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1 Introduction

Since Russel’s horse back journey along the canal from Glasgow to Edinburg
in 1834, since the birth of the Korteweg-de Vries equation in 1895 and since
the remarkable renaissance initiated by M. Kruskal and coworkers in the late
60’s, the field of integrable systems has emerged as being at the crossroads
of important new developments in the sciences.

Integrable systems typically have many different solutions. Besides the
soliton and scattering solutions, other important solutions of KdV have
arisen, namely rational and algebro-geometrical solutions. This was the
royal road to the infinite-dimensional Grassmannian description of the KP-
solutions, leading to the fundamental concept of Sato’s τ -function, which
enjoys Plücker relations and Hirota bilinear relations. In this way, the τ -
function is a far reaching generalization of classical theta functions and is
nowadays a unifying theme in mathematics: representation theory, curve
theory, symmetric function theory, matrix models, random matrices, combi-
natorics, topological field theory, the theory of orthogonal polynomials and
Painlevé theory all live under the same hat! This general field goes under
the somewhat bizarre name of “integrable mathematics”.

This lecture illustrates another application of integrable systems, this
time, to unitary matrix integrals and ultimately to combinatorics and prob-
ability theory. Unitary matrix integrals, with an appropriate set of time pa-
rameters inserted to make it a τ function, satisfy a new lattice, the Toeplitz
lattice, related to the 2d-Toda lattice for a very special type of initial condi-
tion. Besides, it also satisfies constraints, which form a very small subalgebra
of the Virasoro algebra (section 2).

Along a seemingly different vein, certain unitary matrix integrals, devel-
oped in a series with respect to a parameter, have coefficients which contain
information concerning random permutations, random words and random
walks. Turned around, the generating function for certain probabilities turns
out to be a unitary matrix integral (section 3).

The connection of these combinatorial problems with integrable systems is
precious: it enables one to find differential and difference equations for these
probabilities! This is explained in section 4. The purpose of this lecture is
to explain these connections. For a more comprehensive account of these
results, including the ones on random matrices, see [29].
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2 A unitary matrix integral: Virasoro and

the Toeplitz lattice

In this section, we consider integrals over the unitary group U(n) with re-
gard to the invariant measure dM . Since the spectrum z1, . . . , zn of M lies
on the circle S1 and since the integrand only involves traces, it is natural
to integrate out the “angular part” of dM and to keep its spectral part1

|∆n(z)|2dz1 . . . dzn. For ε ∈ Z, define the following integrals, depending on
formal time parameters t = (t1, t2, . . .) and s = (s1, s2, . . .), with τ0 = 1,

τ ε
n(t, s) =

∫

U(n)

(det M)εe
∑∞

1 Tr(tjMj−sjM̄j)dM

=
1

n!

∫

(S1)n

|∆n(z)|2
n∏

k=1

(
zε

ke
∑∞

1 (tjzj
k−sjz−j

k ) dzk

2πizk

)

= det

(∮

S1

dz

2πiz
z`−m+εe

∑∞
1 (tjzj−sjz−j)

)

1≤`,m≤n

, (2.0.1)

the latter being a Toeplitz determinant. The last equality follows from the
fact that the product of two Vandermonde’s can be expressed as sum of
determinants:

∆n(u)∆n(v) =
∑
σ∈Sn

det
(
u`−1

σ(k)v
k−1
σ(k)

)
1≤`,k≤n

, (2.0.2)

and from distributing the factors in the product (in (2.0.1)) over the columns
of the matrix, appearing in the last formula of (2.0.1). Now, the main point is
that the matrix integrals above satisfy two distinct systems of equations.
These equations will be useful for the combinatorial problems discussed in
section 3.

2.1 Unitary matrix integrals and the Virasoro algebra

Proposition 2.1 (See [1]) The integrals (2.0.1) satisfy the Virasoro con-
straints,

Vε
k(t, s, n) τ ε

n(t, s) = 0, for k = −1, 0, 1 (2.1.1)

1with the Vandermonde determinant ∆n(z) =
∏

1≤i<j≤n(zi − zj) .
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where Vε
k := Vε

k(t, s, n) are the operators

Vε
−1 =

∑
i≥1

(i + 1)ti+1
∂

∂ti
−

∑
i≥2

(i− 1)si−1
∂

∂si

+ nt1 + (n− ε)
∂

∂s1

Vε
0 =

∑
i≥1

(
iti

∂

∂ti
− isi

∂

∂si

)
+ εn = 0 (2.1.2)

Vε
1 = −

∑
i≥1

(i + 1)si+1
∂

∂si

+
∑
i≥2

(i− 1)ti−1
∂

∂ti
+ ns1 + (n + ε)

∂

∂t1
.

Remark: Note that the generators Vε
k are part of an ∞-dimensional Virasoro

algebra; the claim here is that the integrals above satisfy only these three
constraints, unlike the case of Hermitian matrix integrals, which satisfy a
large subalgebra of constraints!

Sketch of proof: For the exponent ε 6= 0, the proof is a slight modification
of the case ε = 0; so, we stick to the case ε = 0. The Virasoro operators

Vk := Vε
k

∣∣∣
ε=0

are generated by the following vertex operator2

X(t, s; u) := Λ>e
∑∞

1 (tiu
i−siu

−i)e
−∑∞

1 (u−i

i
∂

∂ti
−ui

i
∂

∂si
)
. (2.1.3)

This means they are a commutator realization of differentiation:

∂

∂u
uk+1X(t, s; u)

u
=

[
Vk(t, s),

X(t, s; u)

u

]
. (2.1.4)

Then the following operator, obtained by integrating the vertex operator
(2.1.3),

Y(t, s) =

∮

S1

du

2πiu
X(t, s; u, u−1) (2.1.5)

has, using (2.1.4), the commutation property

[ Y , Vk ] = 0.

Then one checks that the integrals In = n!τ
(0)
n in (2.0.1) (for n ≥ 1) are fixed

points for Y(t, s); namely, taking into account the shift Λ> in (2.1.3), one
computes

2The operator Λ is the semi-infinite shift matrix, with zeroes everywhere, except for
1’s just above the diagonal, i.e., (Λv)n = vn+1 and (Λ>v)n = vn−1.
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Y(t, s)In(t, s) =

∮

S1

du

2πiu
e

∑∞
1 (tiu

i−siu
−i) e

−∑∞
1

(
u−i

i
∂

∂ti
−ui

i
∂

∂si

)

∫

(S1)n−1

∆n−1(z)∆n−1(z̄)
n−1∏

k=1

e
∑∞

1 (tiz
i
k−siz

−i
k ) dzk

2πizk

=

∮

S1

du

2πiu
e

∑∞
1 (tiu

i−siu
−i)

∫

(S1)n−1

∆n−1(z)∆n−1(z̄)

×
n−1∏

k=1

(
1− zk

u

) (
1− u

zk

)
e

∑∞
1 (tiz

i
k−siz

−i
k ) dzk

2πizk

=

∫

(S1)n

|∆n(z)|2
n∏

k=1

(
e

∑∞
1 (tiz

i
k−siz

−i
k ) dzk

2πizk

)
= In(t, s)

Using this fixed point property and the fact that (Λ>)nIn = I0, we have for
Y := Y(t, s),

0 =
[
Vk,Yn

]
In

= VkYnIn − YnVkIn

= VkIn − YnVkIn.

