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TODA VERSUS PFAFF LATTICE AND
RELATED POLYNOMIALS

M. ADLER and P. VAN MOERBEKE

Abstract
We study the Pfaff lattice, introduced by us in the context of a Lie algebra splitting of
gl(infinity) intosp(infinity) and lower-triangular matrices. We establish a set of bilin-
ear identities, which we show to be equivalent to the Pfaff Lattice. In the semi-infinite
case, the tau-functions are Pfaffians; interesting examples are the matrix integrals
over symmetric matrices (symmetric matrix integrals) and matrix integrals over self-
dual quaternionic Hermitian matrices (symplectic matrix integrals).

There is a striking parallel of the Pfaff lattice with the Toda lattice, and more so,
there is a map from one to the other. In particular, we exhibit two maps, dual to each
other,
(i) from the the Hermitian matrix integrals to the symmetric matrix integrals, and
(ii) from the Hermitian matrix integrals to the symplectic matrix integrals.

The map is given by the skew-Borel decomposition of a skew-symmetric operator.
We give explicit examples for the classical weights.
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0. Introduction
Consider a weight onR, depending ont = (t1, t2, . . .) ∈ C

∞,

ρt (z) dz= e
∑∞

1 ti zi
ρ(z) dz= e−V(z)+

∑∞
1 ti zi

dz, with − ρ′(z)

ρ(z)
= V ′(z) = g(z)

f (z)
,

(0.1)
with rationalg and f ’s, and withρ(z) decaying fast enough at∞.

The Toda lattice, itsτ -functions and Hermitian matrix integrals (revisited)
This weight leads to at-dependent moment matrix

mn(t) =
(

µk+ℓ(t)
)

0≤k,ℓ≤n−1 =
(

∫

R

zk+ℓρt (z) dz
)

0≤k,ℓ≤n−1
,

with the semi-infinite moment matrixm∞, satisfying the commuting equations

∂m∞
∂tk

= �km∞ = m∞�k. (0.2)

� is the customary shift matrix, with zeroes everywhere, except for 1’s just above the
diagonal, that is,(�v)n = vn+1. Consider the Borel decomposition into a lower- and
an upper-triangular matrix

m∞ = S−1S⊤−1, (0.3)

and the followingt-dependent matrix integrals (n ≥ 0):

τn(t) :=
∫

Hn

eTr(−V(X)+
∑∞

1 ti Xi ) d X = detmn and τ0 = 1, (0.4)

whered X is Haar measure on the ensembleHn = {(n× n)–Hermitian matrices}. As
is well known (e.g., see E. Witten [18] or M. Adler and P. van Moerbeke [6]), integral
(0.4) is a solution to the following two systems.
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(i) The KP-hierarchy∗

(

sk+4(∂̃)− 1

2

∂2

∂t1∂tk+3

)

τn ◦ τn = 0, for k, n = 0, 1, 2, . . . . (0.5)

(ii) The Toda lattice, that is, the tridiagonal matrix

L(t) := S�S−1 =

























∂
∂t1

log τ1
τ0

(

τ0τ2
τ2
1

)1/2

0
(

τ0τ2
τ2
1

)1/2
∂

∂t1
log τ2

τ1

(

τ1τ3
τ2
2

)1/2

0

(

τ1τ3
τ2
2

)1/2
∂

∂t1
log τ3

τ2

. . .

. . .
. . .

























, (0.6)

satisfies the following commuting Toda equations

∂L

∂tn
=
[1

2
(Ln)sk, L

]

,

where(A)sk denotes the skew-part of the matrixA for the Lie algebra splitting into
skew and lower-triangular matrices. Moreover, the followingt-dependent polynomi-
als inz, are defined by theS-matrix obtained from the Borel decomposition (0.3); it is
also given, on the one hand, in terms of the functionsτn(t), and, on the other hand, by
a classic determinantal formula (fora ∈ C, define [a] := (a, a2/2, a3/3, . . .) ∈ C

∞)

pn(t; z) :=
n
∑

i=0

Sni (t)z
i = zn τn(t − [z−1])

√
τnτn+1

= 1
√

τnτn+1
det

















1
z

mn(t)
...

µn,0(t) . . . µn,n−1(t) zn

















.

The pn(t; z)’s are orthonormal with respect to the (symmetric) inner-product〈 , 〉sy,
Break/display in footnote
OK?defined by〈zi , z j 〉sy = µi j , which is a restatement of the Borel decomposition (0.3)

(see [6]). The vectorp(t; z) = (pn(t; z))n≥0 is an eigenvector of the matrixL(t) in
(0.6):

L(t)p(t; z) = zp(t; z).

∗Thesℓ’s are the elementary Schur polynomialse
∑∞

1 ti zi :=
∑

i≥0 si (t)zi andsℓ(∂̃) := sℓ(∂/∂t1, (1/2)(∂/∂t2),

. . .). Given a polynomialp(t1, t2, . . .), define the customary Hirota symbol

p(∂t ) f ◦ g := p(∂/∂y1, ∂/∂y2, . . .) f (t + y)g(t − y)

∣

∣

∣

y=0
.
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4 ADLER and VAN MOERBEKE

The Pfaff lattice and itsτ -functions
For use throughout this paper, define the skew-symmetric matrix

J =



































. . .

0 1
−1 0 0

0 1
−1 0

0

0 1
−1 0

. . .



































, with J2 = −I , (0.7)

and the involution on the spaceD := gl∞ of infinite matrices,

J : D −→ D : a �−→ J (a) := Ja⊤J. (0.8)

Also, consider the splitting ofD = k + n into two Lie subalgebrask andn, with the
corresponding projections denotedπk andπn, wherek is the Lie algebra of lower-
triangular matrices with some special feature (see (1.17)) and where

n := {a ∈ D such thatJa⊤J = a} = sp(∞).

Given a skew-symmetric semi-infinite matrixm∞, consider the commuting differen-
tial equations

∂m∞
∂ti

= �i m∞ +m∞�⊤i ; (0.9)

they maintain the skew-symmetry ofm∞. The Borel decomposition ofm∞ into
lower-triangular times upper-triangular matrices requires the insertion of the skew-
symmetric matrixJ:

m∞(t) = Q−1(t)J Q−1⊤(t). (0.10)

Dressing up the shift� with the lower-triangular matrixQ(t) leads to the commuting
equations (0.11) below.

THEOREM 0.1
ThePfaff latticeequations

∂L

∂ti
= [−πk L i , L] = [πnL i , L] (0.11)
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maintain the locus of semi-infinite matrices of the form(ai �= 0):

L =





















0 1
−d1 a1 O

d1 1
−d2 a2

∗ d2
. . .





















. (0.12)

The solutions L to (0.11) of the form (0.12) are given by

L(t) = Q(t)�Q−1(t),

where Q is a lower-triangular matrix, whose entries are given by the coefficients of
the polynomials, obtained by the finite Taylor expansion in z−1 of τ2n(t−[z−1]) below
(h2n := τ2n+2(t)/τ2n(t)):

q2n(t; z) :=
2n
∑

j=0

Q2n, j (t)z
j = z2nh−1/2

2n
τ2n(t − [z−1])

τ2n(t)
,

q2n+1(t; z) :=
2n+1
∑

j=0

Q2n+1, j (t)z
j = z2nh−1/2

2n
(z+ ∂/∂t1)τ2n(t − [z−1])

τ2n(t)
, (0.13)

with τ0, τ2, τ4, a sequence of functions of t1, t2, . . . , characterized by the following
bilinear identities for all n, m≥ 0, (τ0 = 1),

∮

z=∞
τ2n
(

t − [z−1]
)

τ2m+2
(

t ′ + [z−1]
)

e
∑∞

1 (ti−t ′i )z
i
z2n−2m−2 dz

2π i

+
∮

z=0
τ2n+2

(

t + [z]
)

τ2m
(

t ′ − [z]
)

e
∑∞

1 (t ′i−ti )z−i
z2n−2m dz

2π i
= 0. (0.14)

Remark
Theorem 0.1 is robust and remains valid for the bi-infinite matrixL. In that case, the
summations in the expressionsq2n andq2n+1 run from j = −∞, instead of running
from j = 0.

Theτ -functions are given by Pfaffians pfm2n(t) and satisfy, as a consequence of the
bilinear relations (0.14), the Pfaffian KP-hierarchy fork, n = 0, 1, 2, . . . ,

(

sk+4(∂̃)− 1

2

∂2

∂t1∂tk+3

)

τ2n ◦ τ2n = sk(∂̃) τ2n+2 ◦ τ2n−2. (0.15)
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The t-dependent polynomialsqn(t; z) = (Q(t) (1, z, z2, z3, . . .)⊤)n in z, obtained in
(0.13) are “skew-orthonormal” with respect to the skew inner-product〈 , 〉sk, defined
by 〈yi , z j 〉sk = µi j (t), namely,

(

〈qi , q j 〉sk
)

0≤i, j <∞ = J,

and are eigenvectors for the matrixL:

L(t)q(t; z) = zq(t; z). (0.16)

Explicit representations ofL, in terms of theτ2n’s, are as follows:

L = Q�Q−1 = h−1/2

















L̂00 L̂01 0 0
L̂10 L̂11 L̂12 0
∗ L̂21 L̂22 L̂23

∗ ∗ L̂32 L̂33 . . .
...

















h1/2,

with the entriesL̂ i j and the entries ofh, being(2× 2)-matrices

h = diag(h0I2, h2I2, h4I2, . . . ), h2n = τ2n+2/τ2n,

and (· = ∂/∂t1),

L̂nn :=







−(logτ2n)
· 1

− s2(∂̃)τ2n
τ2n

− s2(−∂̃)τ2n+2
τ2n+2

(logτ2n+2)
·






, L̂n,n+1 :=

(

0 0
1 0

)

,

L̂n+1,n :=
(

∗ (logτ2n+2)
··

∗ ∗

)

. (0.17)
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Also, thet-dependent polynomialsqn(t, z) in z have Pfaffian expressions, in contrast
with the determinantal expressions in the Hermitian case, mentioned earlier:

q2n(t; z) = 1
√

τ2nτ2n+2
pf

















1
z

m2n+1(t)
...

z2n

−1 . . . −z2n 0

















,

q2n+1(t; z)

= 1
√

τ2nτ2n+2
pf





















1 µ0,2n+1

z µ1,2n+1

m2n(t)
...

...

z2n−1 µ2n−1,2n+1

−1 −z . . . 0 −z2n+1

−µ0,2n+1 −µ1,2n+1 . . . z2n+1 0





















.

(0.18)

Theorem 0.1 and the subsequent statements are established in Sections 2 and 3.
(0.18) lines too wide; this
break OK?We show how a general skew-symmetric infinite matrix flowing according to (0.11)

and its skew-Borel decomposition (0.10), lead to wave vectors�, satisfying bilinear
relations and differential equations. Section 3 deals with the existence, in the general
setting, of a so-called Pfaffianτ -function, satisfying bilinear equations and the so-
called Pfaff-KP hierarchy. In [4], these results were obtained by embedding the system
in 2-Toda theory, while in this paper, they are obtained in an intrinsic fashion.

For k = 0, the Pfaff-KP equation (0.15) has already appeared in the context of
the charged BKP hierarchy, studied by V. Kac and J. van de Leur [13]; the precise
relationship between the charged BKP hierarchy of Kac and van de Leur and the
Pfaff Lattice, introduced here, deserves further investigation. (See the recent paper by
van de Leur [16]).
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Examples: Symmetric and “symplectic” matrix integrals
An important example is given by the skew-symmetric matrixm∞ = (µi j )i, j≥0 of
moments∗ defined by(α = ±1) (see [4])

〈yi , z j 〉sk :=
∫ ∫

R2
yi z j e

∑

ti (yi+zi )2Dαδ(y− z)ρ(y)ρ(z) dy dz (0.19)

=































µ
(1)
i j (t) =

∫∫

R2
yi z j e

∑∞
1 ti (yi+zi )ε(y− z)ρ(y)ρ(z) dy dz,

for α = −1,

µ
(2)
i j (t) =

∫

R

{yi , y j }(y)e
∑∞

1 2ti yi
ρ̃(y)2dy, for α = +1.

The associated moment matricesm(1)
2n andm(2)

2n satisfy the differential equations (0.9)
and lead to “symmetric” matrix integrals

τ
(1)
2n (t) := 1

(2n)!

∫

S2n

eTr(−V(X)+
∑∞

1 ti Xi ) d X = pf(m(1)
2n ),

and “symplectic” matrix integrals

τ
(1)
2n (t) := 1

n!

∫

T2n

e2 Tr(−V(X)+
∑∞

1 ti Xi ) d X = pf(m(2)
2n ),

both expressed in terms of the Pfaffian of the upper-left-hand principal minors of the
“moment” matrixm(i )

∞ , where
(1) for i = 1, d X denotes Haar measure on the spaceS2n of symmetric matrices,

and,
(2) for i = 2, d X denotes Haar measure on the(2n× 2n)-matrix realizationT2n

of the space of self-dual(n×n)–Hermitian matrices, with quaternionic entries.

