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Abstract

In a celebrated paper, Dyson shows that the spectrum of a n× n
random Hermitian matrix, diffusing according to an Ornstein-Uhlenbeck
process, evolves as n non-colliding Brownian motions held together by
a drift term. The universal edge and bulk scalings for Hermitian ran-
dom matrices, applied to the Dyson process, lead to the Airy and Sine
processes. In particular, the Airy process is a continuous stationary
process, describing the motion of the outermost particle of the Dyson
Brownian motion, when the number of particles gets large, with space
and time appropriately rescaled.

In this paper, we answer a question posed by Kurt Johansson, to
find a PDE for the joint distribution of the Airy Process at two differ-
ent times. Similarly we find a PDE satisfied by the joint distribution
of the Sine process. This hinges on finding a PDE for the joint distri-
bution of the Dyson process, which itself is based on the joint proba-
bility of the eigenvalues for coupled Gaussian Hermitian matrices. The
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M. Adler & P. van Moerbeke PDE’s for Dyson and Airy processes

PDE for the Dyson process is then subjected to an asymptotic anal-
ysis, consistent with the edge and bulk rescalings. The PDE’s enable
one to compute the asymptotic behavior of the joint distribution and
the correlation for these processes at different times t1 and t2, when
t2 − t1 → ∞, as illustrated in this paper for the Airy process. This
paper also contains a rigorous proof that the extended Hermite kernel,
governing the joint probabilities for the Dyson process, converges to
the extended Airy and Sine kernels after the appropriate rescalings.
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1 Stating the results

The Dyson Brownian motion ([4])

(
λ1(t), . . . , λn(t)

)
∈ Rn,

with transition density p(t, µ, λ) satisfies the diffusion equation

∂p

∂t
=

1

2

n∑
1

∂

∂λi

Φ(λ)
∂

∂λi

1

Φ(λ)
p
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=
n∑
1

(
1

2

∂2

∂λ2
i

− ∂

∂λi

∂ log
√

Φ(λ)

∂λi

)
p

with

Φ(λ) = ∆2(λ)
n∏
1

e−λ2
i /a2

.

Roughly speaking, it represents n Brownian motions repelling one another,
with the exponential in Φ(λ) having the effect of preventing the system from
flying out to infinity. In his beautiful paper, Dyson generalizes the ran-
dom matrix ensembles in such a way that the Coulomb gas model acquires
a meaning as a dynamical system, rather than a static model. He shows the
repelling Brownian motion above corresponds to the motion of the eigenval-
ues (λ1(t), . . . , λn(t)) of an Hermitian matrix B, evolving according to the
Ornstein-Uhlenbeck process

∂P

∂t
=

n2∑
i,j=1

(1

4
(1 + δij)

∂2

∂B2
ij

+
1

a2

∂

∂Bij

Bij

)
P , (1.1)

with transition density (c := e−t/a2
)

P (t, B̄, B) = Z−1 1

(1− c2)n2/2
e
− 1

a2(1−c2)
Tr(B−cB̄)2

.

The Bij’s in (1.1) denote the n2 free (real) parameters in the Hermitian
matrix B, with the Bii’s being its diagonal elements. In the limit t → ∞,
this distribution tends to the stationary distribution

Z−1e−
1

a2 Tr B2

dB = Z−1∆2(λ)
n∏
1

e−
λ2

i
a2 dλi.

With this invariant measure as initial condition, the joint distribution reads

P (B(0) ∈ dB1, B(t) ∈ dB2) = Z−1 dB1dB2

(1− c2)n2/2
e
− 1

a2(1−c2)
Tr(B2

1−2cB1B2+B2
2)

,

(1.2)
for which a non-linear PDE will be found in Theorem 1.1. According to
Johansson [9], the joint probabilities for the λi’s can also be expressed in
terms of a Fredholm determinant of the so-called extended Hermite kernel
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K̂H,n
titj (x, y), a matrix kernel, defined in section 7. As elaborated in that

section, for E1 and E2 ⊂ R, we have, for 1 ≤ i ≤ n,

P (all λi(t1) ∈ E1, all λi(t2) ∈ E2) = det
(
I − (χ

Ec
k
KH,n

tkt`
χ

Ec
`
)1≤k,`≤2

)
. (1.3)

Since expression (1.2) is symmetric in B1 and B2, the probability (1.3) for
the Dyson process is symmetric in E1 and E2. Throughout the paper, we
normalize the problem, by setting a = 1.

The Airy process is defined by an appropriate rescaling of the largest
eigenvalue λn in the Dyson diffusion,

A(t) = lim
n→∞

√
2n1/6

(
λn(n−1/3t)−

√
2n

)
, (1.4)

in the sense of convergence of distributions for a finite number of t’s. This
process was introduced by Prähofer and Spohn [12] in the context of poly-
nuclear growth models and further investigated by Johansson [8]. Prähofer
and Spohn showed the Airy process is a stationary process with continuous
sample paths; thus the probability P (A(t) ≤ u) is independent of t, and is
given by the Tracy-Widom distribution [14],

P (A(t) ≤ u) = F2(u) := exp

(
−

∫ ∞

u

(α− u)q2(α)dα

)
, (1.5)

with q(α) the solution of the Painlevé II equation,

q′′ = αq + 2q3 with q(α) ∼=




− e−

2
3 α

3
2

2
√

πα1/4 for α ↗∞
√
−α/2 for α ↘ −∞.

(1.6)

Here, the joint probabilities for the process A(t) can also be expressed in
terms of the Fredholm determinant of the the extended Airy kernel K̂A

titj
(x, y),

another matrix kernel, which is an appropriate limit of the extended Hermite
kernel above; see [6, 8, 11, 12]. It leads to

P (A(t1) ∈ E1, A(t2) ∈ E2) = det
(
I − (χEc

i
KA

titj
χEc

j
)1≤i,j≤2

)
, (1.7)

which is also symmetric in E1 and E2, as a consequence of the symmetry for
the Dyson process.
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At MSRI (sept 02), Kurt Johansson, whom we thank for introducing us
to the Airy process, posed the question, whether a PDE can be found for
the joint probability of this process; see [8]. The present paper answers this
question (Theorem 1.2), which enables us to derive the asymptotics of the
large time correlations for the Airy Process (Theorem 1.6); this question
was posed by Prähofer and Spohn in [12]. Our results on the Airy process
for the special case of semi-infinite intervals appeared in [2], as well as the
asymptotics.

The Sine process is an infinite collection of non-colliding processes Si(t),
obtained by rescaling the bulk of the Dyson process, in the same way as the
bulk of the spectrum of a large Gaussian random matrix; namely,

Si(t) := lim
n→∞

√
2n

π
λn

2
+i

(
π2t

2n

)
for −∞ < i < ∞ (1.8)

in the sense of convergence of distributions for a finite number of t’s. This
process was defined by Tracy and Widom in [17]. Similarly, by taking the
bulk scaling limit of the extended Hermite kernel (1.3), the joint probabilities
for the Si’s can also be expressed in terms of the Fredholm determinant of
the extended sine kernel KS

titj
(x, y), yet another matrix kernel,

P (all Si(t1) ∈ Ec
1, all Si(t2) ∈ Ec

2) = det
(
I − (χ

Ek
KS

tkt`
χ

E`
)1≤k,`≤2

)
, (1.9)

where here E1 and E2 must be compact for it to make sense. Note this
probability is, as usual, symmetric in E1 and E2. These kernels will be
discussed in section 7. For this process, Theorem 1.4 gives a PDE for the
joint probabilities.

The disjoint union of intervals

E1 := ∪r
i=1[a2i−1, a2i] and E2 := ∪s

i=1[b2i−1, b2i] ⊆ R,
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and t = t2 − t1 specify linear operators, setting c = e−t,

A1 =
2r∑
1

∂

∂aj

+ c

2s∑
1

∂

∂bj

, B1 = c

2r∑
1

∂

∂aj

+
2s∑
1

∂

∂bj

A2 =
2r∑
1

aj
∂

∂aj

+ c2

2s∑
1

bj
∂

∂bj

+ (1− c2)
∂

∂t
− c2

B2 = c2

2r∑
1

aj
∂

∂aj

+
2s∑
1

bj
∂

∂bj

+ (1− c2)
∂

∂t
− c2. (1.10)

The duality ai ↔ bj reflects itself in the duality Ai ↔ Bi. We now state

Theorem 1.1 (Dyson process) Given t1 < t2 and t = t2−t1, the logarithm
of the joint distribution for the Dyson Brownian motion (λ1(t), . . . , λn(t)),

Gn(t; a1, ..., a2r; b1, ..., b2s) := log P (all λi(t1) ∈ E1, all λi(t2) ∈ E2) (1.11)

satisfies a third order non-linear PDE in the boundary points of E1 and E2,
which takes on the simple form, setting c = e−t,

A1
B2A1Gn

B1A1Gn + 2nc
= B1

A2B1Gn

A1B1Gn + 2nc
. (1.12)

The proof of this theorem will be given in section 3.

