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0 Introduction

Classical situation: A weight and tridiagonal matrices

A single weight ρ(z), z ∈ R, naturally leads to a moment matrix

mn = (µij)0≤i, j≤n−1 =
(〈
zi, zjρ(z)

〉)
0≤i, j≤n−1

=
(〈
zi, ρj(z)

〉)
0≤i, j≤n−1

,

where 〈f, g〉 =
∫

R
fg dz and where ρj(z) := z

jρ(z). In turn, the moments lead to a sequence

of monic orthogonal polynomials

pn(z) =
1

detmn
det




µ00 · · · µ0,n−1 1

...
...

...

µn−1,0 · · · µn−1,n−1 zn−1

µn0 · · · µn,n−1 zn



,
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thus satisfying

∫

R

pk(z)pℓ(z)ρ(z)dz = δkℓhk.

Then, as is classically well known, the vector p(z) = (p0(z), p1(z), p2(z), . . . ) of polynomi-

als leads to tridiagonal matrices L, defined by zp(z) = Lp(z).

Periodic sequences of weights and (2m+ 1)-band matrices

Instead of the classical situation, where ρj(z) = z
jρ(z), we consider an “m-periodic”

We changed
“m” in
“m-periodic”
to math to be
consistent
throughout
the paper.
Please check.

sequence of weights ρ(z) := (ρj(z))j≥0 on R, that is, satisfying

zmρj(z) = ρj+m(z); (0.1)

in other words,

ρ =
(
ρ0 , ρ1 , . . . , ρm−1 , z

mρ0 , . . . , z
mρm−1 , z

2mρ0 , . . . , z
2mρm−1 , . . .

)
. (0.2)

This leads naturally to a (2m + 1)-band matrix. Indeed, to this sequence and the inner

product 〈f, g〉 =
∫

R
fg dz, we associate, by analogy, the semi-infinite “moment matrix”

m∞ (ρ), where

mn(ρ) :=
(
µij(ρ)

)
0≤i, j≤n−1

:=
(〈
zi, ρj(z)

〉)
0≤i, j≤n−1

, (0.3)

the determinant

Dn(ρ) := detmn(ρ),

and the infinite sequence of monic polynomials, where µij = µij(ρ),

pn(z) =
1

Dn(ρ)
det




µ00 · · · µ0,n−1 1

...
...

...

µn−1,0 · · · µn−1,n−1 zn−1

µn0 · · · µn,n−1 zn




=
1

Dn(ρ)
det(zµij − µi+1,j)0≤i, j≤n−1 .

(0.4)

The second formula for pn(z) is discussed in Lemma 2.2. Throughout the paper, the

Dn(ρ) ’s are assumed to be nonzero. Then the sequence pn(z) gives rise to a semi-infinite
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matrix L, defined by

zmp(z) = Lp(z), (0.5)

where L is a (2m + 1)-band matrix;1 this was established by us in [10], and a sketch of

the proof is given in Proposition 2.3. Moreover, F. Grünbaum and L. Haine [16] produced

a sequence of “5-step polynomials” satisfying a fourth-order differential equation and

related to the classical Krall orthonormal polynomials. As we will see, these polynomials

are very special cases of our theory. We conjecture that all sequences of polynomials

satisfying (2m+1)-step relations of precise form (0.5) are given by generalized periodic

sequences of weights, a slight generalization of (0.1), and limiting cases thereof (see

Definition 3.2).

In Theorems 0.1 and 0.2, we conjugate with the following matrices:
We split the
opposite
equation to fit
into the text
width. Please
check.

βΛ0 +Λ =




β0 1 0 0

0 β1 1 0

0 0 β2 1

0 0 0 β3
. . .




and

Λ⊤β+ I =




1 0 0 0

β0 1 0 0

0 β1 1 0

0 0 β2 1

. . .




,

where Λ is the semi-infinite shift matrix Λ := (δi,j−1)i, j≥0 ; that is, (Λv)n = vn+1 . Note

that in the semi-infinite case, ΛΛ⊤ = I �= Λ⊤Λ.

Theorem 0.1 (Lower-upper(LU)-Darboux transforms).The LU-Darboux transform

L− λmI �−→ L̃− λmI := (βΛ0 +Λ)(L− λmI)(βΛ0 +Λ)−1 (0.6)

1A (2m+1)-band matrix is a semi-infinite matrix, which is zero everywhere, except form consecutive subdi-

agonals on either side of the main diagonal.
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maps L into a new (2m+ 1)-band matrix L̃, provided

βn = −
Φn+1(λ)

Φn(λ)
with arbitraryΦ(λ) = (Φn(λ))n≥0 ∈ (L− λ

mI)−1(0, 0, . . . ).

The null space (L− λmI)−1(0, 0, . . . ) is m-dimensional with basis vectors given by

Φ(k) (λ) =

(
Dn

(
ρ̃(k)

)

Dn(ρ)

)

n≥0

for 1 ≤ k ≤ m,

where

ρ̃(k) (z) :=
(
ωkλ− z

)
ρ(z) =

(
(ωkλ− z)ρ0(z), (ω

kλ− z)ρ1(z), . . .
)
. (0.7)

The LU-Darboux transformation L− λmI �→ L̃− λmI associated with each

βn = −
Φ
(k)
n+1(λ)

Φ
(k)
n (λ)

for fixed 1 ≤ k ≤ m

induces a map on m-periodic weights,

ρ(z) �−→ ρ̃(k) (z), (0.8)

with ρ̃(k) leading to the (2m+ 1)-band matrix L̃. �

Remark. Section 5 (see Theorem 5.1) contains the proof of a more general statement

involving linear combinations of Φ(k) (λ).

Theorem 0.2 (Upper-lower(UL)-Darboux transforms).The UL-Darboux transform

L− λmI �−→ L̃− λmI := (Λ⊤β+ I)(L− λmI)(Λ⊤β+ I)−1 (0.9)

maps L into a new (2m+ 1)-band matrix L̃, provided2

βn = −
Φn+1(λ)

Φn(λ)
with Φ(λ) =

(
Φn(λ)

)
n≥0

∈ (L− λmI)−1 span(e1 , e2 , . . . , em).

2Define ei := (0,..., 1︸︷︷︸
i

,0,...) ∈ R∞ .
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The (quasi-)null vectorsΦ(λ) of L−λmI depend projectively on (2m−1)-free parameters

a0 , . . . , am−1 , b0 , . . . , bm−1
3 and are given by

Φ(λ) =

(
(−1)n−1

Dn+1(ρ̃)

Dn(ρ)

)

n≥0

, (0.10)

where

ρ̃ =
(
ρ̃0 , ρ̃1 , . . . , ρ̃m−1 , z

mρ̃0 , . . . , z
mρ̃m−1 , z

2m ρ̃0 , . . . , z
2m ρ̃m−1 , . . .

)
(0.11)

with4

ρ̃0(z) :=

m−1∑

k=0

(
akδ(z−ω

kλ) + bk
ρk(z)

zm − λm

)
with bm−1 �= 0,

ρ̃k(z) := ρk−1(z) for 1 ≤ k ≤ m− 1.

(0.12)

The UL-Darboux transform L− λmI �→ L̃− λmI induces a map onm-periodic sequence of
weights,

ρ �−→ ρ̃,

with ρ̃ leading to the (2m+ 1)-band matrix L̃. �

Corollary 0.3. An appropriate choice of ak and appropriate limits bk �→ ∞ and λ �→ 0

yield the following special Darboux transformation on the m-periodic weights:

ρ = (ρ0 , ρ1 , . . . ) �−→ ρ̃ =
(
ρ̃0 , ρ̃1 , ρ̃2 , . . .

)

with new weights

ρ̃0(z) :=

m−1∑

k=0

(
ck

(
d

dz

)k
δ(z) + dk

ρk(z)

zm

)
with dm−1 �= 0,

ρ̃k(z) := ρk−1(z) for 1 ≤ k ≤ m− 1. �

Weightswith δ-functions have been studiedmainly byH. Krall and I. Scheffer [22]

andT. Koornwinder [19], at least for the standard orthogonal polynomials. For recent ex-

positions on the subject, see, for instance, G. Andrews and R. Askey [11]. Recently, they

have been studied by Grünbaum and Haine [16] and Grünbaum, Haine, and

E. Horozov [17].

3The UL-Darboux transform depends onm additional free parameters, compared to the LU transform.
4The delta-function is defined in the standard way:

∫
f(z)δ(λ−z)dz= f(λ).
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An integrable flow with initial m∞

We have introduced the method of inserting the time in the context of random matrices

(see [3], [4], [25]),where it has turned out to be very useful. In order to establish the results

above, consider, as we did in [8], [7], the following initial value problem, depending on

two sequences of time parameters x = (x1 , x2 , . . . ) and y = (y1 , y2 , . . . ):

∂m∞
∂xn

= Λnm∞,

∂m∞
∂yn

= −m∞Λ
⊤n with initial m∞ (0, 0) =

(〈
zi, ρj(z)

〉)
0≤i, j<∞,

(0.13)

where Λ is the customary (semi-infinite) shift matrix. As we establish in Section 2, im-

posing the condition

Λmm∞ = m∞Λ
⊤m (0.14)

on moment matrices m∞ leads to (2m + 1)-band matrices. This in turn suggests the

following useful reduction. Given the times x, y ∈ C∞, we define new times x̄, ȳ, t̄ ∈ C∞,

x̄ =
(
x1 , . . . , xm−1 , 0, xm+1 , . . . , x2m−1 , 0, x2m+1 , . . .

)
,

ȳ =
(
y1 , . . . , ym−1 , 0, ym+1 , . . . , y2m−1 , 0, y2m+1 , . . .

)
,

t̄ =
(
0, . . . , 0, tm, 0, . . . , 0, t2m , 0, . . . , 0, t3m , 0, . . .

)
,

with

tkm := xkm − ykm for k = 1, 2, . . . . (0.15)

Thepoint is that lettingm∞ evolve according to the variables x̄, ȳ, t̄ conserves the (2m+1)-

band form of L. The solution to initial value problem (0.13) is given by the same moment

matrix m∞ , as in (0.13),

m∞
(
ρ
(
z; x̄, ȳ, t̄

))
=

(〈
zi, ρj

(
z; x̄, ȳ, t̄

)〉)
0≤i, j<∞, (0.16)

but for weights, now depending on times x̄, ȳ, t̄, defined as5

ρj(z; x̄, ȳ, t̄) = e
∑∞
1 x̄rz

r

e
∑∞
1 t̄ℓmz

ℓm
∞∑

ℓ=0

sℓ(−ȳ)ρj+ℓ(z), (0.17)

5The sℓ ’s denote the elementary Schur polynomials e
∑∞
1
tiz

i

=
∑∞
0 sn(t)z

n .
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in terms of the initial condition ρ(z). Moments (0.16) give rise to the polynomials pn(z; x̄,

ȳ, t̄), as in (0.4), which in turn give rise to (2m + 1)-band matrices L via zmp = Lp. Then

L satisfies the following equations6 in the time parameters (x̄, ȳ, t̄):
We changed � |

to ∤ in the
opposite
equation and
throughout
the paper.

∂L

∂xi
=

[(
Li/m

)
+
, L

]
,

∂L

∂yi
=

[(
Li/m

)
−
, L

]
for i = 1, 2, . . . ,m ∤ i,

∂L

∂tim
=

[
(Li)+, L

]
, i = 1, 2, . . . .

(0.18)

Vertex operators

In order to obtain (0.7) and (0.12) for the weights, we consider two vertex operators
We added "("
and ")" around
"mi" in eq.
(0.19). Please
check.

naturally associated with integrable system (0.13) for (2m+ 1)-band matrices,7

X1(λ) := χ(λ)e
∑∞
1 t̄miλ

mi

e−
∑∞
1 (λ

−mi/(mi))∂/(∂tmi) e
∑∞
1 x̄iλ

i

e−
∑∞
1 (λ

−i/i)∂/(∂x̄i) ,

X2(λ) := χ(λ
−1)e−

∑∞
1 t̄miλ

mi

e
∑∞
1 (λ

−mi/(mi))∂/(∂t̄mi) e
∑∞
1 ȳiλ

i

e−
∑∞
1 (λ

−i/i)∂/(∂ȳi) Λ.

(0.19)

Vertex operators (0.19) act on vectors of functions τ(x̄, ȳ, t̄) = (τn(x̄, ȳ, t̄))n≥0 . In [9], we

showed that general linear combinations of them are the precise implementation of

Darboux transform (0.6) and (0.9) at the level of τ-functions (see Theorems 4.1 and 4.2).

Then in the end,we set (x̄, ȳ, t̄) = (0, 0, 0),which yield (0.7) and (0.12) for the newweights.