= VkIn −
∮

S1

du

2πiu
e

∑∞
1 (tiu

i−siu
−i)e

−∑∞
1

(
u−i

i
∂

∂ti
−ui

i
∂

∂si

)

. . .

∮

S1

du

2πiu
e

∑∞
1 (tiu

i−siu
−i)e

−∑∞
1

(
u−i

i
∂

∂ti
−ui

i
∂

∂si

)
VkI0.

Now one checks visually that for I0 = 1,

VkI0 = 0 for k = −1, 0, 1,

ending the proof of Proposition 2.1. The details of the proof can be found in
Adler-van Moerbeke [1].

2.2 The Toeplitz lattice

Considering the integral τ ε
n(t, s), as in (2.0.1), and setting, for short,

τn := τ (0)
n , τ±n := τ±1

n ,
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define the ratios

xn(t, s) = (−1)n τ+
n (t, s)

τn(t, s)
and yn(t, s) := (−1)n τ−n (t, s)

τn(t, s)
, (2.2.1)

and the semi-infinite matrices (they are not “ rank 2”, but try to be!)

L1 :=




−x1y0 1− x1y1 0 0
−x2y0 −x2y1 1− x2y2 0
−x3y0 −x3y1 −x3y2 1− x3y3

−x4y0 −x4y1 −x4y2 −x4y3

. . .




and

L2 :=




−x0y1 −x0y2 −x0y3 −x0y4

1− x1y1 −x1y2 −x1y3 −x1y4

0 1− x2y2 −x2y3 −x2y4

0 0 1− x3y3 −x3y4

. . .




. (2.2.2)

Throughout the paper, set3

hn =
τn+1

τn

and vn := 1− xnyn
∗
=

hn

hn−1

=
τn+1τn−1

τ 2
n

. (2.2.3)

One checks that the quantities xn and yn satisfy the following commuting
Hamiltonian vector fields, introduced by Adler and van Moerbeke in [1],

∂xn

∂ti
= (1− xnyn)

∂Gi

∂yn

∂yn

∂ti
= −(1− xnyn)

∂Gi

∂xn

∂xn

∂si

= (1− xnyn)
∂Hi

∂yn

∂yn

∂si

= −(1− xnyn)
∂Hi

∂xn

, (2.2.4)

(Toeplitz lattice)

with Hamiltonians

Gi = −1

i
Tr Li

1, Hi = −1

i
Tr Li

2, i = 1, 2, 3, ... (2.2.5)

3The proof of equality ∗= hinges on associated bi-orthogonal polynomials on the circle,
introduced later.
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and symplectic structure

ω :=
∞∑
1

dxk ∧ dyk

1− xkyk

.

One imposes initial conditions xn(0, 0) = yn(0, 0) = 0 for n ≥ 1 and bound-
ary conditions x0(t, s) = y0(t, s) = 1. The Gi and Fi are functions in
involution with regard to the Hamiltonian vector fields (2.2.4). Setting
h := diagonal(h0, h1, . . .), with hi as in (2.2.3), we conjugate L1 with a diag-
onal matrix so as to have 1’s in the first superdiagonal:

L̂1 := hL1h
−1 and L̂2 := L2.

The Hamiltonian vector fields (2.2.4) imply the 2-Toda lattice equations for
the matrices L̂1 and L̂2,

∂L̂i

∂tn
=

[(
L̂n

1

)
+
, L̂i

]
and

∂L̂i

∂sn

=
[(

L̂n
2

)
−, L̂i

]
i = 1, 2 and n = 1, 2, . . . .

(two-Toda Lattice) (2.2.6)

Thus the particular structure of L1 and L2 is preserved by the 2-Toda Lattice
equations. In particular, this implies that the τn’s satisfy the KP-hierarchy.

Other equations for the τn’s are obtained by noting that the expressions
formed by means of the matrix integrals (2.0.1) above4

p(1)
n (t, s; z) = zn τn(t− [z−1], s)

τn(t, s)
and p(2)

n (t, s; z) = zn τn(t, s + [z−1])

τn(t, s)

are actually polynomials in z, with coefficients depending on t, s; more-
over, they are bi-orthogonal polynomials on the circle for the following (t, s)-
dependent inner product5,

〈f(z), g(z)〉t,s :=

∮

S1

dz

2πiz
f(z)g(z−1)e

∑∞
1 (tiz

i−siz
−i). (2.2.8)

4For α ∈ C, define [α] := (α, 1
2α2, 1

3α3, . . .) ∈ C∞.
5For this inner-product, we have (zk)> = z−k, i.e.,

〈zkf(z), g(z)〉t,s = 〈f(z), z−kg(z)〉t,s. (2.2.7)
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Using bi-orthogonality one shows that the variables xn and yn, defined in
(2.2.1), equal the z0-term of the bi-orthogonal polynomials,

xn(t, s) = p(1)
n (t, s; 0) and yn(t, s) = p(2)

n (t, s; 0). (2.2.9)

(i) This fact implies the following identity for the hn’s:
(

1− hn+1

hn

)(
1− hn

hn−1

)
= − ∂

∂t1
log hn

∂

∂s1

log hn. (2.2.10)

(ii) The mere fact that L1 and L2 satisfy the two-Toda lattice implies that
the integrals τn(t, s) satisfy, besides the KP-hierarchy in t and s (separately),
the following equations, combining (t, s)-partials and nearest neighbors τn±1,

∂2

∂s1∂t1
log τn = −τn−1τn+1

τ 2
n

,

∂2

∂s2∂t1
log τn = −2

∂

∂s1

log
τn

τn−1

.
∂2

∂s1∂t1
log τn − ∂3

∂s2
1∂t1

log τn.

(2.2.11)

3 Matrix integrals and Combinatorics

3.1 Largest increasing sequences in Random Permuta-
tions and Words

Consider the group of permutations of length k

Sk = {permutations π of {1, . . . , k}}
=

{
πk = π =

(
1 . . . k

π(1) . . . π(k)

)
, for distinct 1 ≤ π(j) ≤ k

}
,

equipped with the uniform probability distribution

Pk(πk) = 1/k!. (3.1.1)

Also consider words of length k, taken from an alphabet 1, . . . , p,

Sp
k = {words σ of length k from an alphabet {1, . . . , p}}

=

{
σ = σk =

(
1 2 . . . k

σ(1) σ(2) . . . σ(k)

)
, for arbitrary 1 ≤ σ(j) ≤ p

}

(3.1.2)
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and uniform probability P p
k (σ) = 1/kp on Sp

k .
An increasing subsequence of πk ∈ Sk or σk ∈ Sp

k is a sequence6 1 ≤ j1 <
... < jα ≤ k, such that π(j1) ≤ . . . ≤ π(jα). Define

Lk(πk)

Lk(σk)

}
= length of the longest increasing subsequence of

{
πk

σk

(3.1.3)

We shall be interested in the probabilities

Pk(Lk(π) ≤ n, π ∈ Sk) and P p
k (Lk(σ) ≤ n, σ ∈ Sp

k).

