i

Precise definitions and properties of Jack polynomials can be found in [4, 6-9].
PROPOSITION 1.5. When

bi — 2i +1, for N even,
" |2i +2, for N odd,

then the 12, (t)’s are Jack polynomials for rectangular partitions

n ki=hi—i+2n
Ton(t) = Z l_[(ki — kont1-i)8x(t),  where { ' '

7 0<2n <N,
reYi o, !
= pfma(t)
1 AT o i) ((N-2)
A ) -
o - A(z) IH eXp <21: tle) S(Zk) dzg

1/2
= I P Oyzrjis o fork=N=2n,...,N—2n)

n

where the my, (t)’s are the (2n x 2n) upper-left-hand corners of
my () = ((j —DSN—i—j—1)o<i,j<N—1 (1.25)

upon setting S, (t) := s, (2t).
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1.8.  Example 2: Two-row Jack polynomials.

PROPOSITION 1.6. For N even, choosingt

bo=---=bp-1=0
b _ (- anp A+ i fork=0 Nalinl: (120
(p/2)+k Hatp+y s 5 ,

one finds the most general two-row Jack polynomial for ©o, for arbitrary «,

©(t) = pfma (1)

)
= J(N+p-2)/2,(N=p-2)/2) (/)

dx dy (y—x)*
2mi 2mi (xy)et(V/2)

0 i . x\P/? y
xeXp(Zti(x' +yl)><;> 2F1<O{, —-p;l—a—p; ;) (1.27)
1

Then ©y(t) for £ > 4 is given by an integral of the same hypergeometric function in the
integrand above.

2. The vector fields dm /3ty = A¥m + mA T and the finite Pfaff lattice
The (£ x N) matrix defined in (1.12) reads

I s1(1) s2(@®) ... se—1@®) | se®) ...  sy—1(r)

0 1 si(t) ... se—(t) | Se—1(t) ... sy—2(t)
E¢qn(t) = : : : :

0 0 0 s1(?) So(t) ... Sn—e41(2)

0 0 0 1 si(t) ... Sn—¢ (1)

The main claim of this section can be summarized in the following statement.

PROPOSITION 2.1. The commuting equations (for the definition of A, see footnote onp. 5)

a
TN — Ay +my AT, @2.1)
3tk
with (N x N) skew-symmetric initial condition m(0), have the following solution:
my(t) = ExnOmy0)Ey 5 (®). (2.2)
In particular, each (£ x £) upper-left block of m(t) equals
me(t) = E¢ n(OmyO)E[ y (0). (2.3)

Proof. Define mo(0) as the semi-infinite matrix formed by putting m  (0) in the upper-
left corner and setting all other entries equal to zero and let A be the semi-infinite shift

matrix. Then the solution to the differential equations
d
% = AKX oo + Mmoo ATK 2.4)
k

f @i =T@+k/T@=a@+1) - (@+k—1).
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is given by
o o
Moo(t) = exp<2tkA’;o>moo(0) exp <ZtkAoTo’<>. (2.5)
1 1

Result (2.1) follows from the Taylor expansion

o0 o
exp( Z tkA§O> = Z s AL
1 k=0

which is an upper-triangular semi-infinite matrix, and considering only the upper-left
(€ x £) block. Each upper-left (¢ x £) block of m () for £ < N equals

me(t) = Eg 00()Mog (0 E[ o (1)
= E¢n(Omy(0)E] y(1),

from which (2.3) follows, as does (2.2) setting £ = N. O

Remark. The flow (2.4) maintains the finite upper-left-hand corner of m, and on that
locus it is equivalent to the finite flow (2.1). Therefore, the whole semi-infinite theory can
be applied to this case. It is possible to give a proof of Theorem 2.1 purely within finite
matrices.

THEOREM 2.2. Consider the commuting equations on the (N x N) matrix in

BmN
dt;

= Amy +myA’ (2.6)

with skew-symmetric initial condition my (s) and its ‘skew-Borel decomposition’
Al 1T
my=Q JOQ ', forQ € Gyg. 2.7)
When N is odd, we further impose the differential equations for the last entry Qny of Q:

d0NN
0t;

1
= _EQN,N—i- 28)

Then, for arbitrary N > 0, the matrix Q evolves according to the equations

90

5, Q7 =-mAa0™h (2.9)

and the matrix L :== QA Q™" provides a solution to the Lax pair

oL . .
Pl [—mel', L] = [mnL', L]. (2.10)
i
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Proof. For a matrix A, consider the projections

* *
0
* *
. for N even,
EE
0
x %
Ag =
* *
0
* *
,  for N odd,
EE
o
* %
*
and
Ao, for N even,
* *
o
* *
Aoo = , for N odd.
* ok
]
* ok
0
The main point is to prove thatf
0= %Q—l + ol
- %Q*l +(LL — T+ %(Lg —J(LHTD
=: A.
Also define 20 )0 -
<L’+a—tiQ 1)—J<L‘+8—UQ 1) J =: B.

LY == (L4 and LY = (L')o.
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We have, setting - = 9/9¢;,

0=0 (A"m +mAT — 2—7’) o’
=(QA QO HI+JQ AT QT+ (00 Hy+u07TOT

=L +00 HI+JL +00HT.

Hence+
. .9
0= <Q <A’m +mATi - —m> QT)
31 —.,00
=((L"+00 H—J@L +00HT NI
=((L"+00 H—JL +00 HT 00
= B_p0J.
Therefore
B_, forN even,
0=B_J?>= In_1 O
00 B_ oo N=t . for N odd,
o 0
and so
B_=0 and By =0. (2.11)
But
Bo=(L'+00 ' —JL)H"I)-
= QO Ho+WLH-—ILDHTD
—A_ (2.12)
and

Boo =200 Moo+ (L' — J(LHT oo
= 2A00. (2.13)

Then, by (2.12) and (2.13),
0=B_+ 1By =A_+ Ay =A_+Agp + Ay, since Ay =0.
Therefore, when N is even, A = 0 and the proof is finished. When N is odd, we have
A =0, exceptforthe (N, N)th entry.
But since Q is lower-triangular, the (N, N)th entry of L’ is given by

_ ONN-i

(L'Yny = (QA'Q Hww
OnNN

’

TA_ 00 =A-+ Ago.
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and thus we have, using the fact that the (N, N)th entry of J (L")oJ vanishes,

d 1 .
A = —1 —(L'
NN o og OnNN + 2( )NN

1 (3 ONN
ONN ot

=0, by the assumption (2.8),

1
+ 2 QN,N—i) ,

thus ending the proof of Theorem 2.2. m|

3. The solution to the Pfaff lattice with anti-diagonal skew-symmetric initial condition
Consider the equations

omy

=Amy+myAT, (3.1
dt;
with initial condition,
0 bin-2)2
by
, for N even,
—by
—bw-2)2 o
my(0) = (3.2)
o b(n-3)/2
b
0 , for N odd.
—by
—bw-3)2 o