It is well known that the vertex operators generate Virasoro-like symmetries at

the level of the τ-functions, which translate into symmetries at the level of the “wave”-

functions for band matrices. For the study of such symmetries, see [14], [15], and [1].
Please note
that ref. [1] is
required to be
split into [1]
and [2].
Should we
change “[1]”
into [1], [2].
Please check.

For an extensive exposition on Darboux transforms, see the book [23] by V. Matveev and

M. Salle.

Example 1 (Darboux transform for tridiagonal matrices). A single weight leads to a

moment matrix m∞ with Λm∞ = m∞Λ and a tridiagonal matrix L; formulae (0.15) re-

duce to one set of times t := t̄ = (t1 , t2 , . . . ). Equations (0.18) become the standard Toda

6Note that L1/m and L1/m are the rightmth roots and leftmth roots, so that

Li/m = (L1/m)i where L1/m =Λ+
∑

k≤0

bkΛ
k,

Li/m = (L1/m)i where L1/m = c−1Λ
−1 +

∑

k≥0

ckΛ
k.

7χ(λ) is a diagonal matrix χ(λ) = diag(λ0 ,λ,λ2 ,...).
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lattice with τ-functions

τn(t) = detmn

(
ρ(z)e

∑∞
1 tiz

i
)
. (0.20)

The standard Toda lattice vertex operator, introduced by us in [6] and obtained from

(0.19),

X(t, λ) = Λ−1χ(λ2)e
∑∞
1 tiλ

i

e−2
∑∞
1 (λ

−i/i)∂/(∂ti) , (0.21)

has the surprising property that, given a Toda τ-vector τ(t) = (τ0 , τ1 , . . . ), the vector
8

τ(t) + cX(t, λ)τ(t) =
(
τn(t) + cλ

2n−2e
∑∞
1 tiλ

i

τn−1
(
t− 2[λ−1 ]

))
n≥0

(0.22)

is again a Toda τ-vector. This precise operation can be implemented by a UL-Darboux

transform, followed by a LU-Darboux transform and a limit. Note that the UL-Darboux

transform (resp., LU-Darboux transform) amounts, for a tridiagonal matrix, to a factor-

ization of L − λI into an upper- times a lower-triangular matrix (resp., lower- times an

upper-triangular matrix), and to multiplying the factors in the opposite order. The ver-

tex operator above translates into adding a delta-function to the original weight. This

establishes a dictionary between several points of view (explained in Section 6):

L− λ = L+L− �−→ L ′ − λ = L−L+ �−→ L ′ − µ = L ′−L ′+ �−→ L ′′ − µ := L ′+L ′−,
�

ρ(z) �−→ ρ(z) + cδ(λ− z)
�

τ+ cXτ

(0.23)

Example 2 (“Classical” polynomials satisfying (2m+ 1)-step relations). Givenmoments

µi := 〈zi, ρ0(z)〉, associated with a single weight ρ0 for standard orthogonal polynomials,

satisfying for fixed integer m ≥ 1,

∫

R

∣∣zjρ0(z)
∣∣dz <∞, j ≥ −m+ 1,

we define in Section 7 new monic polynomials p̃
(1)
n (z), defined by a new moment matrix

m̃∞, which coincides with the old moment matrix m∞ = (µi+j)i, j≥0 associated with the

8 For α∈ C, define [α] = (α/1,α2/2,α3/3,...) ∈ C∞ .
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standard orthogonal polynomials, except for the first column. The p̃
(1)
n (z), defined by

(
det m̃n

)
p̃(1)n (z)

= det




m−1∑

k=0

µ−kdm−k−1 + c0 µ1 µ2 · · · 1

m−1∑

k=0

µ1−kdm−k−1 − c1 µ2 µ3 · · · z

m−1∑

k=0

µ2−kdm−k−1 + 2!c2 µ3 µ4 · · · z2

...
...

... · · ·
...

m−1∑

k=0

µm−k−1dm−k−1 + (−1)
m−1(m− 1)!cm−1 µm µm+1 · · · zm−1

m−1∑

k=0

µm−kdm−k−1 µm+1 µm+2 · · · zm

...
...

... · · ·
...

m−1∑

k=0

µn−kdm−k−1 µn+1 µn+2 · · · zn




,

satisfy (2m+ 1)-step relations, that is,

zmp(1)(z) = Lp(1)(z) with a (2m+ 1)-band matrix L.

It remains an interesting open question to find out whether such polynomials satisfy

differential equations; on such matters, see Section 7.

1 Borel decomposition and the 2-Toda lattice

In [8], [7], we considered the following differential equations for the bi-infinite or semi-

infinite matrix m∞ :

∂m∞
∂xn

= Λnm∞ ,
∂m∞
∂yn

= −m∞Λ
⊤n, n = 1, 2, . . . , (1.1)

where the matrix Λ = (δi,j−1)i, j∈Z is the shift matrix; then (1.1) has the following solu-

tions in terms of some initial condition m∞ (0, 0):

m∞ (x, y) = e
∑∞
1 xnΛ

n

m∞ (0, 0)e
−

∑∞
1 ynΛ

⊤n

. (1.2)

In this general setup, the matrixm∞ is a general matrix and thus not necessarily gener-

ated by weights ρ.
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Consider the Borel decomposition m∞ = S
−1
1 S2 for

S1 ∈ G− =
{
lower-triangular invertible matrices, with 1’s on the diagonal

}
,

S2 ∈ G+ =
{
upper-triangular invertible matrices

}

with corresponding Lie algebras g−, g+; then setting L1 := S1ΛS
−1,

S1
∂m∞
∂xn

S−12 = S1
∂S−11 S2

∂xn
S−12 = −

∂S1

∂xn
S−11 +

∂S2

∂xn
S−12 ∈ g− + g+

= S1Λ
nm∞S

−1
2 = S1Λ

nS−11 = Ln1 = (L
n
1 )− + (L

n
1 )+ ∈ g− + g+.

The uniqueness of the decomposition g− + g+ leads to

−
∂S1

∂xn
S−11 = (L

n
1 )−,

∂S2

∂xn
S−12 = (L

n
1 )+.

Similarly setting L2 = S2Λ
⊤S−12 , we find

−
∂S1

∂yn
S−11 = −(L

n
2 )−,

∂S2

∂yn
S−12 = −(L

n
2 )+.

This leads to the 2-Toda equations for S1, S2 and L1, L2 :

∂S1,2

∂xn
= ∓(Ln1 )∓S1,2 ,

∂S1,2

∂yn
= ±(Ln2 )∓S1,2 , (1.3)

∂Li

∂xn
=

[
(Ln1 )+,Li

]
,

∂Li

∂yn
=

[
(Ln2 )−,Li

]
, i = 1, 2, . . . . (1.4)

By 2-Toda theory (see [7]) the problem is solved in terms of a sequence of tau-functions

τn(x, y) = detmn(x, y) (1.5)

with mn(x, y) defined in the bi-infinite case (n ∈ Z)

mn(x, y) := (µij(x, y))−∞<i, j≤n−1

and in the semi-infinite case (n ≥ 0)

mn(x, y) := (µij(x, y)t)0≤i, j≤n−1 with τ0 = 1. (1.6)
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The two pairs of wave-functions Ψ = (Ψ1 , Ψ2) and Ψ
∗ = (Ψ∗

1 , Ψ
∗
2) defined by

9

Ψ1(z; x, y) = e
∑∞
1 xiz

i

S1χ(z), Ψ∗
1(z; x, y) = e

−
∑∞
1 xiz

i

(S⊤1 )
−1χ(z−1),

Ψ2(z; x, y) = e
∑∞
1 yiz

−i

S2χ(z), Ψ∗
2(z; x, y) = e

−
∑∞
1 yiz

−i

(S⊤2 )
−1χ(z−1)

(1.7)

satisfy

L1Ψ1 = zΨ1 , L2Ψ2 = z
−1Ψ2 , L⊤

1 Ψ
∗
1 = zΨ

∗
1 , L⊤

2 Ψ
∗
2 = z

−1Ψ∗
2 ,

and





∂

∂xn
Ψi = (L

n
1 )+Ψi,

∂

∂yn
Ψi = (L

n
2 )−Ψi,





∂

∂xn
Ψ∗
i = −((L

n
1 )+)

⊤Ψ∗
i ,

∂

∂yn
Ψ∗
i = −((L

n
2 )−)

⊤Ψ∗
i .

(1.8)

In [24], with a slight notational modification (see [3]), the wave-functions have

the τ-function representation,

Ψ1(z; x, y) =

(
τn(x− [z

−1 ], y)

τn(x, y)
e

∑∞
1 xiz

i

zn
)

n∈Z

,

Ψ2(z; x, y) =

(
τn+1(x, y− [z])

τn(x, y)
e

∑∞
1 yiz

−i

zn
)

n∈Z

,

Ψ∗
1(z; x, y) =

(
τn+1(x+ [z

−1 ], y)

τn+1(x, y)
e−

∑∞
1 xiz

i

z−n

)

n∈Z

,

Ψ∗
2(z; x, y) =

(
τn(x, y+ [z])

τn+1(x, y)
e−

∑∞
1 yiz

−i

z−n

)

n∈Z

,

(1.9)

with the following bilinear identities satisfied for the wave- and adjoint wave-functions

Ψ and Ψ∗, for all m,n ∈ Z (bi-infinite) and m,n ≥ 0 (semi-infinite) and x, y, x ′, y ′ ∈ C∞ :

∮

z=∞
Ψ1n(z; x, y)Ψ

∗
1m(z; x

′, y ′)
dz

2πiz
=

∮

z=0

Ψ2n(z; x, y)Ψ
∗
2m(z; x

′, y ′)
dz

2πiz
. (1.10)

9 In this section,

χ(z) = diag(...,z−1 ,z0 ,z1 ,...) in the bi-infinite case,

= diag(z0 ,z1 ,...) in the semi-infinite case.
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The τ-functions10 satisfy the following bilinear identities:

∮

z=∞
τn(x− [z

−1 ], y)τm+1(x
′ + [z−1 ], y ′)e

∑∞
1 (xi−x

′
i)z

i

zn−m−1 dz

=

∮

z=0

τn+1(x, y− [z])τm(x
′, y ′ + [z])e

∑∞
1 (yi−y

′
i)z

−i

zn−m−1 dz;

(1.11)

they characterize the 2-Toda lattice τ-functions. Note that (1.7) and (1.9) yield

(S2)0 = diag

(
. . . ,
τn+1(x, y)

τn(x, y)
, . . .

)
:= h(x, y). (1.12)

In [24], facts (1.7)–(1.12) above are shown for the bi-infinite case; they can be carefully

specialized to the semi-infinite case, upon setting τ−i = 0 for i = 1, 2, . . . .

Consider the usual inner product 〈 , 〉 and an infinite sequence of weights ρ(z) =

(ρ0(z), ρ1(z), . . . ).Themomentmatrixm∞ = m∞ (ρ(z)) nowdepends on ρ(z).The following

proposition plays an important role in this paper.

Proposition 1.1. The solution to the equations

∂m∞
∂xn

= Λnm∞ ,
∂m∞
∂yn

= −m∞Λ
⊤n, n = 1, 2, . . . , (1.13)

with initial condition

m∞
(
ρ(z;0, 0)

)
=

(〈
zi, ρj(z)

〉)
0≤i, j≤∞,

is given by

m∞ =
(〈
zi, ρj(z; x, y)

〉)
i, j≥0

, (1.14)

where the weights ρj(z; x, y) evolve in terms of the initial condition ρ(z;0, 0) = (ρ0(z),

ρ1(z), . . . ) as follows:
11

ρj(z; x, y) = e
∑∞
1 xiz

i
∞∑

ℓ=0

sℓ(−y)ρj+ℓ(z). (1.15)

�

10The first contour runs clockwise about a small neighborhood of z = ∞, while the second runs counter-
clockwise about z= 0.
11The elementary Schur polynomials are defined in footnote 4; also, ∂si/(∂xk) = si−k .
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Proof. Indeed, one checks that, from (1.15),

∂ρj

∂xk
= zkρj(z; x, y),

∂ρj

∂yk
= −e

∑∞
1 xiz

i
∞∑

ℓ=k

sℓ−k(−y)ρj+ℓ(z) = −ρj+k(z; x, y),

from which it follows that

∂

∂xk
µij

(
ρ(z; x, y)

)
=
∂

∂xk

〈
zi, ρj(z; x, y)

〉
=

〈
zi+k, ρj(z; x, y)

〉
= µi+k,j

(
ρ(z; x, y)

)
,

∂

∂yk
µij

(
ρ(z; x, y)

)
=
∂

∂yk

〈
zi, ρj(z : x, y)

〉
= −

〈
zi, ρj+k(z; x, y)

〉
= −µi, j+k

(
ρ(z; x, y)

)
,

which is equivalent to (1.13). Here is an alternative way of checking this fact. Since,

from (1.14),

(
Λkm∞ (ρ(z; x, y))

)
ij
=

〈
zi+k, ρj(z; x, y)

〉

and

(
m∞ (ρ(z; x, y))Λ

⊤k
)
ij
=

〈
zi, ρj+k(z; x, y)

〉
,

one checks

e
∑∞
1 xnΛ

n〈
zi, ρj(z;0, 0)

〉
0≤i, j≤∞ e

−
∑∞
1 ynΛ

⊤n

=

∞∑

k=0

sk(x)Λ
k
〈
zi, ρj(z;0, 0)

〉
0≤i, j<∞

∞∑

ℓ=0

sℓ(−y)Λ
⊤ℓ

=

∞∑

k,ℓ=0

sk(x)
〈
zi+k, ρj+ℓ(z;0, 0)

〉
0≤i, j<∞ sℓ(−y)

=

〈
e

∑∞
1 xkz

k

zi,

∞∑

ℓ=0

sℓ(−y)ρj+ℓ(z;0, 0)

〉

0≤i, j<∞

=
〈
zi, ρj(z; x, y)

〉
0≤i, j<∞ .