Similarly, the disjoint union of intervals

E1 := ∪r
i=1[u2i−1, u2i] and E2 := ∪s

i=1[v2i−1, v2i] ⊆ R, (1.13)

and t = t2 − t1 define another set of linear operators

Lu :=
2r∑
1

∂

∂ui

, Lv :=
2s∑
1

∂

∂vi

Eu :=
2r∑
1

ui
∂

∂ui

+ t
∂

∂t
, Ev :=

2s∑
1

vi
∂

∂vi

+ t
∂

∂t
.

(1.14)

We now give the equations for the joint probabilities of the Airy and Sine
processes, which will be shown in section 4:
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Theorem 1.2 (Airy process) Given t1 < t2 and t = t2 − t1, the joint
distribution for the Airy process A(t),

G(t; u1, . . . , u2r; v1, . . . , v2s) := log P (A(t1) ∈ E1, A(t2) ∈ E2) ,

satisfies a third order non-linear PDE1 in the ui, vi and t,
(
(Lu + Lv)(LuEv − LvEu) + t2(Lu − Lv)LuLv

)
G

=
1

2

{
(L2

u − L2
v)G , (Lu + Lv)

2G
}

Lu+Lv

. (1.15)

Corollary 1.3 In the case of semi-infinite intervals E1 and E2, the PDE for
the Airy joint probability

H(t; x, y) := log P

(
A(t1) ≤ y + x

2
, A(t2) ≤ y − x

2

)
,

takes on the following simple form in x, y and t2, with t = t2 − t1, also in
terms of the Wronskian,

2t
∂3H

∂t∂x∂y
=

(
t2

∂

∂x
− x

∂

∂y

)(
∂2H

∂x2
− ∂2H

∂y2

)
+ 8

{
∂2H

∂x∂y
,
∂2H

∂y2

}

y

. (1.16)

Remark: Note for the solution H(t; x, y),

lim
t↘0

H (t; x, y) = log F2

(
min(

y + x

2
,
y − x

2
)

)
.

Theorem 1.4 (Sine process) For t1 < t2, and compact E1 and E2 ⊂ R,
the log of the joint probability for the sine processes Si(t),

G(t; u1, . . . , u2r; v1, . . . , v2s) := log P (all Si(t1) ∈ Ec
1, all Si(t2) ∈ Ec

2) ,

satisfies the third order non-linear PDE,

Lu

(
2EvLu + (Ev − Eu − 1)Lv

)
G

(Lu + Lv)2G + π2
= Lv

(
2EuLv + (Eu − Ev − 1)Lu

)
G

(Lu + Lv)2G + π2
.

(1.17)

1in terms of the Wronskian {f(y), g(y)}y := f ′(y)g(y)− f(y)g′(y).
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Corollary 1.5 In the case of a single interval, the logarithm of the joint
probability for the Sine process,

H(t; x, y) = log P
(
S(t1) 6∈ [x1 + x2, x1 − x2] , S(t2) 6∈ [y1 + y2, y1 − y2]

)

satisfies

∂

∂x1

(
2Ey

∂
∂x1

+ (Ey−Ex−1) ∂
∂y1

)
H

(
∂

∂x1
+ ∂

∂y1

)2

H + π2

=
∂

∂y1

(
2Ex

∂
∂y1

+ (Ex−Ey− 1) ∂
∂x1

)
H

(
∂

∂x1
+ ∂

∂y1

)2

H + π2

.

(1.18)

In a very recent paper, Tracy and Widom [16] express the joint distribu-
tion for several times t1, . . . , tm, in terms of an augmented system of auxiliary
variables, which satisfy an implicit closed system of non-linear PDE’s. In
[17], Tracy and Widom define the Sine process and find an implicit PDE for
this process, with methods similar to the one used in the Airy process. The
quantities involved are entirely different and their methods are functional-
theoretical; it remains unclear what the connection is between the two results.

The PDE’s obtained above provide a very handy tool to compute large
time asymptotics for these different processes, with the disadvantage that
one usually needs an assumption concerning the interchange of sums and
limits; see section 6 and the Appendix. This is now illustrated for the Airy
process, for which we prove the following Theorem, assuming some conjec-
ture, mentioned below. This will be discussed in section 6. A rigorous proof
to this expansion (1.19) was given later by Harold Widom [18]; his proof was
based on the Fredholm determinant expression for the joint distribution.

Theorem 1.6 (Large time asymptotics for the Airy process) For
large t = t2 − t1, the joint probability admits the asymptotic series

P (A(t1) ≤ u,A(t2) ≤ v)=F2(u)F2(v)+
F ′

2(u)F ′
2(v)

t2
+

Φ(u, v)+Φ(v, u)

t4
+O

(
1

t6

)
,

(1.19)
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with2

Φ(u, v) := F2(u)F2(v)




1
4

(∫ ∞

u

q2dα

)2 (∫ ∞

v

q2dα

)2

+ q2(u)

(
1
4
q2(v)− 1

2

(∫ ∞

v

q2dα
)2

)

+

∫ ∞

v

dα
(
2(v − α)q2 + q′2 − q4

)∫ ∞

u

q2dα




.

Moreover, the covariance for large t = t2 − t1 behaves as

E(A(t2)A(t1))− E(A(t2))E(A(t1)) =
1

t2
+

c

t4
+ ... , (1.20)

where

c := 2

∫∫

R2

Φ(u, v)du dv.

Conjecture: The Airy process satisfies the non-explosion condition for fixed
x:

lim
z→∞

P (A(t) ≥ x + z | A(0) ≤ −z) = 0. (1.21)

This conjecture will be discussed in section 6, just before the proof of
Theorem 1.6 and in the Appendix.

Finally, in section 7, we give a rigorous proof of the convergence of the
extended Hermite kernel to the Airy and Sine kernels, under the substitutions

S1 :=

{
t 7→ t

n1/3
, s 7→ s

n1/3
,

x 7→ √
2n + 1 + u√

2n1/6

y 7→ √
2n + 1 + v√

2n1/6

}

S2 :=

{
t 7→ π2t

2n
, s 7→ π2s

2n
, x 7→ πu√

2n
, y 7→ πv√

2n

}
.

The precise formula for these kernels will be given later in the beginning of
section 7.

2q = q(α) is the function (1.6).
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Proposition 1.7 Under the substitutions S1 and S2, the extended Hermite
kernel tends to the extended Airy and Sine kernel respectively, when n →∞,
uniformly for u, v ∈ compact subsets ⊂ R:

lim
n→∞

KH,n
t,s (x, y)dy∣∣∣

S1

= KA
t,s(u, v)dv.

lim
n→∞

KH,n
t,s (x, y)dy∣∣∣

S2

= e−
π2

2
(t−s)KS

t,s(u, v)dv.

2 The spectrum of coupled random matrices

Consider a product ensemble (M1,M2) ∈ H2
n := Hn×Hn of n×n Hermitian

matrices, equipped with a Gaussian probability measure,

cndM1dM2 e−
1
2
Tr(M2

1 +M2
2−2cM1M2), (2.1)

where dM1dM2 is Haar measure on the product H2
n, with each dMi,

dM1 = ∆2
n(x)

n∏
1

dxidU1 and dM2 = ∆2
n(y)

n∏
1

dyidU2 (2.2)

decomposed into radial and angular parts. In [1], we define differential oper-
ators Ãk, B̃k of “weight” k, which form a closed Lie algebra, in terms of the
coupling constant c, appearing in (2.1), and the boundary of the set

E = E1 × E2 := ∪r
i=1[a2i−1, a2i]× ∪s

i=1[b2i−1, b2i] ⊂ R2. (2.3)

Here we only need the first few ones:

Ã1 =
1

c2 − 1

(
2r∑
1

∂

∂aj

+ c

2s∑
1

∂

∂bj

)
B̃1 =

1

1− c2

(
c

2r∑
1

∂

∂aj

+
2s∑
1

∂

∂bj

)

Ã2 =
2r∑

j=1

aj

∂

∂aj

− c
∂

∂c
B̃2 =

2s∑
j=1

bj

∂

∂bj

− c
∂

∂c
.

(2.4)
In [1], we prove the following theorem, based on integrable and Virasoro
theory:
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Theorem 2.1 Given the joint distribution

Pn(E) := P (all(M1-eigenvalues) ∈ E1, all(M2-eigenvalues) ∈ E2), (2.5)

the function Fn(c; a1, . . . , a2r, b1, . . . , b2s) := log Pn(E) satisfies the non-linear
third-order partial differential equation3:

{
B̃2Ã1Fn , B̃1Ã1Fn +

nc

c2 − 1

}

Ã1

−
{
Ã2B̃1Fn , Ã1B̃1Fn +

nc

c2 − 1

}

B̃1

= 0.

(2.6)

Remark: Note that both Pn(E1 × E2) and Pn(Ec
1 × Ec

2) satisfy the same
equation.