PROPOSITION 3.1. The system of equations (3.1), with initial condition (3.2), has for
solution the matrix my (t), with entries, for0 < { <k < N,

[(N=2)/2]—k

e x(t) = — Z SiSN—t—k—j—1(b[(N=2)/21—k—j — D[(N=2)/21—¢—)
=0
[(N=2)/2]-¢
- Z SiSN—t—k—j—1(=by(N=2)/21—t—})- (3.3)

[(N—=2)/2]—k+1
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In particular,
(N=2)/2
Z biS((N=2)/21+i,[(N—2)/21—i (), for N even,
i=0
por1 (1) = (3.4)
(N=3)/2

biS|(N=1)/21+i,1(N=3),21—i (1),  for N odd.
i=0

Proof. Equation (3.3) is established by explicit computation of

my(t) = En.y®Omy©O)En n ()"

N—{—1
=( >, Si(f)lti+£,j+k(0)sj(f)> .
0<l,k<N-—1

i,j=0
From (3.3), one computes, for N even,

mo1(t) = sosn—2(bvy2)—-1 — bvy2)—2) +s1Snv-3(bny2)—2 — bny2)-3)
+ -+ Svy2—28v/2) (b1 — bo) + (S(N/Z)—l)2b0
(N/2)—1
= Z bi(S(N/2)—1-iS(N/2)—1+i — S(N/2)—2—iS(N/2)+i)
i=0
(N/2)—1

= Z biS(N/2)—1+i,(N/2)—1-i (1),
i=0

and for N odd,

mo1(t) = soSn—2(b(n—3)2 — b(n—5)/2) +S1SN—3(b(N—5),2 — b(n-7)/2)

+ -+ S(v—5)/28(v+1),2(b1 — bo) + S(N—3)/28(N—1)/2b0
(N=3)/2

= Z biS[(N—1)/21+i,[(N—3)/2]—i (),
i=0

ending the proof of Proposition 3.1. a
Definef
mp(0; z) :=mp(0), for N even,
my(0; 2) 1= my(0) + 22ev+1)/2,(N+1)/2,  for N odd,
0 . bin-—3)2
b

—by

—bw-3)2 o

T ¢&;, j denotes the matrix with all zero entries, except for a 1 at the (i, j)th entry.


Author Query
Au: equation (3.5).
Is this part for N odd only? Please clarify.
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PROPOSITION 3.2.

det'2(E¢ x (0)mn (05 D) E{ y (1))

[£/2]
=10 3 ( I1 bkii+€[(N+1)/2]>SM>~~~>M (),
1

0]
)“EYZ(N—Z)/Z

with
1, for N and{ odd,
0, otherwise.

n(N,K)={

LEMMA 3.3. Consider an arbitrary (N x N) matrix A = (A;j)1<i,j<n, Withr = [N /2]
and Ay := (Aj}) 1<i<¢ and consider the anti-diagonal matrix

I<j<N
Cr
0
c1 , for N even,
—c
0
—¢r
my = Cr
o
c
! , for N odd.
2
z
—c
0
—cr
Settingt
m?(z) = AgmN(Z)AZ
and

PN,[ = Z Cil e Ci[@/z]

1<iy<---<ifg<r

det(Ae) (r—igg oy +1,..r—ir +1,r+i1, o r+inea) > JOr N even, £ even,
X 1 det(AQ) (r—igy o1, ..o =iy +1,r+iy 1, .+ +1)s fOr N odd, € even,
det(Ae) (r—ijpa+1,...r—is+1r+ 1 r+i+1,or+ig g +1), - Jor N odd, £ odd,
3.6)

jn) denotes the matrix formed with the columns jy, ..., ju of B.

.....
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we have

0, for N even, £ odd,
A (pfm?)2 = (Pn.¢)%,  for N even, { even,
22P% . for N odd, € odd,
(pfm?(O))2 = (PN,Z)Z, for N odd, £ even.

Proof. Let w; € C! be the columns of Ay
AZ = [wOa wla ceey w2r],
and observe that

mi(z) = Agmn(2) A} = Ae(ZPers1 41 +my(0)A]

= 22w, ® wy +m(0).
Let U be an (£ x £) matrix, rational in a;;, such that
Uw, =aey, detU =1.

Then, using U(x ® y)V = (Ux) ® (V'y) and setting M := U m{(0O)U", which is
skew-symmetric, we find

detm?(z) = det Um?(z)UT
= det(22U (w, @ w)U " +UmPO)UT)
= det(zz(xzel ® e + Um?(O)UT)

za)> | My, Mz ... My

—Mi; 0 Mys ... My
=det| —Mi3 | —My

—Mie | =My ... 0
= (za)* det(M;j)a<i j<e + det(M;j)1<i. j<,

with M;; = —M ;. Therefore

detm(0) = (pfmi(0))2, for € even,

2det(M;)a<i j<t = M;)a<i j<e)®, for £ odd G
(zar)~ det( lj)ZSt,JfZ—(ZC(Pf( 11)251,1513) > or £ odd,

detmi(z) =

the latter being the square of a polynomial in z, the ¢; and the entries of the matrix A.
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Using the Cauchy—Bonnet formula twice, one computes, say, for N and £ odd,

detm?(z) = det Asz(Z)A;

= Y det((Apia) =i j<edet((Aem )i o) 1<i <t

1<ai<--<ay<N

= Z det((Ae)ia;)1<i,j<e det((Ae)i,p;)1<i,j<e det((mT)ﬂ,-,aj)lfi,jfl
1<ay<--<ay<N
1<Bi<-<Be<N
oi+Be—it+1=N+1

= ) det((Ap)ia))i<i.j<e det((Ae)ip))i<i j<t det(na, p;)1<i. j<t
1<ay<-<ay<N
1<B1<-<Be=<N
ai+Bi—i+1=N+1
for 1<i<¢

= Z + Z det((Ag)ia;)1<i,j<e det((Ap)ip;)1<i,j<e
I<aj<-<ay<N 1<oj<--<ay<N
I<Bi<-<Be<N 1=f1<--<B=<N

@1,es00)=(B1,---.Be) (1,0, 0t0) (B, Be)
ai+Pi—i+1=N+1  ai+fe—iy1=N+1
for 1<i<t for 1<i<¢
x det(me;,p;)1<i, j<t
* 2 2 c o2
=z Z CUN+1) /21—y " ST+ 2]~ -1) 2
I<ap<--<a@-1)2<(N+1)/2

Af(e+1) 214 Hepe+1)21-i=N+1
for 0<i<(£—1)/2

X detz((AZ)i,aj)lfi,jfl +---

=17< Z CUN+D/21=ay " CUN+D) /2]~ -1y 2
150{1<~~~<Ol(g,1)/2<(N+1)/2
afe+n21+iteqen2-i=N+1
2

x det((Ag)ia,;)1<i,j<t using (3.7)

= z ci(@—l)/z e Cil
I<ij<-<ie-1)2=(N—1)/2

X Aet(A L) [(N+) /21i(e—1) /2, [(NH) /21 =i, (N4 /2, [ (N4 /2141 [N /20 0 12

In = we have used the fact that
afe+)/2+i +epe+n2-i = N+ 1,

— forO0<i<(-1)/2 3.8)
Be—iv1 =N+1—a;.

