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TODA VERSUS PFAFF LATTICE AND
RELATED POLYNOMIALS
M. ADLER and P. VAN MOERBEKE
Abstract
We study the Pfaff lattice, introduced by us in the context of a Lie algebra splitting of
gl(infinity) into sp(infinity) and lower-triangular matrices. We establish a set of bilin-
ear identities, which we show to be equivalent to the Pfaff Lattice. In the semi-infinite
case, the tau-functions are Pfaffians; interesting examples are the matrix integrals
over symmetric matrices (symmetric matrix integrals) and matrix integrals over self-
dual quaternionic Hermitian matrices (symplectic matrix integrals).

There is a striking parallel of the Pfaff lattice with the Toda lattice, and more so,
there is a map from one to the other. In particular, we exhibit two maps, dual to each
other,

0) from the the Hermitian matrix integrals to the symmetric matrix integrals, and

(i)  from the Hermitian matrix integrals to the symplectic matrix integrals.

The map is given by the skew-Borel decomposition of a skew-symmetric operator.
We give explicit examples for the classical weights.
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0. Introduction
Consider a weight of®, depending o = (i1, tz,...) € C*,

p(2)dz= 2117 p(z)dz=e VOTETNZ 4z with — /;((ZZ)) =V'(2) = %l)

with rationalg and f's, and withp (z) decaying fast enough ab.

The Toda lattice, its-functions and Hermitian matrix integralsgvisited
This weight leads to &dependent moment matrix

Mn(®) = (icre®)ozp peng = ( /R m@dz)

with the semi-infinite moment matrix,, satisfying the commuting equations

Moo _ A¥mye = Mmoo AK. (0.2)
otk
A is the customary shift matrix, with zeroes everywhere, except for 1's just above the
diagonal, that is(Av)n, = vn+1. Consider the Borel decomposition into a lower- and
an upper-triangular matrix
Me = ST, (0.3)

and the followingt-dependent matrix integrala & 0):
h(t) = / el =VOX)+2 T X' d X = detmp, and 70 =1, (0.4)
I
whered X is Haar measure on the ensembig = {(n x n)—Hermitian matricels As

is well known (e.g., see E. Witten [18] or M. Adler and P. van Moerbeke [6]), integral
(0.4) is a solution to the following two systems.
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(i) The KP-hierarchy
2

~ 1
a —_—
(Sk+4( ) 2 0Lt a

(ii) The Toda lattice, that is, the tridiagonal matrix
‘ 1/2
5t log (%) 0

172 1/2
(M) 9 log 173 ('51;3)
L(t) := SAS™! = 5 M P 2

1/2
71T 0 %}
0 < 2 ) oty log 2

)rnornzo, fork, n=0,1,2,.... (0.5)

. (0.6)

satisfies the following commuting Toda equations

oL 1

~ — | A Ln ) L )

At [2( Jsk ]
where (A)sk denotes the skew-part of the matixfor the Lie algebra splitting into
skew and lower-triangular matrices. Moreover, the followirdependent polynomi-
als inz, are defined by th& matrix obtained from the Borel decomposition (0.3); it is
also given, on the one hand, in terms of the functigyit), and, on the other hand, by
a classic determinantal formula (fare C, ddine[a] := (a, a2/2, a3/3,...) € C®)

n ‘ B 4
p(t;2) =Y Suz = 212D

i—o A~ TnTn+1l
1
VA
1
= ———det Mh(t)
A/ InTn+1 n
n,o(t) cee #n,n—-1(t) "

The pn(t; 2)’s are orthonormal with respect to the (symmetric) inner-producysy, : :
defined by(z', z))sy = wij, which is a restatement of the Borel decomposition (O.Eegk/d's‘)'ay in footnote

(see [6]). The vectop(t; z) = (pn(t; 2))n>0 iS an eigenvector of the matrix(t) in
(0.6):

L) p(t; 20 = zp(t; 2).

*Thes,’s are the elementary Schur ponnomiaEfc LL - > =098 (t)zi ands; (9) = S¢(9/0t1, (1/2)(3/0t2),
...). Given a polynomiab(ty, tz, . . .), défine the customary Hirota symbol

P@) T o g:= p/oys, /dye. ) T+ )G =)
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The Pfaff lattice and its-functions
For use throughout this paper, define the skew-symmetric matrix
0 1
-1 0 0
0 1 o
J = 10 ,  with J© = —1, (0.7)
0 1
0 -1 0
and the involution on the space := gl of infinite matrices,
79— Z:ar—— g(a:=Ja'J (0.8)
Also, consider the splitting a# = k + n into two Lie subalgebrak andn, with the
corresponding projections denoted and,, wherek is the Lie algebra of lower-
triangular matrices with some special feature (see (1.17)) and where
n:={ae Zsuchthat’a’ J = a} = sp(co).
Given a skew-symmetric semi-infinite matrix,,, consider the commuting differen-
tial equations
IMeo i Ti
i
they maintain the skew-symmetry ofi,. The Borel decomposition af,, into
lower-triangular times upper-triangular matrices requires the insertion of the skew-
symmetric matrixJ:
Moo () = QHIQ T (1). (0.10)
Dressing up the shifA with the lower-triangular matrixQ(t) leads to the commuting
equations (0.11) below.
THEOREMO.1
ThePfaff latticeequations
oL i i
Frol [-mkL', L] = [mnL', L] (0.11)
i
—®
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maintain the locus of semi-infinite matrices of the fqans~ 0):
"o 1 -
—d1 ar O
d 1
L= —dy a (0.12)
* do
The solutions L to (0.11) of the form (0.12) are given by
L(t) = Q®AQ (),
where Q is a lower-triangular matrix, whose entries are given by the coefficients of
the polynomials, obtained by the finite Taylor expansiorihaf ton (t —[z1]) below
(han = Tan42(t)/T2n(1)):
2n -1
- —12Tn(t —[Z77])
on(t; 2) == Qznj(HZ) = 7*"h R
den go ) NG
2n+1 -1
i _12(Z+ 9/0ty)Ton(t — [277])
O2n+1(t; 2) == Z Qani1,j (D2 = 22”h2n1/2 /Otean , (0.13)
=0 Ton(t)
with 1o, 72, 74, @ Sequence of functions qf to, ..., characterized by the following
bilinear identities forallnm > 0, (rg = 1),
-1 / -1 Xt —t))Z 2n—2m—2 dz
on(t — [27Y) romy2(t' + [271])e2t -1Z 7 —
Z=00 27l
00 (+/ 4. \5—i dZ
+ 56 Tansa(t + [2]) Tam (V' — [2]) e GWETAEN S~ 0. (0.14)
=0 T
Remark
Theorem 0.1 is robust and remains valid for the bi-infinite mdtridn that case, the
summations in the expressiogs, andgon+1 run fromj = —oo, instead of running
fromj = 0.
The r-functions are given by Pfaffians ph, (t) and satisfy, as a consequence of the
bilinear relations (0.14), the Pfaffian KP-hierarchyfon = 0,1, 2, ...,
.1 92 -
<5k+4(3) - Em)@n o Ton = (9) T2n+2 © T2n-2. (0.15)
—®
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Thet-dependent polynomialg (t; 2) = (Q(t) (1, z, Z2, 2%, ...) ") in z, obtained in
(0.13) are “skew-orthonormal” with respect to the skew inner-profludty, defined
by (y', 2))sk = wij (1), namely,
((ql » dj >Sk)0§i,j <00 J,
and are eigenvectors for the mattix
Lt)a(t; 2 = zq(t; 2). (0.16)
Explicit representations df, in terms of thera,’s, are as follows:
Loo Loz O O
Lio Lun L1z O
L=QAQt=h"¥2] % La Lz Log ht/2,
* * L3 Lsz
with the entriesﬁij and the entries dfi, being(2 x 2)-matrices
h = diagthol2, h2l2, hala, ...), hon = Tony2/72n,
and ( = 9/0ty),
—(log Ton) 1
. 92 . 00
Lon = - . > I—nn-o—l_ 1 0/’
—52(32);2” — SZ(Z;)E”“ (logtany2)
N * (logt -
% k
—®
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Also, thet-dependent polynomiats, (t, z) in z have Pfaffian expressions, in contrast
with the determinantal expressions in the Hermitian case, mentioned earlier:

1
z
1
Oon(t; 2) = ———pf Mon1(t) .
A T2nTan+2 22n
1 -z"| 0
O2n+1(t; 2)
1 10, 2n+1
z H“12n+1
_ 1 pf Man(t)
JTonTont2 22" pon-1ont1
-1 -z ..] o —z2n+1
—o2n+1  —H12n4+1 z2n+1 0

(0.18)

Theorem 0.1 and the subsequent statements are established in Sections 2 and 3 _
We show how a general skew-symmetric infinite matrix flowing according to (O.jJ ?() g,f,f too wide; this
and its skew-Borel decomposition (0.10), lead to wave vectgrsatisfying bilinear
relations and differential equations. Section 3 deals with the existence, in the general
setting, of a so-called Pfaffian-function, satisfying bilinear equations and the so-
called Pfaff-KP hierarchy. In [4], these results were obtained by embedding the system
in 2-Toda theory, while in this paper, they are obtained in an intrinsic fashion.
Fork = 0, the Pfaff-KP equation (0.15) has already appeared in the context of
the charged BKP hierarchy, studied by V. Kac and J. van de Leur [13]; the precise
relationship between the charged BKP hierarchy of Kac and van de Leur and the
Pfaff Lattice, introduced here, deserves further investigation. (See the recent paper by
van de Leur [16]).
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Examples: Symmetric and “symplectic” matrix integrals

An important example is given by the skew-symmetric manix = (uij )i, j>o Of
moment$ defined by(a« = +1) (see [4])

(v, Z)sk = f f y ZieX i 2D sy — 7)p(y)p(2) dy dz (0.19)

i = [[ Y2 ey — oot dy oz
for o = —1,

ui ©) = fR .y mest Y sy, fora =+1

The associated moment matrlcra%) andm(z) satisfy the differential equations (0.9)
and lead to “symmetric” matrix integrals

1 00 i
D el"(=VX)+237 6 X _ (1)
T (1) = (Zn),/ PO dX = pfm),
and “symplectic” matrix integrals

W= [ ETYOEax = pi)
2n

both expressed in terms of the Pfaffian of the upper-left-hand principal minors of the
“moment” matrlxm(') where
(1) fori =1,dX denotes Haar measure on the spaég of symmetric matrices,
and,
(2) fori = 2,d X denotes Haar measure on {28 x 2n)-matrix realization%n
of the space of self-dugh x n)—Hermitian matrices, with quaternionic entries.

A remarkable map from Toda to Pfaff lattice
Remembering the notation (0.1), we act with #theperator,

fd _ Kk, d f’ +g K
4 — o1/ &z el/2Y z
A \ prdz fn=e (dz f@- (Z)> (0.20)

on thet-dependent orthonormal polynomigig(t, z) in z; in [6], we showed that the
matrix .4~ defined by

/

f
nep(t,2) = (F(OM — ——

g(L)) Pt 2) = A p(t, 2) (0.21)

*We havees(x) =1, for x > 0,e(x) = —1, for x <0, and{f, g} = f'g— fgd'.

2002/217
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is skew-symmetric. The-dependent matrix/” is expressed in terms &f and a new
matrix M, ddined by
zp=Lp and e WAL dgze(l/z)Ztkzk p= Mp. (0.22)
Consider now the skew-Borel decomposition ¢f(2t) and its inversé.# (2t)~1, in
terms of lower-triangular matrice®.,(t) and O (t), respectively:
N (2 = -0 IO ). (0.23)
Then, the lower-triangular matric€+)(t) maporthonormalinto skew-orthonormal
polynomials, and the tridiagonal-matrix into anL-matrix*
Pn(t; 2) — o5 (t;2) = (O (D P(t: 2),,,
L) — L = 0w ®L@HOwm® (0.24)
(Toda lattice) (Pfaff lattice).
It also maps the weight into a new weight
p2=eV? s j 2=V .= gDV @Fog @)
and the corresponding string effunctions into a new string of Pfaffiantfunctions
(remembeM (z2) = V(2) — ) 7°t2'):
() 4y . Tr 2(—Vi (X)) _
i o ) = fyZn el"(=Vt(X) g X B=1.
For theclassical orthogonal polynomialspfz), we have shown in [6] thaty"(0) is
not only skew-symmetric but also tridiagonal; that is,
bo ao 0 o
ag b & - 0 ¢
L= . , - N =
al b2 . —C1 0
(0.25)
*See Appendix B.
TThe upper-signs (resp., lower-signs) correspond to each other throughout this section.
*We havep(t; z) := (po(t; 2), pi(t; 2),..)".
—®
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In Sections 6 and 7, we show that the m&ps) andO(,), as in (0.24), only involve
three steps, in the following sense:

)  C2n
0;2) =/ —pn(0; 2),
O (0:2) 2o P2n(0; 2)

) 0.7y = |2
U010 2) Con

(_CZn 1P2n-1(0, 2) + _(Zbl)pZH(O Z) + Con P2n+1(0; Z))

B =1), (0.26)

a
p2n(0; 2) = —Can-1, Cin zqéﬁ 2(0; 2) + /aznCon qéﬁ) 0; 2)
n—

a;
P2n+1(0; 2) = —@mkf2®?gan
Zb. / 2“an)(o 2+ | Z”qgil(o 2 (B=4. (0.27)

The abstract ma@_) for t = 0 appears already in the work of E.&in and
H. Neuberger [9]. This has been applied recently by [1] to a problem in the theory of
random matrices.

1. Splitting theorems, as applied to the Toda and Pfaff lattices
In this section, we show how each of the equations
0Myg
ot

. aom . .
=A'my  and a—to" =AMy + MygA (1.1)
i
lead to commuting Hamiltonian vector fields related to a Lie algebra splitting. First
recall the splitting theorem due to Adler, B. Kostant, and W. Symes in [5], and later
recall the R-version due to A. Reyman and M. Semenov-Tian-Shansky [15]. The R-

version allows for more general initial conditions.

PROPOSITIONL.1

Letg = k + n be a (vector space) direct sum of a Lie algelydn terms of Lie

subalgebrak andn, with g paired with itself via a nondegeneraaetinvariant inner

product (, ); this in turn induces a decompositian= k- + n' and isomorphisms
g~ g%, kt ~ n*, nt ~ k*. Letmyx andxp be projections onté andn, respectively.