Examples:





for π7 = (3, 1, 4, 2, 6, 7, 5) ∈ S7, we have L7(π7) = 4.
for π5 = (5, 1, 4, 3, 2) ∈ S5, we have L5(π5) = 2.
for σ7 = (2, 1, 3, 2, 1, 1, 2) ∈ S3

7 , we have L7(σ7) = 4.

In 1990, Gessel [14] considered the generating function (3.1.4) below and
showed that it equals a Toeplitz determinant (determinant of a matrix, whose
(i, j)th entry depends on i− j only). By now, Theorem 3.1 below has many
different proofs; at the end of section 3.3, we sketch a proof based on inte-
grable ideas. See also Section 4.2.

Theorem 3.1 (Gessel [14]) The following generating function has an ex-
pression in terms of a U(n)-matrix integral7

∞∑

k=0

ξk

k!
Pk(Lk(π) ≤ n) =

∫

U(n)

e
√

ξ Tr(M+M̄)dM

=
1

n!

∮

(S1)n

|∆n(z)|2
n∏

k=1

(
e
√

ξ(zk+z̄k) dzk

2πizk

)

= det

(∮

S1

dz

2πiz
z`−me

√
ξ(z+z−1)

)

1≤`,k≤n

(3.1.4)

6For permutations one automatically has strict inequalities π(j1) < . . . < π(jα) .
7The expression (3.1.4) is a determinant of Bessel functions, since Jn(u) is defined by

eu(t−t−1) =
∑∞
−∞ tnJn(2u) and thus

e
√

ξ(z+z−1) = e
√−ξ((−iz)−(−iz)−1) =

∑
(−iz)nJn(2

√
−ξ).
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Theorem 3.2 (Tracy-Widom [28]) We also have8

∞∑

k=0

(pξ)k

k!
P p

k (Lk(σ) ≤ n) =

∫

U(n)

eξTrM̄ det(I + M)pdM

= det

(∮

S1

dz

2πiz
zk−`eξz−1

(1 + z)p

)

1≤k,`≤n

.

Consider instead the subgroups of odd permutations, with 2kk! elements,
the hyperoctahedral group,

Sodd

2k =

{
π2k ∈ S2k, π2k : (−k, . . . ,−1, 1, . . . , k) ª
with π2k(−j) = −π2k(j), for all j

}
⊂ S2k

Sodd

2k+1 =

{
π2k+1 ∈ S2k+1, π2k : (−k, . . . ,−1, 0, 1, . . . , k) ª
with π2k+1(−j) = −π2k+1(j), for all j

}
⊂ S2k

Then, according to Rains [22] and Tracy-Widom [28], the following generat-
ing functions, again involving the length of the longest increasing sequence,
are related to matrix integrals:

Theorem 3.3 For π2k ∈ Sodd
2k and π2k+1S

odd
2k , one has the following generating

functions:

∞∑
0

(2ξ)k

k!
P (L(π2k) ≤ n for π2k ∈ Sodd

2k ) =

∫

U(n)

e
√

ξ Tr(M2+M̄2)dM

∞∑
0

(2ξ)k

k!
P (L(π2k+1) ≤ n for π2k+1 ∈ Sodd

2k )

=
1

4

(
∂

∂t

)2∫

U(n)

dM
(
eTr(t(M+M̄)+

√
ξ(M2+M̄2) + eTr(t(M+M̄)−√ξ(M2+M̄2))

)∣∣∣∣
t=0

Generating functions for other combinatorial quantities related to inte-
grals over the Grassmannian Gr(p,Rn) and Gr(p,Cn) of p-planes in Rn or
Cn have been investigated by Adler-van Moerbeke [3].

8The functions appearing in the contour integration are confluent hypergeometric func-
tions 1F1.
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3.2 Combinatorial background

The reader is reminded of a few basic facts in combinatorics. Standard
references to this subject are MacDonald, Sagan, Stanley, Stanton and White
[19, 23, 24, 25].
• A partition λ of n (noted λ ` n) or a Young diagram λ of weight n is
represented by a sequence of integers λ1 ≥ λ2 ≥ ... ≥ λ` ≥ 0, such that n =
|λ| := λ1 + ... + λ`; n = |λ| is called the weight. A dual Young diagram λ> =
(λ>1 ≥ λ>2 ≥ ...) is the diagram obtained by flipping the diagram λ about its
diagonal; clearly |λ| = |λ>|. Define Yn := {all partitions λ with |λ| = n}.

A skew-partition or skew Young diagram λ\µ, for λ ⊃ µ, is defined as the
shape obtained by removing the diagram µ from λ.

• The Schur polynomial sλ(t) associated with a Young diagram λ ` n, is
defined by

sλ(t1, t2, ...) = det (sλi−i+j(t))1≤i,j≤`

in terms of elementary Schur polynomials si(t), defined by

e
∑∞

1 tiz
i

=:
∑
i≥0

si(t)z
i, and si(t) = 0 for i < 0.

The skew Schur polynomial sλ\µ(t), associated with a skew Young diagram
λ\µ, is defined by

sλ\µ(t) := det
(
sλi−i−µj+j(t)

)
1≤i,j≤n

. (3.2.1)

The sλ’s form a basis of the space of symmetric functions in x1, x2, . . ., via
the map ktk =

∑
i≥1 xk

i .

• A standard Young tableau P of shape λ ` n is an array of integers 1, ..., n
placed in the Young diagram, which are strictly increasing from left to right
and from top to bottom. A standard skew Young tableau of shape λ\µ ` n
is defined in a similar way. Then, it is well-known that

fλ := #

{
standard tableaux of shape λ ` n
filled with integers 1, . . . , n

}
=
|λ|!
u|λ|

sλ(t)

∣∣∣∣
ti=uδi1

fλ\µ := #

{
standard skew tableaux of shape
λ\µ ` n filled with integers 1, . . . , n

}
=
|λ\µ|!
u|λ\µ|

sλ\µ(t)

∣∣∣∣
ti=uδi1

.

(3.2.2)
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• A semi-standard Young tableau of shape λ ` n is an array of integers 1, . . . , p
placed in the Young diagram λ, which are non-decreasing from left to right
and strictly increasing from top to bottom. The number of semi-standard
Young tableaux of a given shape λ ` n, filled with integers 1 to p for p ≥ λ>1 ,
has the following expression in terms of Schur polynomials:

#

{
semi-standard tableaux of shape λ
filled with numbers from 1 to p

}
= sλ

(
p,

p

2
,
p

3
, . . .

