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Abstract: In a discussion in spring 2001, Alexei Borodin showed us recursion relations

for the Toeplitz determinants going with the symbols e’ @+ D and (1—¢&2)* (1 - Ez_l)ﬁ .
Borodin obtained these relations using Riemann-Hilbert methods; see the recent work
of Borodin [5] and Baik [4]. The nature of Borodin’s recursion relations pointed towards
the Toeplitz lattice and its Virasoro algebra, introduced by us in [3]. In this paper, we
take the Toeplitz lattice and Virasoro algebra approach for a fairly large class of sym-
bols, leading to a systematic way of generating recursion relations. The latter are very
naturally expressed in terms of the L-matrices appearing in the Toeplitz lattice equa-
tions. As a surprise, we find, compared to Borodin’s, a different set of relations, except

. . . -1 . . .
for the 3-step relations associated with the symbol e/ @*2" ). The Painlevé analysis of
the Toeplitz lattice enables us to show the “singularity confinement” for these recursion
relations.
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0. Introduction and Main Results

The weight

p(2) i= MO (1 — )1 = o)1 —dy ' (1 = dy '

(0.0.1)
with
Al A
P = —— and P = —, 0.0.2
12) ;i 2(2) ; i (0.02)
has a natural involution
ize 7l (0.0.3)
which induces an involution on the following quantities:
TP e PETY wi o un, Nio Ny o -y di o d v oyl
(0.0.4)

The multiple integral below is known to be expressible, both, as the determinant of a
Toeplitz matrix and as an integral over the group U (n),

1 " dzy
1\ = —/ A2 (zs %
b nuw'“”g koG 3

_ dz
= det ([ otk lp(z)—,)
sl 27TlZ 1<k,l<n

= / det (U°p(U)) dU, (0.0.5)
U(n)

which for some special choices of p has an interesting interpretation in terms of ran-
dom permutations; for that matter, look at the examples in Sect. 4. Consider the basic

variables, with [, := I,EO), I,,i = rgil),
I+ 1~ 1,11
Xn = (_l)ni’ Yn = (_l)nl and v, =1 —x,y, = M (0.0.6)
I I I;
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See Sect. 1.1 for explanations. Then the basic object

d
I, = / det (p(U)) dU = det ( f z""p(z)—z.) :
Un) s 27iz ) g i<n

which appears in several problems of random words and permutations, is obtained from
the x,,, ¥, and I1, by means of the formula

n—1
L =1 ] =xiy)" . (0.0.7)
1

The following matrices, intimately related to the Toeplitz lattice, will play an impor-
tant role in this work:

—x1y0 1—x1y1 0 0
—X2Y0  —X2)1 1 —x2y 0

Li:=| %Y —x3) —X3)2 1 —x3y3 (0.0.8)
—X4Y0  —X4Y1 —X4)2 —X4y3

and

—X0y1 —X0)2 —X0Y3 —X0Y4
IL—xiy1 —x1)y2 —X1y3 —X1Y4

Ly:= 0 I —xoy2  —x2y3 —X2Y4 ) (0.0.9)
0 0 I —x3y3s —x3y4

The Toeplitz lattice and its relation to the 2-Toda lattice will be discussed in Sect. 1.1.
Define the matrices, depending on the positive integer n > 1, and the exponents y, y/
and y/ in (0.0.1),

LY = (@l +bLi +cLYP{(L) +c(n +y{ +ys + L1, (0.0.10)
L9 = (cI +bLy +aLd)P)(Ly) +aln + v| + v} — y)La.

and depending on arbitrary parameters a, b, c. The involution”, defined in (0.0.3) and
(0.0.4) induces involutions

Ly Iy, I & 17, x, < y,, a<>c, b< b, andso Ly < L, , LE") DI Eé")T.
(0.0.11)

Also note that (self-dual case)
p(z) = p(z~") implies x, = y,, L1 =L, , EYI) = Eé")T. (0.0.12)

Given a matrix A(n) containing explicitly the parameter n, the “discrete derivative”
dy, is defined as

0w A = A+ Dt nst — AW (0.0.13)
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Rational relations. InTheorem 0.1, we show the polynomial relationships between con-
secutive (x;, y;)’s. When the degrees of P} and P, differ by at most one, they actually
lead to inductive rational relations, as is stated in Theorem 0.2 from which I, is rationally
generated via (0.0.7). These relations are obtained by observing that the multiple inte-
gral (0.0.5) satisfy the Toeplitz lattice and an sl(2, R)-set of Virasoro relations in the
u;-variables; see [3].

Theorem 0.1. For the weight (0.0.1), the vectors (xi)k>1 and (yi)k>1 satisfy two finite
difference relations and their duals ~, involving a finite number of steps:
e Case 1. Whendy, dy, di —da, |y{| + ¥/, lyal +1v5'| # 0 in the weight (0.0.1), then

the relations are

a”(’C(ln) - ’C’gl))n," + (L1 —ala)y, =0 (0.0.14)

O Wa L — LYYt 1 0 + (L2 +bLy) C=0, (0.0.15)

n+1l,n+1
foralln > 1, and where
di\1/2 o\ 172
a=(dd)"? b=- (—1> - (—2) o= (did)'",
da di
C is a constant independent of n, thus expressible in terms of the initial value:

C =il = L)1 + (L +bLy), ;. (0.0.16)

Only the first relation is self-dual for the involution”.
e Case 2. When dy # 0,y #0, y; =y, = vy = dy =0, we may rescale z so that
dy = —1 and so

0(z) =27 (1 + Z)V{ePl(Z)'i‘PZ(Z_l).

Then the same equations (0.0.14), (0.0.15) and their duals are satisfied, where a, b, ¢
can be chosen in two different ways, one being the dual of the other, namely

(a,b,c)=(,1,0) or (a,b,c) =(0,1,1).
eCase3. dy=dy =y =y, =y =y, =0.Then

0(z) = 7" el @+PhH

and a, b, c can be chosen totally arbitrary in the above relations. Here it will be more
advantageous to pick different relations, both of which are polynomials, dual to each
other, (n > 1)

v - (LlPl/(Ll))er,n«H - (L2P2/(L2))n,n
Chlx,y) i=— +nx, =0,
I\ (P (L)) ng 10 + (Py(L2))nnt1

= (L1P{(LD), , = (L2P5(L2), 11 iy
Culx,y) = — +ny, =0.
+(P{(L1)n+1.0 + (Py(L2))nnt1

(0.0.17)
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Theorem 0.2. Requiring N1 = N, or Ny £ 1 in the weight (0.0.1), the x,, and y,’s can
be expressed rationally in terms of lower x’s and y’s, and thus, from (0.0.7), I, can be
expressed in the terms of the x’s and y’s. To be precise,

e Case 1 leads to two inductive rational N1 + Ny + 4-step relations,

Xp = Fy(n—t1, Yn—1, ..., Xn—N1—N,—3, yn—Nl—Nz—S)’
Yn = Gn(Xn=1, Yn—1s -+ s Xn=N{=N2—3» Yn—N{—N2—3)-

e Case 2 leads to two inductive rational N1 + N, + 3-step relations (0.0.14) and (0.0.15),
such that!

when N1 = Ny or Ny = Ny + 1, use (a,b,c) = (1,1,0),
when Np = N1 or Ny = N1+ 1, use (a,b,c) = (0,1, 1).

Thus, we find rational functions F, and G:

Xp = Fy(Xn—1, Yn—1, ..., Xn—Ni—Nr—2, yn—Nl—Nz—Z)’

Yn = Gn(Xn—1, Yn—1s -+ » Xn=N{=N2—25 Yn—N{—N2=2)-
e Case 3 leads to two inductive N1 + Ny + 1-step rational relations,
Xp = Fu(Xn—1, Yn—1, ..., Xn—Ni—Ny» yn—Nl—Nz)v
Yn = Gn(Xn=1, Yn-1,.--, Xn—Ni—Ny» yn—Nl—Nz)-

Corollary 0.3. For the self-dual weight

N Ui i  —i
p() =Xl TEF,

the polynomial2 I XE—Ns Xk—N+A1s«++ »Xky «++ » Xkd-N>

N N N
Ty = ka—z*k ((Zmﬁ) +<ZuiLil> —Z(ZuiL’il> )
k 1 k1 k41 1 Kk 1 K1k

N k+i—1 ) k+1 )
= kwetu ) ui | D0 xet @y ket Y x| =0
1

j=k—1 j=k—i+1
(0.0.18)

for k > 1 leads to recurrence relations

Xp = Fo(xp_1, ..., Xp—2N).

Remark. In the self-dual case, i.e., when p(z) = p(z 1), the first equation (0.0.14) van-
ishes identically and the two equations in (0.0.17) become identical. Only one equation
is required, since all x, = y,.

' Both solutions can be used, when N 1 = No.
2 The matrix L1 appearing in (0.0.18) is the matrix (0.0.8), with y; = x;.
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Remark. By the duality a <> ¢, b <> b, L1 <> L], Egs. (0.0.14) and (0.0.15) map into
the identities

8n(£§n) - ;Cgl))n,n + (CLI - aL2)nn = 0’
(0.0.19)
an(ﬁin) — Uncgn))n,n+1 - (aL% + bLz)n+1,n+l = C/’

where C’ is now:

C = (LY — v £)12 — (al} +bLo), . (0.0.20)

An invariant manifold. The relations appearing in Theorem 0.1 for each of the cases
happen to define an invariant manifold for the first Toeplitz flow. We shall do this here
for Case 3, where

p(2) 1= 77 eP@+PETH,

This case has the extra feature that the relations themselves (0.0.17) satisfy an interest-
ing and simple system of differential equations with regard to the first vector field 71,
although we believe this to be true for the other vector fields as well; note that, in order to
establish Theorem 0.6 on the singularity confinement, we only need the #;-vector field.
The statements on the system of differential equations will be established in Sect. 3, as
an immediate consequence of the Virasoro relations satisfied by the multiple integrals.