(o1, ..o 00) = (B1, -, Bo)
o + Pe—iv1=N+1
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Indeed, for N odd, consider sequences «;; symmetric about

Ae+1)/2 = NTH 3.9
ie.
ope+1)/21+i + e+ =N+ 1, forO0<i < % (3.10)
Then, using (3.8) and (3.10)
Bre+1/21-i = N + 1 — oqee41) /214 = ee+1)/21-i»

thus implying
(a1, ..., a0) = (Brs -, Bo)-

Vice versa, the latter implies (3.8) and thus (3.9). This establishes Lemma 3.3 for the case
N and £ odd; for the other cases, one proceeds in a similar fashion. O

Proof of Proposition 3.2. Apply Lemma 3.3 to Ay = E¢n() = (8j-i) 1<i<¢, With

I<j<N
1<ki<ky<--<ky:
Sky—1 ---  Sky_;—1 Sk,—1
det(A¢)k,,...k, = det 5 : .
Skj—¢ ---  Sky_;—€ Sky—¢
Sko—¢ Sky—2+1 s Sky—1
Skg_1—€  Sko_1—t+1 .- Sko_1—1
= det . .
Sky—¢ e Sk —1
= Sky—l.kp_—C+1,.... k —L+(C—1)
= Shzzh
=S, (3.11)
where
M=ke—jiy1—L+i—1, forl<i<{. (3.12)

In order to apply Lemma 3.3, the k; inherent in formula (3.6) must be as in formula
(6.4), i.e. setting r = [N /2], the k;’s must satisfy
41

N
kj = I:E:| —ife/21—j+1 + 1=N+1 —kg_j+1, forl <j< |:T:| (3.13)

and thus

; N+1
ife2141—j — L =kgy1—j — [T] -1

. N+1
e [221].
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Therefore, formula (3.6) can be applied with
i 14
Citepa-jn = Dajre—jivenyop forl <j <>

From (3.12) and (3.13), it follows that

Ai+Arepi—i=keri—i+ki—€—-1=N+1—-£—-1=N—{,

showing that
0
A EYyN_y2
establishing Proposition 3.2. O
4. Proof of Theorem 1.1
. . .. ' /—‘/]_ .
Using the standard notation for the partition 1/ = (1, ..., 1), we state the following.
LEMMA 4.1. ~
s (—D)sy; (1) _
9 —_— = (=D'syj-i (1) 4.1)
0t; 1

Proof. Using the usual inner-product between symmetric functions, we have

si(0)s; (1) = (si(t +u) - 1,8;(t +u))
(sj(t+u),si(t+u)-1)
(sj—i(t +u),1)
{

= (1,8 (t +u))
=8;j—i(t +u)lu=0
=s;_i(t)

and so, changing ¢ — —f,
Si(—0)sj(—=1) =s;_i(—1),
from which this first relation follows upon noticing that
sj(—1) = (=1)7s,; (1). (4.2)
This last relation (4.2) also leads to the second identity (4.1), using (3/0%;)s;(t) =
Sj—i (1). O
Proof of Theorem 1.1. By Proposition 2.1, the equation for the (N x N) matrix my

d
amN = AkmN + mNAk,
daty

with skew-symmetric initial condition m y (0) has the following solution

my(t) = Eq nmy(0)E/ (1),
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which remains skew-symmetric in time. Define a f-dependent skew inner-product such
that (y', z/); = m;j (1), i.e.t

NOIx @) ) = my ().
Performing the skew Borel decomposition
my(t) = Q' (1) JQ7'T,  with Q(t) € Gy (4.3)

is tantamount to the process of finding a finite set of skew-orthonormal polynomials; that
is, satisfying
(qi(t;2), q;(t; DD1<ij<n = J.

Indeed, the polynomials g; (¢; z) in z, depending on ¢,

q0 1

q1 V4

.=l .
qN-1 7=

satisfy

(qi (3 ¥), 4i (t; D)o=i.j=n—1 = (QO XN (), Q) xn (2))
=(QWOxNMxn @0 T (1))
= 0O (VM an @) 0T (1)
= 0(MmN(1HQ' (1)
=J.

According to [2], the skew-orthogonal polynomials are related to the t-functions (79 = 1,
N =¢)
() = pfme(r)

as follows:

Z2n f
Qon = ———=t(t —[27 ]

N T2nT2n+2

ZZn

Qn+1 = —(——
A/ 2n 2042

This ends the proof of Theorem 1.1 for N even. However for N odd, we must verify
condition (2.8) of Theorem 2.2. This requires knowing gy—_1(¢; z) explicitly. For later
purposes we shall also need gy—1(¢; z) for N even.

For N even, gn_1 takes on the form

d
(Z+§> 7211(1‘_[271])’ 0<2n<N-2.
1

N-2 9 |
—_1(2; = - o (t =1z
gn-1(; 2) ST (z + Btl) in—2(t—1[z77]),

Fx =,y .07,
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with (using Proposition 3.2)

(N-2)/2
ooty = Y ( [1 b,\ii+(1v/2)2)s)\(t),
reY( Y !
where

Y2 = (1822, 18, @2 190, L @ IVTER) ).
For N odd, gny—1 has the form

N—1
qn-1(t; 2) = tvo1(t — [z7'])
VIN-1
with
IN-1() = Do~ - - b(N-3) /28 (v-1)/2y (). 4.4)

Indeed, observe that the set of partitions

y -1 O, AN—1) € Yvn 2
Yow-pple=n-1=Y_1)n = { with A 4 Agpi—i = 1

— {l(Nfl)/Z}
consists of one element 1¥~1/2 Therefore, setting A; = 1 for1 <i < (N —1)/2, one
finds, again by Proposition 3.2,
TN-1(1) = bo -+ - bn=3)/28 -1 2 (D).