)
. (3.2.3)

• Robinson-Schensted-Knuth (RSK) correspondence: There is a 1-1 corre-
spondence

Sk ←→




pairs of standard Young tableaux (P, Q),
both of same arbitrary shape λ, with
|λ| = k, filled with integers 1, . . . , k



 .

(3.2.4)

Given a permutation π = (i1, ..., ik), the RSK correspondence constructs two
standard Young tableaux P, Q having the same shape λ. This construction
is inductive. Namely, having obtained two equally shaped Young diagrams
Pj, Qj from i1, ..., ij, with the numbers (i1, ..., ij) in the boxes of Pj and the
numbers (1, ..., j) in the boxes of Qj, one creates a new diagram Qj+1, by
putting the next number ij+1 in the first row of P , according to the rules:

(i) if ij+1 ≥ all numbers appearing in the first row of Pj, then one creates a
new box containing ij+1 to the right of the first column,

(ii) if not, place ij+1 in the box (of the first row) with the smallest higher
number. That number then gets pushed down to the second row of Pj

according to the rules (i) and (ii), as if the first row had been removed.

The diagram Q is a bookkeeping device; namely, add a box (with the number
j + 1 in it) to Qj exactly at the place, where the new box has been added to
Pj. This produces a new diagram Qj+1 of same shape as Pj+1.

The inverse of this map is constructed by reversing the steps above. The
Robinson-Schensted-Knuth correspondence has the following properties:

• length (longest increasing subsequence of π) = # (columns in P )

• length (longest decreasing subsequence of π) = # (rows in P )

• π 7→ (P,Q), then π−1 7→ (Q, P ) (3.2.5)

12



So-called Plancherel measure P̃k on Yk is the probability induced from
the uniform probability Pk on Sk (see (3.1.1)), via the RSK map (3.2.4). For
an arbitrary partition λ ` k, it is computed as follows:

P̃k(λ) := Pk(permutations π ∈ Sk leading to λ ∈ Yk by RSK)

=
#{permutations leading to λ ∈ Yk by RSK}

k!

=

#

{
pairs of standard tableaux (P,Q), both
of shape λ, filled with numbers 1, . . . , k

}

k!

=
(fλ)2

k!
, using (3.2.2).

Note that, by the first property in (3.2.5), we have

Lk(π) ≤ n ⇐⇒ (P, Q) has shape λ with |λ| = k and λ1 ≤ n.

These facts prove the following Proposition:

Proposition 3.4 Let Pk be uniform probability on the permutations in Sk

and P̃k Plancherel measure on Yk := {partitions λ ` k}. Then:

Pk(Lk(π) ≤ n) =
1

k!
#

{
pairs of standard Young tableaux (P, Q), both of
same arbitrary shape λ, with |λ| = k and λ1 ≤ n

}

=
1

k!

∑
|λ|=k
λ1≤n

(fλ)2

= P̃k(λ1 ≤ n). (3.2.6)

From a slight extension of the RSK correspondence for “words”, we have

Sp
k ←→





semi-standard and standard Young tableaux
(P,Q) of same shape λ and |λ| = k, filled

resp., with integers (1, . . . , p) and (1, . . . , k),



 ,

and thus the uniform probability P p
k on Sp

k induces a probability measure P̃ p
k

on
Yp

k = {partitions λ such that |λ| = k, λ>1 ≤ p},

13



namely

P̃ p
k (λ) = P p

k {words σ ∈ Sp
k leading to λ ∈ Yp

k by RSK}

=
fλ sλ

(
p, p

2
, p

3
, . . .

)

pk
, λ ∈ Yp

k.

Proposition 3.5 Let Pk be uniform probability on words in Sp
k and P̃ p

k the
induced measure on Yp

k. Then:

P p
k (L(σ) ≤ n) =

1

pk
#

{
semi-standard and standard Young tableaux (P, Q)
of same shape λ, with |λ| = k and λ1 ≤ n, filled
resp., with integers (1, . . . , p) and (1, . . . , k),

}

=
1

pk

∑
|λ|=k
λ1≤n

fλ sλ

(
p,

p

2
,
p

3
, . . .

)

= P̃ p
k (λ1 ≤ n). (3.2.7)

Example: For permutation π =

(
1 2 3 4 5
5 1 4 3 2

)
∈ S5, the RSK algorithm

gives

P =⇒ 5 1 1 4 1 3 1 2
5 5 4 3

5 4
5

Q =⇒ 1 1 1 3 1 3 1 3
2 2 2 2

4 4
5

Hence

π 7−→ (P,Q) =




2︷︸︸︷


1 2
3
4
5


 ,

standard




1 3
2
4
5




standard




.

Note that the sequence 1, 3, underlined in the permutation above is a longest
increasing sequence, and so L5(π) = 2; of course, we also have

L5(π) = 2 = # {columns of P or Q}.

14



3.3 A Probability on partitions and Toeplitz determi-
nants

Define yet another “probability measure” on the set Y of Young diagrams

P(λ) = Z−1sλ(t)sλ(s), Z = e
∑

i≥1 itisi . (3.3.1)

Cauchy’s identity9 guarantees that P(λ) is a probability measure, in the sense

∑

λ∈Y
P(λ) = 1,

without necessarily 0 ≤ P(λ) ≤ 1. This probability measure has been intro-
duced and extensively studied by Borodin, Okounkov, Olshanski and others;
see [11, 21] and references within. In the following Proposition, the Toeplitz
determinants appearing in (2.0.1) acquire a probabilistic meaning in terms
of the new probability P:

Proposition 3.6 Given the probability (3.3.1), the following holds

P (λ with λ1 ≤ n) = Z−1 det

(∮

S1

dz

2πiz
zk−`e−

∑∞
1 (tiz

i+siz
−i)

)

1≤k,`≤n

(3.3.2)

and

P(λ with λ>1 ≤ n) = Z−1 det

(∮

S1

dz

2πiz
zk−`e

∑∞
1 (tiz

i+siz
−i)

)

1≤k,`≤n

with Z given by (3.3.1).

Proof: Consider the semi-infinite Toeplitz matrix

m∞(t, s) = (µk`)k,`≥0, with µk`(t, s) =

∮

S1

zk−`e
∑∞

1 (tjzj−sjz−j) dz

2πiz
.

9Cauchy’s identity takes on the following form in the t and s variables:
∑

λ∈Y
sλ(t)sλ(s) = e

∑∞
1 itisi .
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Note that

∂µk`

∂ti
=

∮

S1

zk−`+ie
∑∞

1 (tjzj−sjz−j) dz

2πiz
= µk+i,`

∂µk`

∂si

= −
∮

S1

zk−`−ie
∑

(tjzj−sjz−j) dz

2πiz
= −µk,`+i (3.3.3)

with initial condition µk`(0, 0) = δk`. In matrix notation, this amounts to
the system of differential equations10

∂m∞
∂ti

=Λim∞ and
∂m∞
∂si

=−m∞(Λ>)i, with initial condition m∞(0, 0)=I∞.