(1.16)

�

2 Reductions of the 2-Toda lattice

Reduction from 2-Toda to (2m+ 1)-band matrices

For convenience, we define new vectors x̄, ȳ, t̄ ∈ C∞ , based on the vectors x, y ∈ C∞,



14 Adler and van Moerbeke

x̄ =
(
x1 , . . . , xm−1 , 0, xm+1 , . . . , x2m−1 , 0, x2m+1 , . . .

)
,

ȳ =
(
y1 , . . . , ym−1 , 0, ym+1 , . . . , y2m−1 , 0, y2m+1 , . . .

)
,

t̄ =
(
0, . . . , 0, tm, 0, . . . , 0, t2m , 0, . . . , 0, t3m , 0, . . .

)
,

with

tkm := xkm − ykm for k = 1, 2, . . . . (2.1)

Notice in this section that L1 and L2 are bi-infinite. In the next section, we specialize

this to the semi-infinite case.

Recall from Section 1 that

m∞ = S
−1
1 S2 , L1 = S1ΛS

−1
1 , L2 = S2Λ

⊤S−12 ,

and

τn = detmn.

Proposition 2.1. Whenever τn(x, y) �= 0 for all n ∈ Z, the following three statements are

equivalent:

(i) Λmm∞ = m∞Λ⊤m;

(ii) Lm1 = Lm2 , in which case Lm1 is a (2m+ 1)-band matrix;

(iii) L1 , L2 , m∞ , and τn are functions of only x̄, ȳ, and t̄.

Also, (i) or (ii) of Proposition 2.1 are invariant manifolds of the vector fields

∂m∞/(∂xn) = Λnm∞ , ∂m∞/(∂yn) = −m∞Λ⊤n, n = 1, 2, . . . . �

Proof. Indeed,by the invertibility of S1 and S2 under the proviso above,and remembering

the splitting m∞ = S
−1
1 S2 , we have that Proposition 2.1(i) holds if and only if

Lm1 = S1Λ
mS−11 = S1Λ

mm∞S
−1
2 = S1m∞Λ

⊤mS−12 = S2Λ
⊤mS−12 = Lm2 . (2.2)

Also, note that Proposition 2.1(i) is equivalent to

0 = Λkmm∞ −m∞Λ
⊤km =

(
∂

∂xkm
+
∂

∂ykn

)
m∞ , k = 1, 2, . . . .

This is also tantamount to Proposition 2.1(iii) because the invariance of m∞ under

∂/∂xkm + ∂/∂ykm implies the invariance of L1 , L2 , and τn. From solution (1.2), if Propo-

sition 2.1(i) holds at (x, y) = (0, 0), it holds for all (x, y); and thus, by (2.2), if Proposi-

tion 2.1(ii) holds at (0, 0), it also holds for all (x, y). �
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FromProposition 2.1, it follows that theToda vector fields respect the band struc-

ture of L := Lm1 = Lm2 , that is, it is an invariant manifold of the flow. Therefore the Toda

theory can be recast purely in terms of the (2m+ 1)-band matrix of the form

L =
∑

−m≤i≤m

aiΛ
i

=




. . .
. . .

. . .
. . . O

a−m+1(−1) · · · a0(−1) a1(−1) · · · 1

a−m(0) · · · a−1(0) a0(0) · · · am−1(0) 1

O
. . .

. . .
. . .

. . .




(2.3)

with ai being diagonal matrices and am = I. The vector fields below involve the ith

powers Li/m = Li1 and L
i/m = Li2 of the right mth roots L

1/m = L1 and left mth roots

L1/m = L2 , respectively; see also footnote 6.

The m-reduced Toda lattice vector fields on L are as follows:

∂L

∂xi
=

[(
Li/m

)
+
, L

]
,

∂L

∂yi
=

[(
Li/m

)
−
, L

]
for i = 1, 2, . . . ,m ∤ i,

∂L

∂tim
=

[
(Li)+, L

]
, i = 1, 2, . . . . (2.4)

Then L can be expressed in terms of a string of τ-functions

τn := τn(x̄, ȳ, t̄), (2.5)

which in the semi-infinite case take on a very concrete form.

Reduction from bi-infinite to semi-infinite 2-Toda

In this section, we focus on the Borel decomposition of Section 1, specifically for semi-

infinitematricesm∞ = (µij)i, j≥0 ,where it is unique. Remember the decompositionm∞ =

S−11 S2 , where S1 is lower triangular with 1 ’s on the diagonal and where S2 is upper

triangular with hn = det(mn+1)/det(mn) on the diagonal, by (1.12). Let h denote such a

diagonal matrix. For any matrixm∞, define S(m∞ ) := S1 and h(m∞ ) := h as functions of

the matrix m∞ . Following [8], we write the Borel decomposition as follows:

m∞ = S
−1
1 S2 = (S(m∞ ))

−1h(m∞ )
(
S
(
m⊤

∞
))⊤−1

. (2.6)
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It leads naturally to vectors of monic biorthogonal polynomials

p(1) (z) = S(m∞ )χ(z) = S1χ(z) and p(2) (z) = S
(
m⊤

∞
)
χ(z) = h

(
S⊤2

)−1
χ(z).

(2.7)

Upon introducing a formal inner product 〈 , 〉0 , where 〈y
i, zj〉0 = µij, the polynomials

p(1) (z) and p(2) (z) enjoy the following orthogonality property, using (2.6):

(〈
p
(1)
i , p

(2)
j

〉
0

)
i, j≥0

= S1m
(
h
(
S⊤2

)−1)⊤
= S(m∞ )m∞S

(
m⊤

∞
)⊤
= h. (2.8)

Letting the semi-infinite matrixm∞ evolve according to the differential equations (1.1),

namely,

∂m∞
∂xn

= Λnm∞ ,
∂m∞
∂yn

= −m∞Λ
⊤n, n = 1, 2, . . . ,

we show in [8] that the wave-functions Ψ1 and Ψ
∗
2 have the representation in terms of

the biorthogonal polynomials constructed from m∞ (x, y) in (2.7),

Ψ1(z; x, y) = e
∑
xkz

k

p(1) (z; x, y) = e
∑
xkz

k

S1χ(z), (2.9)

Ψ∗
2(z; x, y) = e

−
∑
ykz

−k

h−1p(2) (z−1 ; x, y) = e−
∑
ykz

−k

(S−12 )
⊤χ(z−1), (2.10)

with the pn ’s being expressed in terms of τ-functions τn of 2-Toda:

p(1)n (z; x, y) = z
n τn(x− [z

−1 ], y)

τn(x, y)
, p(2)n (z; x, y) = z

n τn(x, y+ [z
−1 ])

τn(x, y)
(2.11)

and

τn(x, y) = detmn(x, y) and hn =
τn+1(x, y)

τn(x, y)
. (2.12)

In [7], we show the following matrix representation for the biorthogonal polynomials,

which then leads, using (2.7), to a representation of the lower-triangular matrices S(m∞ )
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and S(m⊤
∞ ):

p(1)n (z; x, y) =
1

τn(x, y)
det




µ00 · · · µ0,n−1 1

...
...

...

µn−1,0 · · · µn−1,n−1 zn−1

µn,0 · · · µn,n−1 zn



, (2.13)

p(2)n (z; x, y) =
1

τn(x, y)
det




µ00 · · · µn−1,0 1

...
...

...

µ0,n−1 · · · µn−1,n−1 zn−1

µ0,n · · · µn−1,n zn



. (2.14)

Assume now that the moments µij are given by weights ρ(z) = (ρ0(z), ρ1(z), . . . );

then

τn(x, y) = det
(〈
zi, ρj(z; x, y)

〉)
0≤i, j≤n−1

= Dn(ρ(x, y)),

where ρj(z; x, y) is given by (1.15); that is,

ρj(z; x, y) = e
∑∞
1 xiz

i
∞∑

ℓ=0

sℓ(−y)ρj+ℓ(z).

Lemma 2.2. In the context of Proposition 1.1, the polynomials above have the following

alternative representation in terms of the entries µij = 〈zi, ρj(z; x, y)〉 of m:

p(1)n (λ; x, y) =
det

(
〈zi, (λ− z)ρj(z; x, y)〉

)
0≤i, j≤n−1

det
(
〈zi, ρj(z; x, y)〉

)
0≤i, j≤n−1

=
det(λµij − µi+1, j)0≤i, j≤n−1

τn(x, y)
,

(2.15)

p(2)n (λ; x, y) =
det

(
〈zi, λρj(z; x, y) − ρj+1(z; x, y)〉

)
0≤i, j≤n−1

det
(
〈zi, ρj(z; x, y)〉

)
0≤i, j≤n−1

=
det(λµij − µi,j+1)0≤i, j≤n−1

τn(x, y)
.

(2.16)

�
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Proof. The proof follows from representation (2.11) of p
(1)
n , representations (1.5) and

(1.6) of τn, representation (1.15) of ρj, and from the identities

λµij
(
x− [λ−1 ], y

)
:= λ

〈
zi, ρj(z; x− [λ

−1 ], y)
〉

= λ

〈
zi , e

∑∞
1 (xi−(λ

−i/i))zi
∞∑

ℓ=0

sℓ(−y)ρj+ℓ(z)

〉

= λ

〈
zi,

(
1−
z

λ

)
ρj(z; x, y)

〉

=
〈
zi, (λ− z)ρj(z; x, y)

〉

= λµij(x, y) − µi+1,j(x, y)

and

λµij
(
x, y+ [λ−1 ]

)
:= λ

〈
zi, ρj

(
z; x, y+ [λ−1 ]

)〉

= λ

〈
zi, e

∑∞
1 xiz

i
∞∑

ℓ=0

sℓ

(
− y− [λ−1 ]

)
ρj+ℓ(z;0, 0)

〉

=

〈
zi, e

∑∞
1 xiz

i
∞∑

ℓ=0

(
λsℓ(−y) − sℓ−1(−y)

)
ρj+ℓ(z;0, 0)

〉

= λµij(x, y) − µi,j+1(x, y),

which are based on the following identity:

λ

∞∑

0

sn

(
− y− [λ−1 ]

)
zn = λe−

∑∞
1 (yi+(λ

−i/i))zi

= λ

∞∑

0

sn(−y)z
n

(
1−
z

λ

)

=
∞∑

0

(
λsn(−y) − sn−1(−y)

)
zn. �

Corollary 2.3. Given weights ρ0 , ρ1, . . . , ρn−1, the following identity holds:

det
(〈
zi, (λ− z)ρj(z)

〉)
0≤i, j≤n−1

= det




〈z0 , ρ0(z)〉 · · ·
〈
z0 , ρn−1(z)

〉
1

...
...

...

〈zn, ρ0(z)〉 · · ·
〈
zn, ρn−1(z)

〉
λn


 .

�

Proof. From Lemma 2.2, it follows that p
(1)
n has two alternative expressions (2.13) and

(2.15). Equating the two leads to the identity above. �
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Remark. Formula (2.15) and hence (2.13) just depend on the first formula of (2.11) and

τn = det(µij)0≤i, j≤n−1 with µij(x, y) = 〈zi, e
∑
xiz

i

ρj(y, t)〉. The y-dependence is unimpor-

tant.

3 From m-periodic weight sequences to (2m+ 1)-band matrices

Given the m-periodic sequence of weights

ρ = (ρj)j≥0 =
(
ρ0 , ρ1 , . . . , ρn−1 , z

mρ0 , . . . , z
mρm−1 , z

2mρ0 , . . . , z
2mρm−1 , . . .

)
, (3.1)

consider the initial value problem

∂m∞
∂xn

= Λnm∞ ,
∂m∞
∂yn

= −m∞Λ
⊤n with initial m∞ (0, 0) = (〈zi, ρj〉)0≤i, j<∞

(3.2)

and the associated 2-Toda lattice equations

∂Li

∂xn
=

[
(Ln1 )+,Li

]
,

∂Li

∂yn
=

[
(Ln2 )−,Li

]
. (3.3)

In Proposition 1.1, we gave the solution to initial value problem (3.2) in general,

whereas in Theorem 3.1, we give the solution for m-periodic sequences of weights. This

extra structure is important when we deal with Darboux transforms.