Theorem 0.4. Let x,, = x,, (1, 51) and y, = yn(t1, 1) flow according to the differential
equations (v, := 1 — x,y,)

dxg dyk
— = U1 X y —_— = =0 —1,
a1, kXk+1 an k Yk—1
(Toeplitz Lattice) (0.0.21)
X 0V
~ = VkXg—1, 7 = Uk YVk+1-
asl 3S1

and the u;, appearing in the polynomials P)(z) and P>(z), according to

ouy ouy

— =81, — = = 1.

oty k.1 051 k=1
Then:

(i) The polynomial recurrence relations T, and f‘n, defined in (0.0.17), satisfy the
differential equations

]

0 =~ ~ -
{fl }Fn = _Unrn$l + Y1 (xnrn - ynrn) .

Iy = v 1 + X041 <xnfn - ynFn> s

(o8]

(0.0.22)

0

51
(ii) The locus M is an invariant manifold for the t| and s1-flows (0.0.21) above, where

m =) {(xk, VOk=0, such that Tp(x, y) = 0 and Fp(x, y) = 0] . (0.023)

n>1
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Corollary 0.5. Let x;,, = x,,(t) flow according to the differential equations (v, := 1—x,% )
0xy,
ot
which is obtained by taking the linear combination % = % — % of the Toeplitz vector
fields above and setting all xi = yi. Let the u;, appearing in the self-dual weight

= Uy (Xp41 — Xn—1), (0.0.24)

N uj (i —i
p(z) = eXt TEFTH,

flow according to

Then:

(i) The polynomial recurrence relations I'y, as in (0.0.18), satisfy the differential equa-
tions

ar,
ot
(ii) The locus N is an invariant manifold for the t-flow (0.0.24) above, where

=0, (Th+1 — Tu=1). (0.0.25)

M= () {Gw)k=0 . suchthat T, (x,x)=0}. (0.0.26)

n>1

Singularity confinement. For the self-dual weight
N ui i —i
p(2) = e Tz )7
the polynomial relations (remember Corollary 0.3) in Xx— N, Xk—N+1s - - » Xks -« - s Xk+Ns

N N N
v . . .
0=k — % ((Zm%) +(ZutUl) —2<ZM’1“) )
k 1 k+1,k+1 1 k.k 1 k+1,k

lead, in effect, to rational recurrence relations in the x;,
Xie = Fie(Xk—1, .« s Xk—2N3 UL, ... , UN), (0.0.27)
depending rationally on the coefficients u1, ... , uy appearing in the weight p(z).

They now satisfy a remarkable property; Theorem 0.6 tells us -roughly speaking- that
the recurrence relations (0.0.27) for a special initial condition leads to a solution, where
one x, blows up and all other x; are finite. This is a kind of discrete Painlevé property,
called “singularity confinement”; see Grammaticos, Nijhoff and Ramani [8], who define
this to be discrete Painlevé recursion relations. For these recurrence equations (0.0.27),
the precise analytical statement of this phenomenon is stated in Corollary 0.7, claiming
there is a generic solution with the kind of singularity above. The technique used here
to prove Corollary 0.7 is to deform the variables x; and y; by means of the Toeplitz
lattice; part (i) of Theorem 0.6 below shows that the Toeplitz lattice has a generic solu-
tion xg, X1, ..., with all x¢, k 7 n finite and one x,, blowing up. This is reminiscent of
the Painlevé property of algebraic integrable systems, which originates in the work of
S. Kowalewski; see [1] and references within. Part (ii) of Theorem 0.6 shows that these
series can be made to stay within the locus 1, by restricting the free parameters. The
proof of Theorem 0.6 and Corollary 0.7, which will be given in a subsequent paper, uses
heavily the ideas of Theorem 0.4 and Corollary 0.5.
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Theorem 0.6. (i) Consider the system of differential equations (with boundary condition
xo=1land x_; =0)

a
% — (] — x]?)(-xk-‘rl — -xk—l)a fork = O, ], 2, ey (0028)

and for a fixed, but arbitrary integer n > 0, let
5 0p-3,0p-2,C, dv Ap42,0p43, ... (0029)

be free parameters. Then the system (0.0.28) has a unique “formal” Laurent solution,
with x, and only x,, blowing up, having the form:

xp(t) =ar+..., forlk—n|>2,
Xn_1t)=xl4ct+...,

(0.0.30)
() = YFE+ S+,
Xnp1(®) =Fl4+dt+ ... .

The coefficients in the series (0.0.30) are polynomials in the free parameters (0.0.29).
This solution is generic, since

“ #{free parameters} + 1 = #{variables} ”,
with the “1” accounting for the t-parameter.
(i) Given the 2N — 1 free parameters op—2N, . .. , 0p—2, the series (0.0.30) above are
“formal” Laurent solutions to the recurrence relations (0.0.18)

Xk = Fr(g—1, ... s xp—onNsur +1t, ... upy), (0.0.31)

with the remaining free parameters c,d, o; for i <n—2N —1 or i > n — 1, being
rational functions of ay,_onN, . .. , dy—2 and the parameters u = (uy, ... ,Uy).

This theorem leads to the “Painlevé singularity confinement” property for the recur-
sive equations (0.0.27); the precise statement goes as follows:

Corollary 0.7 (Singularity confinement). Given arbitrary initial data
(Xp—2N, --. , Xn—2) = (xr(l(?ZN, - ,xlgz) =y
and setting
Xp—1 = xl 46, (0.0.32)
the recurrence relations (0.0.27), namely

Xk = Fr(Xp—1, ..., Xk—2N; UL, ..., UN),
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have a “generic” formal series solution in ¢ of the form (i.e., depending on 2N — 1
degrees of freedom)

Xp—1(e) = 1 + ¢,

@ = (000 +06).

(0.0.33)
Ynt1(8) = F1 4 O(e),
x(e) =x (v, u) + 0(e), fork >=n+2,
with all coefficients of the e-series depending rationallyon'y = (xli(?ZN, ceey x,(gz) and

u:=Wy,...,uy).

Remark. The initial condition (0.0.32) is the most general initial condition leading to
blow-up at the n™ step.

Theorem 0.6 and Corollary 0.7 will be established elsewhere, as well as analogous
statements that can be made for the non-symmetric weight

N i Ui
p(z) = et T,

Examples. Several examples will be discusssed in Sect. 4. It is also interesting to point
out that each of the examples discussed in that section are related to random permuta-
tions, random words and point processes. They also admit a representation as a Fredholm
determinant of an interesting kernel; concerning the latter, see Borodin and Okounkov

[6].

1. The Toeplitz Lattice and Its Virasoro Algebra

1.1. The Toeplitz lattice. Consider the inner-product on the circle
dz _ 00 (4 ri _giri
(@), §(@))e.s :=7§ S [(@g(e et =), (11D
sl 2mwiz

the associated moments pg—¢(f, s) := (yk, zl) t.s» and the determinants (t-functions)

Tn(f, 5) := det (uk—e(f, $))o<k r<n—1

n . .
L meP] <e2?°<fﬂi—w’>—dz." )
I’l' (Sl)n iy 277,'le

- / T T M =i M) g g (1.1.2)
U (n)

and

+
T, (t,s) = det (uk—¢+£1(f, ) o<k t<n—1 »

n . )
— L aeP]] (zkﬂ e2?°<tjzisjzu>ﬁ>
k=1

n! (shHyn 27'”.Zk

- / (det M) X7 Trt; M7 =s;MD) 4 pr (1.1.3)
U(n)
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The following T-function expressions are actually monic polynomials?

—1
7t —[u" '], s
pPt, siu) = 1)

Tn(t5s)
1 " g
= / 1An@P ] ((u — )eEr s i)
nlt, Jsty bl 2mwizg
1 . R
= det(ul — M)eXr TGM =MD gy, (1.1.4)
Tn(t’s) U (n)
-1
2 Tn(t,
n
- / | Ay (Z)|21_[ (u—z )ez?o(’ﬂl{—sjz;j)&
n!t, Jstyn 2mizy
1 _ _
= det(ul — M)eXt TraiM! =s; M) gpp (1.1.5)

T, 8) Jum

and are bi-orthogonal for the inner-product above

(P, pD), = Sumha(t,5),  with hy 1= L. (1.1.6)
Tn
Define*
X (t,s) :i= p,(zl)(t,s; 0)
n n . .
- &) / |An(z>|2]"[(Zkezmz;z—sjzw_dzk )
I’l!'l,'n (Shn k=1 27TiZk
_ 20w s )
T, (1, 8) 7, (2, S)
Yn(t,s) = piP(t,5;0)

(-1 )n/ 2 -1 Z (t -y dzg

— A, 1 Jzk =iz ) K

nlt, Sl)n| @ l_[ 2mwizy
‘L’n (t,s)

N Tn(t,s) ) Tn(f S) (117)

3 Fora € C, define [o] := (o, @2/2,a3/3,...) € C.
45 = (3/8t1 (1/2)0/0tp, (1/3)3/0t3,...), and pi are the elementary Schur functions:
S0 ek = exp(352 1izh).
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Throughout the paper, set’

Vg =1 =Xy, = 1= piPt. 5:0)p{?(t. 5:0)
_ hy, _ Tn+1Tn—1
)/ 7

(1.1.8)

In [3], it was pointed out that the quantities x,, and y, satisfy the following integrable
Hamiltonian system:

(&)

(D

ox H: ay ;
== (1= xpy)——, == —(1 = xpy0)——,

31‘,’ ayn ati a'xl’l

S S (1.1.9)
D0 (1 = gy 2k D (1 = xpy)
as; T By, ds; N xy

(Toeplitz lattice)

with initial condition x,(0,0) = y,(0,0) = 0 for n > 1 and boundary condition
xo(t,s) = yo(t,s) = 1. This fact will be established in Proposition 1.1 below. The
traces

k=12 (1.1.10)

1 .
Hj(k) — _TTr L;c’ 1 = 1,2,3, veey
4

of the matrices L; below are integrals in involution with regard to the symplectic structure

e¢]

Z dx; A dyk

1=k

where L and L, are given by the “ rank 2” semi-infinite matrices

—x1y0 1—x1y1 0 0
—X2y0 —X2)1 I —x2y 0
Li:=]| —%3Y0 —x»n —X3)2 I —x3y3
—X4Y0  —X4)1 —X4y2 —X4y3
and
—X0Y1 —X0)2 —X0)Y3 —X0Y4
I—x1y1 —x1» —X1y3 —X1y4
Ly=| 0 l—x2y2 —Xx2y3  —X2y4
0 0 1 —x3y3 —X3)4

5 By computing (pn+1(u) upp 1)(u) p’(nzll(u) Upm )(u)) in two different ways, in a straightforward
way and in another way, using

M

(1 1
P @) —up? @y = pl) ©Ou”

(@)

For details, see ([3]).