(3.3.4)
The solution to this initial value problem is given by the following two ex-
pressions:

(i) m∞(t, s) = (µk`(t, s))k,`≥0, (3.3.5)

as follows from the differential equation (3.3.3), and

(ii) m∞(t, s) = e
∑∞

1 tiΛ
i

m∞(0, 0)e−
∑∞

1 siΛ
>i , (3.3.6)

upon using (∂/∂tk)e
∑∞

1 tiΛ
i

= Λke
∑∞

1 tiΛ
i
. Then, by the uniqueness of solu-

tions of ode’s, the two solutions coincide, and in particular the n×n upper-left
blocks of (3.3.5) and (3.3.6), namely

mn(t, s) = En(t)m∞(0, 0)E>
n (−s), (3.3.7)

where

En(t) =




1 s1(t) s2(t) s3(t) ... sn−1(t) ...
0 1 s1(t) s2(t) ... sn−2(t) ...
...

s1(t) ...
0 ... 0 1 ...




= (sj−i(t)) 1≤i<n
1≤j<∞

is the n× n upper-left blocks of

e
∑∞

1 tiΛ
i

=
∞∑
0

si(t)Λi =




1 s1(t) s2(t) s3(t) ...
0 1 s1(t) s2(t) ...
0 0 1 s1(t) ...
0 0 0 1
...

...
...

...




= (sj−i(t)) 1≤i<∞
1≤j<∞

.

10The operator Λ is the semi-infinite shift matrix defined in footnote 2. Also I∞ is the
semi-infinite identity matrix.
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Therefore the determinants of the matrices (3.3.7) coincide:

det mn(t, s) = det(En(t)m∞(0, 0)E>
n (−s)). (3.3.8)

Moreover, from the Cauchy-Binet formula11, applied twice, one proves
the following: given an arbitrary semi-infinite initial condition m∞(0, 0), the
expression below admits an expansion in Schur polynomials,

det(En(t)m∞(0, 0)E>
n (−s)) =

∑
λ, ν

λ>1 , ν>1 ≤n

det(mλ,ν)sλ(t)sν(−s), for n > 0,

(3.3.9)
where the sum is taken over all Young diagrams λ and ν, with first columns
≤ n (i.e., λ>1 and ν>1 ≤ n) and where mλ,ν is the matrix

mλ,ν :=
(
µλi−i+n,νj−j+n(0, 0)

)
1≤i,j≤n

. (3.3.10)

Applying formula (3.3.10) to m∞(0, 0) = I∞, we have

det mλ,ν = det(µλi−i+n,νj−j+n)1≤i,j≤n 6= 0 if and only if λ = ν, (3.3.11)

in which case det mλ,λ = 1. Therefore,

∑
λ∈Y

λ>1 ≤n

sλ(t)sλ(−s) = det

(∮

S1

dz

2πiz
zk−`e

∑∞
1 (tiz

i−siz
−i)

)

1≤k,`≤n

. (3.3.12)

But, we also have, using the probability P, defined in (3.3.1), that

P
(
λ with λ>1 ≤ n

)
= Z−1

∑
λ∈Y

λ>1 ≤n

sλ(t)sλ(s) (3.3.13)

11Given two matrices A
(m,n)

, B
(n,m)

, for n large ≥ m

det(AB) = det

(∑

i

a`ibik

)

1≤k,`≤m

=
∑

1≤i1<...<im≤n

det(ak,i`
)1≤k,`≤m det(bik,`)1≤k,`≤m.
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Comparing the two formulas (3.3.12) and (3.3.13) and changing s 7→ −s in
(3.3.12), yield

P
(
λ with λ>1 ≤ n

)
= Z−1 det

(∮

S1

dz

2πiz
zk−`e

∑∞
1 (tiz

i+siz
−i)

)

1≤k,`≤n

= Z−1
∑
λ∈Y

λ>1 ≤n

sλ(t)sλ(s). (3.3.14)

Using sλ(−t) = (−1)|λ|sλ>(t), one easily checks

P (λ with λ1 ≤ n) = Z−1
∑
λ∈Y

λ1≤n

sλ(t)sλ(s) , by definition

= Z−1
∑
λ∈Y

λ>1 ≤n

sλ>(t)sλ>(s)

= Z−1
∑
λ∈Y

λ>1 ≤n

sλ(−t)sλ(−s)

= Z−1 det

(∮

S1

dz

2πiz
zk−`e−

∑∞
1 (tiz

i+siz
−i)

)

1≤k,`≤n

,

using (3.3.14) in the last equality, with Z as in (3.3.1). This establishes
Proposition 3.6.

Proof of Theorem 3.1: For real ξ> 0, consider the locus

L1 = {all sk = tk = 0, except t1 = s1 =
√

ξ} (3.3.15)

Indeed, for an arbitrary λ ∈ Y, the probability (3.3.1) evaluated along L1

reads:

P(λ)
∣∣∣
L1

= e−
∑

k≥1 ktksksλ(t)sλ(s)
∣∣∣

ti=
√

ξδi1
si=

√
ξδi1

= e−ξξ|λ|/2 fλ

|λ|!ξ
|λ|/2 fλ

|λ|! , using (3.2.2),

= e−ξ ξ|λ|

|λ|!
(fλ)2

|λ|! .
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Therefore

P(λ1 ≤ n)
∣∣∣
L1

=
∑
λ∈Y

λ1≤n

e−ξ ξ|λ|

|λ|!
(fλ)2

|λ|!

= e−ξ

∞∑
0

ξk

k!

∑
|λ|=k
λ1≤n

(fλ)2

k!

= e−ξ

∞∑
0

ξk

k!
Pk(Lk(π) ≤ n), by Proposition 3.4.

(3.3.16)

The next step is to evaluate (3.3.2) in Proposition 3.5 along the locus L1,

P(λ1 ≤ n)
∣∣∣
L1

= e−
∑

i≥1 itisi det

(∮

S1

dz

2πiz
zk−`e−

∑∞
1 (tiz

i+siz
−i)

)

1≤k,`≤n

∣∣∣∣∣
L1

= e−ξ det

(∮

S1

dz

2πiz
zk−`e−

√
ξ(z+z−1)

)

1≤k,`≤n

= e−ξ det

(∮

S1

dz

2πiz
zk−`e

√
ξ(z+z−1)

)

1≤k,`≤n

, (3.3.17)

by changing z 7→ −z. Finally, comparing (3.3.16) and (3.3.17) yields (3.1.4),
ending the proof of Theorem 3.1.