Theorem 3.1. Given initial m-periodic weights (3.1), the systems of differential equa-

tions (3.2) have the solutions with regard to the time parameters (x̄, ȳ, t̄), introduced in

(2.1),

m∞
(
ρ(z; x̄, ȳ, t̄)

)
=

(〈
zi, ρj(z; x̄, ȳ, t̄)

〉)
0≤i, j<∞, (3.4)

where

ρj
(
z; x̄, ȳ, t̄

)
:= e

∑∞
1 x̄rz

r

e
∑∞
ℓ=1 t̄ℓmz

ℓm
∞∑

ℓ=0

sℓ(−ȳ)ρj+ℓ(z) (3.5)

is an m-periodic sequence of weights. Then the polynomials p
(1)
n , with µij := µij(ρ(z; x̄,

ȳ, t̄)) and τn(x̄, ȳ, t̄) = detmn(ρ(z; x̄, ȳ, t̄)),
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p(1)n
(
z; x̄, ȳ, t̄

)
=

1

τn
(
x̄, ȳ, t̄

) det




µ00 · · · µ0,n−1 1

...
...

...

µn−1,0 · · · µn−1,n−1 zn−1

µn0 · · · µn,n−1 zn




=
det(zµij − µi+i,j)0≤i, j≤n−1

τn
(
x̄, ȳ, t̄

) ,

give rise to matrices L = Lm1 , defined by z
mp(1) = Lp(1), such that L = Lm1 is a (2m + 1)-

band matrix. The matrix L1 satisfies (3.3) and the (2m + 1)-band matrix L satisfies m-

reduced Toda lattice (2.4). �

Proof. Since

ρj+km = z
kmρj, j, k = 0, 1, 2, . . . ,

we have

0 =
〈
zi, zkmρj − ρj+km

〉

=
〈
zi+km, ρj

〉
−

〈
zi, ρj+km

〉

= µi+km,j − µi,j+km

=
(
Λkmm∞ −m∞Λ

⊤km
)
ij
,

and som∞ satisfies Proposition 2.1(i) at (x, y) = (0, 0) and hence for all (x, y). Therefore

by Proposition 2.1, L := Lm1 is a (2m+ 1)-band matrix.

From Proposition 1.1, we know that the expression below for m∞ is a solution

of initial value problem (3.2). The proof of (3.4) follows the lines of calculation (1.16).

From there one computes

m∞
(
ρ(z; x, y)

)

= e
∑∞
1 xnΛ

n

m∞
(
ρ(z;0, 0)

)
e−

∑∞
1 ynΛ

⊤n

= e
∑∞
1 xnΛ

n〈
zi, ρj(z;0, 0)

〉
0≤i, j<∞ e

−
∑∞
k=1 ykmΛ

⊤km

e−
∑∞
1 ȳrΛ

⊤r

=

∞∑

0

sn(x)Λ
n
〈
zi, ρj(z;0, 0)

〉 ∞∑

0

sr(−ym,−y2m , . . . )Λ
⊤mre−

∑∞
1 ȳrΛ

⊤r

=

〈 ∞∑

0

sn(x)z
i+n,

∞∑

0

sr(−ym,−y2m , . . . )ρj+rm(z;0, 0)

〉

0≤i,j<∞
e−

∑∞
1 ȳrΛ

⊤r
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=

〈
e

∑∞
1 xrz

r

zi,

∞∑

0

sr(−ym,−y2m , . . . )z
rmρj(z;0, 0)

〉

0≤i, j<∞
e−

∑∞
1 ȳrΛ

⊤r

=
〈
zi, e

∑∞
1 x̄rz

r

e
∑∞
n=1 xkmz

km

e−
∑∞
k=1 ykmz

km

ρj(z;0, 0)
〉
0≤i, j<∞

e−
∑∞
1 ȳrΛ

⊤r

=
〈
zi, e

∑∞
1 x̄rz

r

e
∑∞
k=1 t̄kmz

km

ρj(z;0, 0)
〉
0≤i, j<∞

e−
∑∞
1 ȳrΛ

⊤r

=
〈
zi, e

∑∞
1 x̄rz

r

e
∑∞
k=1 t̄kmz

km

ρj(z;0, 0)
〉
0≤i, j<∞

∞∑

ℓ=0

sℓ(−ȳ)Λ
⊤ℓ

=

〈
zi, e

∑∞
1 x̄rz

r

e
∑∞
k=0 t̄kmz

km
∞∑

ℓ=0

sℓ(−ȳ)ρj+ℓ(z;0, 0)

〉

0≤i, j<∞
,

which establishes (3.4). The rest follows from (2.13) (see the last remark of Section 2)

and Lemma 2.2. �

In the following, we show thatm-periodic sequences of weights lead to (2m+1)-

band matrices, using a direct proof, thus without invoking the matrices L1 and L2 of

2-Toda theory, as in Theorem 3.1. Furthermore, we show that the polynomials p
(1)
n are

“orthogonal” in the sense of (3.7). Consider the slightly more general definition of m-

periodic sequences (in comparison to (0.1)) as follows.

Definition 3.2. Generalizedm-periodic sequences ofweights ρi satisfy the following con-

dition: for j = 0, 1, 2, . . . ,

zmρj ∈ span
{
ρ0 , . . . , ρm+j

}
and

zmρj(z) = cj,m+jρm+j(z) + · · · with cj,m+j �= 0.
(3.6)

Proposition 3.3. Given a sequence of weights ρ0(z), ρ1(z), . . . , the monic polynomials

p0(z), p1(z), . . . , pj(z), . . . of degree 0, 1, 2, . . . , defined by

〈
pi(z), ρj(z)

〉
= 0, 0 ≤ j ≤ i− 1, (3.7)

are given by the same formula, as in Theorem 3.1, namely,

pn(z) =
1

detmn
det




µ00 · · · µ0,n−1 1

...
...

...

µn−1,0 · · · µn−1,n−1 zn−1

µn0 · · · µn,n−1 zn




(3.8)
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with µij = 〈zi, ρj(z)〉, mn = det(µij)0≤i, j≤n−1 . Moreover, if the ρi are generalized m-

periodic, then polynomials (3.7) satisfy a (2m + 1)-step relation; that is, for p(z) =

(p0(z), p1(z), . . . )
⊤,

zmp(z) = Lp(z) (3.9)

defines a (2m+ 1)-band matrix L, with m bands above and below the diagonal. �

Proof. For 0 ≤ k ≤ n − 1, the following inner product of pn(z), given by the right-hand

side of (3.8), with ρk(z) automatically vanishes:

(detmn)〈pn(z), ρk(z)〉 = det
(〈
µi0 , µi1 , . . . , µik, . . . , µi,n−1 , µik

〉
i=0,...,n

)
= 0.

Furthermore, orthogonality relation (3.7) determines the monic pn ’s uniquely. To prove

the second assertion, that L is a (2m + 1)-band matrix, we proceed as follows. Since

zmρj(z) =
∑m+j
r=0 cjrρr(z), j = 0, 1, . . . , we have

0 =

〈
zi, zmρj −

m+j∑

r=0

cjrρr(z)

〉
for all i, j ≥ 0,

=
〈
zi+m, ρj

〉
−

m+j∑

r=0

cjr
〈
zi, ρr(z)

〉

= µm+i,j −

m+j∑

r=0

cjrµir,

implying that, for all j ≥ 0,




µm,j

µm+1,j
...

µm+n,j



=

m+j∑

r=0

cjr




µ0,r

µ1,r
...

µn,r



.

Therefore by (3.8) the following determinant vanishes for arbitrary n ≥ 0, as long as

n− 1 ≥ m+ j:

0 =
1

Dn(ρ)
det




µ00 · · · µ0,n−1 µmj
...

...
...

µn,0 · · · µn,n−1 µm+n,j


 =

〈
zmpn(z), ρj(z)

〉
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for all j such that 0 ≤ j ≤ n−m− 1. This implies that

zmpn(z) ∈
{
polynomials q(z) |

〈
q(z), ρj(z)

〉
= 0 for 0 ≤ j ≤ n−m− 1

}

= span
{
pn−m(z), pn−m+1(z), . . . ,

}

= span
{
pn−m(z), pn−m+1(z), . . . , pn+m(z)

}
;

the latter identity is valid because zmpn(z) has degree n+m. Therefore L defined by (3.9)

is a (2m+ 1)-band as claimed, ending the proof of Proposition 3.3. �

Remark. A generalized m-periodic sequence of weights can be transformed in an m-

periodic sequence of weights via an invertible lower-triangular transformation of the

ρi in the sequence ρ(z) = (ρj(z))j≥0 ; the new sequence of weights thus obtained become

m-periodic; that is,

zmρj = z
mρm+j. (3.10)

Such a transformation leaves associated polynomials (3.8) unaffected, as is seen from

column operations in the defining ratio of determinants in (3.8). These polynomials then

lead to (2m + 1)-band matrices L, which are thus unaffected by the lower-triangular

operations of the ρi.

4 Darboux transformations on (2m+ 1)-band matrices

The vertex operators Xi(λ) := Xi(x̄, ȳ, t̄; λ), introduced in Section 0 (see [9]), play a central
We added "("
and ")" around
"mi" in eq.
(4.1). Please
check.

role in this work:12

X1(λ) := χ(λ)e
∑∞
1 t̄miλ

mi

e−
∑∞
1 (λ

−mi/(mi))∂/(∂t̄mi) e
∑∞
1 x̄iλ

i

e−
∑∞
1 (λ

−i/i)∂/(∂x̄i)

X2(λ) := χ(λ
−1)e−

∑∞
1 t̄miλ

mi

e
∑∞
1 (λ

−mi/(mi))∂/(∂t̄mi) e
∑∞
1 ȳiλ

i

e−
∑∞
1 (λ

−i/i)∂/(∂ȳi) Λ;

(4.1)

for example, X2(λ) acts on the vector τ(x̄, ȳ, t̄) as follows:

(
X2(λ)τ

(
x̄, ȳ, t̄

))
n
= e−

∑∞
1 t̄miλ

mi

e
∑∞
1 ȳiλ

i

λ−nτn+1
(
x̄, ȳ− [λ−1 ], t̄− [λ−1 ]

)
,

12χ(λ) is a diagonal matrix χ(λ) = diag(λ0 ,λ1 ,λ2 ,...)
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where

ȳ− [λ−1 ] :=

(
y1 −

λ−1

1
, . . . , ym−1 −

λ−(m−1)

m− 1
, 0, ym+1 −

λ−(m+1)

m+ 1
, . . .

)
,

t̄− [λ−1 ] :=

(
0, . . . , 0, tm −

λ−m

m
,0, . . . , 0, t2m −

λ−2m

2m
, 0, . . . , 0, . . .

)
.

The following two theorems were established in [9] and are applied in Section 5

to the concrete τn ’s given by τn = detmn(ρ), with the ρn ’s as in (3.5).

Theorem 4.1 (LU-Darboux transform). Given theToda lattice on semi-infinite (2m+1)-

band matrices, each vector Φ(λ) in the m-dimensional null space, that is,13

Φ(λ) =
τ̃

τ
:=

∑m−1
k=0 (akX1(ω

kλ))τ

τ
∈

(
L(t) − λmI

)−1
(0, 0, . . . ),

satisfies, as a function of x̄, ȳ, t̄, the equations

LΦ = λmΦ,

∂Φ

∂xi
=

(
Li/m

)
+
Φ,

∂Φ

∂yi
=

(
Li/m

)
−
Φ,

∂Φ

∂tim
= (Li)+Φ (4.2)

for i = 1, 2, . . . should not be multiples of m for the xi and yi equations. Each Φ(λ)

determines an LU-Darboux transform, depending projectively on the (m−1)-parameters

ai, namely,

L− λmI �−→ L̃− λmI := (βΛ0 +Λ)(L− λmI)(βΛ0 +Λ)−1

with

βn = −
Φn+1(λ)

Φn(λ)
; (4.3)

it acts on τ as

τ �−→ τ̃ = τΦ =
m−1∑

k=0

(
akX1(ω

kλ)
)
τ. (4.4)

�

Defining ei := (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . ) ∈ R∞ , as before, we have the following theo-

rem.

13The symbolω is a primitivemth root of unity.
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Theorem 4.2 (UL-Darboux transform). Given theToda lattice on semi-infinite (2m+1)-

band matrices, the space (L − λmI)−1 span{e0 , e1 , . . . , em} is 2m-dimensional and thus

depends projectively on (2m− 1)-free parameters; that is,

Φ(λ) =
Λτ̃

τ
:=

∑m−1
k=0

(
akX1(ω

kλ) + bke
∑∞
1 timλ

im

X2(ω
kλ)

)
τ

τ

∈
(
L(t) − λmI

)−1
span{e0 , e1 , . . . , em}.