A remarkable map from Toda to Pfaff lattice
Remembering the notation (0.1), we act with thez-operator,

nt :=
√

f

ρt

d

dz

√

fρt = e−(1/2)
∑

tkzk
( d

dz
f (z)− f ′ + g

2
(z)
)

e1/2
∑

tkzk
(0.20)

on thet-dependent orthonormal polynomialspn(t, z) in z; in [6], we showed that the
matrixN defined by

nt p(t, z) =
(

f (L)M − f ′ + g

2
(L)

)

p(t, z) =: N p(t, z) (0.21)

∗We haveε(x) = 1, for x ≥ 0, ε(x) = −1, for x < 0, and{ f, g} = f ′g− f g′.
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is skew-symmetric. Thet-dependent matrixN is expressed in terms ofL and a new
matrix M , defined by

zp= Lp and e−(1/2)
∑

tkzk d

dz
e(1/2)

∑

tkzk
p = Mp. (0.22)

Consider now the skew-Borel decomposition ofN (2t) and its inverse∗ N (2t)−1, in
terms of lower-triangular matricesO(+)(t) andO(−)(t), respectively:†

N (2t)±1 = −O−1
(±)

(t)J O⊤−1
(±)

(t). (0.23)

Then, the lower-triangular matricesO(±)(t) maporthonormalinto skew-orthonormal
polynomials, and the tridiagonalL-matrix into anL̃-matrix:‡

pn(t; z) �−→ q(±)
n (t; z) =

(

O(±)(t)p(t; z)
)

n,

L(t) �−→ L̃(t) = O(±)(t)L(2t)O(±)(t)
−1 (0.24)

(Toda lattice) (Pfaff lattice).

It also maps the weight into a new weight

ρ(z) = e−V(z) �−→ ρ̃±(z) = e−Ṽ(z) := e−(1/2)(V(z)∓log f (z)),

and the corresponding string ofτ -functions into a new string of Pfaffianτ -functions
(rememberVt (z) = V(z)−

∑∞
1 ti zi ):

τk(t) =
∫

Hk

eTr(−Vt (X)) d X �−→
{

τ
(+)
2n (t) :=

∫

T2n
eTr 2(−Ṽt (X)) d X (β = 4),

τ
(−)
2n (t) :=

∫

S2n
eTr(−Ṽt (X)) d X (β = 1).

For theclassical orthogonal polynomials pn(z), we have shown in [6] thatN (0) is
not only skew-symmetric but also tridiagonal; that is,

L =













b0 a0

a0 b1 a1

a1 b2
. . .

. . .
. . .













, −N =













0 c0

−c0 0 c1

−c1 0
. . .

. . .













.

(0.25)

∗See Appendix B.
†The upper-signs (resp., lower-signs) correspond to each other throughout this section.
‡We havep(t; z) := (p0(t; z), p1(t; z), . . .)⊤.



2002/2/7
page 10

✐

✐

✐

✐

✐

✐

✐

✐

10 ADLER and VAN MOERBEKE

In Sections 6 and 7, we show that the mapsO(−) andO(+), as in (0.24), only involve
three steps, in the following sense:

q(−)
2n (0; z) =

√

c2n

a2n
p2n(0; z),

q(−)
2n+1(0; z) =

√

a2n

c2n

×
(

− c2n−1p2n−1(0, z)+ c2n

a2n

(

2n
∑

0

bi

)

p2n(0; z)+ c2n p2n+1(0; z)

)

(β = 1), (0.26)

p2n(0; z) = −c2n−1

√

a2n−2

c2n−2
q(+)

2n−2(0; z)+√a2nc2n q(+)
2n (0; z)

p2n+1(0; z) = −c2n

√

a2n−2

c2n−2
q(+)

2n−2(0; z),

−
(

2n
∑

0

bi

)

√

c2n

a2n
q(+)

2n (0; z)+
√

c2n

a2n
q(+)

2n+1(0; z) (β = 4). (0.27)

The abstract mapO(−) for t = 0 appears already in the work of E. Brézin and
H. Neuberger [9]. This has been applied recently by [1] to a problem in the theory of
random matrices.

1. Splitting theorems, as applied to the Toda and Pfaff lattices
In this section, we show how each of the equations

∂m∞
∂ti

= �i m∞ and
∂m∞
∂ti

= �i m∞ +m∞�⊤i (1.1)

lead to commuting Hamiltonian vector fields related to a Lie algebra splitting. First
recall the splitting theorem due to Adler, B. Kostant, and W. Symes in [5], and later
recall the R-version due to A. Reyman and M. Semenov-Tian-Shansky [15]. The R-
version allows for more general initial conditions.

PROPOSITION1.1
Let g = k + n be a (vector space) direct sum of a Lie algebrag in terms of Lie
subalgebrask andn, with g paired with itself via a nondegeneratead-invariant inner
product∗ 〈 , 〉; this in turn induces a decompositiong = k⊥ + n⊥ and isomorphisms
g ≃ g∗, k⊥ ≃ n∗, n⊥ ≃ k∗. Letπk andπn be projections ontok andn, respectively.

∗〈Adg X;Y〉 = 〈X, Adg−1 Y〉, g ∈ G, and thus〈[z, x], y〉 = 〈x,−[z, y]〉.
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Let G , Gk , andGn be the groups associated with the Lie algebrasg, k, andn. Let
I (g) be theAd∗ ≃ Ad-invariant functions ong∗ ≃ g.

(i) Then, given an element

ε ∈ g : [ε, k] ⊂ k⊥ and [ε, n] ⊂ n⊥,

the functions
ϕ(ε + ξ ′)|k⊥, with ϕ ∈ I (g) andξ ′ ∈ k⊥, (1.2)

respectively, Poisson commute for the respective Kostant-Kirillov symplectic struc-
tures of n∗ ≃ k⊥; the associated Hamiltonian flows are expressed in terms of the Lax
pairs∗

ξ̇ = [−πk∇ϕ(ξ), ξ ] = [πn∇ϕ(ξ), ξ ], for ξ ≡ ε + ξ ′, ξ ′ ∈ k⊥. (1.3)

(ii) The splitting also leads to a second Lie algebragR, derived fromg, such that
g∗R ≃ gR, namely,

gR : [x, y]R =
1

2
[Rx, y] + 1

2
[x, Ry] = [πkx, πk y] − [πnx, πny], (1.4)

with R= πk − πn. The functions

ϕ(ξ)|gR, with ϕ ∈ I (g) andξ ∈ gR,

respectively, Poisson commute for the respective Kostant-Kirillov symplectic struc-
tures ofg∗R ≃ gR, with the same associated (Hamiltonian) Lax pairs

ξ̇ = [−πk∇ϕ(ξ), ξ ] = [πn∇ϕ(ξ), ξ ], for ξ ∈ gR. (1.5)

Each of the equations (1.3) and (1.5) has the same solution expressible in two different
ways:†

ξ(t) = AdK (t) ξ0 = AdS−1(t) ξ0, (1.6)

with‡

K (t) = πGk et∇ϕ(ξ0) and S(t) = πGnet∇ϕ(ξ0).

Example 1 (The standard Toda lattice and the equations∂m/∂ti = �i m for the
Hänkel matrix m∞)
Since, in particular, the matrixm∞ is symmetric, the Borel decomposition into lower-
times upper-triangular matrix must be done with the same lower-triangular matrixS:

m∞ = S−1S⊤−1. (1.7)

∗∇ϕ is defined as the element ing∗ such thatdϕ(ξ) = 〈∇ϕ, dξ 〉, ξ ∈ g.
†We naively write AdK (t) ξ0 = K (t)ξ0K (t)−1, AdS−1 ξ0 = S−1(t)ξ0S(t).
‡Consider the group factorizationA = πGk A πGn A.
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In turn, the matrixS defines a wave vector�, and operators∗ L andM , the same as
the ones defined in (0.22),

�(t, z) := e(1/2)
∑∞

1 ti zi
Sχ, L := S�S−1,

M := S
(

∂ + 1

2

∞
∑

1

i ti �
i−1
)

S−1, (1.8)

satisfying the following well-known equations:†

L� = z�, M� = ∂

∂z
�, with [L , M] = 1,

∂S

∂tn
= −1

2
(Ln)boS,

∂�

∂tn
= 1

2
(Ln)sk�,

∂L

∂tn
= 1

2

[

(Ln)sk, L
] ∂M

∂tn
= 1

2

[

(Ln)sk, M
]

. (1.9)

The wave vector� can then be expressed in terms of a sequence ofτ -functions
τn(t) = detmn(t), but it also has a simple expression in terms of orthonormal poly-
nomials, with respect to the moment matrixm∞:

�(t, z) = e(1/2)
∑

ti zi
(

zn τn(t − [z−1])
√

τn(t)τn+1(t)

)

n≥0

= e(1/2)
∑

ti zi (
pn(t, z)

)

n≥0. (1.10)

The vector fields (1.9) onL are commuting Hamiltonian vector fields, in view of
the Adler-Kostant-Symes (AKS) splitting theorem (version (i)),

∂L

∂ti
= [−πk∇Hi , L] = [πn∇Hi , L], Hi =

tr L i+1

i + 1
, ∇Hi = L i , (1.11)

with
L = �⊤a+ b+ a�, a andb diagonal matrices, (1.12)

for the splitting of the Lie algebra of semi-infinite matrices

D = gl∞ = k + n := {skew-symmetric} + {lower-triangular}
= k⊥ + n⊥ := {symmetric} + {strictly upper-triangular},

(1.13)

∗In the formulas belowχ(z) = (z0, z, z2, . . .)⊤, and ∂ is the matrix such that(d/dz)χ(z) = ∂χ(z).
†The notation( )sk and ( )bo refers to the skew-part and the lower-triangular (Borel) part, respectively,
that is, projection ontok and n, respectively.
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with the form (1.12) ofL being preserved in time. Note that the solution (1.6) to the
differential equation (1.5) in the AKS theorem is nothing but the factorization ofm∞
followed by the dressing up of�.

Example 2 (The Pfaff lattice and the equations∂m/∂ti = �i m+m�⊤i
)

Throughout this paper the Lie algebraD = gl∞ of semi-infinite matrices is viewed
as composed of(2× 2)-blocks. It admits the natural decomposition into subalgebras:

D = D− ⊕D0 ⊕D+ = D− ⊕D−
0 ⊕D+

0 ⊕D+, (1.14)

whereD0 has(2×2)-blocks along the diagonal with zeros everywhere else and where
D+ (resp.,D−) is the subalgebra of upper-triangular (resp., lower-triangular) matrices
with (2× 2)-zero matrices alongD0 and zero below (resp., above). As pointed out in
(1.14),D0 can further be decomposed into two Lie subalgebras:

D−
0 = {all (2× 2)-blocks∈ D0 are proportional to Id},

D+
0 = {all (2× 2)-blocks∈ D0 have trace zero}. (1.15)

Remember from (0.7) and (0.8) in the introduction, the matrixJ and the associated
Lie algebra involutionJ . The splitting into two Lie subalgebras∗

D = k + n, (1.16)

with

k = D− +D−
0

= algebra of

























. . . 0
Q2n,2n 0

0 Q2n,2n

∗
Q2n+2,2n+2 0

0 Q2n+2,2n+2

. . .

























,

n = {a ∈ D, such thatJ a = a} = {b+J b, b ∈ D} = sp(∞), (1.17)

with corresponding Lie groups.† Gk andGn = Sp(∞), play a crucial role here. Let
πk andπn be the projections ontok andn. Notice thatn = sp(∞) andGn = Sp(∞)

∗Note n is the fixed point set ofJ .
†Gk is the group of invertible elements ink, that is, invertible lower-triangular matrices, with nonzero
(2× 2)-blocks proportional to Id along the diagonal.
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stand for the infinite-rank affine symplectic algebra and groupn (e.g., see [12]). Any
elementa ∈ D decomposes uniquely into its projections ontok andn, as follows:

a = πka+ πna

=
{

(

a− −J a+
)

+ 1

2

(

a0 −J a0
)

}

+
{

(

a+ +J a+
)

+ 1

2

(

a0 +J a0
)

}

.

(1.18)

The following splitting, with

k+ = D+ +D−
0 and n+ = n,

is also used in Section 2; the projections take on the following form:

a = πk+a+ πn+a

=
{

(

a+ −J a−
)

+ 1

2

(

a0 −J a0
)

}

+
{

(

a− +J a−
)

+ 1

2

(

a0 +J a0
)

}

.

(1.19)

Note thatJ intertwinesπk andπk+ :

J πk = πk+J . (1.20)

For a skew-symmetric semi-infinite matrixm∞, the skew-Borel decomposition

m∞ := Q−1J Q−1⊤, with Q ∈ Gk, (1.21)

is unique, as was shown in [2]. Here we may assumem∞ to be bi-infinite, as long as
factorization (1.21) is unique, upon imposing a suitable normalization. Then we use
Q to dress up�:

L = Q�Q−1.

Then lettingm∞ run according to the equations∂m/∂ti = �i m+m�⊤i
, we show in

the next proposition and corollary thatL evolves according to a system of commuting
equations, which by virtue of the AKS theorem are Hamiltonian vector fields (for
details, see [2]).

PROPOSITION1.2
For the matrices

m∞ := Q−1J Q−1⊤ and L := Q�Q−1, with Q ∈ Gk,

the following three statements are equivalent:
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(i)
∂Q

∂ti
Q−1 = −πk L i ,

(ii) L i + ∂Q

∂ti
Q−1 ∈ n,

(iii)
∂m∞
∂ti

= �i m∞ +m∞�⊤i
.

Whenever the vector fields on Q or m satisfy (i), (ii), or (iii), then the matrix
L = Q�Q−1 is a solution of the AKS-Lax pair

∂L

∂ti
= [−πk L i , L] = [πnL i , L].

Proof
Written out and using (1.18), Proposition 1.2 amounts to showing the equivalence of
the three formulas:

(I)
∂Q

∂ti
Q−1 +

(

(L i )− − J(L i
+)⊤J

)

+ 1

2

(

(L i )0 − J((L i )0)
⊤J
)

= 0,

(II)
(

L i + ∂Q

∂ti
Q−1

)

− J
(

L i + ∂Q

∂ti
Q−1

)⊤
J = 0,

(III) �i m∞ +m∞�⊤i − ∂m∞
∂ti

= 0.

The point is to show that

(I)+ = 0, (I)− = (II)− = −J (II+)⊤ J, (I)0 =
1

2
(II)0 ,

Q−1(II)J Q−1⊤ = (III ). (1.22)

The details of this proof are found in [2].