The last row of Q is given by

N-1

5 i _N-1 -1
ZQN,]'HZ’:Z -1t = [z ]
0

N—-1 B i
=) si(=y_1 ()N
i=0

N—1
=bo---bn-3)2 Z Si(_8)5(1(N71)/2)(I)ZN7171
i=0
(N=1)/2 -
=bo---biv-3)2 Z NI =1 s guav-n/aen (),
i=0
using Lemma 4.1, and so
_ s (N=3)/2
ONN-i = (—1)'< I1 bk)s(l[(Nl)/Zli)-
0
Therefore, the last row of Q reads
(N=3)/2
bi| 0,....0, (=)W= ()N, (p),
0 "

(N=-1)/2

(DN 15 (0), ... sv-1s) (1)
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and the last row of O = DQ is
(N=-3)/2

Onn—i = (DQ)nN—i = (1) l_[ by
0

Stwv-n/21-1y (1)

TN-1
= (- k SN T
0 (s -2y ()17
and so, using Lemma 4.1,

dONN (=1) <N3b )1/2 Saiv-va-i (@) 1
dt; - 2 o k (S(I(N—l)/Z)(t))l/z )

Having checked (2.6)—(2.8) (in the odd case) of Theorem 2.2, we have found a solution of
the Pfaff lattice. This finally concludes the proof of Theorem 1.1. O

ON,N—i-

Proof of Theorem 1.2. According to [2], Pfaff t-functions satisfy bilinear relations{: for
all 1, ¢ € C* and m, n positive integers,

yg Tn(t — (27 Dramaa (' + [z ) exp [Z(li - tl-/)zij|12"2m2 dz
=00 =
+ f Ton+2(7 + [2)T2m (1" — [2]) exp [ Z(t[ — z,-)zl}f"% dz = 0.
2 i=0

Shifting appropriately and taking residues leads to the ‘differential Fay identity’

{T2n (= [u1), T2 (¢ =W} 4™ =07 (220 (¢ =[] 720 (= [V]) = T2 (1) T20 (¢ =[] = [V]))
=uv(u — V)220t — [u] — [VD12042(1), (4.5)

and the Hirota bilinear equations, involving nearest neighbors,

= 19 0 ~
(Sk+4(3) [ EE%) Ton + T2n = Sk(0) T2n+2 * T2n—2. (4.6)
It only remains to check the ‘boundary condition’:
(N-2)/2
N = b;, foreven N,
N 1:[ ‘ @.7)

tn+1 =0, forodd N.

Indeed, for N even, using det Eyy (t) = 1 and the matrix (3.2), we have that

(N-2)/2
(pfmyn(0))* = det(Ex, y(Omy(O)Ey y(1) =detmy©) = [] b
0

Moreover, for N odd, according to (4.4), Ty —1 is a pure Schur polynomial, which is known
to satisfy the KP Fay identity, i.e. the equation (4.5), without right-hand side. This justifies
setting Ty4+1 = 0 for odd N. O

T3 = (9911, (1/2)/dtp, (1/3)8/dt3,...); D = (Dy, (1/2)Da, (1/3) D3, ...) is the corresponding Hirota
symbol, P(D)f - g = P(3/dy1,(1/2)d/dyz,...) f(t + y)g(t — y)|ly=0; and s are the previously defined

elementary Schur functions, Z;:io Sk k= exp(Z?il #;z"). For further notation, see Dickey [5].
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In the next proposition, we show that the finite vectors of skew-orthogonal polynomials @
form an eigenvector of the matrix L, with a modified boundary condition.

PROPOSITION 4.2. For N even, the skew-orthonormal polynomials g = (qo, . .., qn—1)
=0 (1,...,z25"YT are eigenfunctions for L, with the boundary condition

(N=2)/2 >1/2

Lq:ZQ—(O,...,O,zN)\/meN2( H b;
0

Proof. Indeed

1
Lg=QAQ7'0]| :
ZNfl
1
=QA| :
ZNfl
1
=0z N2
0
q0
q1
=7z .
gN-2
gN—1

=29 +z20,...,0,gnv—1 —gn-1),

where gy_1 is the same as gy—_1, but without the leading term, i.e. gyn—1 = gn—1 —
OnnzV ™!, where by (4.7) we have

- (N=2)/2 \-1/2
OnN =,/ = \/pme2< I1 bi) ;
™y

0

ending the proof of Proposition 4.2. O

5. Vertex operators
The purpose of this section is to prove Theorem 1.3 and Corollary 1.4. Define, as in (1.23),
N
,6::5—@4-1. 5.1
Remembering from (1.21) the vertex operator X (¢; z), consider now its formal expansion
in powers of z

X(t;2) = exp( Z t,-z’) exp <— Z Z;%) =: Z BiZ', 5.2)
1 1

1 i€’


Author Query
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with differential operators (see footnote on p. 22)
B := Bi(a)|oz:1 and Bi(a) = ZSH—j (Olt)sj (_Olét)- 5.3)
j=0
Also define as in (1.22) the vector vertex operatory
- 00 ) 00 Z—i 9
X(t;2) = A 47 -y —— . 5.4
(t;2) eXP<21312>eXP< 21: l. a:,-)X(Z) (5.4)

Also remember the definitions of the integrated vertex operator, in terms of the vertex
operator (5.2) and a function pp, defined in (5.8) below,

_ X (1 PP/ dydz
N = ¢ § xanxe oG2S

and the integrated vector vertex operator, in terms of (5.4),

1 dyd
VN0 = 720 720 X(t; )X z)%. (5.5)

In both cases, the double integral around the two contours about co amounts to computing
the coefficient of 1/yz. The next theorem is nothing but a rephrasing of Theorem 1.3 and
Corollary 1.4.

THEOREM 5.1. For a given set of b;, the sequence of T-functions 1o, 12, T4, . . ., defined
in (1.15), is generated by the vertex operators Yg:

Ygt2 = L1g. (5.6)

The vector I = (ly, b, 1a, ...), with Iy = (£/2)!t, is a fixed point for the vector vertex
operator Y N, namely

YnD)e =1y, forf even. 6.7

We shall first need a few propositions.

PROPOSITION 5.2. Defining

Pl(,e) (x) == Zbi ()C_'._l — xi), for N even,
b (X) 1= iz0 ) . (5.8)
g P () 1= x7V2Y by 7T — XY, for N odd,

i>0
we have

1 . . Pe(y/2)dydz
B0 = G xR RS

qu/ (Bg+jBp—j — Bp—j—1Bg+j+1), for N even,
j=0
— 5.9

D bj(Bg+j+1)/2B(p—j—1)/2 = Bp—j-32Bpjs3p2).  for N odd,
j=0

x(2) = ()0
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Proof. For N even, compute

X(t; y)X (85 2) i i
— = Biy' B Biz/™#
(v2) ZZ ' 2B

JEZ
= Bpuiy' > Bpjz
i€Z JEZ
yi
=D BptiBp-j=
4 Z
i,j€Z
Y y!
=D Bp+iBp; <;) + ) dij 5
=4 i£jel ’
and so
p(e) <X> . X(l; y)X(t, Z)
b\ z 22(yz)P