The vector Φ(λ), as a function of x̄, ȳ, t̄, satisfies (4.2) and determines a UL-Darboux

transform, with the same β as (4.3) (but depending projectively on (2m− 1)-free param-

eters):

L− λmI �−→ L̃− λmI := (Λ−1β+ I)(L− λmI)(Λ−1β+ I)−1 ;

it induces a map on τ:

τ �−→ τ̃ = Λ−1(τΦ) = Λ−1
m−1∑

k=0

(
akX1(ω

kλ) + bke
∑∞
1 timλ

im

X2(ω
kλ)

)
τ. �

5 Proofs of Theorems 0.1 and 0.2: Induced Darboux maps on m-periodic weights

In order to proveTheorems 0.1 and 0.2, we applyTheorems 4.1 and 4.2 to the τ-functions

given by

τn
(
x̄, ȳ, t̄

)
= Dn

(
ρ
(
z; x̄, ȳ, t̄

))

:= Dn
(
ρ0

(
z; x̄, ȳ, t̄

)
, ρ1

(
z; x̄, ȳ, t̄

)
, . . .

)

= detmn
(
ρ
(
z; x̄, ȳ, t̄

))

with

ρj
(
z; x̄, ȳ, t̄

)
= e

∑∞
1 x̄rz

r

e
∑∞
ℓ=1 t̄ℓmz

ℓm
∞∑

ℓ=0

sℓ(−ȳ)ρj+ℓ(z), (5.1)

as in (3.5), where the initial condition ρ(z) = (ρj(z))j≥0 forms an m-periodic sequence

of weights. We now perform Darboux transformations on L(x̄, ȳ, t̄), which satisfies m-

reduced Toda lattice (2.4). Then in the end, put x̄ = ȳ = t̄ = 0. Theorems 5.1 and 5.2 are

the precise analogues of Theorems 4.1 and 4.2.
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Theorem 5.1 (LU-Darboux).The Darboux transform for a semi-infinite (2m + 1)-band

matrix, generated by the m-periodic sequences of weights ρ(z; x̄, ȳ, t̄) above,

L− λmI �−→ L̃− λmI = (βΛ0 +Λ)(L− λmI)(βΛ0 +Λ)−1 , (5.2)

defines a new (2m+ 1)-band matrix L̃, provided

βn = −
Φn+1(λ)

Φn(λ)
, Φn(λ) =

∑m−1
k=0 akX1(w

kλ)Dn
(
ρ(z; x̄, ȳ, t̄)

)

Dn
(
ρ(z; x̄, ȳ, t̄)

) . (5.3)

Case 1. For the special choice

Φ(k)n (λ) = ak
X1(w

kλ)Dn
(
ρ(z; x̄, ȳ, t̄)

)

Dn
(
ρ(z; x̄, ȳ, t̄)

)

with arbitrary, but fixed, 1 ≤ k ≤ n, the Darboux transformation maps τn(x̄, ȳ, t̄) = Dn(ρ)

into a Dn associated with a new m-periodic sequence of weights:

Dn
(
ρ(z; x̄, ȳ, t̄)

)
�−→ D̃n = Dn

(
ρ(z; x̄, ȳ, t̄)

)
Φ(k)n (λ)

= ãkDn
(
(ωkλ− z)ρ(z; x̄, ȳ, t̄)

)
.

(5.4)

Case 2. A general linear combination

Φn(λ) =

∑m−1
k=0 akX1(w

kλ)Dn
(
ρ(z; x̄, ȳ, t̄)

)

Dn
(
ρ(z; x̄, ȳ, t̄)

) (5.5)

leads to the map
There is a
missing right
delimiter in
eq. (5.6).
Please check.

τn(x̄, ȳ, t̄) = Dn(ρ(z; x̄, ȳ, t̄) �−→ τ̃n(x̄, ȳ, t̄)

= Dn
(
ρ(z; x̄, ȳ, t̄)

)
Φ(k)n (λ)

=
m−1∑

k=0

ãkDn
(
(ωkλ− z)ρ(z; x̄, ȳ, t̄)

)

= (−1)n det
(〈
zi, ρ̃0

〉
, 〈zi, ρ̃1〉, . . . , 〈z

i, ρ̃n〉
)
0≤i≤n

,

(5.6)

where

ρ̃0 :=

m−1∑

k=0

ãkδ(z−ω
kλ),

ρ̃ℓ := ρℓ−1(z; x̄, ȳ, t̄) for ℓ ≥ 1,

(5.7)
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and

ãk = ake
∑∞
i=1 t̄imλ

im

e
∑∞
i=1 x̄i(ω

kλ)i.

Remark. For the general case (Case 2), (5.6) is the determinant a ((n+1)×(n+1))-matrix,

instead of n×n. Therefore, to the best of our knowledge, this τ-function is not generated

in the usual way, as a determinant of the n × n upper left-hand corner of the moment

matrix. If all but one of the ak ’s vanish, as in Case 1, then the τ-functions are generated

in the usual way, as appears immediately from the second identity of (5.4). In the next

statement, this problem is absent.

Theorem 5.2 (UL - Darboux). The Darboux transform for a semi-infinite (2m + 1)-band

matrix, arising from m-periodic weights ρ(z; x̄, ȳ, t̄),

L− λmI �−→ L̃− λmI = (Λ⊤β+ I)(L− λmI)(Λ⊤β+ I)−1, (5.8)

maps L into a new (2m+ 1)-band matrix L̃, provided (with D(ρ) := (D0(ρ), D1(ρ), . . . ))

βn = −
Φn+1(λ)

Φn(λ)
,

Φn(λ) =

( ∑m−1
k=0

(
akX1(ω

kλ) + bke
∑
t̄imλ

im

X2(ω
kλ)

)
D(ρ)

)
n

Dn(ρ)
.

(5.9)

It acts on τn(x̄, ȳ, t̄) = Dn(ρ(z; x̄, ȳ, t̄)) as follows:

τn := Dn
(
ρ(z; x̄, ȳ, t̄)

)
�−→ τ̃n

= Dn−1(ρ(z; x̄, ȳ, t̄))Φn−1(λ)

= (−1)n−1 det
(
〈zi, ρ̃0〉, 〈z

i, ρ̃1〉, . . . 〈z
i, ρ̃n−1〉

)
0≤i≤n−1

with

ρ̃0 := ρ̃0(z; x̄, ȳ, t̄) :=

m−1∑

k=0

(
ãkδ(z−ω

kλ) + b̃k
ρk(z; x̄, ȳ, t̄)

zm − λm

)
,

ρ̃ℓ := ρℓ−1(z; x̄, ȳ, t̄) for ℓ ≥ 1,

(5.10)

where

ãk = ake
∑∞
1 x̄i(ω

kλ)i e
∑∞
1 t̄imλ

im

, b̃k = −λ
m−k

m−1∑

j=0

bje
∑
i≥0 ȳi(ω

jλ)iω−jk.

(5.11)

If b̃m−1 �= 0, then the ρ̃0 , ρ̃1 , . . . form a generalized m-periodic sequence. �
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Remark. Although the new sequence ρ̃(z; x̄, ȳ, t̄) is generalizedm-periodic in the sense of

(3.6), it does not lead to a solutionm∞ of the differential equations (3.2); in other words,

it only satisfies (3.5) in the x̄ and t̄ variables, but not in the ȳ variable. Of course, the

matrix L̃ remains a (2m+1)-band matrix, since it is effectively constructed from the new

polynomials pn(z; x̄, ȳ, t̄), defined by (3.8) with the new ρ ’s; see the remark at the end of

Section 3.

Corollary 5.3. An appropriate choice of ak and appropriate limits bk �→ ∞ and λ �→ 0 in
Theorem 5.2 yield the following Darboux transformation on the weights ρ(z; x̄; ȳ; t̄):

ρ = (ρ0 , ρ1 , ρ2 , . . . ) �−→ ρ̃ = (ρ̃0 , ρ̃1 , ρ̃2 , . . . ),

where

ρ̃0 =

m−1∑

k=0

(
ck

(
d

dz

)k
δ(z) + dk

ρk(z; x̄; ȳ; t̄)

zm

)
, dm−1 �= 0,

ρ̃ℓ = ρℓ−1(z; x̄, ȳ, t̄). (5.12)
�

Before proving Theorems 5.1 and 5.2 and Corollary 5.3, we need the following crucial

lemma.

Lemma 5.4. The following two identities hold for the m-periodic sequences of weights

of (5.1):

X1(λ)Dn(ρ) = e
∑∞
1 t̄imλ

im

e
∑∞
1 x̄iλ

i

Dn((λ− z)ρ)

= e
∑∞
1 t̄imλ

im

e
∑∞
1 x̄iλ

i

(−1)n

× det
(
〈zi, δ(z− λ)〉, 〈zi, ρ0〉, . . . , 〈z

i, ρn−1〉
)
0≤i≤n

,

(5.13)

Λ−1e
∑∞
i=1 t̄imλ

im

X2(λ)Dn(ρ)

= e
∑∞
1 ȳiλ

i

(−1)n−1

× det

(〈
zi,

∑m−1
r=0 λ

m−rρr

λm − zm

〉
, 〈zi, ρ0〉, . . . , . . . 〈z

i, ρn−2〉

)

0≤i≤n−1

,

(5.14)

with all the ρj ’s in the determinants above evaluated at x̄, ȳ, t̄ according to (5.1). �

Proof. Here we use the first solution m∞ of (3.4) (and its calculation in the proof of

Theorem 3.1), and in the second equality, we use the familiar formula e−
∑
ui/i = 1 − u.

Using X1(λ), defined in (4.1), one computes
We changed
the · to × to
be consistent
with the paper
throughout.
Please check.
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X1(λ)Dn
(
ρ(z; x̄, ȳ, t̄)

)

= λne
∑∞
ℓ=1 t̄ℓmλ

ℓm

e
∑∞
1 x̄iλ

i

e−
∑∞
1 (λ

im/(im))∂/(∂t̄im) e−
∑
(λ−i/i)∂/(∂x̄i)

× det

{(〈
zi, ρj(z;0, 0, 0)e

∑
x̄rz

r

e
∑∞
ℓ=1 t̄ℓmz

ℓm
〉)
0≤i, j≤∞

× e−
∑∞
1 ȳrΛ

r⊤

}

0≤i, j≤n−1

= λne
∑∞
ℓ=1 t̄ℓmλ

ℓm

e
∑
x̄iλ

i

× det

{(〈
zi, ρj(z, 0, 0, 0)e

−
∑∞
1 (1/r)(z/λ)

r

e
∑∞
1 x̄rz

r

e
∑∞
1 t̄ℓmz

ℓm
〉)
0≤i, j≤∞

× e−
∑∞
1 ȳrΛ

r⊤

}

0≤i, j≤n−1

= e
∑∞
ℓ=1 t̄ℓmλ

ℓm

e
∑
x̄iλ

i

Dn
(
(λ− z)ρ(z; x̄, ȳ, t̄)

)
,

upon bringing λn in the (n × n)-determinant, and using again the first expression (3.4)

form∞ . But using (1.5) and (1.14), we compute, where in this calculation ρi := ρi(x̄, ȳ, t̄),

Dn
(
(λ− z)ρ

)
= det

(
〈zi, (λ− z)ρ0〉, . . . , 〈z

i, (λ− z)ρn−1〉
)
0≤i≤n−1

= det
(
〈zi, ρ0〉, . . . , 〈z

i, ρn−1〉, λ
i
)
0≤i≤n

, using Corollary 2.3,

= (−1)n det
(
〈zi, δ(z− λ)〉, 〈zi, ρ0〉, . . . , 〈z

i, ρn−1〉
)
0≤i≤n

,

using the δ-function property, thus establishing identity (5.13).

For future use, we need the easy identities

e
∑∞
i=1 (a

im/(im)) = e(1/m)
∑∞
1 ((a

m)i/i) =

(
1

1− am

)1/m
, (5.15)

and summing in the exponential over i ’s, not multiples of m, one finds
We changed �|

to ∤ in the
opposite
equation.e

∑∞
m∤i
i=1

(ai/i)

= e
∑∞
1 (a

i/i) e−
∑∞
1 (a

im/(im))

=
(1− am)1/m

1− a

=
1− am

1− a
(1− am)−1+1/m

=

m−1∑

0

ai(1− am)−1+1/m . (5.16)

Notice that, for any moment matrix m∞ defined by m-periodic weights,

(
m∞

(
Λ⊤

λ

)n)

ij

=
µi,j+n

λn
=

〈
zi,
ρj+n

λn

〉
;
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in particular, using the periodicity of the sequence ρj = ρj(z;0, 0, 0), we have

(
m∞

(
Λ⊤

λ

)mk)

ij

=

〈
zi,
ρj+mk

λmk

〉
=

〈
zi,

(
z

λ

)mk
ρj

〉
.