2 —
PP,

2 1 _
P2 ) —upl? @y = p& Ou" p @ .
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Written out, the differential equations (1.1.9) read®

o, " H(l)
=(1-x
ot nYn)
( TL) — hy,
—=Tr , using 1 — x =
n layn g nn hn—l
_ hn <L -1 8L1>
hn—l e ayn
n+1
X
0
he | :
== <L’1 .| O 0 O >
n—1 Xn )
Xn+1
Xn+2
LY jxj, (1.1.11)
j=n
and similarly
2)
ox ;
5 = (=X —
Si Yn
_ hl’l < i—1 _8L2>
hn 1 2 3)’n
n
A
Xo
he |, :
=h” <L‘21, 0 x,0 >
n—1 O
0
n+1
2 Injrj—1
n+1
Z (LY, ixo1 (1.1.12)
hn—1 Jj=n—i+1

6 Introduce the inner-product
(A,B) =trAB",

o trA" = (nA"! oA
dx Tox |’

which differentiated behaves as
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using in the last identity the obvious fact that

(L5)ij =0, unless j >i—a. (1.1.13)
By the duality, mentioned in (1.1.15) below, one reads off the differential equations for
the y,’s.
Setting
L = /’lLlh_l and L, := Ly,
It was shown in [3] that the “rank 2”-structure of L and L is preserved by the equations’
oL . oL .
o = [(L1)+, L,-] and 25, = [(L2)7, Li] i=1,2andn=1,2,....

(Two-Toda Lattice) (1.1.14)

The Toda and Toeplitz lattices have an involution, compatible with the involution ™,
introduced in (0.0.3),

Xn <> Yny tn <> —Sp, L1 < L], (1.1.15)

The proposition below was merely taken for granted in [3]. Here we give a complete
proof.

Proposition 1.1. The two-Toda lattice flows (1.1.14) are equivalent to the Hamiltonian
Toeplitz lattice flows (1.1.9).

Proof. From the general 2-Toda theory, as related to biorthogonal polynomials, we know
that the vector (see [2])

Wy = (W) )0 = €21 2! (pr(zl)(tv 85 Z)) (1.1.16)
n>0
with
-1
oo, i Tt — s 00, i
vy, = el fiz Z"M — o2 iz pr(zl)(t“g; 2), (1.1.17)
’ Tn(tv S)
is an eigenvector for the matrix L,
LY =zV¥,,
and (1.1.16) satisfies the differential equations
ow A ow A
L= (M, W and =L = (%) _w,. (1.1.18)
ot sy

So, from (1.1.16), (1.1.17) and (1.1.18), it follows that the vector p(V(z) =
( p,gl)(t, s 2))n>o0 satisfies the differential equations

P (1)(Z) .
L= = @@ - P,
(l)n N (1.1.19)
ap*(z A
T2 = (- p .
Sn

7 (A)+ is the upper-triangular part of A, including the diagonal, and (A)_ := A_(A)+
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Since (1.1.7) implies p(l)(t, s;0) = (x0, x1, .. .)T, the differential equations (1.1.19)
evaluated at z = O read

0x

P = (Li),x and a_ = (L)_x,

yielding componentwise (remember Li=hLih™Y

0x . X

a: = h, Z(Ul)”“»f“h_Jﬁ (1.1.20)
g j>n J

ax . n .

5 L= Y Aheprjxioi= Y (Lh)asrjxion (1.1.21)
S 1<za j=ntl—i

The point of Proposition 1.1 is to show that Egs. (1.1.21), obtained via the 2-Toda lattice,
are equivalent to Egs. (1.1.11), (1.1.12), coming from the Toeplitz lattice, i.e., we must
show, forn > 0,

Z(Ll)"+1 /+1h =7 Z(Ll l)n—i-l JXjs (1.1.22)
jzn ]>n
) n+1
Z (Lnt1jxj—1 = S @ ot (1.1.23)
Jj=n—i+l j=n—i+l1

by duality, it suffices to show equations just for the x,-variables.
To show (1.1.22), compute, using x;y; =1 —hj/hj_:

' Xj i—1 Xj
Z(Lﬁ)n+1,j+1; = Y )n+1,r(L1)r,j+1h_j

jzn T rzjzn
= Z (Ll 1)n+1 r(‘SrJ xry])h
r>j>n
1
= Z(Ll 1)n-‘,—l jh Z (Ll )n+1 rXr <_ - . >
j>n r>j>n Jj—1
1 1
= (Ll ])n+l Jj (Ll 1)n+] rxr< )
; h ; hr hn—l
=3 Z(L’ Dt Xr
n=1 .=

Next establish (1.1.23), using

(L)t = hn/hn—1 =1 = Xpyn, (1.1.24)
(L2)nt1,rXj—1 = x4 (L2) jr providedr > nandr > j — 1. (1.1.25)
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Indeed, setting i = k + 1, one computes, using (1.1.13),

n h n+1
Z (Ll§+1)n+1,j Xj-1- 7 “ Z (Llﬁ)nj Xj—i
j=n—k Ly —
n jt+k h n+1
= Z Z(L2)n+l,r(L§)rjxj—l - h z Z (Llé)njxj—l
j=n—kr=n n—l j=n—k
h n h n+1
— n ky .. _ n ky o
= hn71 Z (Lz)n/xj—l hn71 Z (Lz)nj.xj_l
j=n—k j=n—k
n Jj+k
+ 30 Y Wdusrr(LE)xjo1 using (1.1.24)
j=n—kr=n+1
n Jj+k

=2 | —LDnrinL)unrr+ Y D (L) (Lh),;

j=n—k r=n+1
=0, (1.1.26)

using in Z formulas (1.1.24), (1.1.25) and the inequalitiesn —k—1 < j—1<n—1 <
n+1<r<j+k.

As a last step, we show that indeed the last expression (1.1.26) vanishes. The first
expression in the bracket equals, using (1.1.13)

(L2)n+l,n(L§)n,n+1

= (L2)n+1n Z (L2)ng, (L2)gi g - - - (L2) By ns1

n=p+1=pr+2=p3+3=<
o ZPk— Hh—1=<n+k+1

(1.1.27)

whereas the second expression in the bracket of (1.1.26) equals, upon setting oy =
r, o = j and using (1.1.13):

n Jj+k
Do L)L)y
j=n—k r=n+1
n—+k n

D> W) Lh)y

r=n+1 j=r—k
= > (LD)ag.er (Lartr - - - (L. (LD aag- (1.1.28)

nt+l<op<a;+l<ep+2<
wSap | +hk—1=ap+k<n+k

Each term in this sum is a product of k + 1 entries of L,, with nondecreasing indices
a; +1,0 <i < k,squeezed between n + 1 and n + k. Therefore, we must have for some
1 <j < kthat

aj+j=aj+j+l=n+j+1,
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and so for that (aj, ozj 1), we have

(LZ)()!_/ Ol (L2)n+l M

which appears in every term of the sum (1.1.28); it can therefore be taken out, leaving
sums of products of k terms. The inequalities under the summation sign of (1.1.28) can
then be written as follows:

n+j+1 n+j+1
I I

n+l <apg <a1+1<... fotj_l-l-j—l §(¥j+j =Oéj+1+j+1 Edj+2+j+2§ . <oagt+k <n+k

Add k — j to the sequence above, from n + 1 up to including &; + j =n + j + 1 and
—Jj — 1 to the sequence above, starting withoj 1 +j+1=n+j+1,upton +k,
yielding the two sequences

n+k—j+1l1<ay+k—j=<...<aj1+k—-1=<n+k+1

and
n<oajp+l<...<a+k—j—-1<n+k—j—-1
Since obviouslyn +k — j — 1 < n+k — j + 1, we have the inequalities appearing in

the summation of formula (1.1.27), but with 8’s replaced by «’s, suitably ordered. This
ends the proof of Proposition 1.1. O

According to [3], we also have (h := diag(hg, 1, ...) = diag(Z, 2,...))