3 The joint distribution for the Dyson Brow-

nian motion

Proof of Theorem 1.1: Using the notation of section 2 and the change of
variables

Mi =
Bi√

(1− c2)/2
, (3.1)

3in terms of the Wronskian {f, g}X = g(Xf) − f(Xg), with regard to the first order
differential operator X.
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one computes for t = t2 − t1 > 0, with e−t = c,

Gn(t; a1, ..., a2r; b1, ..., b2s)

:= log P (all λi(t1) ∈ E1, all λi(t2) ∈ E2)

= log P (all (B(t1)-eigenvalues) ∈ E1, all (B(t2)-eigenvalues) ∈ E2)

= log

∫∫
all B1−eigenvalues ∈E1
all B2−eigenvalues ∈E2

Z−1 dB1dB2

(1− c2)n2/2
e
− 1

1−c2
Tr(B2

1+B2
2−2cB1B2)

= log

∫∫
all M1−eigenvalues ∈ E1√

(1−c2)/2

all M2−eigenvalues ∈ E2√
(1−c2)/2

Z
′−1dM1dM2 e−

1
2

Tr(M2
1 +M2

2−2cM1M2)

= Fn

(
c;

a1√
(1− c2)/2

, ...,
a2r√

(1− c2)/2
;

b1√
(1− c2)/2

, ...,
b2s√

(1− c2)/2

)
,

in terms of the function Fn defined in Theorem 2.1. Setting

Fn(c; a1, ..., a2r; b1, ..., b2s)

= Gn

(
t; a1

√
(1− c2)/2, ..., a2r

√
(1− c2)/2; b1

√
(1− c2)/2, ..., b2s

√
(1− c2)/2

)

= Gn

(
t; ã1, ..., ã2r; b̃1, ..., b̃2s

)

in (2.6) leads to the following equation for Gn := Gn(t; ã1, ..., ã2r; b̃1, ..., b̃2s),
namely

{
˜̃B2

˜̃A1Gn, ˜̃B1
˜̃A1Gn +

nc

c2 − 1

}
˜̃A1

−
{

˜̃A2
˜̃B1Gn,

˜̃A1
˜̃B1Gn +

nc

c2 − 1

}
˜̃B1

= 0,

where

ÃiFn(c; a1, ..., a2r; b1, ..., b2s) = ˜̃AiGn(t; ã1, ..., ã2r; b̃1, ..., b̃2s)

B̃iFn(c; a1, ..., a2r; b1, ..., b2s) = ˜̃BiGn(t; ã1, ..., ã2r; b̃1, ..., b̃2s),

12
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with the Ãi, B̃i as in (2.4), and

˜̃A1 = − 1√
2(1− c2)

(
2r∑
1

∂

∂ãj

+ c

2s∑
1

∂

∂b̃j

)

˜̃B1 =
1√

2(1− c2)

(
c

2r∑
1

∂

∂ãj

+
2s∑
1

∂

∂b̃j

)

˜̃A2 =
1

(1− c2)

(
2r∑
1

ãj
∂

∂ãj

+ c2

2s∑
1

b̃j
∂

∂b̃j

)
+

∂

∂t

˜̃B2 =
1

(1− c2)

(
c2

2r∑
1

ãj
∂

∂ãj

+
2s∑
1

b̃j
∂

∂b̃j

)
+

∂

∂t
. (3.2)

Then clearing the denominators in (3.2), leads to

{B2A1Gn,B1A1Gn + 2nc}A1
= {A2B1Gn,A1B1Gn + 2nc}B1

, (3.3)

for the operators (1.10), with Gn = Gn(t; a1, . . . , a2r; b1, . . . , b2s). This estab-
lishes Theorem 1.1.

Remark: In view of the remark in section 2, also here the expressions

Gn =





log P (all λi(t1) ∈ E1, all λi(t2) ∈ E2)
or
log P (all λi(t1) ∈ Ec

1, all λi(t2) ∈ Ec
2)

(3.4)

satisfy the same equation.

4 The joint distribution for the Airy process

Proof of Theorem 1.2: Consider as in (1.13), the disjoint union of intervals

E1 := ∪r
i=1[u2i−1, u2i] and E2 := ∪s

i=1[v2i−1, v2i] ⊆ R. (4.1)

13
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Then, setting τ = τ2 − τ1,

Hn(τ ; u1, . . . , u2r; v1, . . . , v2s)

= log P

( √
2n1/6

(
λn(n−1/3τ1)−

√
2n

) ∈ E1,√
2n1/6

(
λn(n−1/3τ2)−

√
2n

) ∈ E2

)

= log P
(
λn(n−1/3τ1) ∈ Ẽ1, λn(n−1/3τ2) ∈ Ẽ2

)

= Gn(n−1/3τ ; a1, . . . , a2r; b1, . . . , b2s) (4.2)

for the disjoint union of intervals

Ẽ1 := ∪r
i=1[a2i−1, a2i] and Ẽ2 := ∪s

i=1[b2i−1, b2i], (4.3)

with
ai =

√
2n +

ui√
2n1/6

and bi =
√

2n +
vi√
2n1/6

. (4.4)

The method here is to do asymptotics on equation (3.3) for n large. In the
notation (1.14), define

L := Lu + Lv, E := Eu + Ev, (4.5)

with the understanding that t in E now gets replaced by τ . Setting k := n1/6

and changing variables

A1Gn(n−1/3τ ; a1, . . . , a2r; b1, . . . , b2s)

= A1Hn(τ ;−k(2k3 −
√

2a1), . . . ;−k(2k3 −
√

2b1), . . .)

= k
√

2

(
2r∑
1

∂

∂ui

+ e−τ/k2
2r∑
1

∂

∂vi

)
Hn(τ ; u1, . . . , u2r; v1, . . . , v2r)

= A1
∣∣∣

a → u
b → v

Hn(τ ; u1, . . . , u2r; v1, . . . , v2r), (4.6)

where the operators Ai and Bi are now expressed in u, v, τ -coordinates, using
the change of coordinates (4.4) and the chain rule. In these new coordinates,

14
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the Ai and Bi, Taylor expanded in 1/k, for large k, read as follows

A1 =
√

2k

(
L− ( τ

k2
− τ 2

2k4
+

τ 3

6k6

)
Lv + O(

1

k8
)

)

B1 =
√

2k

(
L− ( τ

k2
− τ 2

2k4
+

τ 3

6k6

)
Lu + O(

1

k8
)

)

A2 = 2k4

(
L− 2τ

k2
Lv +

1

2k4
(E − 1 + 4τ 2Lv)

− τ

k6
(Ev − 1 +

4

3
τ 2Lv) + O(

1

k8
)

)

B2 = 2k4

(
L− 2τ

k2
Lu +

1

2k4
(E − 1 + 4τ 2Lu)

− τ

k6
(Eu − 1 +

4

3
τ 2Lu) + O(

1

k8
)

)
. (4.7)

Hence, from (4.7),

1

2
√

2k5
B2A1

= L2 − τ

k2
(L + Lu)L

+
1

2k4

(
L(E − 2) + τ 2

(
4Lu(L + Lv) + LLv

))

− τ

k6

(
L(Eu − 2) +

1

2
Lv(E + 2) +

τ 2

6
(8LLu + 18LuLv + LLv)

)

+ O(
1

k8
),

1

2k2
B1A1

= L2 − τ

k2
L2 +

τ 2

k4

(
1

2
L2 + LuLv

)
− τ 3

k6

(
1

6
L2 + LuLv

)
+ O(

1

k8
).

(4.8)

As will be shown in Proposition 7.1, using also (7.13), we have for u =
(u1, . . . , u2r) and v = (v1, . . . , v2s), (also for its derivatives with regard to the

15
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endpoints of the intervals)4,

Hn(τ ; u, v)|n=k6 = G(τ ; u, v) + o(1/k), for k →∞. (4.9)

with
G(τ, u, v) := log P (A(τ1) ∈ E1, A(τ2) ∈ E2),

which will be used below. The equation (3.3), with (4.7) and (4.8) substituted
is a series in k2, for large k, but where the three leading coefficients, namely
the ones of k4, k2 and k0, vanish:

0 =

{
1

2
√

2k5
B2A1Hn,

1

2k2

(
B1A1Hn + 2k6e−τ/k2

)}

A1/(
√

2k)

−
{

1

2
√

2k5
A2B1Hn,

1

2k2

(
A1B1Hn + 2k6e−τ/k2

)}

B1/(
√

2k)

=
2τ

k2

[(
(Lu + Lv)(LuEv − LvEu) + τ 2(Lu − Lv)LuLv

)
G

− 1

2

{
(L2

u − L2
v)G , (Lu + Lv)

2G
}

Lu+Lv

]
+ O(

1

k3
). (4.10)

In this calculation, we used the linearity of the Wronskian {X,Y }Z in the
three arguments and the following commutation relations

[Lu, Eu] = Lu, [Lu, Ev] = [Lu, Lv] = [Lu, τ ] = 0 and [Eu, τ ] = τ, (4.11)

including their dual relations by u ↔ v; also {L2G, 1}Lu−Lv = {L(Lu −
Lv)G, 1}L. It is also useful to note in (4.10), that the two Wronskians in
the first expression are dual to each other by u ↔ v. The point of the
computation is to preserve the Wronskian structure up to the end. This
proves Theorem 1.2.