*(Adg X;Y) = (X,Adg-1Y), g € G, and thus([z, X], y) = (X, —[z, y]).
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Let¥, %, and%, be the groups associated with the Lie algebgak, andn. Let
Z(g) be theAd* ~ Ad-invariant functions org* ~ g.
(i) Then, given an element
eeg:[e k] ckt and [e,n] C nt,
the functions
o(e + &), with ¢ € #(g) and&’ e k™, (1.2)
respectively, Poisson commute for the respective Kostant-Kirillov symplectic struc-
tures of rf ~ k'; the associated Hamiltonian flows are expressed in terms of the Lax
pairs*®
£ =[-mkVe(), &l = [T V(). &], for E=c+&, £ ekt (1.3)
(ii) The splitting also leads to a second Lie algebeg derived fromg, such that
gr = 9r, Namely,
1 1
with R = mx — 7. The functions
9@&)lgs,  With ¢ € 7(g) and§ € gr,
respectively, Poisson commute for the respective Kostant-Kirillov symplectic struc-
tures ofgy ~ gr, with the same associated (Hamiltonian) Lax pairs
£ =[-mVe(©), £l = [mVe(§), ], for & € gr. (1.5)
Each of the equations (1.3) and (1.5) has the same solution expressible in two different
ways?
g(t) = AdK(t) 50 = Adsfl(t) 507 (1-6)
with*
K(t) = 4 €V?¢0  and  St) = 7y V00,
Example 1 (The standard Toda lattice and the equatiomgat, = A'm for the
Hankel matrix m,)
Since, in particular, the matrix,, is symmetric, the Borel decomposition into lower-
times upper-triangular matrix must be done with the same lower-triangular ngatrix
Me = S 1STL, (1.7)
*Vo is defined as the element g such thatdg(§) = (Ve, d§), & €.
TWe naively write Ad ) €0 = K ()& K (1) %, Adg-1£0 = S 1(1)&S(t).
*Consider the group factorizatioA = weg A g, A
—®
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In turn, the matrixS defines a wave vectob, and operatoisL andM, the same as
the ones defined in (0.22),
W(t, 2) = eV2DLTZ gy L:=sSAS?,
1 o0
— = eoai—1) -1
M = S<8+22|t.A )s , (1.8)
1
satisfying the following well-known equatioris:
d .
LY =2y, M\D:E\IJ, with [L, M] =1,
0S 1 ov 1
— = ——(L"poS, — = —(LMg¥,
ot 2( )bo atp 2( )sk
oL 1 oM 1
T = (LM L — = Z[(LM)sk, M]. 1.9
ot 2[( )sk ] oty 2[( )sk ] (1.9)
The wave vector can then be expressed in terms of a sequence-fahctions
h(t) = detmp(t), but it also has a simple expression in terms of orthonormal poly-
nomials, with respect to the moment matnix,:
. -1
wit.g —e2xud (p 12 D)
V(O 742 (t) /=0
— e(l/z) Zti Z (pn (t, Z))nzo (110)
The vector fields (1.9) oh are commuting Hamiltonian vector fields, in view of
the Adler-Kostant-Symes (AKS) splitting theorem (version (i),
L tr L+t -
— = [V, Ll = [mn VA, L], = ——, VA =L, (1.11)
ot i+1
with
L=A"Ta+b+aA, aandbdiagonal matrices (1.12)
for the splitting of the Lie algebra of semi-infinite matrices
2 = gly, = k + n := {skew-symmetrig+ {lower-triangula}
=kt + nt := {symmetri¢ + {strictly upper-triangulg
(1.13)
*In the formulas belowy (z) = (2,2, 72,...)", andd is the matrix such thatd/d2)x (z) = dx(2).
TThe notation( )sk and ( )po refers to the skew-part and the lower-triangular (Borel) part, respectively,
that is, projection ontdk andn, respectively.
—®
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with the form (1.12) ofL being preserved in time. Note that the solution (1.6) to the
differential equation (1.5) in the AKS theorem is nothing but the factorization.of
followed by the dressing up of.
Example 2 (The Pfaff lattice and the equatidms/at = A'm + mATi)
Throughout this paper the Lie algelta= gl , of semi-infinite matrices is viewed
as composed aR x 2)-blocks. It admits the natural decomposition into subalgebras:
D=9-®D0®D+=9-® Yy &Iy ® Yy, (1.14)
whereZy has(2 x 2)-blocks along the diagonal with zeros everywhere else and where
24 (resp.,2-) is the subalgebra of upper-triangular (resp., lower-triangular) matrices
with (2 x 2)-zero matrices alongp and zero below (resp., above). As pointed out in
(1.14), % can further be decomposed into two Lie subalgebras:
9, = {all (2 x 2)-blockse %y are proportional to I
@J = {all (2 x 2)-blockse %y have trace zefo (1.15)
Remember from (0.7) and (0.8) in the introduction, the malriand the associated
Lie algebra involution #. The splitting into two Lie subalgebras
2 =k+n, (1.16)
with
K=2_+9,
. 0
Q2n,2n 0
laeb ¢ 0 Q2n,2n
= algebra o )
J Q2n+2.2n+2 0
" 0 Q2ni2.2n42
n={ac % suchthatZa=a} ={b+ #b, be 7} =spoo), (1.17)
with corresponding Lie groups% and%, = Sp(co), play a crucial role here. Let
nx andmy, be the projections ontk andn. Notice thatn = sp(oco) and%, = Sp(co)
*Note n is the fixed point set of 7.
¢4, is the group of invertible elements ik, that is, invertible lower-triangular matrices, with nonzero
(2 x 2)-blocks proportional to Id along the diagonal.
—®
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stand for the infinite-rank affine symplectic algebra and grno(e.g., see [12]). Any
elementa € 2 decomposes uniquely into its projections oktandn, as follows:

a = nka+ mpa
—{e - s+ ;- s+ @+ sa) 45 o a0
(1.18)
The following splitting, with
Ki =2+ +9, and n, =n,
is also used in Section 2; the projections take on the following form:
a=nmg, a+m,a
= [(a—ra)+ 5 (a0 sa) | +|(@ +.ra)+] (@0t sa) .
(1.19)

Note that_# intertwinesmyk andmy, :

Ik =nk, 7. (1.20)

For a skew-symmetric semi-infinite matmx,,, the skew-Borel decomposition
e -17A-1T :
My :=Q -JQ ', with Q e %, (1.21)

is unique, as was shown in [2]. Here we may assuamgto be bi-infinite, as long as
factorization (1.21) is unique, upon imposing a suitable normalization. Then we use
Q to dress upA:

L=0QAQ ™

Then lettingm,, run according to the equatioasn/at; = Alm+mA™ , we showin

the next proposition and corollary thiatevolves according to a system of commuting
equations, which by virtue of the AKS theorem are Hamiltonian vector fields (for
details, see [2]).

PROPOSITIONL.2
For the matrices

M = Q7 1JQ 1T  and L:= QAQ L,  with Qe %,

the following three statements are equivalent:
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. 0Q 4 i
_x< = —mL',
0) P Q Tk
. . 0Q
L+ -—=0Qlen
(i) 5 Q" en,
a ; i
(iii) % = A'Mo + MeAT .
Whenlever the vector fields on Q or m satisfy (i), (ii), or (iii), then the matrix
L = QAQLis a solution of the AKS-Lax pair
oL : ;
— =[—mLl', L] =[m,L', L].
ot
Proof
Written out and using (1.18), Proposition 1.2 amounts to showing the equivalence of
the three formulas:
B . . 1. . .
0 %Q_l +((LH- = IWLHTI) + 5((L')o —J(LHo"J) =0,
1
. aQ _ . aQ AT
I L'+ —=Q 1) -J(L'+=—=071) 3=0,
(L5l + e
: o9
() Aime +ma AT — % —0
|
The point is to show that
T l
hy =0 M-=0h-=-3ATI  (ho=3 (.
Q-taniot = . (1.22)
The details of this proof are found in [2]. m
2. Wave functions and their bilinear equations for the Pfaff lattice
Consider the commuting vector fields
Moo/t = Al Mog + Mg A ! (2.1)
on the skew-symmetric matrix, (t) and the skew-Borel decomposition
Moo = QI QT HH), Q) € %; (2.2)
remember from (1.17) th&@(t) € % means thaQ(t) is lower-triangular, with along
the “diagonal”(2 x 2)-matricescoy |, with con # O.

In this section, we give the properties of the wave vectors and their bilinear re-
lations. In this and the next section, the matrices are assumed to be bi-infinite; the
semi-infinite case is dealt with by specialization. Upon setting

Qu=Q® and Q2=JQ' ), (2.3)
—®
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the matrixQ(t) defines wave operators
Wi(h) := Que™T WA Wat) 1= Qatye X1 AT = aw Tt (2.4)
L-matrices
Li=Li:=QiAQ7Y  Lai=— _7(L) = QATQY (2.5)
and wave and dual wave vectors
Wi, 2) = Wit x @it 2 =W ) T x (2 = —JWa(t, 27,
Ua(t, 2) = Wa)x W5, 2) =Wy ') T x(z7H = Jwat,z7h).  (26)

From the definition, it follows that the wave functiodg have the following asymp-
totics:

Wy on(t, 2) := eX W 2o (1) Yy on(t, 2), Yion =1+ Oz Y),
k
Wi ony1(t, 2) = el &z 22" eon (Y1 onr1(t, 2),  Yiong1 = 14+ O(z72),

Woon(t, 2) = e 0222 e Lty on(t, 2), Y20 =14 0(2),
—k _
W oni1(t, 2) = € W 2N (ot (D)) Y2 ont1(t, 2), Y2201 = 1+ OB,
(2.7)

where theg; are the elements of the diagonal par@f

THEOREM2.1

The following statements are equivalent:

(i) Moo SatisfiesIMao /0t = AlMag + Moo AT,

(i) Q1 satisfies the hierarchy of equations (withdefined in (2.5))
9Q1

B—'ﬁ = —(nkLil)le (2.8)