2. Wave functions and their bilinear equations for the Pfaff lattice
Consider the commuting vector fields

∂m∞/∂ti = �i m∞ +m∞�⊤i (2.1)

on the skew-symmetric matrixm∞(t) and the skew-Borel decomposition

m∞(t) = Q−1(t)J Q⊤−1(t), Q(t) ∈ Gk; (2.2)

remember from (1.17) thatQ(t) ∈ Gk means thatQ(t) is lower-triangular, with along
the “diagonal”(2× 2)-matricesc2n I , with c2n �= 0.

In this section, we give the properties of the wave vectors and their bilinear re-
lations. In this and the next section, the matrices are assumed to be bi-infinite; the
semi-infinite case is dealt with by specialization. Upon setting

Q1 = Q(t) and Q2 = J Q⊤−1(t), (2.3)
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the matrixQ(t) defines wave operators

W1(t) := Q1(t)e
∑∞

1 ti �i
, W2(t) := Q2(t)e

−
∑∞

1 ti �⊤i = J W−1⊤
1 (t), (2.4)

L-matrices

L := L1 := Q1�Q−1
1 , L2 := −J (L1) = Q2�

⊤Q−1
2 , (2.5)

and wave and dual wave vectors

�1(t, z) = W1(t)χ(z)�∗
1(t, z) = W−1

1 (t)⊤χ(z−1) = −J�2(t, z−1),

�2(t, z) = W2(t)χ(z)�∗
2(t, z) = W−1

2 (t)⊤χ(z−1) = J�1(t, z−1). (2.6)

From the definition, it follows that the wave functions�1 have the following asymp-
totics:
{

�1,2n(t, z) := e
∑

tkzk
z2nc2n(t)ψ1,2n(t, z), ψ1,2n = 1+ O(z−1),

�1,2n+1(t, z) = e
∑

tkzk
z2n+1c2n(t)ψ1,2n+1(t, z), ψ1,2n+1 = 1+ O(z−2),

{

�2,2n(t, z) = e−
∑

tkz−k
z2n+1c−1

2n (t)ψ2,2n(t, z), ψ2,2n = 1+ O(z),

�2,2n+1(t, z) = e−
∑

tkz−k
z2n(−c−1

2n (t))ψ2,2n+1(t, z), ψ2,2n+1 = 1+ O(z2),

(2.7)
where theci are the elements of the diagonal part ofQ.

THEOREM 2.1
The following statements are equivalent:
(i) m∞ satisfies∂m∞/∂ti = �i m∞ +m∞�⊤i ,
(ii) Q1 satisfies the hierarchy of equations (with Li defined in (2.5))

∂Q1

∂ti
= −(πk L i

1)Q1, (2.8)

(iii) Q2 = J Q⊤−1
1 satisfies

∂Q2

∂ti
= −

(

J (πk L i
1)
)

Q2 = (πk+L i
2)Q2,

(iv) �1 = e
∑∞

1 ti zi
Q1(t)χ(z) satisfies

∂�1

∂ti
= (πnL i

1)�1, (2.9)

(v) �2 = e−
∑∞

1 ti z−i
J Q⊤−1

1 (t)χ(z) satisfies

∂�2

∂ti
= −(L i

2 − πk+L i
2)�2 = −(πn+L i

2), �2,
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(vi) �1 and�2 satisfy the bilinear identity for all n, m ∈ Z,
∮

∞
�1,n(t, z)�2,m(t ′, z−1)

dz

2π i z
+
∮

0
�2,n(t, z)�1,m(t ′, z−1)

dz

2π i z
= 0.

(2.10)
If any one of these six conditions is satisfied, then

∂L1

∂ti
= [−πk L i

1, L1],
∂L2

∂ti
= [πk+L i

2, L2], (2.11)

and

L1�1 = z�1, L2�2 = z−1�2,

L⊤1 �⋆
1 = z�⋆

1, L⊤2 �⋆
2 = z−1�⋆

2. (2.12)

For later use, we also consider the “monic” wave functions, with the factorsc2n(t)
removed; that is,

�̂1(t, z) := Q−1
0 �1 and �̂2(t, z) := Q0�2 (2.13)

and the matrixL̂1, normalized so as to have 1’s above the main diagonal, withQ̂ :=
Q−1

0 Q,

L̂1 = Q−1
0 L1Q0 = (Q−1

0 Q)�(Q−1
0 Q)−1 = Q̂�Q̂−1,

L̂2 = Q0L2Q−1
0 = −Q0J (L1)Q−1

0 = −J (L̂1) (2.14)

Then, in terms of the elementŝqi j of the matrixQ̂ := Q−1
0 Q, one easily computes

by conjugation that̂L1 has the following block structure:
Display too wide; is this
break OK?L̂1 = Q−1

0 L1Q0 = (Q−1
0 Q)�(Q−1

0 Q)−1

=























...

. . . L̂00 L̂01 0 0
L̂10 L̂11 L̂12 0
∗ L̂21 L̂22 L̂23

∗ ∗ L̂32 L̂33 . . .
...























,

with

L̂ i i :=
(

q̂2i,2i−1 1
q̂2i+1,2i−1− q̂2i+2,2i −q̂2i+2,2i+1

)

, L̂ i,i+1 :=
(

0 0
1 0

)

,

L̂ i+1,i :=
(

∗ −q̂2
2i+2,2i+1 − q̂2i+3,2i+1 + q̂2i+2,2i

∗ ∗

)

. (2.15)

These definitions lead to a new statement that is equivalent to Theorem 2.1.
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THEOREM 2.2
L̂ i , Q̂, �̂1, �̂2 satisfy the following equations:

∂ Q̂

∂tn
= −

(

(L̂n
1)− − Q−2

0 J((L̂n
1)+)⊤J Q2

0

)

Q̂, (2.16)

and
L̂1�̂1 = z�̂1, L̂2�̂2 = z−1�̂2, (2.17)

with

∂

∂tn
�̂1(t, z) =

(

(L̂n
1)+ + (L̂n

1)0 + Q−2
0 J ((L̂n

1)+)Q2
0

)

�̂1(t, z),

∂

∂tn
�̂2(t, z) = J

(

(L̂n
1)+ + (L̂n

1)0 + Q−2
0 J ((L̂n

1)+)Q2
0

)

�̂2(t, z)

= −
(

(L̂n
2)− + (L̂n

2)0 + Q2
0J ((L̂n

2)−)Q−2
0

)

�̂2(t, z).

The proof of Theorem 2.1 hinges on the following proposition.

PROPOSITION2.3
The following three statements are equivalent:
(i) ∂m∞/∂ti = �i m∞ +m∞�⊤i ,
(ii) the matrices W1(t) and W2(t) (defined in (2.4)) satisfy

W1(t)W1(t
′)−1 = W2(t)W2(t

′)−1, (2.18)

(iii) the�i (t, z) = Wi (t)χ(z) satisfy the bilinear identity
∮

∞
�1,n(t, z)�2,m(t ′, z−1)

dz

2π i z
+
∮

0
�2,n(t, z)�1,m(t ′, z−1)

dz

2π i z
= 0.

Proof
The solution to (2.1) is given by

m∞(t) = e
∑

tk�k
m∞(0)e

∑

tk�⊤k
.

Therefore skew-Borel decomposingm∞(t) andm∞(0), wefind

Q−1(0)J Q⊤−1(0) = e−
∑

ti �i
Q−1(t)J Q⊤−1(t)e−

∑

ti �⊤i
, (2.19)

and so, from the definition ofW1 andW2,

W−1
1 (0)W2(0) = Q−1(0)J Q⊤−1(0)

=
(

Q(t)e
∑∞

1 ti �i )−1
J
(

Q(t)e
∑

ti �i )⊤−1 (using (2.19))

= W1(t)
−1J W1(t)

⊤−1

= W1(t)
−1W2(t), (2.20)
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implying the independence int of the right-hand side of (2.20). Therefore, we have

W1(t)
−1W2(t) = W1(t

′)−1W2(t
′), for all t, t ′ ∈ C

∞,

and so
W1(t)W

−1
1 (t ′) = W2(t)W

−1
2 (t ′),

thus yielding (ii). Reversing the steps yields the differential equation (i).
Finally, the proof of the bilinear identity (iii) proceeds as follows. Using the well-

known formula (see [3, Prop. 4.1]),

W1
2
(t)W1

2
(t ′)−1 =

∮

∞
0

�1
2
(t, z)⊗�∗

1
2
(t ′, z)

dz

2π i z
,

statement (ii) becomes
∮

∞
�1(t, z)⊗�∗

1(t ′, z)
dz

2π i z
=
∮

0
�2(t, z)⊗�∗

2(t ′, z)
dz

2π i z
,

whose(m, n)th component is
∮

∞
�1,n(t, z)�∗

1,m(t ′, z)
dz

2π i z
−
∮

0
�2,n(t, z)�∗

2,m(t ′, z)
dz

2π i z
= 0.

Next we use the relations�∗
1(t, z) = −J�2(t, z−1) and�∗

2(t, z) = J�1(t, z−1) to
yield

∮

∞
�1(t, z)⊗ J�2(t

′, z−1)
dz

2π i z
+
∮

0
�2(t, z)⊗ J�1(t

′, z−1)
dz

2π i z
= 0,

which again leads to (iii). That (iii) implies (ii) is obtained by reversing the arguments.

Proof of Theorem 2.1
The proof of statement (ii) forQ1, namely,

∂Q1

∂ti
= −(πk L i

1)Q1,

follows at once from Proposition 1.2.
The proof of (iii) for Q2 = J Q⊤−1

1 is based on the identityJ πka = πk+J a.
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Indeed, we compute

∂Q2

∂ti
Q−1

2 = −J Q⊤−1
1

∂Q⊤
1

∂ti
Q⊤−1

1 Q−1
2

= −J Q⊤−1
1 Q⊤

1 (πk L i
1)
⊤Q⊤−1

1 Q⊤
1 J

= −J(πk L i
1)
⊤J

= −J (πk L i
1)

= −πk+J L i
1

= −πk+J (−J L2)
i (using (2.5))

= −πk+J (−1)i (J L2)
i

= −πk+J (−1)i (−1)i−1J L i
2

= πk+L i
2.

Statements (iv) and (v) for�1, �2 are straightforwardly equivalent to (ii) and (iii),
respectively. According to Propositions 1.2 and 2.3 combined, the bilinear identity
(2.10) in (vi) is equivalent to statement (i), (ii), or (iii). The hierarchy concerning the
L i ’s follows at once from (ii) and (iii), thus ending the proof of Theorem 2.1.

Proof of Theorem 2.2
To prove (2.16), remember from Theorem 2.1 that

∂Q

∂tn
Q−1 = −πk Ln = −

(

(Ln)− − J(Ln
+)⊤J

)

− 1

2

(

(Ln)0 − J((Ln)0)
⊤J
)

;

hence, taking the( )0-part of this expression yields

∂ log Q0

∂tn
=
(∂Q

∂tn
Q−1

)

0
= −πk(Ln)0 = −1

2
(Ln)0 +

1

2
J(Ln)⊤0 J.

Using the fact thatQ0, Q−1
0 , Q̇0 ∈ Gk ∩ D0 commute among themselves and com-

mute withJ and the fact thatD0D±, D±D0 ⊂ D±, we compute forQ̂ = Q−1
0 Q, L̂1

= Q−1
0 L1Q0 (see (2.14))

∂ Q̂

∂tn
Q̂−1 = −Q−1

0 Q̇0Q−1
0 QQ−1Q0 + Q−1

0 Q̇Q−1Q0

= −Q−1
0 Q̇0 + Q−1

0 Q̇Q−1Q0

= Q−1
0 (−Q̇0Q−1

0 + Q̇Q−1)Q0

= Q−1
0

(

− (Ln
1)− + J(Ln

1+)⊤J
)

Q0

= −(Q−1
0 Ln

1Q0)− + Q−1
0 J

(

Q0(Q−1
0 Ln

1Q0)+Q−1
0

)⊤
J Q0

= −(L̂n
1)− + Q−2

0 J((L̂n
1)+)⊤J Q2

0.
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Using this result and̂L1�̂1(t, z) = z�̂1(t, z), wefind

∂�̂1(t, z)

∂tn
= ∂

∂tn
e
∑

ti zi
Q̂χ(z)

= zne
∑∞

1 ti zi
Q̂χ(z)+ e

∑∞
1 ti zi (− (L̂n

1)− + Q−2
0 J((L̂n

1)+)⊤J Q2
0

)

Q̂χ(z)

=
(

L̂n
1 − (L̂n

1)− + Q−2
0 J((L̂n

1)+)⊤J Q2
0

)

�̂1(t, z)

=
(

(L̂n
1)+ + (L̂n

1)0 + Q−2
0 (J (L̂n

1)+)Q2
0

)

�̂1(t, z). (2.21)

But, we also have that̂�1 = Q−1
0 �1(t, z) and�̂2 = Q0�2(t, z) satisfy, usingW2 =

J W−1⊤
1 ,

∂�̂1(t, z)

∂tn
= (Q−1

0 W1)
·χ(z) = (Q−1

0 W1)
·(Q−1

0 W1)
−1�̂1(t, z), (2.22)

∂�̂2(t, z)

∂tn
= (Q0W2)

·χ(z) = (Q0W2)
·(Q0W2)

−1(Q0�2)

= (Q̇0W2 + Q0Ẇ2)W
−1
2 Q−1

0 (Q0�2)

= (Q̇0Q−1
0 + Q0Ẇ2W−1

2 Q−1
0 )Q0�2

=
(

Q̇0Q−1
0 + Q0J (Ẇ1W−1

1 )Q−1
0

)

Q0�2

=
(

Q̇0Q−1
0 + Q0J(Ẇ1W−1

1 )⊤J Q−1
0

)

Q0�2

=
(

− J Q̇0Q−1
0 + J(Q−1

0 Ẇ1W−1
1 Q0)

⊤)J Q0�2

= J(−Q−1
0 Q̇0+ Q−1

0 Ẇ1W−1
1 Q0)

⊤J Q0�2

= J
(

(Q−1
0 W1)

·(Q−1
0 W1)

−1)(Q0�2). (2.23)

Comparing (2.21), (2.22), and (2.23), and invoking (2.14),

−J (L̂n
1) = L̂n

2,

and so, in particular,

−J ((L̂n
1)±) = (L̂n

2)∓ and −J ((L̂n
1)0) = (L̂n

2)0,

∂�̂2(t, z)

∂tn
= −

(

(L̂n
2)− + (L̂n

2)0 + Q2
0(J (Ln

2)−)Q−2
0

)

�̂2(t, z),

which establishes Theorem 2.2.