Proof of Corollary 1.3: The equation (1.15) for the probability

G(τ ; u, v) := log P (A(τ1) ≤ u,A(τ2) ≤ v), τ = τ2 − τ1,

takes on the explicit form

τ
∂

∂τ

( ∂2

∂u2
− ∂2

∂v2

)
G =

∂3G

∂u2∂v

(
2
∂2G

∂v2
+

∂2G

∂u∂v
− ∂2G

∂u2
+ u− v − τ 2

)

− ∂3G

∂v2∂u

(
2
∂2G

∂u2
+

∂2G

∂u∂v
− ∂2G

∂v2
− u + v − τ 2

)

+
(∂3G

∂u3

∂

∂v
− ∂3G

∂v3

∂

∂u

)( ∂

∂u
+

∂

∂v

)
G . (4.12)

4Proposition 7.1 actually implies that the error in (4.9) has order k−2 log k.

16
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This equation enjoys an obvious u ↔ v duality. Finally the change of vari-
ables in the statement of Corollary 1.3 leads to (1.16).

5 The joint distribution for the Sine process

Proof of Theorem 1.4: Consider as in (1.13), the disjoint union of (in this
case) compact intervals E1 := ∪r

i=1[u2i−1, u2i] and E2 := ∪s
i=1[v2i−1, v2i] ⊆ R.

Then, again setting τ = τ2 − τ1,

Hn(τ ; u1, . . . , u2r; v1, . . . , v2s)

= log P
(
all 2

√
nλn

2
+i(

τ1

n
) ∈ Ec

1, all 2
√

nλn
2
+i(

τ2

n
) ∈ Ec

2

)

= log P
(
all λn

2
+i(

τ1

n
) ∈ Ẽc

1, all λn
2
+i(

τ2

n
) ∈ Ẽc

2

)

= Gn(
τ

n
; a1, . . . , a2r; b1, . . . , b2s) (5.1)

for the disjoint union of intervals

Ẽ1 := ∪r
i=1[a2i−1, a2i] and Ẽ2 := ∪s

i=1[b2i−1, b2i], (5.2)

with
ai :=

ui

2
√

n
, bi :=

vi

2
√

n
. (5.3)

Note here Gn refers to the second formula in (3.4). Setting k := n1/2, using
the change of variables (5.3), and the chain rule,

A1Gn(τ/k2; a1, . . . , a2r; b1, . . . , b2s)

= A1Hn(τ ; 2ka1, . . . ; 2kb1, . . .)

= 2k

(
2r∑
1

∂

∂ui

+ e−τ/k2
2r∑
1

∂

∂vi

)
Hn(τ ; u1, . . . , u2r; v1, . . . , v2r)

= A1
∣∣∣

a → u
b → v

Hn(τ ; u1, . . . , u2r; v1, . . . , v2r),

17
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In these new u, v, τ -coordinates, the operators Ai and Bi, Taylor expanded
in 1/k for large k, read as follows

A1 = 2k

(
L− τ

k2
Lv + O

(
1

k4

))

B1 = 2k

(
L− τ

k2
Lu + O

(
1

k4

))

A2 = E − 1− 2τ

k2
(Ev − 1) + O

(
1

k4

)

B2 = E − 1− 2τ

k2
(Eu − 1) + O

(
1

k4

)
. (5.4)

Moreover, as will be shown in Proposition 7.3 (section 7(iii)) we have the
following asymptotic estimate (and similarly for its derivatives with regard
to the endpoints of the intervals),

Hn(τ ; u, v)|n=k2 = G̃(τ ; u, v) + o(1), for k →∞, (5.5)

with

G̃(τ, u, v) := log P (all
√

2πSi(
2τ1

π2
) ∈ Ec

1, all
√

2πSi(
2τ2

π2
) ∈ Ec

2). (5.6)

Using the expansions (5.4) of the Ai and Bi and later the commutation
relations (4.11), yields the following for the Wronskian

1

(2k)4
{B2A1Hn,B1A1Hn + 2k2e−τ/k2}A1

=
1

(2k)4

{
2k

((
E − 1− 2τ

k2
(Eu − 1)

)(
L− τ

k2
Lv

)
+ O

(
1

k4

))
Hn ,

(2k)2

((
L− τ

k2
Lv

) (
L− τ

k2
Lu

)
+ O

(
1

k4

))
Hn

+
(2k)2

2

(
1− τ

k2
+ O

(
1

k4

))}

2k(L− τ
k2 Lv+O( 1

k4 ))

18
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=

{(
(E − 1)L− 2τ

k2
(Eu − 1)L− 1

k2
(E − 1)τLv + O

(
1

k4

))
Hn,

L2Hn +
1

2
− τ

k2

(
L2Hn +

1

2

)
+ O

(
1

k4

)}

L− τ
k2 Lv

=

{(
(E − 1)L− τ

k2
(2(Eu − 1)L + (E + 1)Lv) + O

(
1

kn

))
Hn,

L2Hn +
1

2
− τ

k2

(
L2Hn +

1

2

)
+ O

(
1

k4

)}

L− τ
k2 Lv

=

{
(E − 1)LHn, L2Hn +

1

2

}

L

− τ

k2

{
(E − 1)LHn, L

2Hn +
1

2

}

L

− τ

k2

{
(E − 1)LHn, L2Hn +

1

2

}

Lv

− τ

k2

{
(2(Eu − 1)L + (E + 1)Lv)Hn, L

2Hn +
1

2

}

L

+ O

(
1

k4

)
.

Hence, subtracting the previous formula from its dual and using (5.5),

0 =
k2

τ

1

(2k)4

(
{B2A1Hn,B1A1Hn + 2k2e−τ/k2}A1

− {A2B1Hn,A1B1Hn + 2k2e−τ/k2}B1

)

=

{
(E − 1)LHn, L

2Hn +
1

2

}

Lu−Lv

−
{

(2(Eu − 1)L + (E + 1)Lv)Hn, LHn +
1

2

}

L

+

{
(2(Ev − 1)L + (E + 1)Lu)Hn, LHn +

1

2

}

L

+ O

(
1

k2

)
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=

{
(E − 1)LG̃, L2G̃ +

1

2

}

Lu−Lv

−
{

(2(Eu − 1)L + (E + 1)Lv)G̃, LG̃ +
1

2

}

L

+

{
(2(Ev − 1)L + (E + 1)Lu)G̃, LG̃ +

1

2

}

L

+ o (1)

=

{
(E − 1)LG̃, L2G̃ +

1

2

}

Lu−Lv

+

{
(2(Ev − Eu)L + (E + 1)(Lu − Lv))G̃, L2G̃ +

1

2

}

L

+ o (1) .

Upon division by (L2G̃ + 1
2
)2, one finds

0 = (Lu − Lv)

(
(E − 1)LG̃

L2G̃ + 1
2

)

+(Lu + Lv)

(
(2(Ev − Eu)L + (E + 1)(Lu − Lv))G̃

L2G̃ + 1
2

)

= Lu
((E − 1)L + 2(Ev − Eu)L + (E + 1)(Lu − Lv))G̃

L2G̃ + 1
2

+ Lv
(−(E − 1)L + 2(Ev − Eu)L + (E + 1)(Lu − Lv))G̃

L2G̃ + 1
2

= 2Lu
(2EvLu + (Ev − Eu − 1)Lv)G̃

L2G̃ + 1
2

− 2Lv
(2EuLv + (Eu − Ev − 1)Lu)G̃

L2G̃ + 1
2

.
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In view of (5.6), the function

G(τ, u, v) = log P (all Si(τ1) ∈ Ec
1, all Si(τ2) ∈ Ec

2)

= G̃(
π2τ

2
,
√

2πu,
√

2πv),

satisfies equation (1.17) of Theorem 1.4.

Proof of Corollary 1.5: Setting

u1 = x1 + x2, u2 = x1 − x2

v1 = y1 + y2, v2 = y1 − y2,

the function

H(t; x1, x2; y1, y2) := G(t; x1 + x2, x1 − x2; y1 + y2, y1 − y2) (5.7)

satisfies (1.18), ending the proof of Corollary 1.5.

6 Large time asymptotics for the Airy pro-

cess

This section aims at proving Theorem 1.6, for which we need the following
lemma:

Lemma 6.1 The following ratio of probabilities admits the asymptotic ex-
pansion for large t > 0 in terms of functions fi(u, v), symmetric in u and
v,

P (A(0) ≤ u,A(t) ≤ v)

P (A(0) ≤ u)P (A(t) ≤ v)
= 1 +

∑
i≥1

fi(u, v)

ti
, (6.1)

from which it follows that

lim
t→∞

P (A(0) ≤ u,A(t) ≤ v) = P (A(0) ≤ u)P (A(t) ≤ v) = F2(u)F2(v);

this means the Airy process decouples at ∞.