(i) Qo= JQ *satisfies

9 . .
—3?2 = —(/ (kL) Q2 = (m, L) Qe,
I
(V) Wy =exiiZQq(t)y(2) satisfies

v ;
—o = (L, (2.9)
|

V)  Wpy=e X7 3Q] L(t)x(2) satisfies

A ; . )
= (e = M LW = —(m, Ly), ¥,
1
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TODA VERSUS PFAFF LATTICE 17

(viy  Wp and W satisfy the bilinear identity for all nm € Z,

d d
74 Win(t, 2Wom(t, 27h 5 — +y§\v2n(t, W mt', Z e =
o ’ 2riz o ' 2riz
(2.10)
If any one of these six conditions is satisfied, then
oL1 - dLo ;
—= = [-m L', L —f = L L 2.11
and
Liwy =201, LaWp =71y,
Liwy =2v;,  Liws=z1ys (2.12)

For later use, we also consider the “monic” wave functions, with the factars)
removed; that is,

W1(t, 2) == Qytwy and  Ws(t, 2) := Qoo (2.13)

and the matrix_1, normalized so as to have 1's above the main diagonal, Qith

Q'Q,
L1=Qu'L1Qo = (Q QA(Q'Q 1= QAQ 7Y,
L2=QoL2Qpt = -Qo 7 (L1)Qy =~ 7 (L) (2.14)

Then, in terms of the elemendy of the matrixQ = leQ, one easily computes

by conjugation that 1 has the following block structure:

L1=Qu'L1Qo = (Qy QA(Q'Q !

Loo Loz O 0

Lo |:11 |:12 AO
* Lo |:22 |:23
* * L3> Las

with

o Goi2i—1 1 ~ (0 0
Lij =1 . _ _ o _ o ) ) Lijit1:= )
Goit12i-1— Goit22i —Ooig22i41 10

YR . A n o
Civei= (I 21201 +1 QZ|>:3,2|+1+QZ|+2,2| ) (2.15)

These definitions lead to a new statement that is equivalent to Theorem 2.1.
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18 ADLER and VAN MOERBEKE

THEOREM 2.2
Li, Q, W, ¥ satisfy the following equations:

8Q

T —((CH- - Q2ILNHHTIR)Q, (2.16)

and
L1 = 20y, Lo, = 2710, (2.17)
with

0 ~ ~ N N
Wxlfl(t 2) = ((CH3 + (CDHo + Qp2 7 (L) QF)Wut, 2),

0 N ~ N N
—Up(t,2) = 7 ((CH+ + (Lo + Q%7 (LH1)QY)¥a(t, 2)

atp
= —((C)- + (Lo + Q5.7 (L)) Qp%) Wa(t, 2.
The proof of Theorem 2.1 hinges on the following proposition.

PROPOSITION2.3

The following three statements are equivalent:

() IMeo/dti = Almeg + Moo AT,

(i)  the matrices W(t) and Wi (t) (defined in (2.4)) satisfy

Wi Wi ()™ = Wa(hWat) ™, (2.18)
(i)  theW;(t, 2) = Wj(t)x (2) satisfy the bilinear identity
dz
yﬁ Wy n(t, Z)\Ilz’m(t/, Z_l)—. + yg Won(t, 2) W, m(t’, z_l)— =0.
50 2miz 2miz
Proof
The solution to (2.1) is given by
Moo () = eX A m__ (0)eXtA ™

Therefore skew-Borel decomposing, (t) andmy (0), wefind

Ql0IQT 0 = e N QL1 IQ  te T, (2.19)

and so, from the definition aiv; andWs,
WL OW,(0) = Q710 IQTH0)
= (QeXT 2) L3 (Qme= )™ (using (2.19))
=Wyt Ity T
= Wi (t) T Wa(t), (2.20)
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TODA VERSUS PFAFF LATTICE 19

implying the independence inof the right-hand side of (2.20). Therefore, we have
Wi (1) " IWa(t) = Wi(t) " tWa(t)), forall t,t’ € C*,

and so
Wi OW, () = Wa )W, (),

thus yielding (ii). Reversing the steps yields the differential equation (i).
Finally, the proof of the bilinear identity (iii) proceeds as follows. Using the well-
known formula (see [3, Prop. 4.1]),

* g/ dz
2

n—1 __
W%(t)W%(t )= f 27iz

0
0

statement (ii) becomes

f Wq(t,2) @ Wit/ 2) dz —f\p t, 2 @ Vi, 2 dz
o e Y oniz T Jo 2b 22 Y oniz’
whose(m, n)th component is
?§ Wy n(t, W (t', 2) dz ?g\p (t, W5 _(t', 2 dz =0
- 1,n(L, 1m ) 27['2 o 2,n{L, 2m ) 27_”2 — Y.

Next we use the relationg; (t, z) = —JWa(t, z71) and W} (t,2) = J¥1(t, z 1) to
yield

dz dz
/=1 /-1 —
%OO Wq(t,z2) ® JWa(t', z )—Zﬂiz_'—fi)qJZ(t’Z)@lel(t ,Z )—Zﬂ'iz 0
which again leads to (iii). That (i) implies (ii) is obtained by reversing the arguments.
O

Proof of Theorem 2.1
The proof of statement (ii) fo®1, namely,
Q1 i
< L! ,
o, € 1)Ql
follows at once from Proposition 1.2.
The proof of (iii) for Q2 = J Q] ~* is based on the identity? mya = m, 7 a.
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20 ADLER and VAN MOERBEKE

Indeed, we compute

-
%—?iZQZ_l -3 QI—l%QI—lQEI

=-JQ 'Q{ (LD Q{'Q{J

= —J(mL)TI

= — 7 (LY

=-m fLy

= —m, 7 (— 7Ly (using (2.5))

= —m¢, 7 (=D (S L)

= —mc, /(=D (=)'t 7L,

=k, Liz.
Statements (iv) and (v) fo¥1, W2 are straightforwardly equivalent to (ii) and (iii),
respectively. According to Propositions 1.2 and 2.3 combined, the bilinear identity

(2.10) in (vi) is equivalent to statement (i), (ii), or (iii). The hierarchy concerning the
L;’s follows at once from (ii) and (iii), thus ending the proof of Theorem 2.1. o

Proof of Theorem 2.2
To prove (2.16), remember from Theorem 2.1 that

0 1
fQ—l =-—mL"= (L= = ILDHI) - §(<L”>o —J(LM) " J);

hence, taking thé)g-part of this expression yields

(12

1 1
_ Ny, — _~n - n\T
0= k(Lo 2(L o+ 2J(L )o J-

Using the fact thafo, le, Qo € Gk N %9 commute among themselves and com-
mute withJ and the fact tha%o 2., 7+ %0 C 2., we compute foQ = Q;*Q, L4
= Q;'L1Qo (see (2.14))

%Ql — Q5305 QQ Qo + Q51QQ Qo
= -Q;Qo+ Q;t0Q Qo
= Qo' (-QuQy* + QQHQo
= Qo (—(LH-+ILIHTIQo
= —(Qp'LIQ0)- + Q5 1I(Qu(Q LI+ Q5Y) I Qo
= —(LH- + Q2I(LHHT IS
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Using this result andl; W1 (t, z) = z¥4(t, 2), wefind
abit,z) 9 R
_— = — 1 Z
ot oty Qx (2
= 2"e>1 V2 Qy(2) + X1 W7 (— (LD + Qp2I((LDH ) I QR) Qx @
= (L] — (LD + Qx2I(CH ) T IQG)¥n(t. 2)
= ((CDH4 + (CHo + Q7 (LH H Q) ¥a(t. 2). (2.21)
But, we also have thab; = Q,1Wi(t, 2) andW, = QoWa(t, 2) satisfy, usingh, =
JW1—1T,
AW (t, z _ , _ o 14
TED _ (Qptwh) (2 = (QpWay (Qg W) it 2), (2.22)
n
v 1,z ) . _
% = (QoW2) x(2) = (QoWa) (QoW2) "1(QoW2)
n
= (QoW2 + Qo) W, 1 Qy 1 (QoW2)
= (Q0Qy* + QoWaW, 1Qy™) Qo2
= (QoQy* + Qo7 (W1W; HQgt) Qowa
= (QoQp™ + QoI (WrW; HTIQyh) Qo2
= (= JQoQy" + J(Qy MW, Qo) ") I QoW
= J(—Qy Qo + Q' WAW; Qo) " I Qo2
= _7((Qg W) (Qg™Wi) ™) (QoWa). (2.23)
Comparing (2.21), (2.22), and (2.23), and invoking (2.14),
SPACHE S
and so, in particular,
—7((DHo) =D and - 7(LDHo) = (LY.
IWs(t, 2) . . o
ST = —((CH- + (Do + Q37 (L)) Q) a(t. 2),
which establishes Theorem 2.2. O
3. Existence of the Pfaffr-function
The point of this section is to show that the solution of the Pfaff lattice can be ex-
pressed in terms of a sequence of functionghich are notr-functions in the usual
sense but which enjoy a different set of bilinear identities and partial differential equa-
tions.
—®
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22 ADLER and VAN MOERBEKE