Combining these two facts, we find

(
m∞

(
Λ⊤

λ

)r
f

((
Λ⊤

λ

)m))

ij

=

〈
zi, f

((
z

λ

)m)
ρj+r

λr

〉
. (5.17)

Now using X2(λ), defined in (4.1), and using (3.4) for m∞ , one computes
It is required
to change
“using” to
“Using” in
“Now using
. . . ”. Please
check.

Λ−1e
∑∞
i=1 timλ

im

X2(λ)Dn
(
ρ(z, x̄, ȳ, t̄)

)

= λ1−ne
∑
ȳiλ

i

e
∑∞
1 (λ

−rm/(rm))∂/(∂t̄rm) e−
∑∞
1 (λ

−r/r)∂/(∂ȳr)

× det
{〈
zi, ρj(z;0, 0, 0)e

∑∞
r=1 t̄rmz

rm

e
∑
x̄rz

r
〉
0≤i, j<∞

e−
∑
ȳrΛ

Tr
}
0≤i, j≤n−1

= λ1−ne
∑
ȳiλ

i

det

{〈
zi, ρj(z;0, 0, 0)e

∑∞
r=1 1/(ℓm)(z/λ)

ℓm

e
∑∞
r=1 t̄rmz

rm

e
∑
x̄rz

r

〉

0≤i, j<∞

× e
∑
m�| r 1/r(Λ

⊤/λ)r e−
∑
ȳrΛ

⊤r

}

0≤i, j<n−1

= λ1−ne
∑
ȳiλ

i

× det

{〈
zi, e

∑∞
1 t̄rmz

rm

e
∑
x̄rz

r ρj(z;0, 0, 0)(
1−

(
z

λ

)m)1/m
〉

0≤i, j<∞

×

∑m−1
0

(
Λ⊤

λ

)i

(
1−

(
Λ⊤

λ

)m)1−1/m e
−

∑∞
1 ȳrΛ

⊤r

}

0≤i, j≤n−1

, using (5.15) and (5.16),

= λ1−ne
∑
ȳiλ

i

×

{〈
zi, e

∑∞
1 t̄rmz

rm

e
∑
x̄rz

r

∑m−1
r=0

ρj+r(z;0, 0, 0)

λr(
1−

(
z

λ

)m)1/m(
1−

(
z

λ

)m)1−1/m
〉

0≤i, j<∞

× e−
∑
ȳrΛ

⊤r

}

0≤i, j≤n−1

, using (5.17),

= λ1−ne
∑
ȳiλ

i

det

{〈
zi, e

∑∞
1 t̄rmz

rm

e
∑
x̄rz

r

∑m−1
r=0 λ

m−rρj+r(z;0, 0, 0)

λm − zm

〉

0≤i, j<∞

× e−
∑
ȳrΛ

⊤r

}

0≤i, j≤n−1
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= λe
∑
ȳiλ

i

det

{〈
zi,

m−1∑

r=0

λm−1−r

λm − zm
ρj+r(z, x̄, ȳ, t̄)

〉

0≤i, j≤n−1

}

= λe
∑
ȳiλ

i

(−1)n−1 det

(〈
zi,

m−1∑

r=0

λm−1−rρr(z; x̄, ȳ, t̄)

λm − zm

〉
,
〈
zi, ρ0(z; x̄, ȳ, t̄)

〉
,

. . . , 〈zi, ρn−2(z; x̄, ȳ, t̄)〉

)

0≤i≤n−1

.

The second from the last expression is a consequence of (3.4) and (3.5), according to

the argument in the proof of Theorem 3.1 and the linearity of (3.5) with respect to the

measures ρ = (ρ0 , ρ1 , . . . ), while the last line is obtained by replacing the jth column Cj

by Cj − λCj−1 , 2 ≤ j ≤ n, in the previous determinant and using the following identity:

m−1∑

r=0

λm−1−rρj+r

λm − zm
− λ

m−1∑

r=0

λm−1−rρj+r−1

λm − zm
=
ρj+m−1 − λ

mρj−1

λm − zm

=
zmρj−1 − λ

mρj−1

λm − zm

= −ρj−1 . �

Proof of Theorem 5.1. From Theorem 4.1 (map (4.4)) and from (5.13) of Lemma 5.4 it

follows that

τn = Dn(ρ) �−→ τ̃n

=

m−1∑

k=0

akX1(ω
kλ)Dn(ρ)

=

m−1∑

k=0

e
∑∞
1=i t̄imλ

im

e
∑∞
i=1 x̄i(ω

kλ)i akDn
(
(ωkλ− z)ρ

)

=

m−1∑

k=0

ãk Dn
(
(ωkλ− z)ρ

)

= (−1)n
m−1∑

k=0

ãk det
(
〈zi, δ(z−ωkλ)〉, 〈zi, ρ0〉, . . . , 〈z

i, ρn−1〉
)
0≤i≤n

.

The expression on the right-hand side of the third identity establishes the second identity

(5.6), whereas the last identity establishes the third (5.6), ending the proof of Case 1.

Setting all but one ak = 0 establishes (5.4) in Case 1. �

Proof of Theorem 5.2. According to Theorem 4.2 and Lemma 5.4, UL-Darboux transform

(5.8) with βn given in (5.9) acts on τn(z; x̄, ȳ, t̄) := Dn(ρ(z; x̄, ȳ, t̄)) as follows:
We could not
run in “with
ãk as in (5.11)
and . . . ” in
the following
equation to
avoid the over
full. Please
check.
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τn �−→ τ̃n =
(
Λ−1τΦ(λ)

)
n

=

(
m−1∑

k=0

(
akΛ

−1X1(ω
kλ) + bkΛ

−1e
∑∞
i=0 t̄imλ

im

X2(ω
kλ)

)
τ

)

n

= (−1)n−1 det

(〈
zi,

m−1∑

k=0

ãkδ(z−ω
kλ)

〉
, 〈zi, ρ0〉, · · · , 〈z

i, ρn−2〉

)

0≤i≤n−1

+ (−1)n−1 det

(〈
zi,

m−1∑

k=0

b ′k

m−1∑

r=0

(ωkλ)m−r

λm − zm
ρr

〉
,

〈zi, ρ0〉, . . . , 〈z
i, ρn−2〉

)

0≤i≤n−1

with ãk as in (5.11) and b
′
k = bke

∑∞
1 ȳi(ω

kλ)i ,

= (−1)n−1 det

(〈
zi,

m−1∑

k=0

ãkδ(z−ω
kλ)+

m−1∑

r=0

λm−r

λm − zm

(
m−1∑

k=0

b ′kω
−kr

)
ρr

〉
,

〈zi, ρ0〉, . . . , 〈z
i, ρn−2〉

)

0≤i≤n−1

= (−1)n−1 det
(
〈zi, ρ̃0〉, 〈z

i, ρ̃1〉, · · · , 〈z
i, ρ̃n−1〉

)
0≤i≤n−1

,

using the new ρ̃i defined in (5.10).

Finally, using the δ-function property in the second identity, and using ρ̃k = ρk−1

for k not a multiple of m, we prove that the following new sequence is generalized m-

periodic:

zmρ̃0 =

m−1∑

k=0

(
ãkz

mδ(z−ωkλ) + b̃k
λm + (zm − λm)

zm − λm
ρk(z)

)

= λm
m−1∑

k=0

(
ãkδ(z−ω

kλ) + b̃k
ρk(z)

zm − λm

)
+

m−1∑

k=0

b̃kρk(z)

= λmρ̃0(z) +

m∑

k=1

b̃k−1 ρ̃k(z)

∈ span {ρ̃0 , . . . , ρ̃m} with the condition that b̃m−1 �= 0,

zmρ̃k = z
mρk−1 = ρk−1+m = ρ̃k+m, for k ≥ 1, not a multiple of m,

establishing Theorem 5.2. �

Remark. As already pointed out in the remark following the statement of Theorem 5.2,

although the sequence ρ(x̄, ȳ, t̄) is generalized m-periodic in the sense of Definition 3.2,

it is notm-periodic in the sense of (0.1) and it only leads to a solutionm∞ of (3.2) in the
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x̄ and t̄ variables, but not in ȳ. However, since the matrix L̃ is computed from the new

polynomials pn(z; x̄, ȳ, t̄) (defined inTheorem 3.1) by z
mp = L̃p and since establishing the

form of pn only depended on the x-dependence of τ through ρ(x̄, ȳ, t̄), it is indeed defined

by m-periodic weights.

Proof of Corollary 5.3. The proof follows at once from Theorem 5.2 by letting λ → 0,

letting bk → ∞, and by picking appropriate ak. �

Proofs of Theorems 0.1, 0.2, and Corollary 0.3. The proofs follow from setting (x̄, ȳ, t̄) =

(0, 0, 0) in Theorems 5.1, 5.2, and Corollary 5.3. �

We put end of
proof box
here. Please
check.6 Example 1: Darboux transform for tridiagonal matrices

In this section, we specialize to the case m = 1, which leads naturally to orthogonal

polynomials, to three-step relations, and so to semi-infinite tridiagonal matrices L. The

LU-Darboux transform on such matrices consists of decomposing the matrices L− λI as

a product of lower- and upper-triangular matrices and multiplying them in the opposite

order.The UL-Darboux goes the other way around. Unlike the case of bi-infinite matrices,

the LU-Darbouxmap for the semi-infinite case is a unique operation,of course depending

on the parameter λ, whereas the UL-Darboux depends on a free parameter σ, besides λ.

What is the effect of this operation on weights? Theorems 5.1 and 5.2 show that

the LU-Darboux has the effect of multiplying the weight ρ(z) with λ − z and the UL-

Darboux divides theweight by λ−z, augmented by a delta-function (σ/λ)δ(z−λ) involving

the free parameter σ.

In [9],we show that, upon letting the tridiagonal, bi-infinitematrices flow accord-

ing to the standard Toda lattice, the LU- or UL-Darboux transforms act on the eigen-

vectors as discrete Wronskians and on the τ-functions as vertex operators especially

tailored to the Toda lattice. Both transforms depend on one free (projective) parameter.

The reduction to the semi-infinite case cuts out this freedom for the LU-transform, but

not for the UL-transform.

This vertex operators technology can be used very efficiently to get the results,

after setting t = 0; in fact one,can establish a dictionary between the three points of view:

weights,vertex operators,andDarboux transforms,as summarized in (0.23); the point of

the dictionary is contained in the subsequent theorems and corollaries.The relationship

rests on an elementary addition formula; namely, the sum of moment determinants Dn

and Dn−1 with regard to specific weights is again a moment determinant Dn, but with

respect to a new weight:
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Dn(ρ) + cDn−1
(
(λ− z)2ρ(z)

)
= Dn

(
ρ(z) + cδ(λ− z)

)
;

this fact is not surprising, in view of the fact that if the τ = (τn)n≥0 is a vector of

τ-functions for the standard Toda lattice, then the expressions

τ(t) + cX(t, λ)τ(t)

form a Toda τ-vector as well, where X(t, λ) is the standard Toda vertex operator, defined

in (0.21), and acting on τ as in (0.22).

An arbitrary weight ρ(z) on R yields a 1-periodic sequence (ρ(z), zρ(z), z2ρ(z), . . . )

and a moment matrix m∞, satisfying Λm∞ = m∞Λ⊤ (the Hänkel matrix). Also,

mn(ρ) =
(
µi+j(ρ)

)
0≤i, j≤n−1

, Dn(ρ) = detmn(ρ) with µk(ρ) =

∫

R

zkρ(z)dz,

(6.1)

with D0 = 1. Orthogonality relations (3.7) lead to monic orthogonal polynomials in z of

degree n,

pn(z) =
1

Dn(ρ)
det




µ0(ρ) · · · µn−1(ρ) 1

...
...

...

µn−1(ρ) · · · µ2n−2 (ρ) zn−1

µn(ρ) · · · µ2n−1 (ρ) zn



with 〈pi, pjρ〉 = δijhi.

(6.2)

In turn, the semi-infinite vector of polynomials p = (pn(z))n≥0 leads to a semi-infinite

tridiagonal matrix L, defined by

zp = Lp with L =




b0 1

a0 b1
. . .

. . .
. . .


 . (6.3)

Theorem 6.1. (i) Given the weight ρ(z) and λ ∈ C, the eigenvector of L, corresponding to

the eigenvalue λ,

(
Φn(λ)

)
n≥0
=

(
pn(λ)

)
n≥0
=

(
Dn((λ− z)ρ(z))

Dn(ρ)

)

n≥0

∈ (L− λI)−1(0, 0, 0, . . . ), (6.4)
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specifies a unique LU-Borel factorization

L− λI = L−L+ =




1 0

α0 1
. . .