Proof: This will be done in part (v) of section 7, using the extended Airy
kernel. Note, since the probabilities in (6.1) are symmetric in u and v, the
coefficients fi are symmetric as well. The last equality in the formula above
follows from stationarity.
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Conjecture: The coefficients fi(u, v) have the property

lim
u→∞

fi(u, v) = 0, for fixed v ∈ R (6.2)

and
lim
z→∞

fi(−z, z + x) = 0, for fixed x ∈ R. (6.3)

The justification for this plausible conjecture will now follow: First, consid-
ering the following conditional probability,

P (A(t) ≤ v | A(0) ≤ u) =
P (A(0) ≤ u, A(t) ≤ v)

P (A(0) ≤ u)

= F2(v)

(
1 +

∑
i≥1

fi(u, v)

ti

)
,

and letting v →∞, we have automatically

1 = lim
v→∞

P (A(t) ≤ v | A(0) ≤ u) = lim
v→∞

[
F2(v)

(
1 +

∑
i≥1

fi(u, v)

ti

)]

= 1 + lim
v→∞

∑
i≥1

fi(u, v)

ti
,

which would imply, assuming the interchange of the limit and the summation
is valid,

lim
v→∞

fi(u, v) = 0, (6.4)

and, by symmetry
lim

u→∞
fi(u, v) = 0.

To deal with (6.3), we assume the following non-explosion condition,
whose plausibility is discussed in the Appendix (section 8); it is as follows:
for any fixed t > 0, x ∈ R, the conditional probability satisfies

lim
z→∞

P (A(t) ≥ x + z | A(0) ≤ −z) = 0. (6.5)

Hence, the conditional probability satisfies, upon setting

v = z + x, u = −z,
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and using limz→∞ F2(z + x) = 1, the following

1 = lim
z→∞

P (A(t) ≤ z + x | A(0) ≤ −z) = 1 + lim
z→∞

∑
i≥1

fi(−z, z + x)

ti
,

which, assuming the validity of the same interchange, implies that

lim
z→∞

fi(−z, z + x) = 0, for all i ≥ 1.

Proof of Theorem 1.6: Putting the log of the expansion (6.1)

G(t; u, v) = log P (A(0) ≤ u,A(t) < v)

= log F2(u) + log F2(v) +
∑
i≥1

hi(u, v)

ti

= log F2(u) + log F2(v) +
f1(u, v)

t
+

f2(u, v)− f 2
1 (u, v)/2

t2
+ . . . ,

(6.6)

in the equation (4.12), leads to:

(i) a leading term of order t, given by

Lh1 = 0, (6.7)

where

L :=

(
∂

∂u
− ∂

∂v

)
∂2

∂u∂v
. (6.8)

The most general solution to (6.7) is given by

h1(u, v) = r1(u) + r3(v) + r2(u + v),

with arbitrary functions r1, r2, r3. Hence,

P (A(0) ≤ u,A(t) ≤ v) = F2(u)F2(v)

(
1 +

h1(u, v)

t
+ ...

)

with h1(u, v) = f1(u, v) as in (6.1). Applying (6.2),

r1(u) + r3(∞) + r2(∞) = 0, for all u ∈ R,
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implying
r1(u) = constant = r1(∞),

and similarly
r3(u) = constant = r3(∞).

Therefore, without loss of generality, we may absorb the constants r1(∞)
and r3(∞) in the definition of r2(u + v). Hence, from (6.6),

f1(u, v) = h1(u, v) = r2(u + v)

using (6.3),
0 = lim

z→∞
f1(−z, z + x) = r2(x)

implying that the h1(u, v)-term in the series (6.6) vanishes.

(ii) One computes that the term h2(u, v) in the expansion (6.6) of h(t; u, v)
satisfies

Lh2 =
∂3g

∂u3

∂2g

∂v2
− ∂3g

∂v3

∂2g

∂u2
, with g(u) := log F2(u). (6.9)

This is the term of order t0, by putting the series (6.6) in the equation (4.12).
The most general solution to (6.9) is

h2(u, v) = g′(u)g′(v) + r1(u) + r3(v) + r2(u + v).

Then

P (A(0) ≤ u,A(t) ≤ v) = eG(t;u,v)

= F2(u)F2(v) exp
∑
i≥2

hi(u, v)

ti

= F2(u)F2(v)

(
1 +

h2(u, v)

t2
+ ...

)
.

In view of the explicit formula for the distribution F2 and the behavior (1.6)
of q(α) for α ↗∞, we have that

lim
u→∞

g′(u) = lim
u→∞

(log F2(u))′

= lim
u→∞

∫ ∞

u

q2(α)dα = 0.

24



M. Adler & P. van Moerbeke PDE’s for Dyson and Airy processes

Hence

0 = lim
u→∞

f2(u, v) = lim
u→∞

h2(u, v) = r1(∞) + r3(v) + r2(∞),

showing r3 and similarly r1 are constants. Therefore, by absorbing r1(∞)
and r3(∞) into r2(u + v), we have

f2(u, v) = h2(u, v) = g′(u)g′(v) + r2(u + v).

Again, by the behavior of q(x) at +∞ and −∞, we have for large z > 0,

g′(−z)g′(z + x) =

∫ ∞

−z

q2(α)dα

∫ ∞

z+x

q2(α)dα ≤ cz3/2e−2z/3.

Hence
0 = lim

z→∞
f2(−z, z + x) = r2(x)

and so
f2(u, v) = h2(u, v) = g′(u)g′(v),

yielding the 1/t2 term in the series (6.6).

(iii) Next, setting

G(t; u, v) = log P (A(0) ≤ u,A(t) ≤ v)

= g(u) + g(v) +
g′(u)g′(v)

t2
+

h3(u, v)

t3
+ ... (6.10)

in the equation (4.12), we find for the t−1 term:

Lh3 = 0.

As in (6.7), its most general solution is given by

h3(u, v) = r1(u) + r3(v) + r2(u + v).

By exponentiation of (6.6), we find

P (A(0) ≤ u,A(t) ≤ v) = F2(u)F2(v)

(
1 +

g′(u)g′(v)

t2

+
r1(u) + r3(v) + r2(u + v)

t3
+ ...

)
.

The precise same arguments lead to h3(u, v) = 0.
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(iv) So, at the next stage, we have, remembering g(u) = log F2(u),

G(t; u, v) = g(u) + g(v) +
g′(u)g′(v)

t2
+

h4(u, v)

t4
+ . . . (6.11)

with

f4(u, v) = h4(u, v) +
1

2
h2

2(u, v) = h4(u, v) +
1

2
g′(u)2g′(v)2. (6.12)

Setting the series (6.11) in the equation (4.12), we find for the t−2 term:

Lh4 = 2

(
∂3g

∂u3

(
∂2g

∂v2

)2

− ∂3g

∂v3

(
∂2g

∂u2

)2
)

+
∂3g

∂u3

∂3g

∂v3

(
∂g

∂u
− ∂g

∂v

)

+
1

2

(
∂4g

∂u4

∂

∂v

(
∂g

∂v

)2

− ∂4g

∂v4

∂

∂u

(
∂g

∂u

)2
)

+

(
∂3g

∂u3

∂2g

∂v2
+

∂3g

∂v3

∂2g

∂u2

)
(u− v) + 2

(
∂3g

∂u3

∂g

∂v
− ∂3g

∂v3

∂g

∂u

)

= 2
(
2q(u)q′(u)(q(v)q′(v) + 1)− q(u)q′′(u)q2(v)− (q′(u))2q2(v)

) ∫ ∞

v

q2

+ 2q(u)
(
q(u)q′(v)q′′(v) + q′(u)q(v)q′′(v)− 2q(u)q3(v)q′(v)

)

− same with u ↔ v. (6.13)

The latter is an expression in q(u), q(v) and its derivatives and in

∫ ∞

u

q2(α)dα

and

∫ ∞

v

q2(α)dα. It is obtained by substituting in the previous expression

g(u) =

∫ ∞

u

(u− α)q2(α)dα

and the Painlevé II differential equation for q(u),

u q(u) = q′′(u)− 2q(u)3,
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in order to eliminate the explicit appearance of u and v. Now introducing5

g(u) =

∫ ∞

u

(u− α)q2(α)dα

g1(u) =

∫ ∞

u

(u− α)q′2(α)dα

g2(u) =

∫ ∞

u

(u− α)q4(α)dα,

the most general solution to equation (6.13) is given, modulo the null-space
of L, by

h4(u, v) =
1

2

(
g′′(u)g′(v)2 + g′′(v)g′(u)2 + g′′(u)g′′(v)

)

+ g′(u)
(
2g(v) + g′1(v)− g′2(v)

)

+ g′(v)
(
2g(u) + g′1(u)− g′2(u)

)

= q2(u)

(
q2(v)

4
− 1

2

(∫ ∞

v

q2(α)dα

)2
)

+

∫ ∞

u

q2(α)dα

∫ ∞

v

(
2(v − α)q2(α) + q′2(α)− q4(α)

)
dα

+ same with u ↔ v. (6.14)

This form, together with (6.12), implies for the function f4(u, v):

f4(u, v) = h4(u, v) +
1

2
g′(u)2g′(v)2 + r1(u) + r3(v) + r2(u + v)

=
∑

i

ai(u)bi(v) + r1(u) + r3(v) + r2(u + v).

Using the asymptotics of q(u), one finds

5Note
g′(u) =

∫ ∞

u

q2(α)dα, g′′(u) = −q2(u),

and
g′1(u) =

∫ ∞

u

q′2(α)dα, g′2(u) =
∫ ∞

u

q4(α)dα.