PROPOSITION3.1
There exist functiong (t) such that

1
Yron(t, 2) = M and Yo.on(t, 2) = 7””"'20 + [Z]), (3.1
Ton(t) Ton+2(t)

The proof of Proposition 3.1 is postponed until later. For future use, we define the
diagonal matrix

h=diag....h 2.h 2 ho. ho ha,ha,...) € Z5,  with hgy = 222 (3.2)

2n
THEOREM3.2
Y, and W, have the following -function representation:
i _ t—[z1)
W1 on(t, 2) = €247 72 yetant = [27) ,
1,2n(t, 2) ’n m—
o 12z + 8/t Ton(t — [271])
"I’l,Zn—i—l(t» Z) — eZt,z ZZnh2n1/2 / n ’
on(t)
i _ t z
Wy on(t, 2) = e 2tz '22”+1h2n1/2712n+2( aall ]),
Ton(t)
- _12(Z71 — 9/0t) Tong2(t + [2])
\p2’2n+l(t, Z) —@ Zt.z '22n+1h2n1/2 - (tf)H- i (33)
n

with theton (1) satisfying the following bilinear identity for all,im € Z:

- _t/)7 dz
% 2n (t - [Z_l])12m+2(t/ + [2_1])e2(t| —t)z ZZn—Zm—22 :
=00 i

+y§ Tonia(t + [21) 7am(t’ — [2])e=t 07 pn-am 92 g (3.4)
z=0 2mi

Conversely, this bilinear relation characterizes théunction for the Pfaff lattice.

Remark
ThenL has the following representation in terms of the Pfaffigiunctions:

|;00 |201 o 0
A2 n=1/2 — Lio Lix Liz O

A

s Lo Lo L3

A

* * I:32 L33
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with ( = 8/dty),

—(logTan)’ 1 .
Lnn:= ) ) , Lnnt1 = (1 O) ,
@) 7on _ 2(=3)7n .
- 1'2nT2 - TZn-Z +2 (Iog 72n+2)
A * (logt -
Ln_;,_l’n = (* ( g :n+2) ) ) (35)

The following bilinear relations follow from (3.4) and are due to [4].

COROLLARY 3.3
The functiongon (t) satisfy the followinddifferential Fay identity”*

{tzn(t — [ul), Ton(t — [v])}
+ (Ut — v Y (z2n(t — [UDT2n(t — [V]) — T2n()T2n(t — [U] — [v]))
= uv(U — v)T2n—2(t — [u] — [VDT2n42(t), (3.6)

and Hirota-type bilinear equations, always involving nearest neighbours:

2

=1
<Dk+4(8) -

- = 5 —2, k,n:o’l,z’““
2 3t13tk+3> Ton © Ton = Pk(9) T2nt2 © Ton—2

(3.7)

LEMMA 3.4
Consider an arbitrary functionp(t, z) depending on te C*, z € C, having the
asymptoticg(t, z) = 1+ O(1/2) for z / oo and satisfying the functional relation

ot —1z".2) _ ot —17".22)

, teC*™, zeC.
p(t, z1) p(t, 22)
Then there exists a functiart) such that
tt—[z1)
t,z) = —————.
p(t. 2) s

Proof
See Appendix C. O

*We ddine {f, g} := f'g— fg’, where’ = 9/0t;.
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24 ADLER and VAN MOERBEKE
LEMMA 3.5
The following holds for the Pfaffian wave functiobis and W5, as in (2.7),
Yot —[,1,20)  Yaon(t — [z, 22) 3.8)
Va2n(t, 21) V1.2n(t, 22) '
and
Yaon 2t — (271, 7 Yot 2) = 1 (3.9)
Proof
Setting (2.7) in the bilinear equation (2.12), with— 2n, m+— 2n — 2, yields
C t N dZ
e ® 7{ 22 gy on(t, Y2 on—a(t, Zfl)—.
Con—2(t)
Con_2(t i 7°dz
Cen-2(0) ygez“ W Yot Do, 7 H 5 =0
Cn(D) 27i
Setting
t—t' =[z"+I[z"]
in the above and usir‘agz(io X/i 1/(1 — x) yields
Con Yian(t, 2¥22n—2(t', 271 dz.
cn-2Jo (A—-2z/2)(1-2/22) 27i
Con-2 [ - 1 1 -1, 4z
=—-— 1- —)(1- = t _o(t — =
oo féz ( zzl>( Zzz)wz,Zn( s DY1n—2(t', Z )Zni 0,
the latter being equal to zero, because the integrand on the right-hand side is holomor-
phic. The integral on the left-hand side can be viewed as an integral along a contour
encompassingo and the pointg; andzy, thus leading to
Yion(t, Z) Y2 on—2(t — (27— (2,1, 77 %)
= Yran(t, V2202t — [z '1- [, %) (3.10)
with
Yint, =140,  Yama(t—(z'1-1z'2Y) =1+0@@™h.
Therefore, lettingz 7 oo, one finds
Yion(t, )22t — (271,27 Y) = 1, (3.11)
yielding (3.9), and so, upon shifting— t — [zgl],
1
Va2t — 1z 115, 7 Y) = -
(t=le) =1z 20) Y1on(t — (257, 22)
—®
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similarly,
Yaom-2(t — (21— [5,1. 2,%) = ! e (3.12)
Yion(t —[277], 22)
Setting the two expressions (3.12) in (3.10) yields
Yiont —[2,,20)  Yaont — (271, 22) .

Yion(t, z2) B Y1.2on(t, 22)

Proof of Proposition 3.1
From Lemmas 3.4 and 3.5, there exists, for eathaZunctionty, such that the first
relation of (3.1) is satisfied; that is,

Ton(t — [271])

Yion(t, 2) = —

’

and so from (3.9)

_ 1 _ Ton(t)
Yion(t,2)  Ton(t —[z71])

Yoot — (271,27

thus leading to
ton(t + [2])

Ton(t)
which is the second relation of (3.1). m

Yoon—2(t,2) =

Proof of Theorem 3.2
At first, remembering tha®) = leQ, observe that

e (Qx(@),, = (Qp1¥a(t, 2)),,
= el t? 2"y on(t, 2)

_ otz (=127

Ton(t)
>tz o (=) Tn(t)
—e Z (1+n2171’2n(t) )
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26 ADLER and VAN MOERBEKE

showing that a few subdiagonals of the matthare given by

1 0
0 1

O>
I

Gonon—2  Gon2n—1 1 0
Gont1,2n—2 G2nt12n-1 0 1

with

. 3 . (-0t
Gon2n—1 = ———log tan, Oon,2n—2 = =0 (3.13)

oty 2n
Remembering that (2.7), normalized, becomes

b k
WUy on(t, 2) = 2% 220y on(t, 2), Y1ion =1+ 0@z,

. ) > (3.14)
Wy onga(t, 2) = e %220y 501 (1,2),  Yaonia = 1+ O(Z72),

Woon(t, 2) = e ZWZ 201y, o0 (t, 2), Y220 =1+ O(2),
~ —k
Woonia(t,2) = —€ 2% 22N o0 1(t,2), Y2201 = 14 OB,

(3.15)

we now show (3.3). Compute, using Theorem 2.2,

> tizi< 0 ) 2n _ ( 9 - )
e —+2Z)z t,2)=(—W1(t, 2z
aty 1//l,Zn( ) oty 1(t, 2) on

= ((Co+ + Lo+ Qp2I(L1p) T IQ)¥a(t, 2),, (3.16)

and

i/ 0 1 J
g Ltz '(— - —)22”+1 t,2) = (—\IJ t, z)
otz Y2 on(t, 2) ot 2(t, 2) o

= ((_# ((Co+ + (Lo + Qo 2I(L1p TIQY))Wa(t, 2),,. (3.17)