W T

Xnp1Yne1 =1 — h;’,—::ls Ynt1Xn1 =1 — h}',—;’l,
Xn4-1Yn = —%loghn, Yn+1Xn = ;’TIIOghnv (1.1.29)
g1 ynt = — 5t (%)zlog Tar  Ynt1Xno1 = — 2] (%)zlog T,
R =y 2= ()L S Y
o Tkt 7 (1.1.30)
N Mk Prt1(=05)Tu—k41 0 Tn k>0,

hy Tn—k+1Tn

Lemma 1.2. The t;- and s;-derivatives of x, and y, can be expressed in terms of the
elements on the main diagonal and one above and below the main diagonal of L} and
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i—1,
Lt

Xn Yn 0 0 0 ) @
” Z(ala_tl_ﬁla_sl) log x; Zynayn Z(aiHi _,BiH,' )

i>1

@i (= LDwsrass + L Darin)

=> ,

i=1 +ﬂi<(L§)nn - (Lé_l)"’”“)

XnYn ol el 0 ) 2
Y W | - _ E ( HY — . H. )
o E (a, o, Bi 8S'> Og Yn Xn o, - o 1; BiH;
o ((Lll)nn - (Lilil)nJrl,n)

izl | —B ((Lé)n+1,n+1 - (Lé_l)"»nﬂ)
(1.1.31)

In particular, we have

XnYn 0 d 0 1) (2
LAY — —(H —aH )
Un <63t1 “os ) O8I = n Gy, \CTL T AT

= —aXp—1Yn + CXn41Yn
=a(Ly)un — C(Ll)n+l,n+l,
xz—:n (caitl - aaiSl) log yn = —xp 8?6,, (CHI(I) — aHl(z))
= aXpYn+1 — CXnYn—1
= —a(L)nt1,n+1 + c(L)nn- (1.1.32)

Proof. The first equality in each of the identities above follows immediately from the
Hamiltonian vector fields (1.1.9), with Hamiltonians (1.1.10). Note the following:

0 d I
x —_—— — =
n 9%, Yn Iy 1

n— 1 —Xp)o —XpY1 oo —XpYn—1 —XnYn +Xpyn 0 ...
Xn+1Yn
Xn+2¥n @)
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and

d d L
8)Cn S Oyn 2

n

\
X0Yn
0 : 0
Xn—1Yn
n+1—10... v 00XV — XnVn —XnVntl —XnVn42 - - -
0 : 0

(1.1.33)
We shall also need the following trivial identities: (see (0.0.8), (0.0.9) and (1.1.13))

n+l
i) = B (1), 4
( 1 nn xn;yl ! 1 jn+ 1 n+1l,n
(14),,=
nn n+i—2

Li—lL) -y ) (Li—l) (Li—l)
(1 - yanxH] ! n,j+1+ U Jun—1

j=n—-2

and
n+i—2

I Li—l) — ) <Li—1) +(Li—1)
( 252 nn An-l Z i+l B j+ln 2 n—1,n

j=n-2

(13),, =

nn n+1
Li-1p ) _ . <Li—1) <Li—l)
( 2 2 nn yn;xJ ! 2 n,j+ 2 n,n+1

(1.1.34)

We now have (see the definition (1.1.10) of H*)

d
Yns— Z (Oli H,'(l) — Bi H,'(z))
n
ad o
= Vng - o <TlLl - &L )

Yn =1

i a
:<Zail’ll ! yn_Ll> <Z:3lLl ! y;17L2>

i>1 i>1
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n+i—1 n+1

=Y ai|ye D @ g | DB | DXLy D

i>1 j=n—1 i>1 j=1

using (1.1.33)

=Y e (~ Dt + EDwera) + D0 B (Lan = L5 D).

i>1 i>1

using in the last equality identities (1.1.34).
Similarly, one computes

i>1
0 o Bi
=X tr| —L) — —L!
" dxp ; < i i
. a : d
_ ri—l1 v _ ri—1 v
—<Z(XIL1 ,xnax”Ll> <Z,31L2 ,xnaxﬂL2>
i>1 i>1
n+1 ) n+i—1 )
=Y o | = Yyt L | DY B [ Y vt (LD
i>1 i=1 i>1 j=n—1

= > ai (LD = @ wsrn) + D0 B (~ st + L5 D).

i>1 i>1

The last couple of relations (1.1.32) follow from specializing (1.1.31) to i = 1, thus
ending the proof of Lemma 1.2. O

Lemma 1.3.

m
N

= Un(Ltl)n+1,n - Unfl(Lll)n,nfl,

nn

(o5

(o5
~ ~
ST

= (Lé)ﬂ+l,n - (Lé)n,n—ls

nn

o)
=

= (Lil)n—l,n - (Lil)n,n+lv

nn

L
~ )
N~ -

Un—1 (le)n—l,n — Up (ng)n,n—i-l .

(o5}
>
—_

P e
[oh)
N~ S~ S~ S~

nn
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Proof. From the Toda equations (1.1.14) for L i, one computes the #1-flow for L 1, Where
h := diag(hg, h1, ...) and where A4, A4+ and Ag denote the upper-triangular, strictly
upper-triangular and diagonal part of the matrix A, (remember L| = h~'L1h)

LY s
S )
it 3t1( ! )
aLL  dlogh _»; ~. dlogh
S el AN L R LY RSl A
ot dt1 ot
. Ny dlogh .,
- [h_l(L1)+h,h_1L’1h]—[ 8°tg ,h_lL’Ih]
dlogh .
=[(L1)+— o ,La]

= [(L1)++,L%], using (1.1.29)
= [diag(vy, v2, ... )A, Li].

Hence,

n

L : i i i
—— | =diag (vl(Ll)zl,vz(Ll)n—vl(L1)21,~->-
0

In particular,

aLl] i i
W = Un (L])n+l,n - Un—l(Ll)n,n—l»
nn

oL
ot n.n

We also need the ¢t;-derivative of Lé,

oL _ [(L1)+, L}]
o, WD+ Lo
—X1Y0 1
(0]
— —x2y1 1 JLh
—x3y2 1
0]
hence
dL! ) . . . . 4
(#) = diag ((Uz)zl, (L5)3,2 — (L5)2,1, (L5)43 — (L5)32, - ) ,

0

leading to

o

0L>
— = Xp—1Yn-1 — Xn Y,
o o n—1Yn—1 nYn

aLé i i
= (Lz)nJrl,n - (Lz)n,nflv
n,n
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while the latter relations of Lemma 1.3 are obtained from the first two by the 2-Toda
involution (1.1.15). This ends the proof of Lemma 1.3. O

1.2. Virasoro constraints. According to [3], the (vector) 2-Toda vertex operator8

Xiat, 51, v) = AN ZF = EF (T8 -7 ) L (1.2.1)

acting on vectors of functions of ¢ and s, interacts with the operators J,(ci)(t) =

( 79 (@, n)) n , as follows: (for definitions, see Appendix 1)

u*Xia(t, 55 u, v) = [J,(cl)(t), Xi2(t, 85 u, v)] ,
(1.2.2)

a—uk"'lX]z(t, S1u,v) = |:“]]I(c2)(t)’ Xio(t, 55 u, U)] .
u

A similar statement can be made, upon replacing the operators u* and %uk“ by v¥ and
%vk“, and upon using j,(!)(s) (’)( s).

Also consider the vertex operator, integrated over the unit circle and depending on
an integer y,

d
Vs = [ s, (123)
sl 2miu
and the vector Virasoro constraint V) (7, s) := (V};n),,zo,

=I2) = I (=s5) — (k= (I 1) + (1 — )3 ) (=), (12.4)

depending on a free parameter 6.

Theorem 1.4 (Adler-van Moerbeke [3]). The multiple integrals over the unit circle S,

1 d
o (t,5) = —/ 1A, () ]_[zyezl Gai=siah S S0, (125)
n! Jsiyn bl 2mizy’

with 1:8’ = 1, satisfy an sl(2,R)-algebra of Virasoro constraints:

k=—-1,0=0
V,};nrn(t,s) =0, for 1;:(1), 99 arlbitrary only. (1.2.6)

8 Forv = (vo,v1,...) ", (AV)p = vpq1, (AT0)y = vp—p,and x(2) := (1, 2,22, ...).
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Working out the Virasoro equations of Appendix 1 (for 8 = 1/2),

Vi ’
I0am =18 (=s.m) = (k=) (03 . m) + (1 = 0)1) (=5, m)
; (Jk(z)(t) — I+ en+k+ DIV @) = @n—k+1)ID (= s))

= =) (090 + 1 =)0 (=) + ynseo, 127

one finds Virasoro constraints for the integral ;) :

0
V7T = Z(z+1)r,+1 = = Dsie P +m1+(n—y)— o =0,
i>1 i>2

V! o) = 9 9 0, 1.2.8

0nTn —Z ll,a —isi— 35, 74 +yntn = (1.2.8)

i>1 fi
0
Vo = =D a +1)s,+1—+2<z — Dt 1—+ns1+(n+y) 7 =0.
i>1 i>2

The theorem is based on two lemmas: (see (1.2.1), (1.2.3), (1.2.4) for the definition
of Xi2, Y7, V)

Lemma 1.5. The following commutation relations hold:
o d gy -1 % -1
u e Y Kt i) = [Vk,Xlg(t,s;u,u )], (1.2.9)
u
and

[Y”,vI]=0. (1.2.10)

Proof. Using (1.2.2), a standard computation shows

d
u—ukxlz(t,s;u,u_l) (1.2.11)
du

d
du

0 d
ukH — R R ) X a2, 55w, v)
ou ov

v=u"!

- kuk> Xi2(t, s;u, v)

U:M71

— — " kouF — k(1 - Q)v_k> Xia(t, 55 u, v)
v

Il
TN TN N
Q)lQ_j
S
X
|
| =

v=u"!
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=100 =1%o -k (03" 0 + (1 = 0) 1% =9),
Xio(t, 55 u, u_l)]
= [V X2 510, 07h)]. (1.2.12)
from which (1.2.9) follows, for y = 0. More generally, we compute
Lf”u%ukﬂ’xlz(t,s; u,u"h) (1.2.13)
= (uk+l % + kuk> Xpalt, s;u,u™ b + )/uqu(t, scu,uh

- [V?),X]z(r,s;u,u—‘)] +y (out + 1 —0) v) X1z

v=u

- [V,§O> +y (QJ,S)(:) o e)Jﬁl;(—s)) X1t 55 1, u*‘)]
= [V}:,Xlz(t,s; x, u_l)] (12.14)

from which (1.2.9) follows. We then have

2miu

d
=/ [V{,Xn(t,s;u,u*‘)]uy .
s! 2miu

du d
=/ Kt s uguh
st 2mwi du

:O7

d
[V{,W(r,s)]=[V{,/ Xia(t, 53 1, u™ ' —— }
Sl

leading to (1.2.10). O

Lemma 1.6. The vector I := (I)p>0, with I, = nlt), is a fixed point for the vertex

operator YV,
YY (¢, )I(t,s) = 1(t,s). (1.2.15)
Proof. Setting p(dz) = z¥dz, one computes, forn > 1,

L(t,s) = nlt) (1, 5)
n . .
/ 12,1 T] <e2‘f"<’ﬂiw glicuais (d.“‘)>
(ShHhn kel 27Tle

_ / p(du) o —sjuT) =1 —n+1
s

1 2miu

<A@
(Sl)nfl

nl Zk u o i —iyp(dzk)
X 1_[ (1 — _) 1 — — ) Xt (iz—sjz ) L2527
i u Zk 2mizy
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w9 ul 3
=/ PAU) s —sjuty T2 (5 st )
sl! 2miu

TT Szl —sye) 20)
X/ An—l(Z)An—l(Z)l_[ezl (2 —=sjz ) & .k
(Sl)n—l Pl 27‘[le

. o_yoofud 0wl o
[ 80 i, (F#H4%), s
S

2miu

= (YV(t,s)I(t,s))n, (1.2.16)

from which (1.2.15) follows. O

Proof of Theorem 1.4. From (1.2.10), we have
0= (IV{, (Y")"11),
= (Vi (Y")'"T — (Y")"V] 1),
= (V/1—-Q")"V]I), .