3. Existence of the Pfaffτ -function
The point of this section is to show that the solution of the Pfaff lattice can be ex-
pressed in terms of a sequence of functionsτ , which are notτ -functions in the usual
sense but which enjoy a different set of bilinear identities and partial differential equa-
tions.
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PROPOSITION3.1
There exist functionsτ2n(t) such that

ψ1,2n(t, z) = τ2n(t − [z−1])
τ2n(t)

and ψ2,2n(t, z) = τ2n+2(t + [z])
τ2n+2(t)

. (3.1)

The proof of Proposition 3.1 is postponed until later. For future use, we define the
diagonal matrix

h = diag(. . . , h−2, h−2, h0, h0, h2, h2, . . .) ∈ D−
0 , with h2n =

τ2n+2

τ2n
. (3.2)

THEOREM 3.2
�1 and�2 have the followingτ -function representation:

�1,2n(t, z) = e
∑

ti zi
z2nh−1/2

2n
τ2n(t − [z−1])

τ2n(t)
,

�1,2n+1(t, z) = e
∑

ti zi
z2nh−1/2

2n
(z+ ∂/∂t1)τ2n(t − [z−1])

τ2n(t)
,

�2,2n(t, z) = e−
∑

ti z−i
z2n+1h−1/2

2n
τ2n+2(t + [z])

τ2n(t)
,

�2,2n+1(t, z) = e−
∑

ti z−i
z2n+1h−1/2

2n
(z−1 − ∂/∂t1)τ2n+2(t + [z])

τ2n(t)
, (3.3)

with theτ2n(t) satisfying the following bilinear identity for all n, m ∈ Z:

∮

z=∞
τ2n
(

t − [z−1]
)

τ2m+2
(

t ′ + [z−1]
)

e
∑

(ti−t ′i )z
i
z2n−2m−2 dz

2π i

+
∮

z=0
τ2n+2

(

t + [z]
)

τ2m
(

t ′ − [z]
)

e
∑

(t ′i−ti )z−i
z2n−2m dz

2π i
= 0. (3.4)

Conversely, this bilinear relation characterizes theτ -function for the Pfaff lattice.

Remark
ThenL has the following representation in terms of the Pfaffianτ -functions:

h1/2Lh−1/2 =























...

. . . L̂00 L̂01 0 0
L̂10 L̂11 L̂12 0
∗ L̂21 L̂22 L̂23

∗ ∗ L̂32 L̂33 . . .
...























,



2002/2/7
page 23

✐

✐

✐

✐

✐

✐

✐

✐

TODA VERSUS PFAFF LATTICE 23

with (· = ∂/∂t1),

L̂nn :=







−(logτ2n)
· 1

− s2(∂̃)τ2n
τ2n

− s2(−∂̃)τ2n+2
τ2n+2

(logτ2n+2)
·






, L̂n,n+1 :=

(

0 0
1 0

)

,

L̂n+1,n :=
(

∗ (logτ2n+2)
··

∗ ∗

)

. (3.5)

The following bilinear relations follow from (3.4) and are due to [4].

COROLLARY 3.3
The functionsτ2n(t) satisfy the following“differential Fay identity”:∗

{

τ2n(t − [u]), τ2n(t − [v])
}

+ (u−1 − v−1)
(

τ2n(t − [u])τ2n(t − [v])− τ2n(t)τ2n(t − [u] − [v])
)

= uv(u− v)τ2n−2(t − [u] − [v])τ2n+2(t), (3.6)

and Hirota-type bilinear equations, always involving nearest neighbours:

(

pk+4(∂̃)− 1

2

∂2

∂t1∂tk+3

)

τ2n ◦ τ2n = pk(∂̃) τ2n+2 ◦ τ2n−2, k, n = 0, 1, 2, . . . .

(3.7)

LEMMA 3.4
Consider an arbitrary functionϕ(t, z) depending on t∈ C

∞, z ∈ C, having the
asymptoticsϕ(t, z) = 1+ O(1/z) for zր∞ and satisfying the functional relation

ϕ(t − [z−1
2 ], z1)

ϕ(t, z1)
=

ϕ(t − [z−1
1 ], z2)

ϕ(t, z2)
, t ∈ C

∞, z ∈ C.

Then there exists a functionτ(t) such that

ϕ(t, z) = τ(t − [z−1])
τ (t)

.

Proof
See Appendix C.

∗We define { f, g} := f ′g− f g′, where ′ = ∂/∂t1.
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LEMMA 3.5
The following holds for the Pfaffian wave functions�1 and�2, as in (2.7),

ψ1,2n(t − [z−1
2 ], z1)

ψ1,2n(t, z1)
=

ψ1,2n(t − [z−1
1 ], z2)

ψ1,2n(t, z2)
(3.8)

and
ψ2,2n−2

(

t − [z−1], z−1)ψ1,2n(t, z) = 1. (3.9)

Proof
Setting (2.7) in the bilinear equation (2.12), withn �→ 2n, m �→ 2n− 2, yields

c2n(t)

c2n−2(t)

∮

∞
e
∑

(ti−t ′i )z
i
ψ1,2n(t, z)ψ2,2n−2(t

′, z−1)
dz

2π i

+ c2n−2(t)

c2n(t)

∮

0
e
∑

(t ′i−ti )z−i
ψ2,2n(t, z)ψ1,2n−2(t

′, z−1)
z2dz

2π i
= 0.

Setting
t − t ′ = [z−1

1 ] + [z−1
2 ]

in the above and usinge
∑∞

1 xi / i = 1/(1− x) yields

c2n

c2n−2

∮

∞

ψ1,2n(t, z)ψ2,2n−2(t ′, z−1)

(1− z/z1)(1− z/z2)

dz

2π i

= −c2n−2

c2n

∮

0
z2
(

1− 1

zz1

)(

1− 1

zz2

)

ψ2,2n(t, z)ψ1,2n−2(t
′, z−1)

dz

2π i
= 0,

the latter being equal to zero, because the integrand on the right-hand side is holomor-
phic. The integral on the left-hand side can be viewed as an integral along a contour
encompassing∞ and the pointsz1 andz2, thus leading to

ψ1,2n(t, z1)ψ2,2n−2
(

t − [z−1
1 ] − [z−1

2 ], z−1
1

)

= ψ1,2n(t, z2)ψ2,2n−2
(

t − [z−1
1 ] − [z−1

2 ], z−1
2

)

(3.10)

with

ψ1,2n(t, z) = 1+ O(z−1), ψ2,2n−2
(

t − [z−1
1 ] − [z−1

2 ], z−1) = 1+ O(z−1).

Therefore, lettingz2 ր∞, one finds

ψ1,2n(t, z1)ψ2,2n−2
(

t − [z−1
1 ], z−1

1

)

= 1, (3.11)

yielding (3.9), and so, upon shiftingt �→ t − [z−1
2 ],

ψ2,2n−2
(

t − [z−1
1 ] − [z−1

2 ], z−1
1

)

= 1

ψ1,2n(t − [z−1
2 ], z1)

;
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similarly,

ψ2,2n−2
(

t − [z−1
1 ] − [z−1

2 ], z−1
2

)

= 1

ψ1,2n(t − [z−1
1 ], z2)

. (3.12)

Setting the two expressions (3.12) in (3.10) yields

ψ1,2n(t − [z−1
2 ], z1)

ψ1,2n(t, z1)
=

ψ1,2n(t − [z−1
1 ], z2)

ψ1,2n(t, z2)
.

Proof of Proposition 3.1
From Lemmas 3.4 and 3.5, there exists, for each 2n, a functionτ2n such that the first
relation of (3.1) is satisfied; that is,

ψ1,2n(t, z) = τ2n(t − [z−1])
τ2n(t)

,

and so from (3.9)

ψ2,2n−2
(

t − [z−1], z−1) = 1

ψ1,2n(t, z)
= τ2n(t)

τ2n(t − [z−1]) ,

thus leading to

ψ2,2n−2(t, z) = τ2n(t + [z])
τ2n(t)

,

which is the second relation of (3.1).

Proof of Theorem 3.2
At first, remembering that̂Q = Q−1

0 Q, observe that

e
∑

ti zi (
(Q̂)χ(z)

)

2n =
(

Q−1
0 �1(t, z)

)

2n

= e
∑

ti zi
z2nψ1,2n(t, z)

= e
∑

ti zi
z2n τ2n(t − [z−1])

τ2n(t)

= e
∑

ti zi
z2n
(

1+
∞
∑

n=1

sk(−∂̃)τ2n(t)

τ2n(t)

)

,
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showing that a few subdiagonals of the matrixQ̂ are given by

Q̂ =

























. . .

1 0
0 1

q̂2n,2n−2 q̂2n,2n−1

q̂2n+1,2n−2 q̂2n+1,2n−1

1 0
0 1

. . .

























with

q̂2n,2n−1 = − ∂

∂t1
logτ2n, q̂2n,2n−2 =

s2(−∂̃)τ2n

τ2n
. (3.13)

Remembering that (2.7), normalized, becomes
{

�̂1,2n(t, z) = e
∑

tkzk
z2nψ1,2n(t, z), ψ1,2n = 1+ O(z−1),

�̂1,2n+1(t, z) = e
∑

tkzk
z2n+1ψ1,2n+1(t, z), ψ1,2n+1 = 1+ O(z−2),

(3.14)

{

�̂2,2n(t, z) = e−
∑

tkz−k
z2n+1ψ2,2n(t, z), ψ2,2n = 1+ O(z),

�̂2,2n+1(t, z) = −e−
∑

tkz−k
z2nψ2,2n+1(t, z), ψ2,2n+1 = 1+ O(z2),

(3.15)

we now show (3.3). Compute, using Theorem 2.2,

e
∑

ti zi
( ∂

∂t1
+ z

)

z2nψ1,2n(t, z) =
( ∂

∂t1
�̂1(t, z)

)

2n

=
((

(L̂1)+ + (L̂1)0 + Q−2
0 J(L̂1+)⊤J Q2

0

)

�̂1(t, z)
)

2n (3.16)

and

e−
∑

ti z−i
( ∂

∂t1
− 1

z

)

z2n+1ψ2,2n(t, z) =
( ∂

∂t1
�̂2(t, z)

)

2n

=
((

J
(

(L̂1)+ + (L̂1)0 + Q−2
0 J(L̂1+)⊤J Q2

0

))

�̂2(t, z)
)

2n. (3.17)
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In this expression, the matrix equals, according to (2.14),

(L̂1)+ + (L̂1)0 + Q−2
0 J(L̂1+)⊤J Q2

0

=































...

. . . q̂0,−1 1 0 0 0 0
q̂1,−1 − q̂20 −q̂21 1 0 0 0

0 0 q̂21 1 0 0
c2

0/c2
2 0 q̂31− q̂42 −q̂43 1 0

0 0 0 0 q̂43 1
0 0 c2

2/c2
4 0 q̂53− q̂64 −q̂65 . . .

...































,

and, acting withJ on this matrix,

J
(

(L̂1)+ + (L̂1)0 + Q−2
0 J(L̂1+)⊤J Q2

0

)

=































...

. . . q̂21 1 0 0 0 0
q̂1,−1 − q̂20 −q̂0,−1 c2

0/c2
2 0 0 0

0 0 q̂43 1 0 0
1 0 q̂31− q̂42 −q̂21 c2

2/c2
4 0

0 0 0 0 q̂65 1
0 0 1 0 q̂53− q̂64 −q̂43 . . .

...































,

using the fact that

J

(

a b
c d

)

=
(

−d b
c −a

)

.