TODA VERSUS PFAFF LATTICE 27

In this expression, the matrix equals, according to (2.14),

Lot + Lo+ Qu2d(Li) I3

Go.—1 1 0 0 0 0
Gi-1— G0 —G21 1 0 0 0
_ 0 0 Go1 1 0 0
B c3/c3 0 G31— Gaz  —Gus 1 0 ’
0 0 0 0 (a3 1
0 0 c3/c; 0 Gs3 — Gsa —0es
and, acting with # on this matrix,
J (Cos+ Lo+ Q?IC1n T IQ))
421 1 0 0 0 0
G1,-1—00 —0Go1 c3/c3 0 0 0
_ 0 0 Qa3 1 0 0
B 1 0 G31— Gaz —Go1 c3/c 0 '
0 0 0 0 Ges 1
0 0 1 0 Gs3 —Gea —Cas

using the fact that
a b —-d b
/(c d)_(c —a)'
Therefore the 8th rows of both matrices, respectively, have the form
(Ov cee 09 q2n,2n—l(t)a 17 07 09 cee )a
1
2n
(Ov ceey Ov q2n+2,2n+l(t)7 17 07 07 e )’

1
2n

f
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28 ADLER and VAN MOERBEKE
and thus from (3.16) and (3.17), and expansions (3.14) and (3.15), we have

ol
(55 +2)7 V1ot 2 = Gonan 1A OZ o0 + 2 Y1 nen,

a _ N
(a_tl —z 1) 2" N on(t, 2) = G220 1102 200 + 2222041 (3.18)
So, using the expression (3.13) fpr 2n—1 and the first expression of (3.1),
Z2n+1

Yr12ny1(t, 2)

d
(Z-i— ¥> 22" an(t, 2) — Gon.2n—1(0)Z2" Y1 2n(t, 2)

= (z+ 82 )2 n(t. 2) + (i 10g7n()) "1 20, 2

= (z+ )z nTn(t (27D (L ramty) 24

oty Ton(t) oty 1ZA(9)
_ 11
_ pn (z+9d/0t)on(t — [Z ])’ (3.19)
Ton (1)
and similarly, using the second relation (3.18),
-zt t t
™2 onsa(t, 2) = P02 9/0teantall + [Z]). (3.20)

Tan+2(t)

This establishes (3.3) modulo the denominators. Therefore, we also have

<Z 8({:1><12”(t)_ 2 Z '+ (=) tnz” +)

t,z
Yionp1(t, 2) = 3ty

z Ton(t)
2

+%( at2+32( a))fznz + 03

thus, referring to the matri® just preceding (3.13),

) ) 1 N —92(9)7
Gent12n =0, Goeniron-1= —(Sz(—a) - —2)772n =—>=.  (3.21)
™n otg ™n

To show (3.4), settingh — 2n andm — 2n in bilinear relation (2.10) and
substituting, using (2.7) and the expressions/fopn (t, z) andyr2 on(t, 2) in the proof
of Proposition 3.1,

— 1
Uian(t, 2) = 202 gty 22— 2D
Tan()

and
72+l 7l(t )M

Woon(t',2) =€~ Lz
" Tont2(t’)
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into

f W1 on(t, 2)Waon(t, z71) dz +§£\IJ (t, )Wo', z7h dz _
- 1,2n\L, 2,2n ) 27_['2 0 2,2n(L, 1,2n ) 27_”2 -

yields
Can(t) em ik Tt — [Z D rensa(t’ +[271]) dz
Con(t’) Ton(t)Tons2(t) 27iZ2
CZn (t ) %ez:(t’_tk)z—k Tons2(t + [ZDTon(t" — [2]) E
Czn(t) Tont2(D) Ton(t) 27i’
Settingt’ = t + [«] amounts to replacing the exponential:
I U 3 (e
1-«a/z

so that the first integral has a simple pole at co and the second integral has one at
z = «. Evaluating the integrals yields

S (Tanr2(D)/Tan (1)

5, (t) Tant2(t)) /T2n(t)

that is,
(eZ(ai/i)(a/ati) _ 1)C§(t)fzn+2(t) _0
Ton(t)
yields the following relation, which involves a constant independent of time,
2 Ton(t) -1
c5,(t) = ¢ = Cp - o (1). 3.22
) "Tonpa(t) ® (3.22)

Rescalingron — t2n/(C1C2- - - Cn—1), in effect, setx, = 1, and then (3.22), (2.7),
(3.1), (3.19), and (3.20) yield (3.3); substituting (3.3) into (2.10) yields (3.4).
Finally, identity (3.22) actually say®o = h~/2. To derive the form (3.5) of the
matrix L, set (3.13) and (3.21) in the elements just below the main diagonal of matrix
(2.15), toyield (= a/dt1)

Eqn. too wide for line;
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and
(82(=0) = 9%/8t)tan  Sp(=0)Tns2

Gon+1,2n—1 — Gont2,2n =

2n 2n+2
_ 2@ S(=wni2
B Ton Tong2
concluding the proof of Theorem 3.2, upon substituting the two relations (3.13) and
(3.14) and als®@q = h~%?into (2.15). O

4. Semi-infinite matricesmy,, (skew-)orthogonal polynomials, and matrix inte-
grals
In this section, consider the following inner-produfir « = 0, F1:

(o= | /R _ fO@e="Y2D°s(y — 2)4(y)5(2) dy dz

/ f(y)g(y)ex2 Y 25(y)2dy, for @ = 0,
R
- f/ fg@e=T 1Y ey —25(ys@dydz  fora =1
R
/{f, g} (y)eXt & yiﬁ(y)zdy, for o = +1.
R
(4.1)

Each type of inner-product is discussed in Sections 4.1 and 4.2.

4.1.9my /0t = AKmy., orthogonal polynomials, and Hermitian matrix integrals
(=0
The inner-product above, with = 0, corresponds to Hermitian matrix integrals; this
theory is sketched here for the sake of completeness and analogy; it mainly summa-
rizes [6]. Consider &-dependent weight
pr(dz) ==t pdy =e V@ENZqy
onRR, as in (0.1) and the induceedependent measure
eT(=VOO+3t XD 4 X, (4.2)

on the ensembleg#, of Hermitian matrices, with Haar measuwi«; the latter can be
decomposed into a spectral part (radial part) and an angular part:

n
dX:=[Jdxi [] @ixidsXij)=a*2dz- - dzdu, (4.3)
1

1<i<j=<n

*We havee(x) = sign x, having the property’ = 25(x). Also, consider the Wronskiapf, g} := (af /0y)g
—f(ag/ay).
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whereA(z) = [[;<.j<n(z — 2j) is the Vandermonde determinant. Here we form
the following matrix integral

. n i
f el =VOO+6 XD g x — ¢, / A ]] eXT W% p(dz). (4.4)
S R" k=1

The weighto; (d2) defines a (symmetrid}dependent inner-product of the type (4.1)
fora = 0:

(f.o)) = / f(@g@exl 17 p(d2),
with moments
wij ) = (2, 2)Y = / Z1eX% p(d2)
R
satisfying

8#” o K
- =]z'““eztkzp(dz)=m+e,j<t).
aty R

Therefore the semi-infinite moment matrix, (t) = (uij (1))i, j>0 Satisfies

My
ot;

The point now is that the following integral can be expressed as a determinant of
moments, namely,

: n
/ el VOOFET XD g — / A @) [] ez
S R k=1

— Alme = meoAT . (4.5)

n
= [ 3 detal b ncsien [ [ iz
®oes, k=1

n
- / Z de(zgtlg_z)lse,ksn 1_[ pt(dZ5 (k)
Hoes, k=1

_ Z det(/ Zfr—a(k)_zpt(dzo(k))>1§[’k§n

0eS R
= n!det(/ z“"_zpt(dz))
R

= n!det(uij)o<i,j<n—1 = Nln(t)

1<e.k<n

is at-function for the KP-equation; also, in view of (4.5) and the upper-lower Borel
decomposition (0.3) ofn,., the integrals form a vector af-functions for the Toda
lattice. The polynomialsp,(t; z) defined by the Borel decompositiang(t) =