Taking the n'" component and taking into account the presence of A~' in X2 (z, 55 u, u™1),
we find

0= (V}:I_YHV)/I)
—VYI _/ Zl (tiu' —sju~ ) - ( - EfuTi%)
ke 27rlu

iy — w(ﬂiii)
. /l 27[1“@21 (tl” Siu )e 1 i 9t 1 0s; V]):IO
N

Remember from (1.2.7), V,’{/ (¢, s) has the following form:

VY (1, 5) = (J,f”(z) 1D+ @tk + DI = @n =k + DI (=)

— k=) (05 0 + (1 =015 (=) + yndio,
and one checks immediately that, given 79 = 1,

-1, 6=0
0, arbltrary ,
1

k
VY (t,s)to =0 onlyfor {k 0
k=1, 6=

ending the proof of Theorem 1.4. 0O
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2. Rational Recursion Relations

2.1. Weights.
Lemma 2.1.
uj — (V{di + yz’dé), forl <i < N;
s 0
it = lti = . .
—(y{di + yjds), for N1 +1<i < oo
L =
—u_;+ (Vl”dfi + yz”d{i), forl <i <N,
PRI () B
isp =1is; = . '
d" +yydy"), for Na+1<i <o0

Q2.1.1)
Then, setting y1 = y| + y{ and y» = y; + v, , we have
eZ?o(tiZi —siz™h)
L
— €P1(z)+Pz(z_])(1 _ dlz)yl/(l _ dzZ)VZ/(l _ dl—lz—l)yl”(l _ dz—lz—l))/z”
— kZ—Vf'—Vz”epl(z)+P2(z71)(1 — 1) (1 = dy7)?? (2.1.2)

with a constant k and

N N2y
Pi(2):=Y — and Py(z") := - 2.1.3
1(2) le — and Pz le l. (2.1.3)
Moreover, there exist a, b, ¢ such that
a(i + Dt +bit!” + i = D1, =0 foralli = Ny +2, o1

a(i — Ds +bis® + i + s, =0 foralli = Ny +2.
Then
a(i + Di' +bit” + e — D10y = aujiy + bu; + cui—y + cdi(y{ + 3,

for1 <i < Ni+1,

a(i — Vs +bis{” +c(i + sy = —cu_jy —bu_j —au_ 11 — adi (v + ),
for1 <i < Ny+1,
(2.1.5)
upon setting uy = UN,+1 = UN,+2 = U—_No—1 = U_N,—2 = 0.

e Casel.dy,dr, dy—d> # Oand |y{|+1y{'|, lys|+1v5 | # 0. Then the unique solution
to (2.1.4) is given by

a=1,b=—d| —dy, c=dd>.
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e Case 2.dy #0, y| # O arbitrary, dy =0, y; = y{' = y,' = 0. Then there exist two
solutions

(aa ba C) = (17 _dla 0) and (aa ba C) = (0’ 17 _dl)

such that (2.1.4) holds.
e Case3.dy=d, =0, y{ =y, =y =vy) =0.Thena, b, c may be taken arbitrary.

Proof. Formula (2.1.2) follows immediately from 1 — x = exp (— Y. x'/i), while
(2.1.4) and (2.1.5) are obvious. O

Remark. Thelocus L, defined in (2.1.1), provides the only example where (2.1.4) holds.

2.2. Rational recursion relations. Considering the #-dependent basic variables,

T, () . ()
X, (1) = (=1 In and y,(t) = (-D)"1——= In (2.2.1)
" T, (1) " ()’
where T, is the integral
= [ aeP 1_[( s G5
on! Sy palle % 2mizy
1 ’ Y oYXz iz dzy
I A L Wizy—siz ') ek )
W= g @) L[l (zke e

Along the locus £, defined in (2.1.1), these integrals and variables reduce to the origi-
nal integrals and variables (0.0.5) and (0.0.6). In the statement below, we deal with the
variables x;, (¢) and yj, (r), without restricting to the locus L.

Theorem 2.2. Set v, := 1 — x;,, yp,

ai(t) == a( + Dtjp1 +biti +c(i — Dtj—1 + c(n + y)éi1,
Bi(s) == a(i — 1)sj—1 + bis; +c(i + Dsj+1 —an — y)8i1,

and

£ =3 oL} and L ==Y pi(n)Lh. (2.2.2)

i>1 i>1
Then the following holds:
e Cases 1 and 2. a, c not both = 0:
0 (L — L) + (Lt — aLa)yn =0 (223)

and

07 (v £ = £00) o (D +bLw) =0, 224
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eCase3.a=c=0,b=1:

Z {Oli ((Ll] )n+l,n+l - (Lil_l)n+1,n) - ,Bi ((le)nn - (Lé_l)n,n+l>}
i>1
—nx:’}—:lv” =0,

> e (o = @ Dwsrn) = B (Ewsrnss = L5 D)}

i>1

—pidn — (),
Un
(2.2.5)

Remark. Written out, Egs. (2.2.3) and (2.2.4) take on the following form:
(L1 —La+aly —cLy)n — (L1 — L2 —ala +cL)ptine1 =0 (2.2.6)

and
2, L1 — L2)ng1,0 — a1 L1 — L2)nn—1 — Wpp1 L1 — L2 n42, 041

+a(pt1 — vp—1) + bXpt1Yn — XpYn—1)
+c2ynXn+2VUn41 — 2XnYn—20n-1 + x,%y,%_l — y,%x,%ﬂ) =0. (2.2.7)

Proof. At first, compute the first and second difference in (2.2.3) and (2.2.4),

8n (»an) - »C;n))n,n
=LY = LY p1mpr — (L = L8 + Ly — L)1t (2.2.8)

2 (a1 LY — L5V 01
= a1 £ = LY ms2ns1 + @1 L8 = L5 nno1 = 2@l — L5V ns 10
+2¢ (Vn+1(LDns2.n41 — V(L Dnt1.n) — 2a((L2)ns2.n41 — (L2)ns1.n)
= a1 £ = L5 g2n01 + @a1 £ = L5)no1 = 200 LY = L5 )ur1n
+ 20, (con(LD)nt 1.0 — a(LD)ns1n) -
(2.2.9)

In order to obtain the first identity, namely (2.2.3), form arbitrary linear combinations
of the Virasoro equations (1.2.8),

1
= (@VI + BV V)
Tn
. . . 9
(€@ + Dty + biti + e = D)5
i>1 li
d +
= —(a(i—1)s,-_1+bis,-+c(i+1)si+1)a—) log 7 "
Si

a a
e+ )5 al =y

ad ad
+e|(|—a— 4+ c— 10gr,1'+5+bn +n(aty + by, +cs1)
ds1 at
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0 ad y+e
+e( (e —a——)logw,"" +bn ) +nat + by +cs1) = 0.

Subtracting the ¢ = %1 contribution from the ¢ = 0 contribution and omitting the lower
index n in V}:::E, leads to

1
0= gz (V7T 0V V)l = o @V 4V V) o]
n n
0 9 y+e P 9
= Z (a,-(t)— - ﬂi(s)_> log = 7 T € ((c— — a—> log o bn) .
i>1 ot dsi Tn ot 051
(2.2.10)

Set, for brevity, T, = 7} and rf = r,’f+8, V=V, V= V¥ withe = +1.

e Case 1 and 2. When not both a = ¢ = 0, the terms % log t,f“ and % log r,fﬂ
are present; they cannot be easily expressed in terms of x, and y,. But adding the

~+contribution to the —contribution eliminates those terms:

L+ (aV +bV§ +cVi) o h + ti_ (aVZ, +bVy +cV]) 1,

NEE = ' ;
Un —_ (aV_l + bVO + CV]) tn
T

n

XnYn 0 0 ) a Xn
o E (051( )Bt,- Bi(s) 8sl~> 0g X Yn + (catl aasl og

i>1 Yn

X 0 0 0 0
= nJn Z (aig - ﬁzg) (log x;, + log y,) + <C_ - a_) (log x, — log yn)
i

v \ 5 f oty 0s1

= (L{" = L +aLy — cL)un — (L{" = L3 = aLy + cL)ny1nt1,
using (2.2.1), (1.1.31) and the definition (2.2.2) of £,

= —0dp (ﬁgn) - »Cgl))n,n + (aly — cLi)nn

using (2.2.8). This establishes the first relation, namely (2.2.3).