Al - (g - 202

1 i1 i
:_<ij(3ﬂ+j3ﬂ—j_Bﬁ—j—lBﬂ+j+l)>+ Do oyl
YZ\i=0 i or j£0

Therefore, upon taking the double residue,

f ?g P (v/2)X (6 X (1:2) dy dz

= bj(Bp+;jBp—j — Bp—j—1Bp+j+1)-

2 )2
72(yz)P 2mi) =
For N odd,
X (13 )X (15 2) <y>f Y
XEIXGD _svp g () 4 T al
1/2 Z B+3+i"B—3- &

OGP/l g PP e ) e

and so

O (Y\XGYX#z) 1 .
< )7 2 2 biByy By oy~ By 3 Byy)

b \z 22 (y2)P ¥z &g
+ Z Cijyiflzjfl.
i or j#0
Therefore,
/DX X
7272} Ph (y/z;(;z,)? (t; 2) (cgj; _ gbj(gﬂm%gﬁfjf% —By 3By ),
ending the proof of Proposition 5.2. O

Defining the set

O’1>0'2>--->O’g/2,0’;EZ

sY = ¢ , [N:| , (5.10)

— <0 +1 <
2_1 —

2
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the map

N +1

. @ (s .
o Y@(N—e)/z — Sy A= o(d) = <)»l —i+£— [T}>1<i<n/2 (5.11)

is a bijection.

Indeed, Ay > XA, > --- implies at once the strict inequalities o7 > o3 > ---
and also implies, together with the fact that for A € Y%\/—l) 2 and 1 < i < ¢/2,
2 = Aj +Apqr1—i = N — L and, clearly A; < N — £.

Conversely, every o € S%) comes froma A € Y%\,_ 02
LEMMA 5.3. For a given partition

_ (£=2)
A=A 2A 2 =M-2) € Y(gfz)(N,@+2)/2

and j > 0, the following holds:
0, ifB+j=somekr,—v—1
forl <v<{/2—1,0rifj>N/2,

Sy, IfB+jFeveryr, —v—1
forl<v<¢g/2-1,

Bp+jBp—js. = —Bp—j-1Bp+j+15: =

(5.12)

where

V=0 —-22- 20 —-22+j+v=Ay1—1>- = 2rypo-1—1
Zhp—12 2l —12N=-O=B+j+V)=A—1—p =+ = Ag-2)
¢
eyfz&vfo/z- (5.13)

Moreover, for j’s such that  + j # every A, — v — 1, the maps Bg j Bg_j induce maps

. yv€=2) O] .
Bg1jBg—; : Y(Z—Z)(N—Z+2)/2 — YZ(N—Z)/Z A — A (5.14)

having, as a whole, a ‘surjectivity property’, meaning that to each )" € Yfefz) (N=0))2 there

are £/2 choices of j > 0 and A € Y%:%;(N%H)/z mapping to A', by means of the map @

BgyjBg_j, asin(5.12).
At the level of the S-spaces, the maps Bg, jBg_j induce maps

S%iz) — S%) L0 = (0'1, ey O'(@,Q)/z) —> O’/ = (0’1, ..., 0y, j, Oyl .-+, O'(@,Q)/z),
(5.15)
having the same ‘surjectivity property’ as above.
For N odd, all the formulae above remain the same, except for the substitution
jr 4 §in(5.12)and (5.13).

Proof. Extending a classic identity (see MacDonald [8]) to arbitrary sequences
(A1, ..., An), we have

By, ..., By, (1) = (A1, ..., Ap) i=det(Sy;+j—i (D)) 1<i, j<n
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and, in particular, for a partition (A > X2 > --- > Ay), we have, for an arbitrary choice of
j Z O’

Bpi jBg—jShi,.ihi—2) = S(B+j,B—jhhe—2)

Sp+j SB+j+1 Sp+j+2 - Sp4j+e-1
Sp—j—1 Sg—j  Sp—j+l .- Sp—j+e-2
= det Sx—2 Sr—1 S S Su+e=3 | (5.16)
Sho_n—0+1 e o o 000 Sho_n

Using the value (5.1) of B, it is immediately clear, from the matrix (5.16), that for j > N /2
the second row of the matrix (5.16) vanishes and therefore the determinant. Therefore, we
assume 0 < j < (N/2) — 1. We give the proof for N even; for N odd, it is identical with
j=Jj+1/2

The first column of the matrix above involves the indices

N N . ¢
?—£+1+1, ?—K—j,)\l—2,)\2—3,...,)»(5/2— 5—1,...,)»[_2—54-1. (5.17)
Consider now an arbitrary integer j > 0 and an arbitrary partition
(£=2) .
A €Y ott2)2}
it has the property that

AM+A—1—i=N—-£0+2 forlfif%.
Hence, fori = (£ —2)/2
2he2 < Agj2y-1+ A2 =N —L+2,
and so
N—-£+2

Ao < ;
e2 < >

thus, for the arbitrary j > 0 chosen above

N N .

Ap—4L2—-1< —-—l<——t+j+1

2 2
The partition A; > Ay > - -- implies the strict inequalities
AM=1=-1>X-2-1>23-3-1>--->hp—@+D)—=1>--->p—£/2-1
and, therefore, there exist 0 < v < (£/2) — 1 such that

N .
Ay —v—1> E—E+j+12)\u+1—v—2.

These inequalities together with the fact that

AMF+Ariv=N—L+2, Ay +rrv=N—-L+2
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also imply
N /
b2y —(U—1—-v)= 3—5—1 =z hi—1—v — (€ —v).

Therefore, the indices (5.17) of the first column of the matrix (5.16) are now rearranged by
order, as follows:

M—2>M—-3>--->A,—v—1

N . L L
ZE_£+1+JZ)\v+l_\)_2>"'>)‘(€/2)71_§>)\Z/2_§_1
> >hp 2y —(E—-1—-v)
>E—£—j
-2
> A1y — L —=V)>--->App— L+ 1. (5.18)

Notice that the determinant (5.16) vanishes if any of the equalities hold in (5.18) above.
Therefore, we may assume strict inequalities. Upon rearranging the rows of the matrix
(5.16) according to the order in (5.18), we now list the corresponding partitions by looking
at the indices on the diagonal. This amounts to adding i — 1 to the ith entry of (5.18), thus
leading to

N
)\/:()Ll_22)\2_22...2)\‘)—227—g+1+j+v2)n)+] -1

T ; 1 UI] VI2
N
>Aey-1—1=2hgp—1>--- =00y — 1> 5 TV 1>A1-p>--=As2).
1 1 0
¢)2 ¢/2+1 =2—v+1 (—2—v+2 (—2—v+3 ¢
(5.19)

The rearrangement does not change the sign of the determinant (5.16). Knowing that
AE Y%:g;( N—(+2)2> W€ NOW prove that A’ is the new partition (obtained in (5.19)),

/w®
M eYyn_pn

i.e. where we prove

@

4
2%

1

> —2v—(£—2—2v)+(g—£+1+j+u>+(g—j—v—1>

-2

1
_UN -0
==

N s

)\;+)J[_H_l.=N—£ foralll <i <
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e.g.
)\; +)‘/l+l—i =X —24+X_1—i=N—-4C forl <i<v
N N
Mop1 + A, = (5—£+1+j+v>+<3—j—v—1) =N-—-¢
Mi+Ay i =ri1—1+rei—1=N—-t forv+2<i<{/2
So far, we have shown that to an arbitrary integer j > 0 and a partition
(£=2)
A=A 2A =" > A2) € Y([,Z)(N,(Jrz)/zs
such that the inequalities in (5.19) are strict, there corresponds a new partition

(]
V=@G)=z-=2x) € Yo n—o)20

with A/ totally determined by (5.19). Then ¢/2 different choices of A € Yzﬁ:g (N—042))2
and j > 0 will lead to the same sequence of numbers (5.19), as appears from the next
argument.