S 1sT-1 and p(t; 20 = Sx(z) are orthonormal with regard to the inner-product
(7,2 = mij (£).
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4.2.9My/0tk = A¥my, + my A TK, skew-orthogonal polynomials, and symmetric
and symplectic matrix integralg = +-1)
Consider a skew-symmetric semi-infinite matrix

Mo (1) = (/’LI] (t))l,JEO’ with mp(t) = (MIJ (t))Ofi,jgn—l’
satisfying
Moo/t = A¥Mo + Moo A . (4.6)

Then we have shown in Sections 2 and 3 that, upon skew-Borel decomposging
these equations ultimately imply the existence of functie(ts satisfying bilinear
equations (3.4). Remember also that

Ton+2(1)
on(t) ’

Here, we need the Pfaffian (#) of a skew-symmetric matriA = (&jj)o<i,j<n-1
for* evenn:

h(t) = diag(ho, ho, h2, h2,...) € 7, with hay (1) =

1 n/2
pf(A)don.../\dxn_lzm( Z aijdXi/\de> r

O<i<j=<n-1
1

= W<Z &(0)aig,i18ipi3 " - ain,z,in,l) dxo - Adxa-1,  (4.7)

o

so that ptA)? = detA. We now state the following theorem due to Adler, E. Horozov,
and van Moerbeke [2], in complete analogy with the discussion of the Hermitian case.

THEOREM4.1
Consider a semi-infinite skew-symmetric matrix, pmevolving according to (4.6);

setting

- _ PiMzn2(1).
wn(®) = pf(man() and e == C s

then, modulo the exponential, the wave vedtgr(defined by (3.3)) is a sequence of
polynomials,

(4.8)

Wy (L, 2) = eX 2 qu(t, 2), (4.9)
where the @'s are skew-orthonormal polynomials of the form (0.13) and (0.18), sat-
isfying o

(0. G))0=i j<oo = I, with (y', 21)% = p;j. (4.10)

*In the formula below(io, i1, ...,in—2,in-1) =0(0,1,..., n—1), whereo is a permutation and(o) its
parity.
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The matrix Q defined by(@ = Qyx (2) is the unique solution (modulo signs) to the
skew-Borel decomposition ofyn

Moo () = Q71JQ™T L with Qek. (4.11)
The matrix L= QAQ™1, also defined by

zqt, 2) = Lq(t, 2),
and the diagonal matrix h satisfy the equations

ot _ [-mL', L]  and AL 2m(Lo. (4.12)

at; at;

Sketch of proof

At first note that looking for skew-orthogonal polynomials is tantamount to the skew-
Borel decomposition ofn,,, so that (4.10) and (4.11) are equivalent. The skew-

orthogonality of the polynomials (0.18) follows from expanding the Pfaffians explic-
itly in terms of z-columns, upon using the expression for the Pfaffian in terms of a
column

> (—DfaqpfO..... k... e— 1) =pfO,....0 - 1.
O<k<e-1
For details, see [2]. On the other hand, Theorem 3.2 givéis z) and henceQ in

terms ofty(t) = pfmaon(t) of (4.8). By the uniqueness of decomposition (4.11), the
two ways of arriving atQ, (0.18), and (3.3) must coincide. O

Important remark

The polynomials (0.18) provide an explicit algorithm to perform the skew-Borel de-
composition of the skew-symmetric matrix,. Namely, the coefficients of the poly-
nomialsg; provide the entries of the matri@. This fact is used later in the examples.

Symmetric matrix integralsy(= —1)
Here we focus on integrals over the sp&sg of symmetric matrices of the type

/ M=V OO+ X)) gy (4.13)
=VZn

whered X denotes Haar measure fér= U diag(zy,...,z)U T, UUT =1,

dX:= 1‘[ dXij = A(2)|dz--- dz, dU. (4.14)

l<i<j=n
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As appears below, integral (4.13) leads to a skew-inner-product of the type (4.1) with
a = —1, with weightpy (2) := €% p(z) = e V@+2LtZ:

(f,9(y) = //Rz fO)g(Y)e(x — y)pt ()t (y) dx dy, (4.15)
leading to skew-symmetric momefits

pij (©) = /fRz X'yle(x — y)pt () pe(y) dx dy
= // Xyl = xTy)pe (0 (y) dx dy
x>y
= /R (Fi(0Gi(x) — R ()Gj (%) dx, (4.16)
where(" = d/dx)
X .
Fi(x) = / yeXWordy and  Gi(x) = F/(x) = X' eX W p(x).

—oQ

By simple inspection, the momentsg, (t) satisfy
% = / / H Y )y e (x — y)eX YD p 0 p(y) dx dy
i R2

= Wk+i,e + Kk +i s

and somy, satisfies (4.6).
According to M. Mehta [14], the symmetric matrix integral can now be expressed
in terms of the Pfaffian, as follows, taking into account a constgyitcoming from
*We havee(x) = 1, for x > 0, ande(x) = —1, for x < 0.
—®
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integrating the orthogonal group:

1 / STV OO+ X dX _
San(E)

2n
(@)1 —/Rzn |A2n(Z)|1_£ezth‘kp(Zi)dZ

2n)!
_ 2n
det(z] 1t (2] +1))05i,j <on-1 1_[ dz

/;oo<21<22<m<22n<00 i=1

n Pz )
/ l_[ pt(Zok) d ok x det(/ Zypt(z1)dzy, Z,,
— —0Q

00<Zp<Z4<+<Z;n <0 |

Zon .
i i
B / Zon_1Pt(Zon—1) dZon_1, ZZn)
z

2n—2

n
= / [ ] ot (z20) dzax

O<Zp<Zy < <Zn <O k=1

O<i<2n-1

x det(Fi (22), 2y, Fi(za) — Fi(22), 2,

LR Fi (ZZn) - Fi (22n—2)7 Zi2n)o§i <2n-1
n
dzy

/oo<22<24<~~~<22n<oo 1
x det(Fi(z2), Gi(22), ..., Fi(zan), Gi(Z2n)) i —on_1

1 n
H/Rn ]:[dy. det(Fi(y1), Gi (Yo, - - Fi(¥n), Gi (¥n)) i <on—1

— det?( /R (GIWF ¥ — F G () dy)
(using de Bruijn’s lemma (see [14, p. 4486]
_ pf(/fRz yzley — Z)eZiCti (yi+zi)p(y)p(z) dydz)o<k.£<2n_1

= pf (14ij )i j<on_1 = T2n(D), (4.17)

0<i,j<2n-1

which is a Pfaffiarc-function.

Eqn. lines too wide for
page; these breaks OK?

Symplectic matrix integralgo = +1)
Here we concentrate on integrals of the type

/ @ T=VOO+ER XD gy (4.18)
Ton
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whered X denotes Haar meastire

N - -
dX = [TdX []dXd X d X d Xy
1 k<t

on the spaceZy of self-dual(N x N)—Hermitian matrices, with real quaternionic
entries; the latter can be realized as the spac@if x 2N)-matrices with entries
xW e
ok '
(] D
Xee Xy _ .
ToN = § X = (Xke)1<k,e<N, Xke = with Xgk = X,
_)‘((l) >‘<(0)
ke ke