To prove the second relation (2.2.4), we take the t{-derivative of the first relation.
Using

a.
24 0fori >3
ot
=cfori =2
=bfori =1,
a.
ﬁ:Oforizl,

at
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we obtain

(L1 — L2) aL} L, )
_— = i (1) — (1) —= L bL.
o Z“’()atl +;’3’()at1 +eL? +bL,

i>1
Using the above and

2 2.2

(Ll)n,n =X, Yn—1 — XnYn-2Un—1 — Xn+1Yn—1Vn,
2 2.2

(Lz)n,n = YnXn—1 — Yn*n-2Vn—1 — Yn+1Xn—1Vn,

(L%)n,n—l = _vn—l(xn—lyn + xn—Z)’n—l)’

one computes, using (2.2.2) and Lemma 1.3,

0 0
0= 8_“(51 —Ly+aly —cLi)pn — a(ﬁl — Ly —aly+cLi)nt1n+1

_ <3(Cl —52)) B <3(51 —Ez))
8t1 n,n 81‘1 n+1,n+1

dL, dL; dL aLy
F+al||—— + | = —c\\— o
atl n,n atl n+1,n+1 3[1 n,n atl n+1,n+1

= > i ® (200Dt 10 = V01 LDt = vas1 LDnsznt )

i>1

+ 35O (2Dns10 = Lot = Eonszns)

i>1
+c ((L%)nn - (L%)n—&-l,n—t-l - Un+1(L1)n+2,n+1 + Un—l(Ll)n,n—l)
+a ((L)ns2ne1 — LDnn=1) + b ((LDnn — LDnt1,041)
= 2Un(£1)n+l,n - Un—l(£1)n,n—l - vn+1(£1)n+2,n+l
- 2(£2)n+l,n + (»CZ)n,n—l + (52)n+2,n+1
+c ((L%)nn - (L%)n—ﬁ—l,n—s—l - vn+1(L1)n+2,n+l + Un—l(Ll)n,n—l>
+a ((L)ng2.n41 — LDnn—1) + b (L) wn — (LD nt1,041)
2Wnl1 = L)n+1n — Wn—1L1 — LDnn—1 — Wnr1£1 — L2)nt2.0+1
+a(nt1 — Vn—1) + b(Xn1Yn — XnYn—1)
+cCypXpi2Vp41 — 2Xpyn—2Vp—1 + -x]%yr%—l - yr%xr%-',-l)
=2 L1 — LDn+10 — Wn—1L1 — LD n—-1 — Wn+1L1 — L2)n42,n+1

a ((L2)n,n—l + (L2)n+l,n)
+ 3 | = (@Dun +bL1n)
—C (vn (Ll)n—i-l,n + vn—l(Ll)n,n—l)

[+
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kek

= 33(1)”7]51 - £2)n,nfl + 20, (Cvn(Ll)nJrl,n - a(LZ)n+l,n)

a ((LZ)n,nfl + (LZ)nJrl,n)
+8n | = (cWHnn +b(L1)nn)
—C (Un(Ll)n—H,n + Un—l(Ll)n,n—l)

= —83(1)”7];61 — £2)n,nfl

a((L)nn—1— (L2)ns1,n)
+o | — (C(L%)nn + b(Ll)nn)
+c (vn (Ll)n+1,n — Up—1 (Ll)n,n—l)

= —33(Un—1ﬁ(1n) - [én) +aly —cvp—1L)nn-1
— 0y (C(L%)nn + b(Ll)nn>
= =021 £ = £t = (e(LDun +B(L1)n ) -

= —0y (an(vnfllc(]nil) - Eénil))n,nfl + (C(L%)nn + b(Ll)rm)) >

using (2.2.9) in =, ending the proof of identity (2.2.4). Equality £ leads to the expression
in the remark after the statement of the theorem.

e Case 3. When both a = ¢ = 0, the terms % log t,i”rs and a% log r}fﬁ are absent in

(2.2.10). So, using again (1.1.31), setting «; (t) = it;, Bi(s) = is; and b = 1, leads to
the polynomials

d 0
0= —x, Z <a,~(t)a—ti — ﬂ,-(s)a—Si) log x,, + bn

= 3 o (@Dt = @ wsin) = B (Eoan = L5 Dwner) | =,

d a
0=y (ai(t)a—tl_ - ﬁi(S)a—Si> log y, — bn

i>1
v . . , .
= =3 o (@ = i) = B (Eowsraser = €5 D) | = o,
izl

(2.2.11)

ending the proof of Theorem 2.2. 0O
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2.3. Proof of main Theorem.
Proof of Theorem 0.1. Remember the locus, defined in (2.1.1),

ui — (yidi + yydi), for1 <i <Ny
o 0,
i =1t 7 = _ )

—(yd] + yyd5), for Ny +1 <i < o0

L=

—u_i + (y{'di +y)dy "), for1 <i < N
is; = isi(o) = _ ‘

d" +y)dy"), for Ny +1<i <00

(2.3.1)
From (2.1.5) in Lemma 2.1, foralli > 1,
;i (t ) := aujy1 + bu; + cui—y +c(n+y{ + 3 + )i,
BisD) = —au_jy1 —bu_j —cu_i_y —atmn+y] + vy — y)si.
Then the locus (2.3.1) can equally be described by
all ;(r) =0, fori > Ny +2andall 8;(t) =0, fori > Ny + 2,
o (t) = aujyi + bui + c(ui—1 +8i1(n + v + v ;i- V))// and
Bi(s) = —cu—i—1 —bu_ij —a(u_iz1 +s1(n+ v + v — 7)),
otherwise
2.3.2)

The £;-matrices (2.2.2) now and only now are finite sums and so have the form, setting
U =UN 41 =UN2=U_N,—1 =U_N,2 =0,
Ni+1
Lr= ) oitO)L]
1
Ni+1
= Z (auisy1 + bu; + cui—1) Lll + c(n + J/l/ + )/2/ + J/)Ll
1
Ny
= (al+bL1 + cL%) S wiLiT b e(n + y{ + v+ y) L1 —aunl
1

= (al + oL +cL$) P{(L))+c(n+v]+vs+y)Li —au,

No+1

Lo=— ) AL
1

Na+1
= > (cu—ir+bui+au_i)Ly+an+y +v) —y)La
1
N> -
- (cl +bLy+ aL%) ZM_,'LE_I +aln+y +v) —y)Ly—cu_yl
1

= (c] +bLy + aL%) Py(Lo) +a(n+y +v) —v)Ly—cu_yl,
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which are precisely the expressions L‘;") , introduced in (0.0.10), in the introduction, but
modulo the identity pieces. Still, the identities (2.2.3), (2.2.4) and (2.2.5) remain valid,
upon evaluating along the locus £; i.e., with o; (t©) and Bi (s(o)) asin (2.3.2) and t and
s replaced by t© and s© in the variables x, (¢, s) and y,(z, s).
e Case 1 and 2. not both a = ¢ = 0. Thus, the first identity (2.2.3) holds and the
second identity (2.2.4) expresses the fact that a difference 9, of an expression vanishes;
therefore the expression equals that same expression at the origin. This ends the proof
of identities (0.0.14) and (0.0.15) in Theorem 0.1, upon observing the identity pieces in
L1 and L, above make no contribution, and the involution ~ yields the dual relations.
e Case 3.botha = ¢ = 0and b = 1. From (2.1.1) or (2.3.1), setting a = ¢ = 0 and
b =1, we have

ait®) =u; and Bt ) = —u_;

Remember from (0.0.2), P;(z) := ivl ”'l—zl and P>(z) := 11\]2 “’l—"zl, and so we have
> oL = LT = Pl(Ly).
i>1 i>1
DB ==Y u L = —Pi(Ly),
i>1 i>1

and so (2.2.5) leads immediately to (0.0.17), ending the proof of Theorem 0.1. O

3. Invariant Manifolds for the First Toeplitz Flow
Proof of Theorem 0.4. The weight here is

p(2) 1= 7 ePI@O+RETD

corresponding to Case 3 of Theorem 0.1. From the latter, the variables x,, y, satisfy
recurrence relations

Un - (LIPI/(LI))n—H,n—H - (LZPZ/(LZ))n,n
Cp(x,y) == — +nx, =0,

I\ + (P{(L 1)) ns 10+ (Py(L2)nnt1

) u [~ LPILD), , = (L2Py(L2),
Lo, y) = = +nyn =0,
"\ A+ (P{(L)ns1,0 + (Py(L2))nnt

(3.0.1)
which by virtue of (2.2.11) and the nature of the locus (2.3.1), can be written
Iy = Voxn + nxy,
'y = —Voyn + nyn, (3.0.2)

where

el 0
Vo = i— tu_i— |,
0 Z (ul ot tu 13.9,‘)
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in terms of the Toeplitz vector fields. Recall from Sect. 6 (Appendix 2) the form of the
first vector field: (v, := 1 — x,yn)

0xy Oyn

v = UnXn=l, = ~UnYnFl-
al" al"
S1 81

Also in the statement of Theorem 0.4, we assume the u;, appearing in the polynomials
P1(z) and P»(z), flow according to

LI i 3.0.3
o k.1 1 k,—1 ( )
Noticing that, from (3.0.3),

a a d ad
_7V = T > PR V = 7 >
|:3l1 0:| datg [3S1 01| a8
we compute

d 0x,  0x, 0x,
a—tan =)W o, + o n P
= Vo(UnXn+1) + (n + Dvgxp41
Un VoXn+1 + (0 + Dxpy1) + Xp41Vo(0n)
UnLnt1 — X1 (6 Vo (n) + yn Vo (xn))

= v 1 — Xu1 (6 Qo) — nyn) + ¥ Vo (xn) + nxy))

= v n1 + Xut1 (xrlfn - )’nrn> . (3.0.4)
Similarly, one shows
B 0x, 0x, X,
O, =y By
a8y " 0 a8 a8 " a8
= Wo(Wpxu—1) + (n — Dvyxn g
= v, 1 + X021 (xnfn - ynrn) , (3.0.5)
and so by the duality”
0 ~ ~ -
grn = —v, 1+ yui1 (xnrn - ynrn> ,
al (3.0.6)
— I = —va Dot + yurt (xnrn - ynFn> ,
a8

thus establishing (0.0.22). Setting as in (0.0.23),
M= ﬂ {(xk, V)k=0, such that T, (x, y) = 0and T, (x, y) = 0} ,
n>1

the differential equations (3.0.4), (3.0.5) and (3.0.6) imply at once that, along the locus
9N, defined in (0.0.23),
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showing the locus 91 is an invariant manifold for these flows. This ends the proof of
Theorem 0.4. O