Therefore the 2nth rows of both matrices, respectively, have the form

(0, . . . , 0, q̂2n,2n−1(t), 1, 0, 0, . . . ),

↑
2n

(0, . . . , 0, q̂2n+2,2n+1(t), 1, 0, 0, . . . ),

↑
2n
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and thus from (3.16) and (3.17), and expansions (3.14) and (3.15), we have
( ∂

∂t1
+ z

)

z2nψ1,2n(t, z) = q̂2n,2n−1(t)z
2nψ1,2n + z2n+1ψ1,2n+1,

( ∂

∂t1
− z−1

)

z2n+1ψ2,2n(t, z) = q̂2n+2,2n+1(t)z
2n+1ψ2,2n + z2nψ2,2n+1. (3.18)

So, using the expression (3.13) forq̂2n,2n−1 and the first expression of (3.1),

z2n+1ψ1,2n+1(t, z)

=
(

z+ ∂

∂t1

)

z2nψ1,2n(t, z)− q̂2n,2n−1(t)z
2nψ1,2n(t, z)

=
(

z+ ∂

∂t1

)

z2nψ1,2n(t, z)+
( ∂

∂t1
logτ2n(t)

)

z2nψ1,2n(t, z)

=
(

z+ ∂

∂t1

)

z2n τ2n(t − [z−1])
τ2n(t)

+
( ∂

∂t1
τ2n(t)

)

z2n τ2n(t − [z−1])
τ2

2n(t)

= z2n (z+ ∂/∂t1)τ2n(t − [z−1])
τ2n(t)

, (3.19)

and similarly, using the second relation (3.18),

z2nψ2,2n+1(t, z) = z2n+1 (−z−1 + ∂/∂t1)τ2n+2(t + [z])
τ2n+2(t)

. (3.20)

This establishes (3.3) modulo the denominators. Therefore, we also have

ψ1,2n+1(t, z) = 1

z

1

τ2n(t)

(

z+ ∂

∂t1

)(

τ2n(t)−
∂τ2n

∂t1
z−1 + s2(−∂̃)τ2nz−2 + · · ·

)

= 1+ 1

τ2n(t)

(

− ∂2

∂t2
1

+ s2(−∂̃)
)

τ2nz−2 + O(z−3);

thus, referring to the matrix̂Q just preceding (3.13),

q̂2n+1,2n = 0, q̂2n+1,2n−1 =
1

τ2n

(

s2(−∂̃)− ∂2

∂t2
1

)

τ2n =
−s2(∂̃)τ2n

τ2n
. (3.21)

To show (3.4), settingn �→ 2n and m �→ 2n in bilinear relation (2.10) and
substituting, using (2.7) and the expressions forψ1,2n(t, z) andψ2,2n(t, z) in the proof
of Proposition 3.1,

�1,2n(t, z) = e
∑

tkzk
z2nc2n(t)

τ2n(t − [z−1])
τ2n(t)

and

�2,2n(t
′, z) = e−

∑

t ′kz−k
z2n+1c−1

2n (t ′)
τ2n+2(t ′ + [z])

τ2n+2(t ′)
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into
∮

∞
�1,2n(t, z)�2,2n(t

′, z−1)
dz

2π i z
+
∮

0
�2,2n(t, z)�1,2n(t

′, z−1)
dz

2π i z
= 0

yields

c2n(t)

c2n(t ′)

∮

∞
e
∑

(tk−t ′k)z
k τ2n(t − [z−1])τ2n+2(t ′ + [z−1])

τ2n(t)τ2n+2(t ′)

dz

2π i z2

+ c2n(t ′)

c2n(t)

∮

0
e
∑

(t ′k−tk)z−k τ2n+2(t + [z])τ2n(t ′ − [z])
τ2n+2(t)τ2n(t ′)

dz

2π i
.

Settingt ′ = t + [α] amounts to replacing the exponential:

e
∑

(tk−t ′k)z
k = 1− αz, e

∑

(t ′k−tk)z−k = 1

1− α/z
,

so that the first integral has a simple pole atz= ∞ and the second integral has one at
z= α. Evaluating the integrals yields

−α
c2

2n(t)(τ2n+2(t)/τ2n(t))

c2
2n(t

′)τ2n+2(t ′)/τ2n(t ′)
+ α = 0;

that is,

(e
∑

(αi / i )(∂/∂ti ) − 1)c2
n(t)

τ2n+2(t)

τ2n(t)
= 0

yields the following relation, which involves a constantcn, independent of time,

c2
2n(t) = cn

τ2n(t)

τ2n+2(t)
= cn · h−1

2n (t). (3.22)

Rescalingτ2n �→ τ2n/(c1c2 · · · cn−1), in effect, setscn = 1, and then (3.22), (2.7),
(3.1), (3.19), and (3.20) yield (3.3); substituting (3.3) into (2.10) yields (3.4).

Finally, identity (3.22) actually saysQ0 = h−1/2. To derive the form (3.5) of the
matrix L, set (3.13) and (3.21) in the elements just below the main diagonal of matrix
(2.15), to yield (· = ∂/∂t1)

Eqn. too wide for line;
this break OK?

−q̂2
2n,2n−1 − q̂2n+1,2n−1 + q̂2n,2n−2 = −

( τ̇2n

τ2n

)2
−

(s2(−∂̃)− (∂2/∂t2
1))τ2n

τ2n

+ s2(−∂̃)τ2n

τ2n

= τ̈2n

τ2n
−
( τ̇2n

τ2n

)2

= (logτ2n)
··
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and

q̂2n+1,2n−1 − q̂2n+2,2n =
(s2(−∂̃)− ∂2/∂t2

1)τ2n

τ2n
− s2(−∂̃)τ2n+2

τ2n+2

= −s2(∂̃)τ2n

τ2n
− s2(−∂̃)τ2n+2

τ2n+2
,

concluding the proof of Theorem 3.2, upon substituting the two relations (3.13) and
(3.14) and alsoQ0 = h−1/2 into (2.15).

4. Semi-infinite matricesm∞, (skew-)orthogonal polynomials, and matrix inte-
grals

In this section, consider the following inner-product∗ for α = 0,∓1:

〈 f, g〉t =
∫ ∫

R2
f (y)g(z)e

∑

ti (yi+zi )2Dαδ(y− z)ρ̃(y)ρ̃(z) dy dz

=































∫

R

f (y)g(y)e
∑

2ti yi
2ρ̃(y)2dy, for α = 0,

∫∫

R2
f (y)g(z)e

∑∞
1 ti (yi+zi )ε(y− z)ρ̃(y)ρ̃(z) dy dz, for α = −1,

∫

R

{ f, g}(y)e
∑∞

1 2ti yi
ρ̃(y)2 dy, for α = +1.

(4.1)

Each type of inner-product is discussed in Sections 4.1 and 4.2.

4.1.∂m∞/∂tk = �km∞, orthogonal polynomials, and Hermitian matrix integrals
(α = 0)

The inner-product above, withα = 0, corresponds to Hermitian matrix integrals; this
theory is sketched here for the sake of completeness and analogy; it mainly summa-
rizes [6]. Consider at-dependent weight

Creates bad break in
text; OK to display? ρt (dz) := e

∑

ti zi
, ρ(dz) = e−V(z)+

∑

ti zi
dz

onR, as in (0.1) and the inducedt-dependent measure

eTr(−V(X)+
∑

ti Xi ) d X, (4.2)

on the ensembleHn of Hermitian matrices, with Haar measured X; the latter can be
decomposed into a spectral part (radial part) and an angular part:

d X :=
n
∏

1

d Xi i

∏

1≤i < j≤n

(dℜXi j dℑXi j ) = �2(z) dz1 · · ·dzn dU, (4.3)

∗We haveε(x) = sign x, having the propertyε′ = 2δ(x). Also, consider the Wronskian{ f, g} := (∂ f /∂y)g

− f (∂g/∂y).
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where�(z) =
∏

1≤i < j≤n(zi − z j ) is the Vandermonde determinant. Here we form
the following matrix integral

∫

Hn

eTr(−V(X)+
∑

ti Xi ) d X = cn

∫

Rn
�2(z)

n
∏

k=1

e
∑∞

1 ti zi
kρ(dzk). (4.4)

The weightρt (dz) defines a (symmetric)t-dependent inner-product of the type (4.1)
for α = 0:

〈 f, g〉sy
t =

∫

f (z)g(z)e
∑∞

1 ti zi
ρ(dz),

with moments

µi j (t) := 〈zi , z j 〉sy
t =

∫

R

zi+ j e
∑

tkzk
ρ(dz)

satisfying
∂µi j

∂tℓ
=
∫

R

zi+ j+ℓ e
∑

tkzk
ρ(dz) = µi+ℓ, j (t).

Therefore the semi-infinite moment matrixm∞(t) = (µi j (t))i, j≥0 satisfies

∂m∞
∂ti

= �i m∞ = m∞�⊤i
. (4.5)

The point now is that the following integral can be expressed as a determinant of
moments, namely,

∫

Hn

eTr(−V(X)+
∑∞

1 ti Xi ) d X =
∫

Rn
�2(z)

n
∏

k=1

ρt (dzk)

=
∫

Rn

∑

σ∈Sn

det(zℓ−1
σ(k)

zk−1
σ(k)

)1≤ℓ,k≤n

n
∏

k=1

ρt (dzk)

=
∫

Rn

∑

σ∈Sn

det(zℓ+k−2
σ(k)

)1≤ℓ,k≤n

n
∏

k=1

ρt (dzσ(k))

=
∑

σ∈Sn

det
(

∫

R

zℓ+k−2
σ(k)

ρt (dzσ(k))
)

1≤ℓ,k≤n

= n! det
(

∫

R

zℓ+k−2ρt (dz)
)

1≤ℓ,k≤n

= n! det(µi j )0≤i, j≤n−1 = n!τn(t)

is aτ -function for the KP-equation; also, in view of (4.5) and the upper-lower Borel
decomposition (0.3) ofm∞, the integrals form a vector ofτ -functions for the Toda
lattice. The polynomialspn(t; z) defined by the Borel decompositionm∞(t) =
S−1S⊤−1 and p(t; z) = Sχ(z) are orthonormal with regard to the inner-product
〈zi , z j 〉sy

t = µi j (t).
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4.2.∂m∞/∂tk = �km∞ + m∞�⊤k, skew-orthogonal polynomials, and symmetric
and symplectic matrix integrals(α = ±1)

Consider a skew-symmetric semi-infinite matrix

m∞(t) =
(

µi j (t)
)

i, j≥0, with mn(t) =
(

µi j (t)
)

0≤i, j≤n−1,

satisfying
∂m∞/∂tk = �km∞ +m∞�⊤n. (4.6)

Then we have shown in Sections 2 and 3 that, upon skew-Borel decomposingm∞,
these equations ultimately imply the existence of functionsτ(t) satisfying bilinear
equations (3.4). Remember also that

h(t) = diag(h0, h0, h2, h2, . . .) ∈ D−
0 , with h2n(t) =

τ2n+2(t)

τ2n(t)
.

Here, we need the Pfaffian pf(A) of a skew-symmetric matrixA = (ai j )0≤i, j≤n−1

for∗ evenn:

pf(A) dx0 ∧ · · · ∧ dxn−1 =
1

(n/2)!
(

∑

0≤i < j≤n−1

ai j dxi ∧ dxj

)n/2
r

= 1

2n/2(n/2)!
(

∑

σ

ε(σ )ai0,i1ai2,i3 · · ·ain−2,in−1

)

dx0 ∧ · · · ∧ dxn−1, (4.7)

so that pf(A)2 = detA. We now state the following theorem due to Adler, E. Horozov,
and van Moerbeke [2], in complete analogy with the discussion of the Hermitian case.

THEOREM 4.1
Consider a semi-infinite skew-symmetric matrix m∞, evolving according to (4.6);
setting

τ2n(t) = pf
(

m2n(t)
)

and h2n =
pf(m2n+2(t))

pf(m2n(t))
; (4.8)

then, modulo the exponential, the wave vector�1 (defined by (3.3)) is a sequence of
polynomials,

�1,k(t, z) = e
∑

ti zi
qk(t, z), (4.9)

where the qk’s are skew-orthonormal polynomials of the form (0.13) and (0.18), sat-
isfying

(〈qi , q j 〉sk)0≤i, j <∞ = J, with 〈yi , z j 〉sk := µi j . (4.10)

∗In the formula below(i0, i1, . . . , in−2, in−1) = σ(0, 1, . . . , n− 1), whereσ is a permutation andε(σ ) its
parity.
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The matrix Q defined by q(z) = Qχ(z) is the unique solution (modulo signs) to the
skew-Borel decomposition of m∞:

m∞(t) = Q−1J Q⊤−1, with Q ∈ k. (4.11)

The matrix L= Q�Q−1, also defined by

zq(t, z) = Lq(t, z),

and the diagonal matrix h satisfy the equations

∂L

∂ti
= [−πk L i , L] and h−1 ∂h

∂ti
= 2πk(L i )0. (4.12)

Sketch of proof
At first note that looking for skew-orthogonal polynomials is tantamount to the skew-
Borel decomposition ofm∞, so that (4.10) and (4.11) are equivalent. The skew-
orthogonality of the polynomials (0.18) follows from expanding the Pfaffians explic-
itly in terms of z-columns, upon using the expression for the Pfaffian in terms of a
column

∑

0≤k≤ℓ−1

(−1)kaki pf(0, . . . , k̂, . . . , ℓ− 1) = pf(0, . . . , ℓ− 1, i ).

For details, see [2]. On the other hand, Theorem 3.2 gives�(t, z) and henceQ in
terms ofτn(t) = pf m2n(t) of (4.8). By the uniqueness of decomposition (4.11), the
two ways of arriving atQ, (0.18), and (3.3) must coincide.

Important remark
The polynomials (0.18) provide an explicit algorithm to perform the skew-Borel de-
composition of the skew-symmetric matrixm∞. Namely, the coefficients of the poly-
nomialsqi provide the entries of the matrixQ. This fact is used later in the examples.

Symmetric matrix integrals (α = −1)
Here we focus on integrals over the spaceS2n of symmetric matrices of the type

∫

S2n

eTr(−V(X)+
∑∞

1 ti Xi ) d X, (4.13)

whered X denotes Haar measure forX = U diag(z1, . . . , zn)U⊤, UU⊤ = I ,

d X :=
∏

1≤i≤ j≤n

d Xi j = |�(z)| dz1 · · · dzn dU. (4.14)
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As appears below, integral (4.13) leads to a skew-inner-product of the type (4.1) with
α = −1, with weightρt (z) := e

∑

ti zi
ρ(z) = e−V(z)+

∑

ti zi
:

〈

f (x), g(y)
〉

:=
∫ ∫

R2
f (x)g(y)ε(x − y)ρt (x)ρt (y) dx dy, (4.15)

leading to skew-symmetric moments∗

µi j (t) =
∫ ∫

R2
xi y j ε(x − y)ρt (x)ρt (y) dx dy

=
∫ ∫

x≥y
(xi y j − x j yi )ρt (x)ρt (y) dx dy

=
∫

R

(

F j (x)Gi (x)− Fi (x)G j (x)
)

dx, (4.16)

where(′ = d/dx)

Fi (x) :=
∫ x

−∞
yi e

∑

tk yk
ρ(y) dy and Gi (x) := F ′i (x) = xi e

∑

tkxk
ρ(x).