. . .
. . .







β0 1

0 β1
. . .

. . .
. . .


 ,

with

βn := −
Φn+1(λ)

Φn(λ)
, αn−1 = bn − βn − λ. (6.5)

The LU-Darboux transform

L− λ = L−L+ �−→ L̃− λ = L+L− (6.6)

induces the following map on weights ρ(z):

ρ(z) �−→ ρ(z)(λ− z). (6.7)

(ii) The 2-dimensional eigenspace, corresponding to the eigenvalue λ and with a

different boundary condition at n = 0, is given by

(
Φn(λ)

)
n≥0
=




σ

λ
Dn((λ− z)ρ(z)) +Dn+1

(
ρ(z)

λ− z

)

Dn(ρ)



n≥0

∈ (L− λI)−1(1, 0, 0, . . . ).

(6.8)

It specifies a σ-dependent family of UL-Borel factorizations,

L− λ = L ′+L
′
− =




α−1 1

0 α0
. . .

. . .
. . .







1 0

β0 1
. . .

. . .
. . .


 , (6.9)

with the same βn and αn−1 as in (6.5), but with Φn defined by (6.8). This defines UL-

Darboux transforms

L− λ = L ′+L
′
− �−→ L̃ ′ − λ = L ′−L ′+, (6.10)

inducing the following map on weights ρ(z):

ρ(z) �−→
(
ρ(z)

λ− z
+
σ

λ
δ(λ− z)

)
. (6.11)

�
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Proof. These statements follow immediately from settingm = 1 inTheorems 0.1 and 0.2.

�

Corollary 6.2. Consider the map L �→ L ′′, defined by a UL-Darboux transform followed

by a LU-transform,

L− λ = L+L− �−→ L ′ − λ := L−L+ �−→ L ′ − µ = L ′−L ′+ �−→ L ′′ − µ := L ′+L ′−,

where the parameter of the first UL-Darboux map is given by

σ :=
cµ

µ− λ
;

then, upon taking the limit µ→ λ, the map above induces a map of weights,

ρ(z) �−→ ρ(z) + cδ(λ− z). �

Corollary 6.3. Concatenating m LU-Darboux transforms with parameter µi and n UL-

Darboux transforms with ni parameters converging to λi (n1 + · · ·+nr = n) induces the

following map of weights:

ρ(z) �−→
( ∏m

1 (z− µi)∏r
1(z− λk)

nk
ρ(z) +

r∑

k=1

nk∑

j=1

ckj

(
∂

∂z

)j−1
δ(z− λk)

)
.

Upon picking the µi appropriately, the fraction in front of ρ(z) in the formula above

disappears. �

These statements are established by letting the moment matrixm∞ flow accord-

ing to (1.1) and then letting the associated tridiagonal matrix L flow according to the

standard Toda lattice

∂L

∂tn
=

[
(Ln)+, L

]
, n = 1, 2, . . . . (6.12)

(Remember (Ln)+ denotes the strictly upper-triangular part of L
n.) In the 3-reduction of

2-Toda, only one set of times t = t̄ = (t1 , t2 , . . . ) of (2.1) remains. The (x̄, ȳ, t̄) evolution

(3.5) of the weight ρ(z) reduces to the simple formula

ρt(z) := e
∑∞
1 tiz

i

ρ(z),

which was shown in a direct way in [6], for instance; in other terms, theToda vector fields

(6.12) linearize at the level of the weight ρt(z). The deformations ρt(z) of ρ(z) enable one
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to define t-dependent moments µk(ρt(z)), associated moment matrices mn(ρt(z)), and

t-dependent monic orthogonal polynomials pn(z; t) of degree n, with L
2-norms

hn(t) :=

∫

R

p2n(t, z)ρ(t, z)dz =
τn+1(t)

τn(t)
. (6.13)

The entries of the t-dependent L-matrix are expressed in terms of the τ-functions

Dn(ρt) = detmn(ρt) =: τn(t), (6.14)

as follows:

bk =
∂

∂t1
log
τk+1

τk
and ak−1 =

τk−1τk+1

τ2k
. (6.15)

Setting m = 1 in the vertex operators X1(t, λ) and X2(t, λ) of (4.1) leads to

X1(t, λ) := χ(λ)X(t, λ) and X2(t, λ) := χ(λ
−1)X(−t, λ)Λ. (6.16)

They are generating functions of symmetries of the standard Toda lattice and act on

τ-vectors (see [9]). The vertex operator X(t, λ), defined in (0.21), is obtained from X1(t, λ)

and X2(t, λ) as follows:

X(t, λ) := limµ→λ
1

1−
λ

µ

(
e

∑
tiµ

i

X2(t, µ)
)−1

X1(t, λ)

= Λ−1χ(λ2)e
∑
tiλ

i

e−2
∑
(λ−i/i)∂/(∂ti) ;

(6.17)

it has the surprising property (in view of the nonlinearity of the problem) that, given a

vector τ = (τ0 , τ1 , . . . ) of Toda τ-functions, the new vector (see (0.22))

τ+ X(t, λ)τ (6.18)

is a new vector of Toda τ-functions. For connections with vertex operator algebras,

see [18].

The following statements,Theorem 6.4 and Corollary 6.5, are completely parallel

with Theorem 6.1 and Corollary 6.2. They provide a dictionary between the three points

of view.
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Theorem 6.4. (i) The eigenvector14

Φ(t, λ) :=
X1(t, λ)τ(t)

τ(t)

= e
∑∞
0 tiλ

i

(
Dn((λ− z)ρt(z))

Dn(ρt)

)

n≥0

∈
(
L(t) − λI

)−1
(0, 0, 0, . . . )

(6.19)

induces a LU-Borel factorization, as in (6.5), with

αn =
∂

∂t1
logΦn+1(t, λ) − λ

and

βn = −
Φn+1(t, λ)

Φn(t, λ)
= −

∂

∂t1
log

(
τn

τn+1
Φn(t, λ)

)
; (6.20)

the LU-Darboux transform L(t) − λ �→ L̃(t) − λ with new entries b̃n and ãn is given by

(6.6) in terms of the new τ-function

τ �−→ τ̃ = τΦ = X1(t, λ)τ(t). (6.21)

(ii) The eigenvectors

Φ(t, λ) :=
1

λ

(
σX1(t, λ) + e

∑
tiλ

i

X2(t, λ)
)
τ(t)

τ(t)

=




σ

λ
e

∑
tiλ

i

Dn((λ− z)ρt(z)) +Dn+1

(
ρt(z)

λ− z

)

Dn(ρt)



n≥0

∈ (L− λI)−1(1, 0, 0, . . . )

(6.22)

induce a UL-factorization with α and β as in (6.20), but with Φn(t, z) defined in (6.22);

it defines a UL-Darboux transform L(t) − λ �→ L̃ ′(t) − λ, as in (6.10), with new entries b̃ ′n
and ã ′

n, given by (6.15) in terms of the new τ-function

τ �−→ τ̃ ′ = Λ−1λτΦ = Λ−1
(
σ X1(t, λ) + e

∑
tiλ

i

X2(t, λ)
)
τ(t). (6.23)

�

14This is defined with asymptoticsΦn(t,λ) = e
∑
tiλ

i
λn(1+O(λ−1 )).
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Corollary 6.5. Consider the map L(t) �→ L ′′(t), defined by a UL-Darboux transform fol-

lowed by a LU-transform, as in Corollary 6.2, with that same choice of σ. It induces map

(6.18) at the level of Toda τ-vectors,

Dn(ρt) �−→ Dn
(
ρt(z) + ce

∑∞
1 tiz

i

δ(λ− z)
)
= (1+ cX(t, λ))Dn(ρt), (6.24)

where X(t, λ) is Toda lattice vertex operator (6.17). �

Instead of using Theorems 0.1 and 0.2 to establish those results, one can prove

themdirectly,using the formulae in Proposition 6.6 below. In thisway, classical formulae
Shouldn’t we
delete “below”
in “in Proposi-
tion 6.6 below
. . . ”. Please
check.

have a natural τ-function counterpart.

Proposition 6.6. Given the weights ρt(z), the moments µi(ρt(z)), and the τ-functions

τn(t) := Dn(ρt), we have the following expressions for
15

• the monic orthogonal polynomials:

pn(u; t) =
1

Dn(ρt)
det




µ0 · · · µn−1 1

...
...

...

µn−1 · · · µ2n−2 un−1

µn · · · µ2n−1 un




=
Dn((u− z)ρt(z))

Dn(ρt(z))

= un
τn(t− [u

−1 ])

τn(t)
,

qn−1(u; t) :=

∫

Rn

pn(x; t)

u− x
ρt(x)dx

=
1

Dn−1(ρt(z))
Dn

(
ρt(z)

u− z

)

= u−n
τn(t+ [u

−1 ])

τn−1(t)
;

15Remember that [α] := (α,α2/2,α3/3,...).
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• the Christoffel-Darboux kernels (for hi, see (6.13)):

∑

0≤j≤n

h−1j (t)pj(u; t)pj(v; t) = −
1

Dn+1(ρt)
det




0 1 v · · · vn

1 µ0 µ1 · · · µn

u µ1 µ2 · · · µn+1
...

un µn µn+1 · · · µ2n




=
Dn((u− z)(v− z)ρt(z))

Dn+1(ρt)

= (uv)n
τn(t− [u

−1 ] − [v−1 ], ρ)

τn+1(t, ρ)
;

• the addition formula:

Dn
(
ρt(z) + cδ(u− z)

)
= Dn(ρt) + ce

∑
tiu

i

Dn−1
(
(u− z)2ρt(z)

)

=
(
1+ cX(t, u)

)
Dn(ρt). �

This last identity hinges on the addition formula. For a (n × n)-moment matrix

mn, the following identity holds:

det
(
mn(ρ) + cχn(u)⊗ χn(u)

)
= detmn(ρ) + cdetmn−1

(
(z− u)2ρ(z)

)
,

where

χn(u)⊗ χn(v) :=
(
uivj

)
0≤i, j≤n

.

7 Example 2: “Classical” polynomials satisfying (2m+ 1)-step relations

A very natural set of “classical” examples is to start from a weight for the standard

orthogonal polynomials, thus corresponding to a tridiagonal matrix L1 = L2 . Then we

perform two consecutive Darboux transforms on the (2m+1)-diagonal matrix L = Lm1 =

Lm2 . This has the effect of mapping a 1-periodic sequence of weights to a generalized

m-periodic sequence of weights, thus leading to (2m + 1)-band matrices. Therefore one

is lead to a sequence of (2m+1)-step polynomials p̃
(1)
n derived from the “standard” ones;

they satisfy (2m+1)-step relations, that is, zmp̃
(1)
n = Lp̃

(1)
n ,with (2m+1)-diagonal L, but

not 3-step relations.
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For a general m-periodic weight sequence, for appropriate choices of β and β̃,

and setting λ = 0 in (5.2) and (5.8), the compound map

L �−→ L̃ = (βΛ0 +Λ)L(βΛ0 +Λ)−1 �−→ ˜̃
L =

(
Λ⊤β̃+ I

)
L̃
(
Λ⊤β̃+ I

)−1
(7.1)

induces, according to Theorems 0.1, 0.2, and Corollary 0.3, the following compound map

of weights (assuming dm−1 �= 0):

ρ �−→ ρ̃ = (zρ0 , zρ1 , zρ2 , . . . ) �−→ ˜̃ρ =
(
m−1∑

0

(ckδ
(k) (z) + dk

ρk(z)

zm−1

)
, zρ0 , zρ1 , . . .

)
.

A particularly interesting case is to start with weights having the form ρk(z) =

zkρ0(z), where ρ0(z) is subjected to the following condition:

∫

R

∣∣zjρ0(z)
∣∣dz <∞, j ≥ −m+ 1.

Then the polynomials p
(1)
n are orthogonal with respect to the weight ρ0(z) and the map

above becomes

ρ =
(
ziρ0(z)

)
0≤i<∞ �−→ ˜̃ρ

=
(˜̃ρ0 , ˜̃ρ1 , ˜̃ρ2 , . . .

)

=

(
m−1∑

k=0

(
ckδ

(k) (z) + ρ0(z)
dm−k−1

zk

)
, zρ0 , z

2ρ0 , . . .