27



M. Adler & P. van Moerbeke PDE’s for Dyson and Airy processes

ai(u), bi(u) ≤ c e−u u →∞,

≤ c|u|3 u → −∞,

and so, by the same argument,

r1(u) = r2(u) = r3(u) = 0.

Therefore, we have

f4(u, v) = h4(u, v) +
1

2
g′(u)2g′(v)2,

with h4(u, v) as in (6.14), thus yielding the formula (1.19).
Finally, to prove formula (1.20), we compute, after integration by parts,

taking into account the boundary terms, using (1.6),

E
(
A(0)A(t)

)
=

∫∫

R2

uv
∂2

∂u ∂v
P (A(0) ≤ u, A(t) ≤ v)du dv

=

∫ ∞

−∞
uF ′

2(u)du

∫ ∞

−∞
vF ′

2(v)dv

+
1

t2

∫ ∞

−∞
F ′

2(u)du

∫ ∞

−∞
F ′

2(v)dv

+
1

t4

∫∫

R2

(
Φ(u, v) + Φ(v, u)

)
du dv

+ O

(
1

t6

)

=
(
E

(
A(0)

))2

+
1

t2
+

c

t4
+ O

(
1

t6

)
,

where

c :=

∫∫

R2

(
Φ(u, v) + Φ(v, u)

)
du dv = 2

∫∫

R2

Φ(u, v)dudv,

thus ending the proof of Theorem 1.6.

28



M. Adler & P. van Moerbeke PDE’s for Dyson and Airy processes

7 The extended kernels

The joint probabilities for the Dyson, Airy and Sine processes can also be
expressed in terms of the Fredholm determinant of matrix kernels, the so-
called extended Hermite, Airy and Sine kernels (considered in [6], [11] and
especially in [12] and [8]), defined for subsets Ei ⊂ R,

K̂titj(x, y) := χ
Ec

i
(x)Ktitj(x, y)χ

Ec
j
(y) (7.1)

with Ktitj being one of the following kernels

KH,n
titj (x, y) :=





∞∑

k=1

e−k(ti−tj)ϕn−k(x)ϕn−k(y), if ti ≥ tj

−
0∑

k=−∞
ek(tj−ti)ϕn−k(x)ϕn−k(y), if ti < tj ,

KA
titj

(x, y) :=





∫ ∞

0

e−z(ti−tj)Ai(x + z)Ai(y + z)dz, if ti ≥ tj

−
∫ 0

−∞
ez(tj−ti)Ai(x + z)Ai(y + z)dz, if ti < tj ,

KS
titj

(x, y) :=





1

π

∫ π

0

ez2(ti−tj)/2cosz(x− y)dz, if ti ≥ tj

− 1

π

∫ ∞

π

e−z2(tj−ti)/2cosz(x− y)dz, if ti < tj ,

where

ϕk(x) = e−x2/2pk(x), for k ≥ 0, with pk(x) = Hk(x)

2k/2
√

k!π1/4 ,

= 0, for k < 0; (7.2)

pk(x) are the normalized Hermite polynomials, and Ai(x) is the Airy function.
Now we make a few comments about these kernels:

(i) The Fredholm determinant of extended kernels. Letting x(t) de-
note either the largest eigenvalue λn(t) in the Dyson process, or the Airy
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process A(t), or the collection of Si(t)’s in the Sine process, the probability
is now defined by (drop the superscripts in K̂H,n, K̂A, K̂S)

P (x(ti) ∈ Ei, 1 ≤ i ≤ m)

= det
(
I − z(K̂titj)1≤i,j≤m

)∣∣∣
z=1

= 1 +
∞∑

N=1

(−z)N
∑

0≤ri≤N∑m
1 ri=N

∫

R

r1∏
1

dα
(1)
i . . .

rm∏
1

dα
(m)
i det

((
K̂tkt`(α

(k)
i , α

(`)
j )

)
1≤i≤rk
1≤j≤r`

)

1≤k,`≤m

∣∣∣∣∣∣
z=1

.

where the N -fold integral above is taken over the range

R =





−∞ < α
(1)
1 ≤ . . . ≤ α

(1)
r1 < ∞

...

−∞ < α
(m)
1 ≤ . . . ≤ α

(m)
rm < ∞





.

with integrand equal to the determinant of a N×N matrix, with blocks given

by the rk × r` matrices
(
K̂tkt`(α

(k)
i , α

(`)
j )

)
1≤i≤rk
1≤j≤r`

. In particular, for m = 2, we

have

P (x(t1) ∈ E1, x(t2) ∈ E2)

= 1 +
∞∑

N=1

(−z)N
∑

0≤r,s≤N
r+s=N

∫
.{ −∞ < α1 ≤ . . . ≤ αr < ∞

−∞ < β1 ≤ . . . ≤ βs < ∞
}

r∏
1

dαi

s∏
1

dβi det




(
K̂t1t1

(αi, αj)
)

1≤i,j≤r

(
K̂t1t2

(αi, βj)
)

1≤i≤r
1≤j≤s(

K̂t2t1
(βi, αj)

)
1≤i≤s
1≤j≤r

(
K̂t2t2

(βi, βj)
)

1≤i,j≤s




∣∣∣∣∣∣∣
z=1

.

(ii) The extended Hermite kernel tends to the extended Airy ker-
nel. Given the substitution

S1 :=

{
t 7→ t

n1/3
, s 7→ s

n1/3
,

x 7→ √
2n + 1 + u√

2n1/6

y 7→ √
2n + 1 + v√

2n1/6

}
, (7.3)

we have
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Proposition 7.1 The extended Hermite kernel tends to the extended Airy
kernel, when n →∞, uniformly for u, v ∈ compact subsets ⊂ R:

∣∣∣KH,n
t,s (x, y)dy∣∣∣

S1

−KA
t,s(u, v)dv

∣∣∣ = O

(
log n

n1/3

)
.

Before proving this Proposition, we need the following estimate:

Lemma 7.2 For large n > 0 and −M0n
1/3 log n ≤ k ≤ M0n

1/3 log n, with
fixed M0 > 0, we have

ϕn−k

(√
2n + 1 +

u√
2n1/6

)
=

21/4

n1/12
Ai

(
u +

k

n1/3

) (
1 + Eu(k, n)

)
, (7.4)

with the following uniform bound in u ∈ compact subsets R

|Eu(k, n)| ≤ O

(
log n

n2/3

)
.

Proof: Here one needs the asymptotics for the Hermite polynomials when

'$
@

@

1−δ 1+δ

C2,δ

C1,δ π/4
Figure 1.

z ∈ C2,δ, as in the figure above; it is given by (see [3]):

ϕn(z
√

2n) = pn(z
√

2n)e−nz2

=
1 + O( 1

n
)

(2n)1/4

{(
z + 1

z − 1
fn(z)

)1/4

Ai(fn(z))

−
(

z + 1

z − 1
fn(z)

)−1/4

Ai′(fn(z))

}
, (7.5)
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the error term being uniform in C2,δ0 for some δ0 > 0. This captures the case
u ≥ 0 in the statement of Lemma 7.2. The case u < 0 would be captured
by a similar estimate valid in the region C1,δ. To explain formula (7.5), the
equilibrium measure for the Gaussian distribution is given by the well-known
Wigner semi-circle

Ψ(y) =
2

π
(1− y2)1/2

and

fn(z) = −(−n)2/3

(
3π

2

)2/3 (∫ z

1

Ψ(y)dy

)2/3

= −
(
−3n

2

)2/3

(z
√

1− z2 − arccos z)2/3.

Setting z = 1 + x for small x ≥ 0, one computes

fn(1 + x) = 2n2/3x
(
1 +

x

10
+ . . .

)

and (
z + 1

z − 1
fn(z)

)1/4
∣∣∣∣∣
z=1+x

=
√

2 n1/6(1 +
3

20
x + . . .).

Defining x such that

√
2n + 1 +

u√
2n1/6

=
√

2(n− k)(1 + x),

one computes, for k = Mn1/3 log n and |M | ≤ M0,

x =
u

2n2/3
+

2k + 1

4n
+

ku

4n5/3
+. . . =

M log n + u

2n2/3
+

1

4n
+

Mu log n

4n4/3
+. . . . (7.6)

Thus for x behaving as (7.6) and for k = Mn1/3 log n, we deduce from the
formulae above

fn−k(z)
∣∣∣
z=1+x

= 2(n− k)2/3x
(
1 +

x

10
+ . . .

)

= 2n2/3x(1− 2k

3n
+ . . .)

(
1 +

x

10
+ . . .

)

= M log n + u +
1

2n1/3
+ O(

M log n

n2/3
),
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(
z + 1

z − 1
fn−k(z)

)1/4
∣∣∣∣∣
z=1+x

=
√

2 (n− k)1/6(1 +
3

20
x + . . .)

=
√

2 n1/6(1− k

6n
+ . . .)(1 +

3

20
x + . . .)

=
√

2 n1/6

(
1 + O(

M log n

n2/3
)

)
,

and

1

(n− k)1/4
=

1

n1/4

(
1 +

k

4n
+ . . .