By simple inspection, the momentsµkℓ(t) satisfy

∂µkℓ

∂ti
=
∫ ∫

R2
(xk+i yℓ + xkyℓ+i )ε(x − y)e

∑

tn(xn+yn)ρ(x)ρ(y) dx dy

= µk+i,ℓ + µk,ℓ+i ,

and som∞ satisfies (4.6).
According to M. Mehta [14], the symmetric matrix integral can now be expressed

in terms of the Pfaffian, as follows, taking into account a constantc2n, coming from

∗We haveε(x) = 1, for x ≥ 0, andε(x) = −1, for x < 0.
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integrating the orthogonal group:

1

(2n)!

∫

S2n(E)

eTr(−V(X)+
∑

ti Xi ) d X = 1

(2n)!

∫

R2n
|�2n(z)|

2n
∏

i=1

e
∑

tkzk
i ρ(zi ) dzi

=
∫

−∞<z1<z2<···<z2n<∞
det

(

zi
j+1ρt (z j+1)

)

0≤i, j≤2n−1

2n
∏

i=1

dzi

=
∫

−∞<z2<z4<···<z2n<∞

n
∏

k=1

ρt (z2k) dz2k × det
(

∫ z2

−∞
zi

1ρt (z1) dz1, zi
2,

. . . ,

∫ z2n

z2n−2

zi
2n−1ρt (z2n−1) dz2n−1, zi

2n

)

0≤i≤2n−1

=
∫

−∞<z2<z4<···<z2n<∞

n
∏

k=1

ρt (z2k) dz2k

× det
(

Fi (z2), zi
2, Fi (z4)− Fi (z2), zi

4,

. . . , Fi (z2n)− Fi (z2n−2), zi
2n

)

0≤i≤2n−1

=
∫

−∞<z2<z4<···<z2n<∞

n
∏

1

dz2i

× det
(

Fi (z2), Gi (z2), . . . , Fi (z2n), Gi (z2n)
)

0≤i≤2n−1

= 1

n!

∫

Rn

n
∏

1

dyi det
(

Fi (y1), Gi (y1), . . . , Fi (yn), Gi (yn)
)

0≤i≤2n−1

= det1/2
(

∫

R

(

Gi (y)F j (y)− Fi (y)G j (y)
)

dy
)

0≤i, j≤2n−1

(using de Bruijn’s lemma (see [14, p. 446]))

= pf
(

∫∫

R2
ykzℓε(y− z)e

∑∞
1 ti (yi+zi )ρ(y)ρ(z) dy dz

)

0≤k,ℓ≤2n−1

= pf
(

µi j (t)
)

0≤i, j≤2n−1 = τ2n(t), (4.17)

which is a Pfaffianτ -function.
Eqn. lines too wide for
page; these breaks OK?

Symplectic matrix integrals:(α = +1)

Here we concentrate on integrals of the type
∫

T2n

e2 Tr(−V(X)+
∑∞

1 ti Xi ) d X, (4.18)
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whered X denotes Haar measure∗

d X =
N
∏

1

d Xk

∏

k<ℓ

d X(0)
kℓ

¯
d X(0)

kℓ d X(1)
kℓ

¯
d X(1)

kℓ

on the spaceT2N of self-dual(N × N)–Hermitian matrices, with real quaternionic
entries; the latter can be realized as the space of(2N × 2N)-matrices with entries
X(i )

ℓk ∈ C,

T2N =











X = (Xkℓ)1≤k,ℓ≤N, Xkℓ =







X(0)
kℓ X(1)

kℓ

−X̄(1)
kℓ X̄(0)

kℓ






with Xℓk = X̄⊤kℓ











.

Another skew-symmetric moment matrixm∞ satisfying (4.6) is given by inner-
product (4.1) forα = 1, with ρt (y) = ρ(y)e

∑

tα yα = e−V(y)+
∑

tα yα
,

µi j (t) =
∫

R

{yi , y j }ρt (y)2IE(y) dy

=
∫

R

{

yi ρt (y), y j ρt (y)
}

IE(y) dy

=
∫

R

(

Gi (y)F j (y)− Fi (y)G j (y)
)

dy, (4.19)

upon setting(′ = d/dx)

F j (x) = x j ρt (x) and G j (x) := F ′j (x) =
(

x j ρt (x)
)′
.

Thatm∞ satisfies (4.6) follows at once from the first expression (4.18):

µkℓ(t) =
∫

{yk, yℓ}ρt (y)2 dy=
∫

(k− ℓ)yk+ℓ−1ρt (y)2 dy

∂µkℓ

∂ti
= 2

∫

{yk, yℓ}yi ρt (y)2 dy

=
∫

(

(k+ i − ℓ)yk+i+ℓ−1 + (k− ℓ− i )yk+i+ℓ−1)ρt (y)2 dy

= µk+i,ℓ + µk,ℓ+i ,

thus leading to (4.6). Using the relation
∏

1≤i, j≤n

(xi − x j )
4 = det

(

xi
1 (xi

1)
′ xi

2 (xi
2)
′ · · · xi

n (xi
n)
′)

0≤i≤2n−1,

∗ X̄ means the usual complex conjugate. The condition on the(2×2)-matricesXkℓ implies thatXkk = Xk I ,
with Xk ∈ R and I the identity.
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one computes, using again de Bruijn’s lemma,

1

(n)!

∫

T2n

e2 Tr(−V(X)+
∑

ti Xi ) d X = 1

n!

∫

Rn

∏

1≤i, j≤n

(xi − x j )
4

n
∏

i=1

ρt (xi )
2 dxi

= 1

n!

∫

Rn

n
∏

k=1

ρt (xk)
2 dxk

× det
(

xi
1 (xi

1)
′ xi

2 (xi
2)
′ · · · xi

n (xi
n)
′)

0≤i≤2n−1

= 1

n!

∫

Rn

n
∏

1

dyi det
(

Fi (y1) Gi (y1) . . . Fi (yn) Gi (yn)
)

0≤i≤2n−1

= det1/2
(

∫

R

(

Gi (y)F j (y)− Fi (y)G j (y)
)

dy
)

0≤i, j≤2n−1

= pf
(

µi j (t)
)

0≤i, j≤2n−1 = τ2n(t), (4.20)

which is a Pfaffianτ -function as well.

5. A map from the Toda to the Pfaff lattice
Remember from (0.1) the notationρt (z) = ρ(z)e

∑

tkzk
andρ′/ρ = −g/ f . Assuming,

in addition, that f (z)ρ(z) vanishes at the endpoints of the interval under considera-
tion (which could be finite, infinite, or semi-infinite), one checks that thet-dependent
operator inz,

nt : =
√

f

ρt

d

dz

√

fρt

= e(1/2)
∑

tkzk
(

d

dz
f (z)− f ′ + g

2
(z)

)

e1/2
∑

tkzk

= d

dz
f (z)− f ′ + gt

2
(z), with gt (z) = g(z)− f (z)

∞
∑

1

ktkzk−1, (5.1)

maintainsH+ = {1, z, z2, . . .} and is skew-symmetric with respect to thet-dependent
inner-product〈 , 〉sy

t , defined by the weightρt (z) dz,

〈ntϕ,ψ〉sy
t =

∫

E
(ntϕ)(z)ψ(z)ρt (z) dz= −

∫

E
ϕ(ntψ)ρt dz= −〈ϕ, ntψ〉sy

t .

The orthonormality of thet-dependent polynomialspn(t, z) in z imply
〈

pn(t, z), pm(t, z)
〉sy
t = δmn.

The matricesL andM are defined by

zp= Lp and e−(1/2)
∑

tkzk d

dz
e1/2

∑

tkzk
p = Mp.
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The skewness ofnt implies the skew-symmetry of the matrix

N (t) = f (L)M − f ′ + g

2
(L) such thatnt p(t, z) = N p(t, z); (5.2)

soN (t) can be viewed as the operatornt , expressed in the polynomial basis(p0(t, z),
p1(t, z), . . .).

In the next theorem, we consider functionsF of two (noncommutative) variables
z andnt so that the (pseudo-)differential operatorut := F(z, nt ) in z and the matrix
U := F(L , N ) related by∗

F(z, nt )p(t, z) = F(L , N )p(t, z),

are skew-symmetric as well. Examples ofF ’s are†

F(z, nt ) := nt , n−1
t , or {zℓ, n2k+1

t }†,

corresponding to

F(L , N ) = N , N −1, or {N 2k+1, Lℓ}†.

THEOREM 5.1
Any Hänkel matrix m∞ evolving according to the vector fields

∂m∞(t)

∂tk
= �km∞

leads to matrices L and M, evolving according to the Toda lattice equations∂L/∂tn
= (1/2)[(Ln)sk, L] and∂M/∂tn = (1/2)[(Ln)sk, M] (see (1.9)). Consider a function
F of two variables such that the operatorut := F(z, nt ) is skew-symmetric with
respect to〈 , 〉sy

t and so the matrix

U (t) = F
(

L(t), N (t)
)

, defined byut p(t, z) = U p(t, z),

is skew-symmetric. This induces a natural lower-triangular matrix O(t), mapping the
Toda lattice into the Pfaff lattice (for notationπbo, πk, Gk , etc., see (1.9), (1.18),
(1.17)):

Toda lattice















pn(t, z) = (S(t)χ(z))n orthonormal with respect to
m∞(t) =

(

〈zi , z j 〉sy
t
)

0≤i, j≤∞ = S−1S⊤−1,

L(t) = S�S−1 satisfies
∂L

∂t j
=
[

− 1

2
πboL j , L

]

, j = 1, 2, . . .

∗It is to be understood thatF(L ,N ) reverses the order ofz, u in F(z, u).
†We define {A, B}† := AB+ B A.



2002/2/7
page 39

✐

✐

✐

✐

✐

✐

✐

✐

TODA VERSUS PFAFF LATTICE 39

















































5

map O(2t) such that















−U (2t) = O−1(2t)J O⊤−1(2t),

O(2t) is lower-triangular,

O(2t)S(2t) ∈ Gk

Pfaff lattice















































qn(t, z) =
(

O(2t)p(2t, z)
)

n, skew-orthonormal with regard to
m̃∞(t) := −S−1(2t)U (2t)S⊤−1(2t) = Q−1(t)J Q⊤−1(t)

=
(

〈zi , z j 〉sk
t

)

0≤i, j≤∞
=
(

〈zi , u2t z j 〉sy
2t

)

0≤i, j≤∞,

L̃(t) := O(2t)L(2t)O(2t)−1 satisfies
∂ L̃

∂t j
= [−πk L̃ j , L̃], j = 1, . . . .

Too wide for page; this
break OK?Proof

SinceU (t) is skew-symmetric, it admits a skew-Borel decomposition

−U (t) = O−1(t)J O⊤−1(t), with lower-triangularO(t). (5.3)

But the new matrix, defined by

m̃∞(t) := −S−1(2t)U (2t)S⊤−1(2t), (5.4)

is skew-symmetric and thus admits a unique skew-Borel decomposition

m̃∞(t) = Q̃−1(t)J Q̃(t)⊤−1, with Q̃(t) ∈ Gk . (5.5)

Comparing (5.3), (5.4), and (5.5) leads to a unique choice of matrixO(t), skew-Borel
decomposing−U (2t), as in (5.3), such that

O(2t)S(2t) = Q̃(t) ∈ Gk . (5.6)

Using, as a consequence of (5.2) and (1.9),

∂U

∂tk
(2t) =

[

πsyLk(2t), U (2t)
]
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and
∂S

∂tk
(2t) = −

(

πboLk(2t)
)

S(2t),

we compute

∂m̃∞
∂tk

(t) = S−1 ∂S

∂tk
(2t)S−1U (2t)S⊤−1(2t)− S−1(2t)

( ∂

∂tk
U (2t)

)

S⊤−1(2t)

+ S−1(2t)U (2t)S⊤−1∂S⊤

∂tk
(2t)S⊤−1

= −S−1(πboLk(2t)
)

U S⊤−1 − S−1[πsyL
k, U ]S⊤−1

− S−1U (πboLk)⊤S⊤−1

= −S−1(πboLk + πsyL
k)U S⊤−1 − S−1U

(

(πboLk)⊤ − πsyLk)S⊤−1

= −S−1LkU S⊤−1 − S−1U L⊤kS⊤−1 (using (5.7))

= −�kS−1U S⊤−1 − S−1U S⊤−1�⊤kS⊤S⊤−1 (using Lk = S�kS−1)

= �km̃∞(t)+ m̃∞(t)�⊤k (by (5.4)).

For an arbitrary matrixA, we have

A = A⊤ ⇐⇒ A = (Abo)
⊤ − Asy. (5.7)

Indeed, remembering that∗Abo = 2A− + A0 andAsy = A+ − A−, one checks

(Abo)
⊤−Asy−A = 2(A−)⊤+A0−(A+−A−)−A−−A+−A0 = −2(A+−(A−)⊤),

so that the left-hand side vanishes, if the right-hand side does; the latter means A is
symmetric.

We now defineL̃(t) by conjugation ofL(2t) by O(2t):

L̃(t) := O(2t)L(2t)O(2t)−1 = O(2t)S(2t)�S−1(2t)O(2t)−1 = Q̃(t)�Q̃−1(t);

thus, by Proposition 1.2,̃L(t) satisfies the Pfaff Lax equation. Therefore the sequence
of polynomials

q(t, z) := O(2t)p(2t, z) = O(2t)S(2t)χ(z) = Q̃(t)χ(z)

is skew-orthonormal
〈

qi (t, z), q j (t, z)
〉sk = Ji j

∗A± means the usual strictly upper-(lower-)triangular part, andA0 means the diagonal part in the common
sense.
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with regard to the skew inner-product specified by the matrixm̃∞:

〈zi , z j 〉sk
t = µ̃i j (t).