Proof of Theorem 3.2: The proof of this theorem goes along the same lines,
except one uses Proposition 3.4 and one evaluates (3.3.2) along the locus

L2 = {tk = δk1ξ and ksk = p},

instead of L1; then one makes the change of variable z 7→ −z−1 in the
integral.

3.4 Non-intersecting random walks

Consider n walkers in Z, walking from x = (x1 < x2 < ... < xn) to y = (y1 <
y2 < ... < yn), such that, at each moment, only one walker moves either
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one step to the left, or one step to the right, with all possible moves equally
likely. This section deals with a generating function for the probability

P (k, x, y) := P

(
that n walkers in Z go from x1, . . . , xn to
y1, . . . , yn in k steps, and do not intersect

)
=

b
(k)
xy

(2n)k

We now state a Theorem which generalizes Theorem 3.1; the latter can be
recovered by assuming close packing x = y = (0, 1, . . . , n− 1). In Section 4.3
discrete equations will be found for P (k; x, y).

Theorem 3.7 (Adler-van Moerbeke [4]) The generating function for the
P (k; x, y) above has the following matrix integral representation:

∑

k≥0

(2nz)k

k!
P (k; x, y) =

∫

U(n)

sλ(M)sµ(M̄)ez Tr(M+M̄)dM =: aλµ(z)

= det

(∮

S1

du

2πiu
uλ`−`−µk+kez(u+u−1)

)

1≤k,`≤n

,

where sλ and sµ are Schur polynomials12 with regard to the partitions λ and
µ, themselves determined by the initial and final positions x and y,

λn−i+1 := xi − i + 1 , µn−i+1 := yi − i + 1. for i = 1, . . . , n. (3.4.1)

Remark: The partitions λ and µ measure the discrepancy of x and y from
close packing 0, 1, . . . , n− 1!

Remark: Connections of random walks with Young diagrams have been known
in various situations in the combinatorial literature; see R. Stanley [24] (p.
313), P. Forrester [13], D. Grabiner & P. Magyar [16, 17] and J. Baik [5].

Proof: Consider the locus

L1 = {all tk = sk = 0, except t1 = z, s1 = −z}.

Then, since

e
∑∞

1 (tiu
i−siu

−i)
∣∣∣
L1

= ez(u+u−1),

12Given a unitary matrix M , the notation sλ(M) denotes a symmetric function of the
eigenvalues x1, . . . , xn of the unitary matrix M and thus in the notation of the present
paper sλ(M) := sλ

(
TrM, 1

2 TrM2, 1
3 TrM3, ...

)
.
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we have, combining (3.3.9) and (3.3.8),
∫

U(n)

ez Tr(M+M̄)e
∑∞

1 Tr(tiM
i−siM̄

i)dM =
∑

λ,µ such that

λ>1 ,µ>1 ≤n

aλµ(z)sλ(t)sµ(−s), (3.4.2)

with (for definitions and formulas for skew Schur polynomials and tableaux,
see (3.2.1) and (3.2.2))

aλµ(z)
(i)
= det

(∮

S1
uλ`−`−µk+kez(u+u−1) du

2πiu

)

1≤`,k≤n

(ii)
=

∫

U(n)

sλ(M)sµ(M̄)ez Tr(M+M̄)dM

(iii)
=

∑
ν with
ν>1 ≤n

sν\λ(t)sν\µ(−s)
∣∣∣
L1

(iv)
=

∑
ν with ν⊃λ,µ

ν>1 ≤n

z|ν\λ|

|ν\λ|! fν\λ z|ν\µ|

|ν\µ|! fν\µ

(v)
=

∞∑

k=0

zk

k!
k!

k1! k2!

∑
ν with ν⊃λ,µ
|ν\λ|=k1
|ν\µ|=k2

ν>1 ≤n

fν\λfν\µ , where k{ 1
2} = 1

2 (k ∓ |λ| ± |µ|),

=
∑

k≥0

zk

k!
#





ways that n non-intersecting
walkers in Z move in k steps
from x1 < x2 < ... < xn

to y1 < y2 < ... < yn





=
∑

k≥0

(2nz)k

k!
P (k;x, y).

Equality (i) follows from (3.3.11) and (3.3.9). The Fourier coefficients aλµ(z)
of (3.4.2) can be obtained by taking the inner-product13 of the sum (3.4.2)
with sα(t)sβ(−s). Equality (iii) is the analogue of (3.3.14) for skew-partitions
and also follows from the Cauchy-Binet formula. Equality (iv) follows from
formula (3.2.2) for skew-partitions. Equality (v) follows immediately from
(iv), whereas the last equality follows from an analogue of RSK as is now
explained.

Consider, as in the picture below, the two skew-tableaux P and Q of
shapes ν\λ and µ\λ, with integers 1, . . . , |ν\λ| and 1, . . . , |ν\µ| inserted re-
spectively (strictly increasing from left to right and from top to bottom).

13〈sα, sλ〉 := sα( ∂
∂t1

, 1
2

∂
∂t2

, . . .)sλ(t)
∣∣∣
t=0

21



The integers cij in the tableau P provide the instants of left move for the
corresponding walker (indicated on the left), assuming they all depart from
(x1, . . . , xn), which itself is specified by ν. This construction implies that, at
each instant, only one walker moves and they never intersect. That takes an
amount of time |ν\λ| = 1

2
(k − |λ| + |µ|) = k1, at which they end up at a

position specified by ν. At the next stage and from that position, they start
moving right at the instants k − c′ij, where the c′ij are given by the second
skew tableau and forced to end up at positions (y1, . . . , yn), itself specified by
µ; see (3.4.1). Again the construction implies here that they never intersect
and only one walker moves at the time. The time (of right move) elapsed is
|ν\µ| = 1

2
(k + |λ| − |µ|) = k2. So, the total time elapsed is k1 + k2 = k.

The final argument hinges on the fact that any motion, where exactly
one walker moves either left or right during time k can be transformed (in a
canonical way) into a motion where the walkers first move left during time
k1 and then move right during time k2. The precise construction is based on
an idea of Forrester [13].This map is many-to-one: there are precisely k!

k1!k2!

walks leading to a walk where walkers first move left and then right.

1st walker

2nd walker

3rd walker

4th walker

instants of left move︷ ︸︸ ︷
//// //// //// //// c11 c12

//// //// c21 c22

//// c31 c32 c33

//// c41

instants of right move︷ ︸︸ ︷
//// //// //// c′11 c′12 c′13

//// c′21 c′22 c′23

//// c′31 c′32 c′33

c′41 c′42

P of shape ν\λ Q of shape ν\µ

This sketches the proof of Theorem 3.7.

4 What do integrable systems tell us about

combinatorics?

The fact that the matrix integrals are related to the Virasoro constraints
and the Toeplitz lattice will lead to various statements about the various
combinatorial problems considered in section 3.
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4.1 Recursion relations for Unitary matrix integrals

Motivated by the integrals appearing in Theorems 3.1, 3.2 and 3.3, consider
the integrals, for ε = 0,±, (different from the In introduced before)

Iε
n :=

1

n!