In view of the o-map in (5.11), it is obvious that the (v + 1)th number in A" of (5.19)
gets mapped by o into j, namely

N . .
z—é—i—l—i—]—i—vr—)],

and, in general, (5.15) holds. The ‘surjectivity property’ is straightforward in this
description, since given a sequence ¢’ € S%) you may choose j to be any of the £/2
numbers appearing in ¢’; then o is the sequence formed by the remaining numbers in
order. This establishes Lemma 5.3. a

PROPOSITION 5.4. Given positive integers N and € with € even and the operator

ij(Bﬂ+jBﬂ7j — Bp—j—1Bg+j+1), N even,
j=0

D bi(Byjy1By ;1 =By 3By, Nodd
j=0
we have
Yn/2)—e+1Te—2 = £Te.

Proof. The indices of b; in the £th t-function can now be expressed in terms of the o-map
as follows:

L/2 L/2
w) =y, (beii+Z[(N+l)/2])Sk(t)= > <nbai(x>>sx(f)-

(£) 1 (O] 1
reYyin_o Ayt

We give the proof for N even. From (5.15), it follows at once that

(e-2)/2 02

bi T boy=]]becn- (5.20)
1 1

E
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Setting Yg = Zizo b;T';, one computes, using Lemma 5.3, (5.20) and in Z the £/2-to-1
‘surjectivity’ of the maps (5.14) or (5.15),

(=2)/2
YN/ —e41Te2(1) = Z ( 1_[ a,(k))Yﬂ(sk(t))
1

(£=2)
)‘GY(zfz)(Nfzfz)/z

(t=2)/2
Z ( 1_[ a,u))bjr,/ (s1.(1))
0

(£=2)
reY (ot 2)/21_

02

Z ; Z Hba 2s3 (1)

A EY4(1\1 02

= Lre(1),
ending the proof of Proposition 5.4. O

Proof of Theorem 5.1. Formula (5.6) follows at once from Propositions 5.2 and 5.4.
To prove (5.7), first notice that, upon setting Iy := (£/2)!zy,

Xt X(t; 2)De = y 272X (1 )X (1 D L.

Then

B 1 ' o Po(y/z)dydz
Y@y = ((2 )27§ f X(t; )))X(t,z)izz(yz)l\,/2 I>z

fyg dydz pp(y/2) — = X (1 y) X (15 2) e
(27”)

2z2(yz)N/2 £+1

= 5 (N/2)—t+11¢—2, by definition (5.5) of Yg,

1 -2 |
= — — — |iTy—
SYw—tr1 | — -2

14

= (—)!‘L’@, using (5.6)
2

=1,

ending the proof of Theorem 5.1. O

EXAMPLE. For b; = 2i + 1 and N even, the function pp(x), defined in (5.8), equalsT

. . 1+x 1+x7!
=S i —xy = - T 5.21
Pb(x) éo (x x') G2 7 a—xp (5.21)

The corresponding vertex operator (5.9) takes on a particularly simple form

nwﬁ@H_zgvyﬂ_a/QmMM”wm”4X@wx (5.22)

T pp(x) is actually a distribution!
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where §N=2) is the (N — 2)th derivative of the customary 8-function and where the B(z)

are the differential operators (5.3) in t;,

B = sy j(20)s;(~23)).

j=z0
given by the coefficients of the expansion in powers of z of the vertex operator

o0 . o —la .
X (2) =exp(2 47 2y = B@7.
et on (255 ) -

1 i€Z

Proof. Formula (5.21) follows immediately from the series

14+x

m=1+3x+5x2+7)€3+"'

Setting, for convenience,

°° . . 9 —I 477\ g
X(t;y,2) = exp[Zti(yl + Z’)j| exp [— Z <%>8_t:|
1 1 t

and using X (r; )X (;2) = (1 — (z/y)X(t;y,z) and X(t;z,2) = XP(t;z), one
computes (8 = (N/2) — £+ 1)

POG/D Y
Yp = (2711) f foo (yz)Pz2 — 553 XXt 2)dydz

_ b dl+z/y) Aty U=z
N 2mi)? foofoo <y(1—z/y)2 (l—y/z)z) 2(zy)P X(t;y,2)dydz

z (I+z/y) A=z/y),
% ?{oo y (1 —z/y)% z2(zy)P X(t;y,2)dydz

?{ <¢ (1+2z/y) X )_)ﬁ
00 (y —2)z(zy)? 27i ) 2mi

zzyg X(t;z,2) dz.
o0

2Bl 2

~ Qni)?

?g XA(t; 2) dz

Z2;3+1 2wi

2 2 _ _
— ZB(ﬁ) =2B 50 = Z/Rdu SN2 )24 x D¢ w),

establishing (5.22). O
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6. Duality
PROPOSITION 6.1. For N odd and £ odd, the following holds:

(1) ==z~ N det "2 (Eg v () (my (0) + 22641y /2. (v+1)/2) Ef v (1))

[¢/2]
= Z ( H blii+€I(N+1)/2])SM>--->AZ(t).

)‘GY%\/*@/z !
Then the functions
(N=3)/2
fz(r)=<—1)“w>/2< I1 b,»)<w(—t>|,,_ﬁb_1>, for £ odd,
0 1

(6.1

6.2)

are the t-functions Ty (t) (in reverse order and modulo a multiplicative factor) of the Pfaff

lattice for N odd and k even, with t — —t, and with initial condition
-1
0 b3

b—l

i
_bO

—1
~biv_3p

Proof. Defining k; and k;' by

No=ki—L+i, A =kl —(N—0)+1i,

1

it is easy to see the one-to-one correspondence between

y®

N—-1>ki>ky>--->k >0
LN=0)/2

withkj +kep1—i = N — Lforl <i < (€+ 1)/2

and also between

YN0 N—-12kl k) >->ky_,=0
=2 with k| +ky_,. ;=N —1forl <i <(N—1¢)/2
LEMMA 6.2.