In the last step, we show that〈ϕ, ψ〉sk
t = 〈ϕ, uψ〉sy

2t . Since

U (2t) = −O−1(2t)J O⊤−1(2t) = −U ⊤(2t), (5.8)

we compute

〈

qi (t, z), (u2tq) j (t, z)
〉sy
2t =

〈

(Op)i (2t), (uOp) j (2t)
〉sy
2t

=
〈

(Op)i (2t), (Oup) j (2t)
〉sy
2t

=
〈

(Op)i (2t), (OU p) j (2t)
〉sy
2t

=
(

O(2t)
〈

pk(2t), pℓ(2t)
〉sy
k,ℓ≥0(OU )⊤(2t)

)

i j

=
(

O(2t)I (OU )⊤(2t)
)

i j

=
(

O(2t)U ⊤(2t)O⊤(2t)
)

i j

= −
(

O(2t)U (2t)O⊤(2t)
)

i j

= Ji j (using(5.8)). (5.9)

Therefore, defining a new skew-inner-product〈 , 〉sk′

〈ϕ,ψ〉sk′ := 〈ϕ, uψ〉sy
2t ,

we have shown
〈qi , q j 〉sk′

t = 〈qi , q j 〉sk
t = Ji j ,

and so by completeness of the basisqi , we have

〈 , 〉sk′
t = 〈 , 〉sk

t ,

thus ending the proof of Theorem 4.1.

6. Example 1: From Hermitian to symmetric matrix integrals
Striking examples are given by using the mapO(t) obtained from skew-Borel de-
composingN −1(t) andN (t) (see (5.2)). This section deals withN −1(t), whereas
Section 7 deals withN (t).

PROPOSITION6.1
The special transformation

U (t) = N −1(t) =
(

f (L)M − f ′ + g

2
(L)

)−1
(t)
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maps the Toda latticeτ -functions with initial weightρ = e−V , V ′ = −g/ f (Hermi-
tian matrix integral) to the Pfaff latticeτ -functions (symmetric matrix integral), with
initial weight

ρ̃t (z) :=
(ρ2t (z)

f (z)

)1/2
= e−(1/2)(V(z)+log f (z)−2

∑∞
1 ti zi )

=: e−Ṽ(z)+
∑∞

1 ti zi = ρ̃(z)e
∑

ti zi
.

To be precise:

Toda lattice































pn(t, z) orthonormal polynomials in z for the inner-product

〈ϕ, ψ〉sy
t =

∫

ϕ(z)ψ(z)e
∑

ti zi
ρ(z) dz,

µi j (t) = 〈zi , z j 〉sy
t and mn = (µi j )0≤i, j≤n−1,

τn(t) = detmn =
1

n!

∫

Hn

eTr(−V(X)+
∑∞

1 ti Xi ) d X











































5

map O(2t) such that















−N −1(2t) = O−1(2t)J O⊤−1(2t),

O(2t) is lower-triangular,

O(2t)S(2t) ∈ Gk

Pfaff lattice































































































qn(t, z) =
(

O(2t)p(2t, z)
)

n skew-orthonormal polynomials

in z for the skew-inner-product (weightρ̃),

〈ϕ, ψ〉sk
t := 〈ϕ, n−1

2t ψ〉sy
2t

= v
1

2

∫ ∫

R2
ϕ(x)ψ(y)ε(x − y)e

∑

ti (xi+yi )

×
√

ρ

f
(x)

√

ρ

f
(y) dx dy,

µ̃i j (t) = 〈xi , y j 〉sk
t andm̃n = (µ̃i j )0≤i, j≤n−1,

τ̃2n(t) = pf(m̃2n) =
1

2n(2n)!

∫

S2n

eTr(−Ṽ(X)+
∑∞

1 ti Xi ) d X,

with Ṽ(z) = 1

2

(

V(z)+ log f (z)
)

.
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In the first integral definingτn(t), d X denotes Haar measure on Hermitian matrices
Lines in above display
too wide for page; this
break OK?

(see Section 4.1), whereas the second integralτ̃2n(t) involves Haar measure on sym-
metric matrices (see Section 4.2).

Proof
At first, check that

( d

dx

)−1
ϕ(x) = 1

2

∫

ε(x − y)ϕ(y) dy. (6.1)

Indeed,

d

dx

( d

dx

)−1
ϕ(x) =

∫

1

2

∂

∂x
ε(x − y)ϕ(y) dy

=
∫

δ(x − y)ϕ(y) dy (using
∂

∂x
ε(x) = 2δ(x))

= ϕ(x).

Consider now the operator

ut = n−1
t =

(
√

f

ρt

d

dz

√

fρt

)−1

, so that ut p = n−1
t p = N −1p,

according to (5.2). Let it act on a functionϕ(x):

n−1
t ϕ(x) =

(

1√
f (x)ρt (x)

( d

dx

)−1
√

ρt (x)

f (x)

)

ϕ(x)

=
∫

R

1√
f (x)ρt (x)

ε(x − y)

2

√

ρt (y)

f (y)
ϕ(y) dy (using (6.1)).

One computes

〈ϕ,ψ〉sk
t = 〈ϕ, u2tψ〉sy

2t

= 〈ϕ, n−1
2t ψ〉sy

2t

= 1

2

∫ ∫

R2

√

ρ2t (x)

f (x)
ε(x − y)

√

ρ2t (y)

f (y)
ϕ(x)ψ(y) dx dy

= 1

2

∫ ∫

R2
ρ̃(x)ρ̃(y)e

∑∞
1 tk(xk+yk)ε(x − y)ϕ(x)ψ(y) dx dy.

So, finally settingṼ(x) = (1/2)(V(x)+ log f (x)) yields by (4.17) that

τ̃2n(t) = pf(m̃2n) =
1

(2n)!

∫

S2n

eTr(−Ṽ(X)+
∑∞

1 ti Xi ) d X.
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The map O for the classical orthogonal polynomials at t= 0
Then, the matrix O, mapping orthonormal pk into skew-orthonormal polynomials qk,
is given by a lower-triangular three-step relation:

q2n(0, z) =
√

c2n

a2n
p2n(0, z),

q2n+1(0, z) =
√

a2n

c2n
(

− c2n−1p2n−1(0, z)+ c2n

a2n

(

2n
∑

0

bi

)

p2n(0, z)+ c2n p2n+1(0, z)

)

,

(6.2)

where the ai and bi are the entries in the tridiagonal matrix defining the orthonormal
polynomials, and the ci ’s are the entries of the skew-symmetric matrixN .

In [6], we showed that, in the classical cases below,N is tridiagonal, at the same
time asL (see Appendix B):

L =













b0 a0

a0 b1 a1

a1 b2
. . .

. . .
. . .













, −N =













0 c0

−c0 0 c1

−c1 0
. . .

. . .













,

(6.3)
with the following precise entries:

Hermite:ρ(z) = e−z2
, an−1 =

√

n/2, bn = 0, cn = an;
Laguerre:ρ(z) = e−zzα I[0,∞)(z), an−1 =

√

n(n+ α),

bn = 2n+ α + 1, cn = an/2;
Jacobi:ρ(z) = (1− z)α(1+ z)ρ I[−1,1](z);

an−1 =
( 4n(n+ α + β)(n+ α)(n+ β)

(2n+ α + β)2(2n+ α + β + 1)(2n+ α + β − 1)

)1/2
,

bn =
α2 − β2

(2n+ α + β)(2n+ α + β + 2)
,

cn = an

(α + β

2
+ n+ 1

)

.

If the skew-symmetric matrixN has the tridiagonal form above, then one checks that
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its inverse has the following form:

−N −1 =





































0 − 1
c0

0 −c1
c0c2

0 −c1c3
c0c2c4

0 −c1c3c5
c0c2c4c6

1
c0

0 0 0 0 0 0 0

0 0 0 − 1
c2

0 −c3
c2c4

0 −c3c5
c2c4c6

c1
c0c2

0 1
c2

0 0 0 0

0 0 0 0 0 − 1
c4

0 −c5
c4c6

c1c3
c0c2c4

0 c3
c2c4

0 1
c4

0 0 0

0 0 0 0 0 0 0 − 1
c6

c1c3c5
c0c2c4c6

0 c3c5
c2c4c6

0 c5
c4c6

0 1
c6

0
. . .





































(6.4)
In order to find the matrixO, we must perform the skew-Borel decomposition of the
matrix−U :

−U = −N −1 = O−1J O⊤−1.

The recipe for doing so is given in Theorem 4.1 (see also the important remark fol-
lowing that theorem). It suffices to form the Pfaffians (0.18) by appropriately border-
ing the matrix−N −1, as in (0.18), with rows and columns of powers ofz, yielding
skew-orthonormal polynomials; we choose to call themr ’s, instead of theq’s of The-
orem 4.1, withOχ(z) = r (z). They turn out to be the following simple polynomials,
with 1/ ˜̃τ2n = c0c2c4 · · · c2n−2:

r2n(z) =
1

√

˜̃τ2n ˜̃τ2n+2

c2nz2n

c0c2 · · · c2n
= 1
√

c2n
c2nz2n,

r2n+1(z) =
1

√

˜̃τ2n ˜̃τ2n+2

c2nz2n+1− c2n−1z2n−1

c0c2 · · · c2n
= 1
√

c2n
(c2nz2n+1 − c2n−1z2n−1).

Then, also from Appendix A, in order to getO → Ô in the correct form, we compute
the skew-orthonormal polynomialsr̂k, with Ôχ(z) = r̂ (z):

r̂2n(z) =
1

√
a2n

r2n(z) =
√

c2n

a2n
z2n,

r̂2n+1(z) =
∑2n

0 bi√
a2n

r2n(z)+
√

a2nr2n+1(z)

=
√

a2n

c2n

(

− c2n−1z2n−1 + c2n

a2n

(

2n
∑

0

bi

)

z2n + c2nz2n+1
)

. (6.5)

From the coefficients of the polynomialr̂k, one reads off the transformation ma-
trix from orthonormal to skew-orthonormal polynomials; it is given by the matrix
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Ô such thatÔχ(z) = r̂ (z). Thereforeq(t, z) = Ô(2t)p(2t, z) yields, after setting
t = 0,

We added times symbol
to (6.6). OK?

q2n(0, z) =
√

c2n

a2n
p2n(0, z),

q2n+1(0, z) =
√

a2n

c2n

×
(

− c2n−1p2n−1(0, z)+ c2n

a2n

(

2n
∑

0

bi

)

p2n(0, z)+ c2n p2n+1(0, z)

)

,

(6.6)

confirming (6.2).

7. Example 2: From Hermitian to symplectic matrix integrals

PROPOSITION7.1
The matrix transformation

N = f (L)M − f ′ + g

2
(L)

maps the Toda latticeτ -functions with t-dependent weight

ρt (z) = e−V(z)+
∑∞

1 ti zi
, V ′ = g/ f

(Hermitian matrix integral) to the Pfaff latticeτ -functions (symplectic matrix inte-
gral), with t-dependent weight

Is this break OK?

ρ̃t (z) :=
(

ρ2t (z) f (z)
)1/2 = e−(1/2)(V(z)−log f (z)−2

∑∞
1 ti zi )

=: e−Ṽ(z)+
∑

ti zi = ρ̃(z)e
∑

ti zi
.

To be precise:

Toda lattice























pn(t, z) orthonormal polynomials in z for the inner-product

〈ϕ,ψ〉sy
t =

∫

ϕ(z)ψ(z)e
∑

ti zi
ρ(z) dz,

µi j (t) = 〈zi , z j 〉sy
t and mn = (µi j )0≤i, j≤n−1,

τn(t) = detmn(t) =
1

n!

∫

Hn

eTr(−V(X)+
∑

ti Xi ) d X
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















































5

map O(2t) such that















−N (2t) = O−1(2t)J O⊤−1(2t),

O(2t) is lower-triangular,

O(2t)S(2t) ∈ Gk

Pfaff lattice







































































qn(t, z) =
(

O(2t)p(2t, z)
)

n skew-orthonormal polynomials
in z for the skew-inner-product (weightρ̃t ),

〈ϕ, ψ〉sk
t := 〈ϕ, n2tψ〉sy

2t

= −1

2

∫ ∫

R2
{ϕ(z), ψ(z)}e2

∑

ti zi
ρ(z) f (z) dz,

µ̃i j (t) = 〈zi , z j 〉sk
t andm̃n = det(µ̃i j )0≤i, j≤n−1,

τ̃2n(t) = pf(m̃2n(t)) =
1

(−2)nn!

∫

T2n

e2 Tr(−Ṽ(X)+
∑

ti Xi ) d X,

with Ṽ(z) = 1

2

(

V(z)− log f (z)
)

.