∫

(S1)n

|∆n(z)|2
n∏

k=1

zε
ke

∑N
j=1

uj
j

(zj
k+z−j

k ) dzk

2πizk

. (4.1.1)

They enjoy the following property:

Theorem 4.1 The integral In := I0
n can be expressed as a polynomial in I1

and the expressions x1, . . . , xn−1,

In = (I1)
n

n−1∏
1

(1− x2
k)

n−k, (4.1.2)

with the xk’s satisfying rational 2N + 1-step recursion relations in terms of
prior xi’s; to be precise




(
N∑
1

uiL
i
1

)

k+1,k+1

+

(
N∑
1

uiL
i
1

)

k,k

− 2

(
N∑
1

uiL
i−1
1

)

k+1,k


 =

kx2
k

1− x2
k

, (4.1.3)

where L1 is the matrix14 defined in (2.2.2) and the ui’s appear in the in-
tegral (4.1.1). The left hand side of this expression is polynomial in the
xk−N , . . . , xk, . . . , xk+N and linear in xk+N and the parameters u1, ..., uN .This
implies the recursion relation

xk+N = F (xk+N−1, . . . , xk, . . . , xk−N ; u1, . . . , uN),

with F rational in all arguments.

Remark: Note the xn’s are the same ratios as in (2.2.1) but for the integrals
(4.1.1), i.e.,

xn = (−1)n I+
n

In

, with In := Iε
n

∣∣∣
ε=0

and I+
n := Iε

n

∣∣∣
ε=+1

,

Example 1: Symbol et(z+z−1).

14Note in the case of an integral the type (4.1.1), we have xn = yn, and thus L2 = L>1 .
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This concerns the integral in Theorem 3.1, expressing the generating function
for the probabilities of the length of longest increasing sequences in random
permutations. Setting u1 = u, ui = 0 for i ≥ 2 in the equation (4.1.3), one
finds that

xn =

∫

(S1)n

|∆n(z)|2
n∏

k=1

zke
u(zk+z−1

k ) dzk

2πizk

∫

(S1)n

|∆n(z)|2
n∏

k=1

eu(zk+z−1
k ) dzk

2πizk

(4.1.4)

satisfies the simple three-step rational relation,

u(xk+1 + xk−1) =
kxk

x2
k − 1

. (4.1.5)

This so-called MacMillan equation [20] for xn was first derived by Borodin
[7] and Baik [6], using Riemann-Hilbert methods. In [4], we show this is
part of the much larger system of equations (4.1.3), closely related to the
Toeplitz lattice. This map (4.1.5) is the simplest instance of a family of area-
preserving maps of the plane, having an invariant, as found by McMillan,
and extended by Suris [26] to maps of the form ∂2

nx(n) = f(x(n)), having an
analytic invariant of two variables Φ(β, γ). The invariant in the case of the
maps (4.1.5) is

Φ(β, γ) = t
(
1− β2

) (
1− γ2

)− nβγ,

which means that for all n,

Φ(xn+1, xn) = Φ(xn, xn−1).

For more on this matter, see the review by B. Grammaticos, F. Nijhoff, A.
Ramani [18].

Example 2: Symbol et(z+z−1)+u(z2+z−2).
These symbols appear in the longest increasing sequence problem for the
hyperoctahedral group ; see Theorem 3.3. Here we set u1 = t, u2 = u, ui = 0
for i ≥ 3 in the equation (4.1.3); one finds

xn =

∫

(S1)n

|∆n(z)|2
n∏

k=1

zke
t(zk+z−1

k )+u(z2+z−2) dzk

2πizk

∫

(S1)n

|∆n(z)|2
n∏

k=1

et(zk+z−1
k )+u(z2+z−2) dzk

2πizk

(4.1.6)
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satisfies the five-step rational relation, (vn := 1− x2
n)

0 = nxn+tvn(xn−1+xn+1)+2uvn

(
xn+2vn+1 + xn−2vn−1 − xn(xn+1 + xn−1)

2
)
.

(4.1.7)
Also here the map has a polynomial invariant

Φ(α, β, γ, δ) =
(
t + 2u(α(δ − β)− γ(δ + β))

)
(1− β2)(1− γ2)− nβγ;

that is for all n,

Φ(xn−1, xn, xn+1, xn+2) = Φ(xn−2, xn−1, xn, xn+1).

Proof of Theorem 4.1: Formula (4.1.2) follows straightforwardly from the
identity (2.2.3). Moreover Proposition 2.1 implies the integrals

τ ε
n(t, s) =

1

n!

∫

(S1)n

|∆n(z)|2
n∏

k=1

zε
ke

∑∞
1 (tiz

i
k−siz

−i
k ) dzk

2πizk

(4.1.8)

satisfy the Virasoro constraints (2.1.1). Thus, setting Vn := Vε
n

∣∣∣
ε=0

and V+
n :=

Vε
n

∣∣∣
ε=1

, we have

0 =
V+

0 τ+
n

τ ε
n

− V0τn

τn

=
∑
i≥1

(
iti

∂

∂ti
− isi

∂

∂si

)
log xn + n, where xn = (−1)n τ+

n

τn

=
1− x2

n

xn

∂

∂xn

∑
i≥1

(itiGi − isiHi) + n, using (2.2.4)

=
1− x2

n

x2
n

∑
i≥1





iti
(−(Li

1)n+1,n+1 + (Li−1
1 )n+1,n

)

+isi

(
(Li

2)nn − (Li−1
2 )n,n+1

)



 + n.

Setting

iti = −isi =

{
ui for 1 ≤ i ≤ N
0 for i > N,

leads to the claim (4.1.3). Relations (4.1.5) and (4.1.7) are obtained by
specialization.
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4.2 The Painlevé V equation for the longest increasing
sequence problem

The statement of Theorem 3.1 can now be completed by the following The-
orem, due to Tracy-Widom [27]. The integrable method explained below
captures many other situations, like longest increasing sequences in involu-
tions and words; see Adler-van Moerbeke [1].

Theorem 4.2 For every n ≥ 0, the generating function (3.1.4) for the prob-
ability of the longest increasing sequence can be expressed in terms of a specific
solution of the Painlevé V equation :

∞∑

k=0

ξk

k!
Pk(Lk(π) ≤ n) = exp

∫ ξ

0

log

(
ξ

u

)
gn(u)du; (4.2.1)

the function gn = g is the unique solution to the Painlevé V equation,
with the following initial condition:





g′′ − g′2

2

(
1

g − 1
+

1

g

)
+

g′

u
+

2

u
g(g − 1)− n2

2u2

g − 1

g
= 0

with gn(u) = 1− un

(n!)2
+ O(un+1), near u = 0.

(4.2.2)

Proof: For the sake of this proof, consider the locus

L = { all ti = si = 0, except t1, s1 6= 0}.