)
=

1

n1/4

(
1 + O(

M log n

n2/3
)

)
.

Using the asymptotics (7.5), one computes for k=Mn1/3 log n and |M | ≤ M0,

ϕn−k

(√
2n + 1 +

u√
2n1/6

)

= ϕn−k(
√

2(n− k)(1 + x))

=
1 + O( 1

n−k
)

(2(n− k))1/4

{(
z + 1

z − 1
fn−k(z)

)1/4

Ai(fn−k(z))

−
(

z + 1

z − 1
fn−k(z)

)−1/4

Ai′(fn−k(z))

}∣∣∣∣∣
z=1+x

=
1 +O( 1

n
)

(2n)1/4

(
1 + O(

M log n

n2/3
)

)

{√
2n1/6

(
1 + O(

M log n

n2/3
)

)
Ai

(
M log n + u +

1

2n1/3
+ O

(M log n

n2/3

))

− 1√
2n1/6

(
1 + O(

M log n

n2/3
)

)
Ai′

(
M log n + u +

1

2n1/3
+ O

( log n

n2/3

))}

=
21/4

(
1 +O(M log n

n2/3 )
)

n1/12{(
1+O(

M log n

n2/3
)

)[
Ai (M log n+u) +

Ai′ (M log n+u)

2n1/3
+ O

(M log n

n2/3

)]

−
(

1 + O(
M log n

n2/3
)

)[
Ai′ (M log n + u)

2n1/3
+ O

(M log n

n2/3

)]}
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=
21/4

n1/12
Ai(u + M log n)

[
1 + O

(M log n

n2/3

)]

=
21/4

n1/12
Ai(u +

k

n1/3
)

[
1 + O

(M log n

n2/3

)]
,

ending the proof of Lemma 7.2.

Proof of Proposition 7.1: As a first step, in a recent paper Krasikov [10]
shows the following inequality for k ≥ 6 and for a universal constant c,

max
x
|Hk(x)|e−x2/2 ≤ c

k!

(k/2)!

(
2k
√

4k − 2

k1/6
√

8k2 − 8k + 3

)1/2

. (7.7)

From Stirling’s formula n! =
√

2πn nne−n(1 + O(1/n)), it follows that

√
k!

2k/2(k/2)!
=

(
2

πk

)1/4 (
1 + O

(1

k

))
.

This estimate, estimate (7.7) and formula (7.2) show that, for k ≥ some fixed
k0 and some constant c′,

max
x
|ϕk(x)| = 1

2k/2
√

k!π1/4
max

x
|Hk(x)|e−x2/2 ≤ c′

k1/12
. (7.8)

Using both estimates (7.4) and (7.8) in the last inequality, one computes for
t ≥ s, taking into account substitution S1, as in (7.3),

∣∣∣KH,n
t,s (x, y)dy∣∣

S1

−
[Mn1/3 log n]∑

k=0

e
− k

n1/3
(t−s)

Ai
(
u +

k

n1/3

)
Ai

(
v +

k

n1/3

) (
21/4

n1/12

)2
dv√
2n1/6

∣∣∣

34



M. Adler & P. van Moerbeke PDE’s for Dyson and Airy processes

≤
∣∣∣∣∣

n∑

k=0

e
− k

n1/3
(t−s)

ϕn−k(
√

2n + 1 +
u√

2n1/6
)ϕn−k(

√
2n + 1 +

v√
2n1/6

)

−
[Mn1/3 log n]∑

k=0

e
− k

n1/3
(t−s) 21/4

n1/12
Ai

(
u +

k

n1/3

)
(1 + Eu(k, n))

21/4

n1/12
Ai

(
v +

k

n1/3

)
(1 + Ev(k, n))

∣∣∣∣
dv√
2n1/6

+

[Mn1/3 log n]∑

k=0

e
− k

n1/3
(t−s) 21/4

n1/6

∣∣∣∣Ai
(
u +

k

n1/3

)
Ai

(
v +

k

n1/3

)∣∣∣∣
dv√
2n1/6

∣∣∣1− (1 + Eu(k, n)) (1 + Ev(k, n))
∣∣∣

≤
∣∣∣

n∑

k=[Mn1/3 log n]+1

e
− k

n1/3
(t−s)

.

ϕn−k(
√

2n + 1 +
u√

2n1/6
)ϕn−k(

√
2n + 1 +

v√
2n1/6

)

∣∣∣∣
dv√
2n1/6

+
c′′

n1/6

(
Mn1/3 log n

) log n

n2/3
(1 + o(1))

dv√
2n1/6

≤ dv√
2n1/6


c′2

n−1−[Mn1/3 log n]∑
m=0

e
−n−m

n1/3
(t−s) 1

m1/6
+ c′′M

(log n)2

n1/2
(1 + o(1))


 ,

(7.9)

where c′′ is determined by the maximum of the Airy function Ai(z) on the
semi-infinite interval (0,∞).

Setting n′ = n − 1 − [Mn1/3 log n], the sum in the last expression is
estimated as follows

1√
2n1/6

n′∑
m=1

1

m1/6
e
−(n−m) t−s

n1/3

≤ 1√
2n1/6

(
`−1∑
0

e
−(n−m) t−s

n1/3 +
1

`1/6

n′∑

`

e
−(n−m) t−s

n1/3

)
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=
1√

2n1/6

1

1− e
− t−s

n1/3

[
e
−(n−`+1) t−s

n1/3 − e
−(n+1) t−s

n1/3

+`−1/6
(
e
−(n−n′) t−s

n1/3 − e
−(n−`+1) t−s

n1/3

)]

' 1√
2n1/6

n1/3

t− s

[
e
−(n−`+1) t−s

n1/3 − e
−(n+1) t−s

n1/3

+`−1/6
(
e
−(n−n′) t−s

n1/3 (∗)− e
−(n−`+1) t−s

n1/3

)]

Picking ` = O(n/2), all terms above tend to 0 exponentially fast, except the
term (∗), which requires some attention. Choosing n′ = n− [Mn1/3 log n]−1,
so that n − n′ = O(n1/3 log n), the coefficient of that term is O(n−M(t−s)).
Therefore that term gets small, when n →∞ and ` = O(n/2),

1√
2n1/6

n1/3

`1/6
O

(
n−M(t−s)

) → 0.

The proof is ended by observing that the second term in the first difference
of (7.9) is a Riemann sum converging to the extended Airy kernel, i.e.,

[Mn1/3 log n]∑

k=0

e
− k

n1/3
(t−s)

Ai
(
u +

k

n1/3

)
Ai

(
v +

k

n1/3

) (
21/4

n1/12

)2
dv√
2n1/6

= dv

∫ ∞

0

e−z(t−s)Ai(u + z)Ai(v + z)dz + O

(
M log n

n1/3

)
.

This establishes the convergence for t ≥ s.
For t < s, one computes, again using the estimates (7.4) of Lemma 7.2
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and (7.8),

∣∣∣KH,n
t,s (x, y)dy∣∣

S1

+

[M0n1/3 log n]∑

k=0

e
− k

n1/3
(s−t)

Ai
(
u− k

n1/3

)
Ai

(
v − k

n1/3

) (
21/4

n1/12

)2
dv√
2n1/6

∣∣∣

≤
∣∣∣∣∣
∞∑

k=0

e
− k

n1/3
(s−t)

ϕn+k(
√

2n + 1 +
u√

2n1/6
)ϕn+k(

√
2n + 1 +

v√
2n1/6

)

−
[M0n1/3 log n]∑

k=0

e
− k

n1/3
(s−t) 21/4

n1/12
Ai

(
u− k

n1/3

)
(1 + E(k, n))

21/4

n1/12
Ai

(
v − k

n1/3

)
(1 + E(k, n))

∣∣∣∣
dv√
2n1/6

+

[Mn1/3 log n]∑

k=0

e
− k

n1/3
(t−s) 21/4

n1/6

∣∣∣∣Ai
(
u +

k

n1/3

)
Ai

(
v +

k

n1/3

)∣∣∣∣
dv√
2n1/6

∣∣∣1− (1 + Eu(k, n)) (1 + Ev(k, n))
∣∣∣

≤
∣∣∣∣∣∣
c′′M

(log n)2

n1/2
(1 + o(1)) +

∞∑

k=[Mn1/3 log n]+1

e
− k

n1/3
(s−t)

ϕn+k(
√

2n + 1 +
u√

2n1/6
)ϕn+k(

√
2n + 1 +

v√
2n1/6

)

∣∣∣∣
dv√
2n1/6

≤ dv√
2n1/6


c′2

∞∑

k=[Mn1/3 log n]+1

e
− k

n1/3
(s−t)

(n + k)1/6
+ c′′M

(log n)2

n1/2
(1 + o(1))




≤ dv√
2n1/6

(
c′2n−M(s−t)−1/6

∞∑
m=1

e
− m

n1/3
(s−t)

+ c′′M
(log n)2

n1/2
(1 + o(1))

)
.