(1)  The following correspondence holds:

£) T (N=£)
AE Y[(N%)/z «~—> A € YZ(N4)/2-

(2) For » and AT, we have the following disjoint union:

ey > >k Uk > >k, =1{0,1,...,N —1}.

|

|

(6.3)

(6.4)

(6.5)

(6.6)

6.7)
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Proof. Considering
A zrz--=N)€ YE(N,()/Q,

we have
AMo==2 =t
Moag==x, =t—1
M,o==h =02 (6.8)

and so, since
ki=N—-1—ket1-i=N—1—=(heg1-i +€— L+ 1—10))
=N — (Agg1-i +1),
we have, on the one hand,
ki=N—- —1>ky=N—-A_1 —2>kz3=N— X2 —3, (6.9)
and, on the other hand, using (6.4) and (6.8),
szN—1>k;=N—2>~-~>k;r=N—a>~~~>k)T[=N—M>

ki g=N—-2—=2>->kg=N—-f—1>->kl =N-)dpi1—1>
k)zl;71+1=N—)\g_1—3>--->k;,r=N—)/—2>--->k):r[72=N—)\g_2—2>---.

(6.10)
So the gapsin (6.10) coincide with the sequence (6.9). This ends the proof of Lemma 6.2. O

One checks, using Proposition 3.2, that

£-=1)/2
Te(t) = Z l_[ byi—i+e—+1)/2 $1.(t)
XEY%\/%)/z
«—=1)/2
=M 3 TT be-wvenpsr (=0
)‘EY%;vfz)/z
(N=3)/2 (N=0)/2 -1
A
=0 I s )2 ( [1 bk?—[(zvm/z]) SuT (=),
0 AGYEZ()Nfa/z !
using Lemma 6.2,
(N=3)/2 (N=0)/2
— (1A . -1 _
=D l;[ bi %;Z) U bx}i+e4(zv+1)/2lsﬂ( 2
)‘TEYZ(N—Z)/Z
(N=3)/2

= (=D TT biGen—e(=n], ),
O 1

which is, using Theorem 1.1, the r-function (modulo a constant) for the case where N is
odd and N — ¢ even, concluding the proof of the proposition. O
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7. Examples
7.1. Example 1: Rectangular Jack polynomials

PROPOSITION 7.1. When

Sheet number 34

= 2i + 1, for N even, 7.1)
2i +2, for N odd,
then the 12, (t)’s are Jack polynomials for rectangular partitions, withn < [N /2],
0 (1) = pfman(t)
n
= > [t —kenpr-si).  whereki =i —i+2n
)‘GYiz(’;v)fzn) !
= J(l/z)(x)l i, forthe partition .. = (N — 2n)"
=Jy G=1/i Y xk p =
1 n o
_ 4 ) (N=-2)
= /]R" A(2) klj[l exp <2 Xl: t,zk) 8 (zk) dz. (7.2)
Then
me(t) = Eg.n(Omy0)E] (1),
with
o N —1
N -3
1
: , for N even,
—-N+3
—N+1 o
my(0) =
0] N -1
N -3
2
0 , for N odd,
-2
—N+3
—N+1 o
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where (setting S, (t) = s, (2t))

my(t) = ((j —i)SN—i—j—1)0<i,j<N—1

0 SN-2
—SN_2 0
—28y-3 —SN_4

—(N—-2)§f —N+3

—N+1

0 SN—2
—SN_2 0
—28N-3 —SN—4

—(N—-2)§f —N+3

—N+1

Proof. Setting

we have

eXP(ﬂ itk2k> = exp(ﬂ k
[1(ew( 3

k=1

28y-3
SN—4
0

28§-3

SN—4

i=1

1

i=
4

i=1

2.

| =

. (N =2)5

N -3

. (N —=2)s; N -1

N -3

(xiz)k>
B
%(x,'z)k»

[Ta-xa7”.

35

for N even,

0

for N odd. (7.3)
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According to Awata et al [4], the Jack polynomials for rectangular partitions s” have the
following integral representation (for connections with random matrix theory, see [10]):

n L
1/ _f 28 T —(n—1)f—s -p 4z
g = |A@)] z; (1 —xiz)) :
§ [T J1:[1 4 E D/ 2miz;
= f A@PP TP exp (,s im’f) 4z
Zl:m:Zn:O j=1 J k=1 J 27TlZ]

n o0
= cn@ |An @)% [ T exp </3 > zkz’;.> 85D (2,) dz;.
8 k=1

j=1

Setting 8 = 2, s = N —2n and 2 < 2n < N in the last integral, we have, using the
standard derivation of the ‘symplectic’ matrix integral (see [2]),

1 4 - o k) gN—2
o . An(z)gexp(ZI;tkzj>8 (zj)dz;

o0
= pf(/ v, ¥ exp (2 > tiy’) s (y) dy)
R i=1 0<k,e<2n—1

o0
= pf((k -0 f Y exp (22 r,-y') sN 2 () dy)
R 0<k,£<2n—1

i=1

=pf ((k -0 &0 / YLD () dy)
i=0 R

= pf((—DN 2N = 2)!1(k — 0)SN—1-k—¢ (£))o<k,e<2n—1
=cnaPf((€ —k)SN—1—k—e(t))0<k,e<2n—1- (7.4)

In order to find the initial condition m y (0), one sets ¢ = 0 in the last matrix appearing
in (7.3), to yield
(€ = k)SN—1—k—£(0))o<k,e<N-1

All entries of this matrix vanish, except the antidiagonal, from which one reads off the b;’s.
For N even, we have b; = 2i + 1 and thus
. N
byj—itt—Np =2 </\,~ —i+£— E) +1
=X —Ap+1—i —2i + €+ 1 wusingAj +App1—i =N — ¢
=ki —k¢t+1—; usingk; =Xx; —i + 2n.

For N odd, we have b; = 2i + 2 and thus

. N+1
b—itt—(N+1)2 =2 (ki —i+l— T) +2

=Ai —ret1—i —2i+L€+1 usingAj +rgp1—i =N — ¢
= ki —kes1-i,

ending the proof of Proposition 7.1. O
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Example. Forn =4 and by = 1, b; = 3, the solution to the system (1.8) is given by

0 1 0 0
| 5] 2(ty — l‘12) —\/gtl 0
=— 1 2 16 (7.5)
n+)? | =—-1H ——nn 20—t} 1
(&2 1 ) \/g 1 \/g 1
-3 =23 1) 31 0
Indeed
0 —s -—-2§ -3
S 0 -1 0 - T_1
= - fd J s
M=% 1 0 0 e Jo
3 0 0 0
with
1 0 0 0
0 1 0 0
=D -
Q 1 —-28 s O
0O -3 0 s
where
D — di ( 1 1 1 1 )
= dia T T = —> =
& & VRV
Therefore
L=0AQ"!
0 1 0 0
251 45, — ) -2v3% 0
1 4 ~ ~ 85] ~ ~2 ~ ~2
=5 | =&-§) —-—=@u-5§) —4&-§) 1
S% \/§ 1 \/§ 1 1
6 . 12 . 5 -
——S8] ——( —87) 681 0
V3 V3 !
leads to formula (7.5).
7.2. Example 2: Two-column Jack polynomials
PROPOSITION 7.2. For N even, choosing
bo="=bpm-1=0
7.6)
(1 —a)(p + i N-2- (
bk = L WP Dk fork=0,..., N—emp