Proof of Corollary 0.5. In the self-dual case,
Ly, = f‘ns

since in (3.0.2) all u, = u_,, x, = y, and so dx,/0t; = —0y,/0dsi, 0x,/0s; =
—3dyy/0t; foralln, i.
From the differential equations (3.0.4) and (3.0.5), it follows that

d d
a_tlrn =v,[41 and Ern = v, 1,

o _ 0 _ 0
and so for 3% = 35y

ar,
ot

establishing Eq. (0.0.25). Therefore, along the locus 91, defined in (0.0.26),

= v, (Cypgp1 = Tuz1)

T,
ot |y

)

and so the locus 91 is invariant with respect to the d/d¢ vector field, ending the proof of
Corollary 0.5. O

4. Rational Relations for Special Weights

4.1. Weight e'G+27D. This weight comes up by considering the uniform probability P
on the group Sy of permutations 77 and

L(mr) = length of the longest (strictly) increasing subsequence of my . 4.1.1)

Then, according to Gessel [9], the generating function below can be expressed as the
determinant of a Toeplitz matrix and thus as a unitary matrix integral:

2k
t -

> g P < m) = Eygye D 4.1.2)

k=0
1 “ . dz

=1 AP <e’(zk+zk)—2m :
S k=1 Zk
Then
_ (oo @et M)e! Tr(M+M)
n = Eymye! Tr(M+M)

+zx) _d
1)n f(sl)n |An(Z)|2 nZZI (ZkeT(ZI\‘I‘Zk)%)

— d & :
f(Sl))z |An (Z)|2 HZ:I (et(Zk+Zk) 27‘[?%/<>
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This weight is a special case of the self-dual weight of Corollary 0.3, which lead to
the relation (0.0.18). Thus we find

v
0 =nx, — x_n (I(Ll)n+l,n+l + I(Ll)nn)
n

Un
=nxy, — — (—tXp+1Xn — EXpXp—1) ,
Xn

yielding the 3-step relation, found by Borodin [5], with highest (respectively, lowest)
terms doubly (respectively, simply) underlined,

nxp + 1 (1= X)) (Xng1 + X01) = 0. (4.13)

It is interesting to point out that this map (4.1.3) is the simplest instance of a family
of area-preserving maps of the plane, having an invariant, as found by McMillan [7],
and extended by Suris [11] to maps of the form ng (n) = f(x(n)), having an analytic
invariant of two variables ®(y, z), i.e.,

D (xpy1, Xn) = P(xp, Xp—1)-
The invariant in the case of the maps (4.1.3) is
(1 - y2> (1 - zz) +ayz, witha = —;.

For more on this matter, see the review by B. Grammaticos, F. Nijhoff, A. Ramani [8].

4.2. Weight ¢! G+ D+s+27%) " Consider instead the subgroups of odd permutations,
with 2Kk ! elements

gou _ [k € Sos ot (ko —L L DO
2% =\ with o (—j) = —ma(j). forall j 2
odd _ 7'[2k+1ESszr],]Tzk:(_k,...,_l,O, 1,,k)©
S2k+1 - {With o4+1(—j) = —mok+1(j), forall j < 2k

Then, according to Rains [10] and Tracy-Widom [12], the following generating func-
tions, again involving the length of the longest increasing sequence, are related to matrix
integrals:
00 2k
2 _
3 MTS)P(L(W) <n) = Eyge’T M0

0

1 - 2,2 d
~ | 1a@PT] <es<zk+zk ) A2k )
n! (SHn i 27TZk

00 2k
(\/E S)
> g PLlmg) =n)
5 !
Y 2. 172 N 2. 272
_ 1 (EU(n)eTr(t(M+M)+s(M M) | By el T MMM+ M )))

=0
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The weight e! G2~ )+s@+27) ig 3 gpecial case of the one in Corollary 0.3, thus
leading to (0.0.17). So, we find

E det M etTr(M+A7I)+sTr(M2+M2)
Xy = (—1)" U ( )

EU(n)etTr(M+M)+sTr(M2+A7I2)

satisfies a 5-step relation, with highest (respectively, lowest) terms doubly (respectively,
simply) underlined,

0 =nx, +tv,(xp—1 + Xn+1) + 250, (xn+zvn+1 + Xn—2Un—1 — Xn (Xp+1 + xn—l)z) .
4.2.1)

Also here the map has a polynomial invariant

(x, y,z,u) = nyz — (1 — y2)(1 — z2)<r 25— y) — 2(u + y))).
So we have for all n,

D (xpn—1, Xn, Xnt1, Xn42) = P(Xn, Xng 1, X425 Xn43)-

4.3. Weight (1 + z)"‘e_”_l. Let P be the uniform probability on
Sk.o« = {words ;. of length k from an alphabet of « letters}.

Then, if L denotes the same as in (4.1.1), but without “strictly”, we have, according to
Tracy-Widom [13] (see also [3]),

00k _
Z ( ZVS) P {JTk € Sk.a | L(my) < n} = Ey) det({ + M)%e™* trM
k=0 :

For this weight, Pi(z) = 0 and P>(z) = —sz,sothat Ny = 0, N, = 1, u_; =
—s,and all other u; = 0. Also y| =, y =y, =y = y; = 0. This is a special case
of Case 2 of Theorems 0.1 and 0.2. Hence, we choose

a=0, b=c=1,
for which one computes
ﬁﬁ") =m+w)l,
LY = s(I + L),
and so (0.0.14) and (0.0.15) become
On((n +a)Ly +5L2)pn + (L1)un = 0,
O((n—1+a)vy—1 L1 +SsLy)p -1+ (L% + Ll),,)n = same

n=
Thus spelled out, the variables

S Cqy Eye (det M)*! det(I + M)%e=s 'rM
Yn Ey det(I + M)y*e=s M
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satisfy a 3-step and a 4-step relation, linear in x,41 and y,41:

—(m o+ Dxyp1yn — $XpYpe1 + (0 + o — Dxpyyp—1 +sx4-1y, =0,

—vp((m+ o+ Dxpp1yn—1 —8) + v ((m+a —2)x, Y02 — 8)
+ X0 Y1 yn—1 — 1) =v1(s = 2+ a)x2) +x1(x1 — 1).

4.4. Weight (1 — £2)* (1 - &'z‘l)ﬂ. This weight, considered by Borodin [5] and coming
up in point processes, is obtained by setting

vi=a, v =B, y=r=v=0, di=¢( d=¢"allu; =0, Ny = N, =0.
a=c=1, b:—s—g—l
in the weight (0.0.1). We have that
a; = m+a)s1 and B = —(n + B)di1

and so
L =n+a)L; and LY = —(n + B)L,.

Therefore (0.0.14) and (0.0.15) read

(mn+a+ DLy =+ B+ DL2)yiy 1 —((n+a =1Ly — (n+p = 1)L2),, =0,

(n(n+oa)Ly —(n+ B)L)pyin — Wn—1(n — 1+ )Ly — (n — 14 B)L2)n n—1
+ (L} +bL1),, = (L + )L — (1 + B)La),, + (L} +bL1),,.

leading to a 3-step relation and a 4-step relation in x,4; and y,41,

—mto+Dxpp1yn+m+B+Dyp1xp+m+o—1)y, 1%, — (m+B—Dxp—1y, =0,

and

—v((m+a+ Dxppiyp—1 +n+B) + v (m+a—=xpyp2+n+B—-1)

FXnVne1 Cnynot +E+E ) = —vi Ga(@+2)+ B+ 1) +xi(x) +E+E).

So, all x,, and y, are rational expressions in terms of x, x2, y1, y2. Note these relations
are different from those found by Borodin [5].

5. Appendix 1: Virasoro Algebras
In [2], we defined a Heisenberg and Virasoro algebra of vector operators #J ,(:) , depending
on a parameter 8 > 0:

(BJ,(CI)) = ﬂJk(l) +an(O) and (J,(CO)> = nlk(o) = ndok.,
n n
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and

IR =8 Y IV s - ) (1 AT -k 3?)

i+j=k
= (8792 + @np+ e+ DA = ). I 4 np+1-pI”)
(5.0.1)
The # J,(:)’s for i = 1, 2 satisfy the commutation relations: (see [2])
7 k
By g0 = K g
[ IR, 1= 2 ks
T k(k+1) (1
2 (1) (1
[ﬁJk , BTy |=-¢ Plile + — <E - 1) St—t, (5.0.2)
B1@ B3] _ (k — ¢ BT® K —k
|: Jk 5 J@ ] :( _E) Jk+€+c T 8](’_[,

with central charge

c=1-6(p"- ﬁ—1/2>2.

In the expressions above,

9
PID = —for k>0

oty

1
= %(—k)t,k for k <0
=0 for k=0,

2
p @ _ o 1 L
=3 - ,-Z g T 4 > itjt. (5.03)

dt; 0t ;
itj=k ’8—+j:k —i—j=k

In particular, for 8 = 1/2 and 1, the By ,((2) take on the form:

1
B (2)t‘ _ _(ﬂj(2) k1) BsD 1J<0>)
Iy ()ﬁ=1/2 S (T @tk D P +n(n+ D netlyi
(5.0.4)
B <2>t‘ :<,3 @ 4, By 4 2 (0>> 505
q]]k()/3=1 J 2 Pr 0ty wezlpr” (5.0.5)

6. Appendix 2: Useful Formulae About the Toeplitz Lattice

The first Toeplitz vector field (1.1.9), corresponding to the Hamiltonians

o0 o
1 2
Hl( )= —Tr L) = inﬂyi, Hl( )= —Tr Ly = in)h'-i-la
0 0
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and
1 1 -
(1) 2 2 2
H,’ = _zTr Ly = ~3 EO Xigyvi + EO YiXi42Vi+1,
1 1 -
) 2 2.2
H,” = _zTr L5 = ~3 EO X Vi1t EO Xi Yi+2Vi+1
reads:
9x, Oyn
= UpX = —VUnYn—-1,
ot nin oty nnl
0xy, Oyn
= UpXp_ = —v )
a1 nXn—1 35 nYn+1
and
oxy  oHy" 2
o0 =V dyn = —Up <xn+1)’n — Xp+2Un+1 + XnXn+1Yn—1),
Oy aHZ(I)

1
|
<

3

o1y Xy,

xnfl)’n — Xpn—2VUn—1 + xnxnflyn+l )
ds2

3V oH®
082 0xp

Il
|
<

3

=V xnyyzl—l — Yn—2Up—1+ )’nYn—lxn+l)a

o 0
=V (xnyy%.u — Yn+42Vn+1 + YnYn+1Xn—1 )

7. Appendix 3: Proof of Theorem 0.2
Before giving the proof of Theorem 0.2, we need

Lemma 7.1.