Proof
Representingd/dx as an integral operator

d

dx
ϕ(x) =

∫

R

δ(x− y)ϕ′(y) dy= −
∫

R

∂

∂y
δ(x− y)ϕ(y) dy=

∫

R

δ′(x− y)ϕ(y) dy,

compute

ut = nt =
√

f

ρt

d

dz

√

fρt , so that nt p(t, z) = N p(t, z);

rememberN from (5.2). Let it act on a functionϕ(x):

utϕ(x) =
(

√

f

ρt

d

dx

√

fρt

)

ϕ(x)

=
∫

R

√

f (x)

ρt (x)
δ′(x − y)

√

f (y)ρt (y)ϕ(y) dy.
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Then

〈ϕ, ψ〉sk
t = 〈ϕ, u2tψ〉sy

2t = 〈ϕ, n2tψ〉sy
2t

=
∫ ∫

R2
ρ2t (x)ϕ(x)

√

f (x)

ρ2t (x)
δ′(x − y)

√

f (y)ρ2t (y)ψ(y) dx dy

=
∫ ∫

R2

√

f (x)ρ2t (x)ϕ(x)δ′(x − y)
√

f (y)ρ2t (y)ψ(y) dx dy

= −
∫ ∫

R2

( ∂

∂x

√

f (x)ρ2t (x)ϕ(x)
)

δ(x − y)
√

f (y)ρ2t (y)ψ(y) dx dy

= −
∫

R

( ∂

∂x

√

f (x)ρ2t (x)ϕ(x)
)

√

f (x)ρ2t (x)ψ(x) dx

= −1

2

∫

R

( ∂

∂x

√

f (x)ρ2t (x)ϕ(x)
)

√

f (x)ρ2t (x)ψ(x) dx

+ 1

2

∫

R

√

f (x)ρ2t (x)ϕ(x)
( ∂

∂x

√

f (x)ρ2t (x)ψ(x)
)

dx

= −1

2

∫

R

{
√

f (x)ρ2t (x)ϕ(x),
√

f (x)ρ2t (x)ψ(x)
}

dx

= −1

2

∫

R

{

ϕ(x), ψ(x)
}

ρ̃2
0(x)e2

∑∞
1 ti xi

dx,

using the notation in the statement of this proposition. Settingρ̃(x) = e−Ṽ(x), with
Ṽ(x) = (1/2)(V(x)− log f ),

〈xi , x j 〉sk = −1

2

∫

R

{xi , x j }ρ̃2(x)e2
∑∞

1 ti xi
dx

= −1

2

∫

R

{xi , x j }e−2(Ṽ(x)−
∑

ti xi ) dx,

and so

τ2n(t) = pf
(

m̃2n(t)
)

= 1

(−2)nn!

∫

T2n

e2 Tr(−Ṽ(x)+
∑

ti xi ) dx.
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The map O−1 for the classical orthogonal polynomials at t= 0
Then, the matrixO, mapping orthonormalpk into skew-orthonormal polynomialsqk,
is given by a lower-triangular three-step relation:

p2n(0, z) = −c2n−1

√

a2n−2

c2n−2
q2n−2(0, z)+√a2nc2n q2n(0, z),

p2n+1(0, z) = −c2n

√

a2n−2

c2n−2
q2n−2(0, z)

−
(

2n
∑

0

bi

)

√

c2n

a2n
q2n(0, z)+

√

c2n

a2n
q2n+1(0, z),

(7.1)

where theai andbi are the entries in the tridiagonal matrix defining the orthonormal
polynomials, and theci are the entries in the skew-symmetric matrix.

In this case, we need to perform the following skew-Borel decomposition att =
0:

−U = −N = O−1J O⊤−1,

whereN is the matrix (6.3). Here again, in order to findO, we use the recipe given in
Theorem 4.1, namely, writing down the corresponding skew-orthogonal polynomials
(0.18), but where theµi j are the entries of−U = −N : consider the Pfaffians of the
bordered matrices (0.18); they have the leading term

˜̃τ2n =
n−1
∏

0

c2 j .

Then one computes

r2n =
1

√

˜̃τ2n ˜̃τ2n+2

n
∑

i=0

z2n−2i
(

n−i−1
∏

0

c2 j

)(

i−1
∏

0

c2n−2 j−1

)

,

r2n+1 =
1

√

˜̃τ2n ˜̃τ2n+2

(

z2n+1
n−1
∏

0

c2 j +
n
∑

i=1

z2n−2i
(

n−i−1
∏

0

c2 j

)(

i−1
∏

0

c2n−2 j−1

)

)

,

(7.2)

with
√

˜̃τ2n ˜̃τ2n+2 = c0c2 · · · c2n−2
√

c2n,

√

˜̃τ0 ˜̃τ2 =
√

c0.

Setting

D := diag(
√

˜̃τ0 ˜̃τ2,

√

˜̃τ0 ˜̃τ2,

√

˜̃τ2 ˜̃τ4,

√

˜̃τ2 ˜̃τ4, . . .),
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the matrixO is the set of coefficients of the polynomials above, that is,

O = D−1

































1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
c1 0 c0 0 0 0 0 0
c2 0 0 c0 0 0 0 0

c1 c3 0 c0 c3 0 c0 c2 0 0 0
c1 c4 0 c0 c4 0 0 c0 c2 0 0

c1 c3 c5 0 c0 c3 c5 0 c0 c2 c5 0 c0 c2 c4 0
c1 c3 c6 0 c0 c3 c6 0 c0 c2 c6 0 0 c0 c2 c4

. . .

































=: D−1R. (7.3)

As before, in order to get the skew-symmetric polynomials in the right form, from the
orthogonal ones, one needs to multiply to the left with the matrixE, defined in (A.2):

Ô = E O = E D−1R, (7.4)

and so,
Ô−1 = R−1DE−1; (7.5)

it turns out the matrixÔ is complicated, but its inverse is simple. Namely, compute
We made all c’s roman
here and in (7.3). OK?

R−1 =









































1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
− c1

c0
0 1

c0
0 0 0 0 0

− c2
c0

0 0 1
c0

0 0 0 0

0 0 − c3
c0 c2

0 1
c0 c2

0 0 0

0 0 − c4
c0 c2

0 0 1
c0 c2

0 0

0 0 0 0 − c5
c0 c2 c4

0 1
c0 c2 c4

0

0 0 0 0 − c6
c0 c2 c4

0 0 1
c0 c2 c4

. . .









































,
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and

E−1 =































α0 0
−β0

1
α0 0

α2 0
−β2

1
α2

α4 0
−β4

1
α4

0
. . .































, (7.6)

with α2n andβ2n as in (A.5). Carrying out the multiplication (7.5) leads to the matrix
Ô−1, with a few nonzero bands, yielding the map (7.1), by the recipe of Proposition
6.1 inverted.

Appendix A. Free parameter in the skew-Borel decomposition
If the Borel decomposition of−H = O−1J O⊤−1 is given by a matrixO ∈ Gk , with
the diagonal part ofO being

(O)0 =





























σ0 0
0 σ0 0

σ2 0
0 σ2

σ4 0
0 σ4

0
. . .





























, (A.1)

then the new matrix
Is “O=:EO,” a separate
equation?

Ô :=





























1/α0 0
β0 α0 0

1/α2 0
β2 α2

1/α4 0
β4 α4

0
. . .





























O =: E O, (A.2)
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with free parametersα2n, β2n, is a solution of the Borel decomposition−H =
Ô−1JÔ⊤−1, as well. The diagonal part of̂O consists of(2× 2)-blocks

(

1/α2n 0
β2n α2n

)(

σ2n 0
0 σ2n

)

=
(

σ2n/α2n 0
β2nσ2n α2nσ2n

)

.

Imposing the condition that

qi (z) =
∑

0≤ j≤i

Ôi j p j (z), with pk(z) =
k
∑

i=0

pki z
i ,

has the required form, that is, the same leading term forq2n andq2n+1 and noz2n-term
in q2n+1,

q2n(z) = q2n,2nz2n + · · · ,

q2n+1(z) = q2n,2nz2n+1 + q2n,2n−1z2n−1+ · · · (A.3)

implies

σ2n

α2n
p2n,2n = σ2nα2n p2n+1,2n+1,

σ2nβ2n p2n,2n + σ2nα2n p2n+1,2n = 0

yielding, upon using the explicit form of the coefficientspkℓ of the polynomialspk,
associated with three-step relations (see Lemma A.1),

α2
2n =

p2n,2n

p2n+1,2n+1
= a2n,

β2n

α2n
= − p2n+1,2n

p2n,2n
=
∑2n

0 bi

a2n
. (A.4)

Hence

α2n =
√

a2n and β2n =
1

√
a2n

2n
∑

0

bi . (A.5)

So, if
r (z) = Oχ(z),
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then (A.2) yields

r̂ (z) := Ôχ(z) =





























1/α0 0
β0 α0 0

1/α2 0
β2 α2

1/α4 0
β4 α4

0
. . .





























r (z) = Er(z),

and thus
Is “r(z) = Er(z),” a
separate equation?

r̂2n(z) =
1

√
a2n

r2n(z), (A.6)

r̂2n+1(z) =
∑2n

0 bi√
a2n

r2n +
√

a2nr2n+1(z). (A.7)

LEMMA A .1
A sequence of polynomials pn(z) =

∑n
i=0 pni zi of degree n satisfying three-step

recursion relation∗

zpn = an−1pn−1+ bn pn + an pn+1, n = 0, 1, . . . , (A.8)

has the form

pn+1(z) =
pn,n

an

(

zn+1−
(

n
∑

0

bi

)

zn + · · ·
)

.

Proof
Equating thezn+1 andzn coefficients of (A.8) divided bypn,n yields

pn+1,n+1

pn,n
= 1

an

and
pn,n−1

pn,n
= an

pn+1,n

pn,n
+ bn.

Combining both equations leads to

an
pn+1,n

pn,n
− an−1

pn,n−1

pn−1,n−1
= −bn,

∗We seta−1 = 0.
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yielding

an
pn+1,n

pn,n
= −

n
∑

0

bi (usinga−1 = 0).

Appendix B. Simultaneous (skew-)symmetrization ofL and N

CLAIM

For the classical polynomials, the matrices L andN can be simultaneously sym-
metrized and skew-symmetrized.

Sketch of proof
This statement has been established by us in [6]. Given the monic orthogonal polyno-
mials p̃n with respect to the weightρ, with ρ′/ρ = −g/ f , we have that the operators
z and

n =
√

f

ρ

d

dz

√

fρ = f
d

dz
+ f ′ − g

2

acting on the polynomials̃pn’s have the following form:

zp̃n = a2
n−1 p̃n−1+ bn p̃n + p̃n+1,

n p̃n = . . .− γn p̃n+1, (B.1)

in view of the fact that for the classical orthogonal polynomials,∗










Hermite: n = d
dz − z,

Laguerre: n = z d
dz −

1
2(z− α − 1),

Jacobi: n = (1− z2) d
dz −

1
2((α + β + 2)z+ (α − β)).

For the orthonormal polynomials, the matricesL and−N are symmetric and skew-
symmetric, respectively. Therefore the right-hand side of these expressions must have
the form:

zp̃n = a2
n−1 p̃n−1+ bn p̃n + p̃n+1,

n p̃n = a2
n−1γn−1 p̃n−1− γn p̃n+1.

Therefore, upon rescaling thẽpn’s, to make them orthonormal, we have

zpn = (Lp)n = an−1pn−1+ bn pn + an pn+1,

npn = (N p)n = an−1γn−1 p̃n−1− anγn p̃n+1,

∗They have the respective weightsρ = e−z2
, ρ = e−zzα, ρ = (1− z)α(1+ z)β .
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from which it follows that

−N =













0 c0

−c0 0 c1

−c1 0
. . .

. . .













, with cn = anγn ,

where−γn is the leading term in expression (B.1).

Appendix C. Proof of Lemma 3.4
For future use, consider the first-order differential operators

η(t, z) =
∞
∑

j=1

z− j

j

∂

∂t j
and B(z) = − ∂

∂z
+

∞
∑

j=1

z− j−1 ∂

∂t j
(C.1)

having the property

B(z)e−η(z) f (t) = B(z) f
(

t − [z−1]
)

= 0. (C.2)

LEMMA C .1
Consider an arbitrary functionϕ(t, z) depending on t∈ C

∞, z ∈ C, having the
asymptoticsϕ(t, z) = 1+ O(1/z) for zր∞ and satisfying the functional relation

ϕ(t − [z−1
2 ], z1)

ϕ(t, z1)
=

ϕ(t − [z−1
1 ], z2)

ϕ(t, z2)
, t ∈ C

∞, z ∈ C. (C.3)

Then there exists a functionτ(t) such that

ϕ(t, z) = τ(t − [z−1])
τ (t)

. (C.4)

Proof
Applying B1 := B(z1) to the logarithm of (C.3) and using (C.1) and (C.2) yields

(e−η(z2) − 1)B1 logϕ(t; z1) = −B1 logϕ(t, z2)

= −
∞
∑

j=1

z− j−1
1

∂

∂t j
logϕ(t, z2),

which, upon setting

f j (t) = Resz1=∞z j
1B1 logϕ(t, z1),
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yields termwise inz1,

(e−η(z2) − 1) f j (t) = − ∂

∂t j
logϕ(t, z2). (C.5)

Acting with ∂/∂ti on the latter expression and with∂/∂t j on the same expression with
j replaced byi , and subtracting,∗ one finds

(e−η(z2) − 1)
(∂ fi
∂t j

− ∂ f j

∂ti

)

= 0,

yielding
∂ fi
∂t j

− ∂ f j

∂ti
= 0;

the constant vanishes because∂ fi /∂t j never contains constant terms.
Therefore there exists a function logτ(t1, t2, . . .) such that

− ∂

∂t j
logτ = f j (t) = Resz=∞z j B logϕ,

and hence, using (C.5),

∂

∂t j
logϕ(t, z) = (e−η(z) − 1)

∂

∂t j
logτ,

or, what is the same,

∂

∂t j

(

logϕ − (e−η − 1) logτ
)

= 0,

from which it follows that

logϕ − (e−η − 1) logτ = −
∞
∑

1

bi

i
z−i

is, at worst, a holomorphic series inz−1 with constant coefficients, which we call
−bi / i . Hence

ϕ(t, z) = τ(t − [z−1]e−
∑∞

1 (bi / i )z−i

τ(t)

= τ(t − [z−1])e
∑∞

1 bi (ti−z−i / i )

τ(t)e
∑∞

1 bi ti
;

∗It is obvious that[∂/∂ti , e−η(z)] = 0.
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that is,

ϕ(t, z) = τ̃ (t − [z−1])
τ̃ (t)

,

where
τ̃ = τ(t)e

∑∞
1 bi ti .

Thus Lemma 3.4 is proved.
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