)
. (7.2)

From the general theory, this new sequence is generalized m-periodic with minimal

period m. One checks by hand, using zmδ(k) (z) = 0 for 0 ≤ k ≤ m− 1, that

zm˜̃ρ0 =
m−1∑

k=0

(
ckz

mδ(k) (z) + dm−k−1z
m−kρ0(z)

)

=

m−1∑

k=0

dm−k−1z
m−kρ0(z)

=

m∑

1

dj−1
˜̃ρj.
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The new moments ˜̃µij = 〈zi, ˜̃ρj(z)〉 become

˜̃µi0 =
〈
zi, ˜̃ρ0

〉
=

m−1∑

k=0

µi−kdm−k−1 +

m−1∑

k=0

(−1)kk!ckδik,

˜̃µij =
〈
zi, ˜̃ρj

〉
=

〈
zi, zjρ0

〉
= µi+j for j ≥ 1, (7.3)

thus defining monic polynomials ˜̃p
(1)

n (z),

(
det ˜̃mn

)˜̃p
(1)

n (z)

= det




m−1∑

k=0

µ−kdm−k−1 + c0 µ1 µ2 · · · 1

m−1∑

k=0

µ1−kdm−k−1 − c1 µ2 µ3 · · · z

m−1∑

k=0

µ2−kdm−k−1 + 2!c2 µ3 µ4 · · · z2

...
...

... · · ·
...

m−1∑

k=0

µm−k−1dm−k−1+(−1)
m−1(m− 1)!cm−1 µm µm+1 · · · zm−1

m−1∑

k=0

µm−kdm−k−1 µm+1 µm+2 · · · zm

...
...

... · · ·
...

m−1∑

k=0

µn−kdm−k−1 µn+1 µn+2 · · · zn




,

which satisfy (2m+ 1)-step relations

zmp(1) (z) = Lp(1) (z) with a (2m+ 1)-band matrix L.

Because of the fact that very special cases of these polynomials have appeared in [16]

on pentadiagonal matrices, obtained by taking squares of the classical tridiagonal ma-

trices for the Laguerre and Jacobi polynomials, we show how our polynomials can be

specialized to those cases. Henceforth, for notational convenience, we replace ˜̃by˜ in
map (7.2).

Example. 5-step Laguerre polynomials. Darboux transforms for L = L21 and weight

ρ0(z) = z
αe−zI[0,∞ ) (z) for α > 0. Setting m = 2 in (7.2), we find the map

ρ =
(
ρ0(z), zρ0(z), z

2ρ0(z), . . .
)
�−→ ρ̃ =

(
ρ̃0(z), ρ̃1(z), ρ̃2(z), . . .

)
,



Band Matrix 43

with

ρ̃0(z) = Γ(α)
(
cδ(z) + dδ ′(z)

)
+

(
b+
e

z

)
ρ0(z) with b �= 0,

ρ̃i(z) = z
iρ0(z) = z

α+ie−zI[0,∞ ) (z), i ≥ 1,

obtained from (7.2), by setting, for homogeneity considerations and without loss of gen-

erality,

c0 = cΓ(α), c1 = dΓ(α), d0 = e, d1 = b.

The moments 〈zi, ρj(z)〉 for the original sequence are given by the following ex-

pressions:

µij = 〈zi, ρj〉 = 〈zi, zjρ0〉 = Γ(α+ i+ j+ 1),

with polynomials16

p(1)n (z) =
1

detmn




α! (α+ 1)! (α+ 2)! · · · 1

(α+ 1)! (α+ 2)! (α+ 3)! · · · z

(α+ 2)! (α+ 3)! (α+ 4)! · · · z2

(α+ 3)! (α+ 4)! (α+ 5)! · · · z3

...
...

... · · ·
...

(α+ n)! (α+ n+ 1)! (α+ n+ 2)! · · · zn




=
n∑

i=0

(
n

i

)
(α+ n)i(−1)

izn−i;

the latter are,as expected, the Laguerre polynomials orthogonalwith regard to theweight

ρ0(z).

The Darboux transformed moments µ̃ij = 〈zi, ρ̃j(z)〉 are given by the expressions

µ̃i0 = 〈zi, ρ̃0〉 = eΓ(α+ i) + bΓ(α+ i+ 1) + (δi,0 c− δi,1d)Γ(α),

µ̃ij = 〈zi, ρ̃j〉 = 〈zi, zjρ0〉 = Γ(α+ i+ j+ 1) for j ≥ 1,

16Define α! := Γ (α+1), (α)0 = 1, and (α)j =α(α−1) · · · (α− j+1).
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from which one computes the Darboux transformed monic polynomials

(det m̃n)p̃
(1)
n (z)

=




(α− 1)!e+ α!b+ (α− 1)!c (α+ 1)! (α+ 2)! · · · 1

α!e+ (α+ 1)!b− (α− 1)!d (α+ 2)! (α+ 3)! · · · z

(α+ 1)!e+ (α+ 2)!b (α+ 3)! (α+ 4)! · · · z2

(α+ 2)!e+ (α+ 3)!b (α+ 4)! (a+ 5)! · · · z3

...
...

... · · ·
...

(α+ n− 1)!e+ (α+ n)!b (α+ n+ 1)! (α+ n+ 2)! · · · zn




.
(7.4)

The appendix to this paper gives the first four 5-step Laguerre polynomials.

The classical Laguerre polynomials are evidently special cases of the following

Darboux transformed polynomials p̃
(1)
n ’s:

p(1)n (z) = p̃
(1)
n (z)|c=d=e=0,b=1 .

It is interesting that, in an effort to find bispectral problems, Grünbaum and

Haine [16] obtained special cases of these polynomials.Their methodwas to perform two

explicit Darboux transforms on the explicit square L = L2 of the 3-step relation L for

the Laguerre polynomials. They found, by computation, a new matrix L̃ and polynomials

p̃(z), which coincide with ours, by setting c = d = 0, e/b = α/r in (7.4), and hence r �= 0.

They show that they are related to Laguerre by means of a differential equation. Indeed,

given the differential equation for the Laguerre polynomials,

B = −z
∂2

∂z2
+ (z− α− 1)

∂

∂z
with Bpn(z) = npn(z),

and the operators

P = B+
∂

∂z
+ r and Q = B−

∂

∂z
+ r+ 1,

they show that the p
(1)
n ’s and p̃

(1)
n ’s are related by the following differential equations:

Ppn(z) = (n+ r)p̃n(z) and Qp̃n(z) = (n+ r+ 1)pn(z).
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Example. 5-step Jacobi polynomials. Darboux transform for L = L2 and Jacobi weight17

ρ0(z) = (2− z)
αzβI[0,2] (z), for α > −1 and β > 0. Here the map is given by ρ �→ ρ̃ with

ρ̃0(z) = ν
(
cδ(z) + dδ ′(z)

)
+ ρ0(z)

(
e+
b

z

)
with e �= 0,

ρ̃i(z) = z
iρ0(z) = (2− z)

αzβ+iI[0,2] (z) for i ≥ 1, (7.5)

with

ν = 2α+β+1
Γ(α+ 1)Γ(β+ 1)

Γ(α+ β+ 2)
.

As in the previous example, the adjustments of constants were made for homogeneity

reasons.

The moments for the original sequence are given by

µij =
〈
zi, ρ̃j

〉
= 2α+β+i+j+1

α!(β+ i+ j)!

(α+ β+ i+ j+ 1)!
for j ≥ 1

and the Jacobi polynomials by

p(1)n (z)

=
1

detmn

× det




α!2β+α+1β!
(β+α+1)!

α!2β+α+2(β+1)!

(β+α+2)!
α!2β+α+3 (β+2)!
(β+α+3)! · · · 1

α!2β+α+2 (β+1)!
(β+α+2)!

α!2β+α+3 (β+2)!
(β+α+3)!

α!2β+α+4 (β+3)!
(β+α+4)! · · · z

α!2β+α+3 (β+2)!
(β+α+3)!

α!2β+α+4 (β+3)!
(β+α+4)!

α!2β+α+5 (β+4)!
(β+α+5)! · · · z2

...
...

...
...

...

α!2β+α+n+1 (β+n)!
(β+α+n+1)!

α!2β+α+n+2 (β+n+1)!
(β+α+n+2)!

α!2β+α+n+3 (β+n+2)!
(β+α+n+3)! · · · zn




=
1

detmn

n∑

k=0

(−2)n−k
(
n

k

)
(α+ β+ n+ k)k(β+ n)n−kz

k.

The Darboux transformed moments are given by

〈zi, ρ̃0〉 = 2
α+β+i+1 α!(β+ i)!

(α+ β+ i+ 1)!

(
(e+ cδi0) + (b− dδi1)

α+ β+ i+ 1

2(β+ i)

)
,

〈zi, ρ̃j〉 = 2
α+β+i+j+1 α!(β+ i+ j)!

(α+ β+ i+ j+ 1)!
for j ≥ 1,
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and the new polynomials p̃
(1)
n by

We had to
reduce the
font sizes and
the spaces
between the
columns of
the opposite
equation to fit
into the text
width. Please
check.

p̃(1)n

=
1

detmn

×det




α!2β+α+1 β!(e+c+
b(β+α+1)

2β
)

(β+α+1)!
α!2β+α+2 (β+1)!

(β+α+2)!
α!2β+α+3 (β+2)!

(β+α+3)!
· · · 1

α!2β+α+2 (β+1)!(e+
(β+α+2)(b−d)

2(β+1)
)

(β+α+2)!
α!2β+α+3 (β+2)!

(β+α+3)!
α!2β+α+4 (β+3)!

(β+α+4)!
· · · z

α!2β+α+3 (β+2)!(e+
b(β+α+3)
2(β+2)

)

(β+α+3)!
α!2β+α+4 (β+3)!

(β+α+4)!
α!2β+α+5 (β+4)!

(β+α+5)!
· · · z2

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.

α!2β+α+n+1 (β+n)!(e+
b(β+α+n+1)

2(β+n)
)

(β+α+n+1)!
α!2β+α+n+2 (β+n+1)!

(β+α+n+2)!
α!2β+α+n+3 (β+n+2)!

(β+α+n+3)!
· · · zn




.

Again in [16], Grünbaum and Haine considered special cases of these polynomi-

als. Namely, the Jacobi polynomials satisfy a differential equation,

Bp(1)n = n(n+ α+ β+ 1)p(1)n ,

involving the differential operator

B = z(z− 2)

(
∂

∂z

)2
+

(
(α+ β+ 2)z− 2(β+ 1)

) ∂
∂z
.

Defining

P = B− (z− 2)
∂

∂z
+ r and Q = B+ (z− 2)

∂

∂z
+ r+ α+ β+ 1,

they show that the p
(1)
n and p̃

(1)
n ’s, for c = 0, d = 0, e/b = r/2β, and hence r �= 0, are

related by the following differential equations:

Pp(1)n =
(
n2 + (α+ β)n+ r

)
p̃(1)n ,

Qp̃(1)n =
(
n2 + (α+ β+ 2)n+ α+ β+ r+ 1

)
p(1)n .

This paper shows that these polynomials have a determinantal representation in

terms of moments, defined with respect to periodic sequences of weights. Moreover, the

vertex operator technology enables one to consider general (2m + 1)-band matrices. It

remains an interesting open question to investigate the differential equations satisfied

by the general (2m+ 1)-step Laguerre or Jacobi polynomials.

17 It is more convenient to base the Jacobi weight on [0,2] rather than on [−1,1].
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8 Appendix

The first few 5-step Laguerre polynomials are given by the following polynomials,which,

for convenience of notation, we did not make monic (set α = a):

p̃
(1)
1 (z) = (e+ c+ ab)z− ae+ d− a

2b− ab,

p̃
(1)
2 (z) = (2e+ d+ ac+ 2c+ ab)z

2

− (4ae+ 6e+ a2c+ 5ac+ 6c+ 2a2b+ 4ab)z

+ (a+ 2)(2ae− ad− 3d+ a2b+ ab),

p̃
(1)
3 (z) = (6e+ 2ad+ 6d+ a

2c+ 5ac+ 6c+ 2ab)z3

− (18ae+ 48e+ 3a2d+ 21ad+ 36d+ 2a3c+ 18a2c

+ 52ac+ 48c+ 6a2b+ 18ab)z2

+ (a+ 3)(18ae+ 24e+ a3c+ 9a2c+ 26ac+ 24c+ 6a2b+ 12ab)z

− (a+ 2)(a+ 3)(6ae− a2d− 7ad− 12d+ 2a2b+ 2ab),

p̃
(1)
4 (z) = (24e+ 3a

2d+ 21ad+ 36d+ a3c+ 9a2c+ 26ac+ 24c+ 6ab)z4

− (96ae+ 360e+ 8a3d+ 96a2d+ 376ad+ 480d+ 3a4c

+ 42a3c+ 213a2c+ 462ac+ 360c+ 24a2b+ 96ab)z3

+ 3(a+ 4)(48ae+ 120e+ 2a3d+ 24a2d+ 94ad+ 120d+ a4c

+ 14a3c+ 71a2c+ 154ac+ 120c+ 12a2b+ 36ab)z2

− (a+ 3)(a+ 4)(96ae+ 120e+ a4c+ 14a3c+ 71a2c+ 154ac

+ 120c+ 24a2b+ 48ab)z

+ (a+ 2)(a+ 3)(a+ 4)(24ae− a3d− 12a2d− 47ad− 60d+ 6a2b+ 6ab),

and so on.
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