(7.10)

The rest of the proof goes the same way as before, ending the proof of Propo-
sition 7.1.
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(iii) The extended Hermite kernel tends to the extended Sine ker-
nel.

Given the substitution

S2 :=

{
t 7→ π2t

2n
, s 7→ π2s

2n
, x 7→ πu√

2n
, y 7→ πv√

2n

}
, (7.11)

we have:

Proposition 7.3 The extended Hermite kernel tends to the extended Sine
kernel, when n →∞, uniformly for u, v ∈ compact subsets ⊂ R:

KH,n
t,s (x, y)dy∣∣∣

S2

−→ e−
π2

2
(t−s)KS

t,s(u, v)dv.

Sketch of Proof: From [13], p198, it follows that for |x| ≤ M ,

ϕk(x) =
1

2k/2
√

k!π1/4
e−x2/2Hk(x)

=

√
k!

2k/2(k/2)!π1/4

(
cos(x

√
2k+1− kπ

2
) +

x3

6
√

2k + 1
sin(x

√
2k+1− kπ

2
) + O(k−1)

)

=

(
2

kπ2

)1/4 (
cos

(√
2k + 1 x− kπ

2

)
+ O

( 1√
k

))
.

Using the substitution S2 as in (7.11), one computes for t > s,

∣∣∣∣∣∣
KH,n

t,s (x, y)dy∣∣∣
S

− e−
π2(t−s)

2
π√
2n

n−1∑

k=`+1

e
π2(t−s)

2
k
n ϕk

(
πu√
2n

)
ϕk

(
πv√
2n

)
dv

∣∣∣∣∣∣

=

∣∣∣∣∣e
−π2(t−s)

2
π√
2n

∑̀

k=0

e
π2(t−s)

2
k
n ϕk

(
πu√
2n

)
ϕk

(
πv√
2n

)
dv

∣∣∣∣∣

≤ e−
π2(t−s)

2
π√
2n

(
α∑

k=0

+
∑̀

k=α+1

)e
π2(t−s)

2
k
n

∣∣∣∣ϕk

(
πu√
2n

)
ϕk

(
πv√
2n

)
dv

∣∣∣∣
= (I) + (II), (7.12)
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where α > 0 is the minimal integer above which Krasikov’s estimate (7.8)
holds. But then expression (I) tends to 0 exponentially, when n tends to ∞,
and (II) is estimated as follows:

(II) ≤ c′2π√
2n

∑̀

k=α+1

1

k1/6
≤ c′′π√

2n
`5/6,

which tends to 0 for `, n → ∞ such that `5/6/n1/2 → 0. Then the sum
appearing at the first line of (7.12) can be estimated as follows:

e−
π2(t−s)

2
π√
2n

n−1∑

k=`+1

e
π2(t−s)

2
k
n ϕk

(
πu√
2n

)
ϕk

(
πv√
2n

)
dv

= e−
π2(t−s)

2

n−1∑

k=`+1

1

n
e

π2k
2n

(t−s)
(n

k

)1/2

[
cos

(
πu

√
k

n
+

1

2n
− nπ

2

k

n

)
cos

(
πv

√
k

n
+

1

2n
− nπ

2

k

n

)
+ O(

1√
`
)

]
dv

= e−
π2(t−s)

2

n−1∑

k=`+1

1

2n
e

π2k
2n

(t−s)
(n

k

)1/2

[
cos

(
π(u−v)

√
k

n
+

1

2n

)
+ cos

(
π(u+v)

√
k

n
+

1

2n
− nπ

k

n

)
+ O(

1√
`
)

]
dv

'
∫ 1

`/n

dx

2
√

x
e

π2(x−1)
2

(t−s)

[
cos

(
π(u−v)

√
x
)

+ cos
(
π(u+v)

√
x− nπx

)
+ O(

1√
`
) + O(

1√
n

)

]
dv

=
1

π

∫ π

π
√

`
n

dze−
π2−z2

2
(t−s)

[
cos (z(u− v)) + cos

(
z(u + v)− nz2/π

)
+ O(

1√
`
) + O(

1√
n

)

]
dv (∗)

−→ 1

π
e−

π2

2
(t−s)

∫ π

0

dz e
z2

2
(t−s) cos (z(u− v)) dv = e−

π2

2
(t−s)KS

t,s(u, v)

when ` and n tend to ∞. The integral involving the second cosine in the
expression (*) above is an oscillatory integral and thus tends to zero faster
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than any power of n by the Riemann-Lebesgue Lemma. The case t ≤ s
proceeds along similar lines, establishing Proposition 7.3.

(iv) Convergence of Fredholm determinants and their derivatives.
Here we give a schematic argument, based on the customary formula log det(I−
K) = Tr log(I −K), where K is a kernel restricted to a disjoint union of in-
tervals E and where K + δK tends to K. Then, from

det(I −K − δK) = det(I −K) det(I − (I −K)−1δK)

= det(I −K)
(
1− Tr(I −K)−1δK + o(δK)

)
, (7.13)

one sees that det(I − K − δK) tends to det(I − K), when δK tends to 0.
Also, given p1, . . . , p2r the endpoint of the set E, (see [7, 15])

∂

∂pk

log det(I −K) = (−1)k−1K(I −K)−1(pk, pk),

where here “=” means “kernel of”, evaluated at (pk, pk) and so

∂

∂pk

log det(I − (K + δK))

= (−1)k−1(K + δK)(I −K − δK)−1(pk, pk)

= (−1)k−1
[
K(I −K)−1(pk, pk)

+
(
δK(I −K)−1 + K(I −K)−1δK(I −K)−1

)
(pk, pk) + o(δK)

]

=
∂

∂pk

log det(I −K) + O(δK).

Since by Propositions 7.1 and 7.3 the extended Hermite kernel converges to
the extended Airy and Sine kernels, this argument shows the convergence
of the corresponding Fredholm determinants and their first derivative with
respect to the end points of E. In a similar fashion one proves the result for
higher derivatives.

(v) An a priori asymptotic expansion for the joint Airy probability.
The proof of Theorem 1.6 in section 6 was based on an a priori asymptotic
expansion for the ratio below in 1/t for large t = t2 − t1. This can be found
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in Widom’s paper [18] and proceeds as follows:

P (A(t1) ≤ u,A(t2) ≤ v)

P (A(t1) ≤ u)P (A(t2) ≤ v)
=

det
(
I − (K̂A

titj
)1≤i,j≤2

)

det
(
I − K̂A

t1t1

)
det

(
I − K̂A

t2t2

)

= det

(
I −

(
0 K12

K21 0

))

= det (I −K12K21)

= 1 +
∑
i≥1

fi(u, v)

ti
, (7.14)

where

K12 :=
(
I − χ[u,∞)(x)KA

00(x, y)χ[u,∞)(y)
)−1

χ[u,∞)(x)KA
0,t(x, y)χ[v,∞)(y)

K21 :=
(
I − χ[v,∞)(x)KA

00(x, y)χ[v,∞)(y)
)−1

χ[v,∞)(x)KA
t,0(x, y)χ[u,∞)(y),

with

KA
00(x, y) =

∫ ∞

0

Ai(x + z)Ai(y + z)dz

KA
t,0(x, y) =

∫ ∞

0

e−ztAi(x + z)Ai(y + z)dz = O(1/t)

KA
0,t(x, y) = −

∫ 0

−∞
eztAi(x + z)Ai(y + z)dz = O(1/t).

8 Appendix: remark about the “non-explo-

sion” conjecture

To discuss the conjecture (1.21), consider the Dyson Brownian motion (λ1(t)
, . . . , λn(t)) and the corresponding Ornstein-Uhlenbeck process on the matrix
B. Then, using the change of variables

Mi =
Bi√

(1− c2)/2
,

and further M2 7→ M := M2−cM1 in the M2-integrals below and noting that
max(spec M1) ≤ −z and max(spec M2) ≥ a imply max(spec (M2 − cM1) ≥
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a + cz, we have for the conditional probability, the following inequality:

P
(
λn(t) ≥ a

∣∣ λn(0) ≤ −z
)

=

∫

max(spec M1)≤−z

dM1e
− 1

2
(1−c2)Tr M2

1

∫

max(spec M2)≥a

dM2e
− 1

2
Tr(M2−cM1)2

∫

max(spec M1)≤−z

dM1e
− 1

2
(1−c2)Tr M2

1

∫

M2∈Hn

dM2e
− 1

2
Tr(M2−cM1)2

≤

∫

max(spec M1)≤−z

dM1 e−
1
2
(1−c2)Tr M2

1

∫

max(spec M)≥a+cz

dM e−
1
2

Tr M2

∫

max(spec M1)≤−z

dM1 e−
1
2
(1−c2)Tr M2

1

∫

M∈Hn

dM e−
1
2

Tr M2

= P (λn(t) ≥ a + cz),

implying
lim
z→∞

P
(
λn(t) ≥ a

∣∣ λn(0) ≤ −z
)

= 0,

and a fortiori,

lim
z→∞

P
(
λn(t) ≥ x + z

∣∣ λn(0) ≤ −z
)

= 0.

It is unclear why the limit (6.5) remains valid when n →∞, using the Airy
scaling (1.4).
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