From (2.1.2), we have on L,

0 =
V0τn

τn

∣∣∣
L

=

(
t1

∂

∂t1
− s1

∂

∂s1

)
log τn

∣∣∣
L

0 =
V0τn

τn

− V0τn−1

τn−1

∣∣∣
L

=

(
t1

∂

∂t1
− s1

∂

∂s1

)
log

τn

τn−1

∣∣∣
L

0 =
∂

∂t1

V−1τn

τn

∣∣∣
L

=

(
−s1

∂2

∂s2∂t1
+ n

∂2

∂t1∂s1

)
log τn

∣∣∣
L

+ n.
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Then combining with identities (2.2.11) and (2.2.10), one finds after some
computations that

gn(x) = − ∂2

∂t1∂s1

log τn(t, s)
∣∣∣
L

=
d

dx
x

d

dx

(
log τn(t, s)

∣∣∣
ti=δi0

√
x

si=−δi0
√

x

)
(4.2.3)

satisfies equation (4.2.2). The initial condition follows from the combina-
torics.

4.3 Backward and forward equation for non-intersecting
random walks

Consider the n random walkers, walking in k steps from x = (x1 < x2 < ... <
xn) to y = (y1 < y2 < ... < yn), as introduced in section 3.4. These data
define difference operators 15 for k, n ∈ Z+, x, y ∈ Z,

A1 :=
n∑

i=1

(
k

2n
Λ−1

k ∂+
2yi

+ xi∂
−
xi

+ ∂+
yi
yi − (xi − yi)

)

A2 :=
n∑

i=1

(
k

2n
Λ−1

k ∂+
2xi

+ yi∂
−
yi

+ ∂+
xi

xi − (yi − xi)

)
(4.3.2)

With these definitions, we have

Theorem 4.3 [4] The probability

P (k; x, y) =
b
(k)
xy

(2n)k
= P




that n non-intersecting walkers in Z move during k
instants from x1 < x2 < ... < xn to y1 < y2 < ... < yn,
where at each instant exactly one walker moves
either one step to the left, or one step to the right




(4.3.3)
satisfies both a forward and backward random walk equation,

AiP (k, x, y) = 0, (4.3.4)

15in terms of difference operators, acting on functions f(k, x, y), with k ∈ Z+, x, y ∈ Z:

∂+
αxi

f := f(k, x + αei, y)− f(k, x, y)
∂−αxi

f := f(k, x, y)− f(k, x− αei, y)

Λ−1
k f := f(k − 1, x, y). (4.3.1)
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Remark: “Forward and backward”, because A1 essentially involves the end
points y, whereas A2 involves the initial points x.

Proof: The unitary integral below is obtained from the integral τ 0
n(t, s), ap-

pearing in (2.0.1), by means of the shifts t1 7→ t1 + z, s1 7→ s1 − z. Thus
it satisfies the Virasoro constraints for k = −1, 0, 1, with the same shifts
inserted. This integral has a double Fourier expansion in Schur polynomials;
see (3.4.2). So we have, with Vk defined in (2.1.2),

0 = Vk

∣∣∣
t1 7→t1+z
s1 7→s1−z

∫

U(n)

ez Tr(M+M̄)e
∑∞

1 Tr(tiM
i−siM̄

i)dM

= Vk

∣∣∣
t1 7→t1+z
s1 7→s1−z

∑
λ,µ such that

λ>1 ,µ>1 ≤n

aλµ(z)sλ(t)sµ(−s)

∗
=

∑

λ>1 ≤n

µ>1 ≤n

sλ(t)sµ(−s)L(aλµ(z)),

To explain the equality
∗
= above, notice the Virasoro constraints Vk act

on the terms sλ(t)sµ(−s) in the expansion. Since the constraints (2.1.2)
decouple as a sum of a t-part and an s-part, it suffices to show Vk(t)sλ(t)
can be expanded in a Fourier series in sµ(t)’s; this is done below. Therefore
Vksλ(t)sµ(−s) can again be expanded in double Fourier series, yielding new
coefficients L(aλµ(z)), depending linearly on the old ones aλµ(z). Thus we
must compute Vk(t)sλ(t) for

Vk(t) =
1

2

∑

i+j=k

∂2

∂ti∂tj
+

∑

−i+j=k

iti
∂

∂tj
+

1

2

∑

−i−j=k

(iti)(jtj). (4.3.5)

This will generalize the Murnaghan-Nakayama rules,

ntn sλ(t) =
∑

µ
µ\λ∈B(n)

(−1)ht(µ\λ)sµ(t)

∂

∂tn
sλ(t) =

∑
µ

λ\µ∈B(n)

(−1)ht(λ\µ)sµ(t). (4.3.6)

To explain the notation, b ∈ B(i) denotes a border-strip (i.e., a connected
skew-shape λ\µ containing i boxes, with no 2×2 square) and the height ht b
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of a border strip b is defined as

ht b := #{rows in b} − 1. (4.3.7)

Indeed in [4] it is shown that

V−nsλ(t) =
∑

µ
µ\λ∈B(n)

d
(n)
λµ sµ(t) and Vnsλ(t) =

∑
µ

λ\µ∈B(n)

d
(n)
µλ sµ(t) (4.3.8)

with the same precise sum, except the coefficients are different: (n ≥ 1)

d
(n)
λµ =

∑
i≥1

∑




ν such that
λ\ν ∈ B(i)
µ\ν ∈ B(n + i)
λ\ν ⊂ µ\ν





(−1)ht(λ\ν)+ht(µ\ν)

+
1

2

n∑
i=1

∑
{

ν such that
ν\λ ∈ B(i)
µ\ν ∈ B(n− i)

}
(−1)ht(ν\λ)+ht(µ\ν). (4.3.9)

In view of the infinite sum in the Virasoro generators (4.3.5), one would
expect Vnsλ to be expressible as an infinite sum of Schur polynomials. This
is not so: acting with Virasoro Vn leads to the same precise sum as acting
with ntn (resp. ∂/∂tn), except the coefficients in (4.3.8) are different from the
ones in (4.3.6). This is to say the two operators have the same band structure
or locality! Then setting

aλµ(z) =
∑

k≥0

b(k)
xy

zk

k!
,

leads to the result (4.3.4), upon remembering the relation (3.4.1) between
the λ, µ’s and the x, y’s.
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and Painlevé, Commun. Math. Phys. 207, 665-685 (1999).

[28] C. A. Tracy and H. Widom: On the distributions of the lengths of the
longest monotone subsequences in random words. Probab. Theory
Related Fields 119, 3, 350–380 (2001) (arXiv:math.CO/ 9904042)

[29] P. van Moerbeke: Integrable lattices: Random Matrices and
Random Permutations, in “Random matrices and their ap-
plications”, Mathematical Sciences research Institute Publi-
cations #40, Cambridge University Press, pp. 321–406, (2001).
(http://www.msri.org/publications/books/Book40/files/moerbeke.pdf)

32