Ko+ p+ 1Dy’
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one finds the most general two-row Jack polynomial for 13, for arbitrary o,

n(t) = pfma (1)

)
= J (Nt p—2)/2.(N—p—2)/2) {1/ )

dx dy (y—x)*
2i 2wi (xy)etW/2)

00 , T/ x\P/? y
X exp[Zti(x' + yl)i| (;) 2 F1 (oz, —p; 1l —a—p; ;) 7.7
1

and, for general £ > 2,

2¢ [ (z2—z1)%! <z1>p/2 ( Zz)
w@) =2 () op (e —pil—a—p 2
¢(1) o P —— 2 F1 p D

22 z1
2 ¢ 00
[1;25 p(z2i/22i-1) < zi ) < o\ dz;
X — 1—— ex w7 ) —=
72 _(N/2)—-2i+3_(Nj2)—2i+1 1_[ 4 H p Zkz./ -’
niilzéif/l) o Zéi/) o l<i<j<t %/ =1 k=1 27
(7.8)
where
w=2 ,
py= Y b=, (7.9)
i=0

Proof. According to a formula by Stanley [9], two-column Jack polynomials can be
expressed as a linear combination of two-column Schur polynomials. So, setting in the
end2s = N — 2 — p, we have

(N=2)/2
() = Z ka[(Nfz)/Z]Jrk,[(Nfz)/z],k(t), with by, as in (7.6),
k=0
—-2)/2 B
(N=-2)/ (1 — Ol)kfp/z(p + l)kfp/z(—l)N ZS ) k(t)
B [(N=2)/2]+k,[(N-2)/2]—
S k= p/DNa+p+ Dipp / /
(N=2)/2

_ (1 — k—py2(p + Di—ps2
v (k= p/DNe+ p+ Di—pp
N2 (4 —aye(p + i

= ————————————8)[(N-2)/2—k—p/2] | 2k+p (—1)
L K@t p+ Dy 20T w0

Sorv—2)/2-k172k (—1)

N

_y (—oup by

SHs— y (—1
2 R+ p ot Dy 2D

= ]2(;" 1)p(—l ) (Stanley’s formula)
1 ) ]
=J ((p/ﬁi),s)(t /o) (using duality),

showing that any two-row Jack polynomial can serve as the Pfaff r-function 5.
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According to [4], Jack polynomials also have an integral representation, and so 72(t)
can also be expressed as

1
IOE AN )

—_ v)2a —S,=PD 0 . :
:C/f d)f d3f dZ. x = )7 (xy) "z exp[zti(x’+yl):|
1

2wix 2miy 2mwiz ((x —2)(y — 2))*

dx d
= c’yg = =y
2mwix 2mwiy

X exp [Zt,-(x" + y")}Dé’((x -y -
1

/ dx dy (X - y)za
=c (Of)p ; ; -
2mix 2miy (xy)etsyp

o0
X exp[Zti(xi +yi):|2F1<oz, —p;l—a—p; )Xc)’
1

where we used the identity

z=0

DI (x —2)(y —2)) “I:=0

—weor(1- 57 (1-5)7)

_ —anpP S wﬁ)
= (xy) Dz<z kier xkyt )i o

z=0

k,£=0
—a (@r(a)e
=Pl ™ 3,
k+L=p
B o — (@) p—k (Y\K
= plxy)~ pz K0y — bl ( )

p

) L @k(=Plk__ (¥

= (o) p(xy)~ %y p};kva —o— pl ( )
P@pt  _ _ (=Pk

(p—0l@, (—a-pk

= () p(xy) "y P2F (oz, —p;l—a—p; %) .

using

This proves identity (7.7).

Applying Theorem 1.3, we find the higher 7,’s, by applying the integrated vertex
operator

Yi(v-2)/21-2j (1)

1 yg yg op(22j42/22j+1) dz2jy2dzajv1
= - X (85 22j42) X (85 22j+1) , (7.10)
(27”)2 oo Joo ! ! 2]+1(Z2]+IZ2]+2)[(N D/21-2j




June 20, 2002 Marked proof Ref: MOSER1/24611e Sheet number 40

40 M. Adler et al

forj=1,2,..., (£ —2)/2to 1 (see formula (7.7)); so, one finds7

T = WY(N/Z)—Z-H Yy -sYinp-3T2

_ 2@y (22 = z)* <Z—l>p/22Fl < —p;l—oa—p; Zz)
el (2122)4+N/2) \ 75 ’ " 21

y p(ze/ze-1) -+ - p(24/23)
(2325 -+~ 20-1)2(2324) NV/D 3 (2526 ) VD73 - (g1 2g) NV /D)~

X X (t; 20)X (15 20-1) - X (15 24) X (15 23) exp [Zw’f N z’;)} H 2—
1 j=1

2¢ (@), [ (22— 202221z V> (2 \P? 2
= Knp?{ : (—) 2F1< —p;l —a—p; )

(2122)4+(N/2) 2 21
" <1 B Z_l) Z/[;(ZZZ/ZZ—I) 0(z4/23) | 1—[ (1 B Z_:)
2/ T1)7 25 (zaic120) N/D72+1 7 %y <j
X e
[Tow (30t 3
j=1 1
2¢! _ 2—1 p/2
= c@p (e2 — 21) 1 <Z—l> 2 F < —p;1l—a—p; Zz)
al 22(z122)%~ 22 21
2
[1;25 p(z2i/22i-1) dz,
x [T /D=2%3 (N2 l_[ 1_ = Hexp Zt"z
i=1%2i—1 2 l<i<j<t
establishing formula (7.8). O

7.3. Alternative formula. The following formula has the advantage of being more
symmetric, but the disadvantage of having many more integrations:

(l)

w(t) = ygl"[ H (,)

i=1 j=
4 00 nizl l_[lgj,jfk(l — (Zl(k)/zgk)))
(O)\—k it
X Hexp [Ztk(z- ) :| et
iz T ! ]_[ ]_[1<,<7;i+1(1 ( P’ ))

+ Replacing x, y in tp with zy, z5.
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(N-p)/2—1 p+1
14 ) €72 _(£/2)
(njzlzj ) (njzlzj )

C=1y7i @)
[LoT Zjl
i @) ype—i (—=i)
£/2 1_[,1/21 Zjl nj:ll Zj '

XH2F1 l—a,p+ 1L 1+a+ p;
i=1

Kn,pe=

i—1 _(—Dppe+i—i _(E+1—i)
j=1%; njzl Zj
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