N

N

N+1

(Ll ) = _xn+Nyn—ll_[Un+i—l +... _xnyn—N—ll_[Un—[»

nn
1 1

N

N

N+1

(L2 ) = —Yn+NXn—1 l_[ Upti—1+ ... = YnXn—N—1 l_[ Un—i,

nn
1 1

N N

N+1
Un (Ll ) H = —Xp4+N+1Yn—1 | | Upn+i + o — Xn+1Yn—N—-1 | | Un—i,
n+1,n
0 0

N—-1 N

N+1
(L2 ) = —Yn+NXn | | Unti + oo — Xn—N)Yn | | Un—i+1-
n+1,n 0 !

39
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The two highest and two lowest terms in

Ni+1 Ny+1
£V =3 wL; and LY ==Y pi()Lh,
1

1

are the following:

Ny Ny
([:i"))nn = —ON|+1 (xn+N1 Yn—1 l_[Un+i—l + ...+ XnYn—Ny -1 an—i)
1

1

Ni—1 Ni—1
—an; | Xp4+Nj—1 Yn—1 1_[ Unti—1+ ...+ XnYn—nN; l_[ p—i | +...,
1 1

Ny Ny
(n)
(L:z n = BNy+1 | Yn+Ny Xn—1 1_[ Upti—1 + ..ot YnXn—Ny—1 1_[ Un—i
1 1

Ny—1 Ny—1
+ BN, | YntNy—1 Xn—1 H Upti—1 + ...+ YnXn—nN, H Up—i | +...,
1 1

Ny Ny
(n)
Un (51 ntln = —ON|+1 | Xn+N;+1 Yn—1 l_[Un+i + o X1 Yn—N -1 l_[ Un—i
! 0 0

Ni—1 Ny—1
—ON; | Xn+N; Yn—1 l_[ Upti + .o+ Xnt1Yn—nN, l_[ Un—i +...

0 0
Ny—1 Ny
<L§n)>n+l,n = ﬂN2+1 Yn+Ny Xn IOT Un+i +...+ Xn—Ny Yn U Up—i+1
Ny—2 Ny—1
+ BN, | YNy —1 Xn H Unti oo Xn—Ny+1Vn H Vp—igl | +.ons
0 1
with
an 1 =c(un, +on 0+ v+ v+ 7)),
=c(un—1 +dn 1+ ¥ +v5+v)) + bun,,
_:3N2+ =a(u—n, +non+y{ +v) —v)),
—BNy = a (U—Nyt1 + N1+ ¥ + ) — ) + bu_n,.
Proof of Theorem 0.2.

Case 1: a,c # 0: Equations (0.0.14) and (0.0.15) are two inductive equations, one
having (N1 + N, + 4) steps and the other having (N1 + N, + 3) steps. In the equa-
tions below, we underline twice the highest terms and once the lowest ones. The exact
equations (0.0.14) and (0.0.15) are denoted by (0.0.14),, and (0.0.15),,. Remember the
dual relations also hold and so we shall employ them, when necessary.

e Ni = Ny = N: The two Egs. (0.0.14),,+1 and (0.0.15),,, form a system of two equa-
tions in the unknowns x, 4+ y+2 and y,+y+2, the variable with the lowest index being
Yn—N-1:
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N
0.0.14),41 = — (aN+lxn+N+2 Ynt+1 + BN+1YntN+2 xn+1) l_[ Vptitl + .00,
1
N N
(0.0.15), = —aN+1Xn+N+2 Yn l_[ Uptitl oo+ ANFIYn=N=1 Xn+1 l_[ Vp—j.
1 0

e N =N, Ny = N + 1: The two Egs. (0.0.14),, and (0.0.15),, form a system of two
equations in the unknowns x,,+n+2 and y, 442, the variable with the lowest index
being x,_n_2:

N+1 N+1
(0.0.14), = —Bn12ynans2¥n [ | vasi -+ Bys2ynxn—n—2 [ ] vais
1 1
N

(0.0.15), = — (OlN+1xn+N+2yn + ,3N+2yn+N+2xn+1> 1_[ Vptigl + ...
- - 0

e N = N, Ny = N — 1: The two Egs. (0.0.14),, and the dual equation (0.0.15),,,
via the involution”, form a system of two equations in the unknowns x,4y4 and
Yn+N+1, the variable with the lowest index being y,_n_1:

N N
(0.0.14);, = —ON+1Xn+N+1)n 1_[ Unti + ...+ ONH1Yn—N—1%n 1_[ Un—i,
1 1
N—1
0.0.15), = — (aN+1xn+N+1yn+1 + ﬂNyn+N+1xn) 1_[ Ungitl e
- - 0

Case 2. All cases below lead to two inductive equations, one having (N1 + N» + 3) steps

and the other having (N1 + N, + 2) steps:

e Ny =N, N;=N,a=0, b=c=1:The two Egs. (0.0.14),, and (0.0.15);,, form
a system of two equations in the unknowns x;,y+1 and y,+n+1, the variable with
the lowest index being y,_ny_1:

N N
(0.0.14);, = —aN {1 Xp 4 N+1Yn l_[ Uppi + . T ONLIYn-N—1Xn 1_[ Vn—i,
1 1
N-1
(0.0.15), = — (aN+lxn+N+1)’n+l + ﬂNYn+N+1xn) 1_[ Unditl + -0
- - 0
e Ny=N, Ny=N+1,a=0, b =c=1: The two Egs. (0.0.14),,4+1 and (0.0.15),
form a system of two equations in the unknowns x,+ny+2 and y,4n42, the variable
with the lowest index being y,_y_1:

N
0.0.14)41 = — (OlN+1xn+N+2yn+1 + ,3N+1yn+1v+2xn+1) l_[ Uppitl - s
1
N N
(0.0.15);, = —aN41Xn+N+2Yn l—[ Untitl + oo+ ONF1Yn—N—1Xn+1 ]_[ Un—i-
0 0
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e Ny =N, Ny =N—-1¢c=0, a=>b= 1: The two Egs. (0.0.14),1Jrl and Eq.
(0.0.15),, form a system of two equations in the unknowns x,, x4 and y,4n+1, the
variable with the lowest index being x,_y:

N-1

0.0.14),41 = — (aan+N+1yn+1 + ,3Nyn+N+1xn+1) H Ungitl +oves
- - 1
N-1 N—1
(0.0.155, = =By yuin+1%n | [ vatitt + -+ ByXa-wynt [ | vaie
0 0

Case 3. All cases below lead to two inductive equations, both having N1 4+ N> + 1 steps.
Using again Lemma 7.1, one searches for the highest and lowest terms in the relations

(0.0.17):

o (= (@ P{LD), 4y — (L2PY(L),

0 =nx, + il
I\ (P{(L1)ns1n + (Py(L2))nnt1

—UpN; (Li\]l In+ln+l — U—N, (Lévz)nn +...
In +un, (LiVlil)n—H,n +u_n, (Lé\/27]))1,n+1 +...

Ni—1 Ni—1
Un
= Un; y Xn+NyYn | | Upti + oo+ Xnt1Vn—Ni+1 | | Un41—i
n
1 1

v Ni—2
n
—Mle— (’~'+xﬂ+1yn—N1+l l_[ Un—i)

n 1

No—1 Nr—1

v
—i—Mszy—n ()’n+Nzlxn1 l_[ Unti—1+ ...+ YnXn—N, l_[ Uni)
" 1 1

v Nry—2
—u—Nzy_n (yn+N2_1xn_1 1—[ Ungi + .. ) + ...

n 1

Ni—1 Ni1—2
=upn, | Xn+n, l_[ Upti + oo — Xn+1Yn—N+1%n H Up—i
0 0

Nry—2 Nr—1
—U_N, | Yn+Nry—1Xn—1Xn l—[ Upti + oo — Xn—N, l_[ Up—i | +...,
0 0
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and, by duality,

o (~EPUED), = (L2PHL),
0= ny, + —

Xn

F(P{(LD)nt1,n + (Py(L2))nnt1

N1—2 Ni—1
= —Upn, (xn+N11Yn1yn 1_[ Unti + .o — Yn—N, l_[ Uni)
0

0

Nr—1 Nr—2
+U—_n, (yn+Nz l_[ Unti + oo = Ynt1Xn—Na+1Yn l_[ Un—i) +....
0 0

Here again, one uses different indices n for each of the cases:

e Ny=N, N,=N

N—1 N-1
(0.0.17), = unxp+nN 1_[ Upti + .. FU_NXn—N 1_[ Up—i+...,
0 0
N-1 N-1
(0.017), = u_Nynen l_[ Ungi + ... FUNY—N l_[ Up—i + ...
0 0
e Ny=N, No=N+1
N—1
0.0.17),41 = (Man+N+1 - M—N—lyn+N+1xnxn+1) 1_[ Upgitl + ...
0
N
‘U_N—1Xn—N l_[ Up—i+1 + ...,
0
N
0017, = u_n1Ynintt | [vnsi + -
0
N-1
- (M—N—IYn+1xn—NYn - uNyn—N> l_[ Up—i+ .o
0
e Ny=N, No=N —1,
N—1
0.0.17), = unXnn [ ] vnsi +---
0

N

- (”an+1yn—N+1xn - M—N—Hxn—N-i—l) l—[ Up—i + ...
0
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N-2
0.0.17)p 41 = (M—N+1yn+1v - uan+Nynyn+1> l_[ Untitl .-
0
N-—1
+UNYn—N+1 l_[ Up—itl + ...
0

This ends the proof of Theorem 0.2. O
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