Another skew-symmetric moment matrix,, satisfying (4.6) is given by inner-
product (4.1) forr = 1, with pr(y) = p(y)eXle¥” = e VI+Lty”

i © = [ 7yl dy
=/H;{yipt<y>,yjpt(y>}|E<y>dy
~ [ @R » - Fme; o) dy, (4.19)
upon setting’ = d/dx)
Foo=xlpx) and  Gjx) :=F(x) = (x)p(x)".
Thatm,, satisfies (4.6) follows at once from the first expression (4.18):

fike(t) = / 5, vy (y)2dy = / (k — Oy 1o (y)2dy

a .
% = 2/{yk, YOy p(y)?dy
1
_ f (K1 — OY<HHEL 4 (k€ — ykH+T) o ()2 dy
= Uk+i,0 + KUK E+is

thus leading to (4.6). Using the relation

1_[ i —xpt=det(x] ) xh (X)X (XL)/)OgiSanl’
1<i,j<n

*X means the usual complex conjugate. The condition on2ke2)-matricesXy, implies thatXyk = Xk,
with Xk € R and | the identity.
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one computes, using again de Bruijn’s lemma,
L[ @meveorsix) gy i/ [T o6 —xp*[ T ovix2ax
(n)' Ton n! RN 1<i j<n i1
L [T 002
= — Pt (Xk
n! RN ko1
xdet( ) X 09 Xy 09 )osi<on1
1 n
= /R“ Hd)ﬁ de(Fi(yo Gi(yn..-Fi(yn) Gi(¥n)oi—on_1
1
— /2 . = i = .
det/?( fR GIWFiy - FWGW)dy)
= Pf (i) )i j<on_1 = T2n(D), (4.20)
which is a Pfaffianc-function as well.
5. A map from the Toda to the Pfaff lattice
Remember from (0.1) the notatign(z) = ,o(z)eZtkzk andp’/p = —g/f. Assuming,
in addition, thatf () p(z) vanishes at the endpoints of the interval under considera-
tion (which could be finite, infinite, or semi-infinite), one checks thatttdependent
operator inz,
fd
= [——/f
Nt o dz Pt
_ e<1/2>2tkzk E f(z) — '+ g(z) el/zztkzk
dz 2
d f'+ ot . - k—1
=Lf@-—F—@, wihg@=9@- @ zl:ktkz SN CHY
maintainss#,. = {1, z, 7%, .. .} and is skew-symmetric with respect to thdependent
inner-product , );’, defined by the weighpt(z) dz,
(neg, Y1)y = /E (@)@ Y (Dpr(2) dz= — /E oY) dz=—(p, neyr);.
The orthonormality of thé-dependent polynomialg, (t, z) in zimply
<pn(t, 2), pm(t, Z))fy = dmn.
The matriced andM are defined by
zp=Lp and e w2y d g1y p= Mp.
dz
—®
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The skewness af; implies the skew-symmetry of the matrix

f'+g
2
sS04/ (t) can be viewed as the operatgr expressed in the polynomial bas®(t, z),
P, 2),...).
In the next theorem, we consider functidfh®f two (noncommutative) variables

z andn; so that the (pseudo-)differential operater:= F(z, n) in z and the matrix
w = F(L, /) related by

A= (LM — (L) such thatnp(t, 2) = A4 p(t, 2); (5.2)

F(z.n)p(t,2) = F(L,.4)p(t, 2),

are skew-symmetric as well. Examplesro$ are’

F(z.ny) :=ng, ni L, or {2, nZ 4yt

’

corresponding to

F(L, /)=, ¥/ Lor{prZl Lot

THEOREMbS.1
Any Hankel matrix m, evolving according to the vector fields

Mo (t) _

A¥m
otk o

leads to matrices L and M, evolving according to the Toda lattice equatiarist,

= (1/2)[(LM)sk, L1 anddM/at, = (1/2)[(LM)sk, M] (see (1.9)). Consider a function
F of two variables such that the operataf := F(z, ny) is skew-symmetric with
respect to( , )i’ and so the matrix

U () = F(L®M), (), defined byutp(t, 2) = % p(t, 2),

is skew-symmetric. This induces a natural lower-triangular matrix)Omapping the
Toda lattice into the Pfaff lattice (for notatiomyo, 7k, %, etc., see (1.9), (1.18),
(1.17)):

pn(t, 2) = (S(t) x (2), ort_honormal with respect to
Moo(®) = (2, 2)1) o j oo = ST1STH,

.. oL 1 i .
L) =SAS!? SatISerSE = [— EnboLJ, L], =212, ...
j

Toda lattice

*It is to be understood thaE (L, .4") reverses the order of, u in F(z u).
TWe ddine {A, B} := AB+ BA.
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—(2t) = 012 JOT12),
map O2t) such that{ O(2t) is lower-triangular,
O(2t)S(2t) e %

On(t, 2) = (O(2t)p(2t, 2)),,, skew-orthonormal with regard to
Moo (t) := =S 127 2t)ST12t) = Q- 11)IQTL(1t)

Prad
= (<Z_I ; ZJ)tS_)%ii,jfoo
Pfaff lattice = (<Z' ) U2tzj>2¥)0§i,Jsoo’

L(t) := O2t)L(2t)O(2t)~ 1 satisfies
oL _

— =[-mLI, 0, j=1,....

a, [—mk 1]

Too wide for page; this

Proof break OK?

Since7 (t) is skew-symmetric, it admits a skew-Borel decomposition

—(t) =0 Yt)JO T L(t), with lower-triangularO(t). (5.3)
But the new matrix, defined by
Meo () := =S 1207 (2t)S" (21, (5.4)
is skew-symmetric and thus admits a unique skew-Borel decomposition
M) = O 1)IQM) L,  with Ot) € %. (5.5)

Comparing (5.3), (5.4), and (5.5) leads to a unique choice of matfiy, skew-Borel
decomposing-% (2t), as in (5.3), such that

0(2t)S(2t) = Q(t) € %. (5.6)

Using, as a consequence of (5.2) and (1.9),

%(m) = [msyLX(20), 2 (20)]
k
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and 3S
S @)= — (oL *(20)) S(20),
tk
we compute
om 0S ad
Tty = 51220 s o s L@t — S*l(zt)(—%(zt)) sT1t)
Jatk Jdtk otk
—1 198" T-1
+ SO % (2t)S T(2’[)8
k
= —S (mpol*@)) % STt - S mgyLK, Z1S™
o S_l%(ﬂboLk)TST_l
= —S HapoL X + ey L)% ST — ST (oL ) T — meyLK) ST
=S kg ST — 519 L TksT-1 (using (5.7))
= —AKs 1y STt _ 519 sT-IATKSTST-1  (using LX = saks ™)
= AXMoo(t) + Moo (AT (by (5.4))
For an arbitrary matribd, we have
A=AT = A= (A — Ay (5.7)
Indeed, remembering thaky,, = 2A_ + Ag andAsy = A, — A_, one checks
(Apo) " —Asy—A=2(A)T+A)— (AL —A)—A —A, —Ag = —2(A, —(A) "),
so that the left-hand side vanishes, if the right-hand side does; the latter means A is
symmetric.
We now definel (t) by conjugation ofL (2t) by O(2t):
Lty :=0@)LEHo@) = 0@)seHas o)t = 0t)A0 Lt):;
thus, by Proposition 1.2, (t) satisfies the Pfaff Lax equation. Therefore the sequence
of polynomials
q(t.2) := O(2)p(2t, 2) = O(2)S(2) x (2) = Q) (2)
is skew-orthonormal )
(ai(t. 2, 9(t. 2)™ = J
*Ax means the usual strictly upper-(lower-)triangular part, &gdmeans the diagonal part in the common
sense.
—®
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with regard to the skew inner-product specified by the mafiix
(7, 23 = fij (t).
In the last step, we show that, ¥)f% = (¢, uy)s,. Since
w2t =—-0"t@2JoT et = -2 @), (5.8)
we compute
(g (t, 2, (u2)j (t, 2))5 = ((OP) (21), UOP)j(2D))5
= ((Op)i (20), (Oup)j20))5)
= ((0Opi ), (0% p)j(20);)
= (0@)(p(2), Pe(2)),.o(OZ) T (20);;
= (0@ Oz @),
= (0@y7z T@Ho' @),
= —(O(2t)02/(2t)OT(2t))ij
= Jj (using(5.8)). (5.9)

Therefore, defining a new skew-inner-prodyct )SK

(@, 1) = (g, up)y,
we have shown
(G- A = (. gk = 3.
and so by completeness of the bagiswe have
(Of =K
thus ending the proof of Theorem 4.1. O
6. Example 1: From Hermitian to symmetric matrix integrals
Striking examples are given by using the m@yt) obtained from skew-Borel de-

composing/ ~1(t) and.# (t) (see (5.2)). This section deals with ~1(t), whereas
Section 7 deals withs/(t).

PROPOSITIONG.1
The special transformation

f'"+g
2

-1
20 =410 =(fLM-—=L) ©
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maps the Toda lattice-functions with initial weighp = e~V, V' = —g/f (Hermi-
tian matrix integral) to the Pfaff lattice-functions (Ssymmetric matrix integral), with
initial weight
s o (PRONYZ _ v @+og f -2 42)
1(2) = ( f(2) ) =€
— g V@HITZ _ 5z)e2 2
To be precise:
pn(t, z) orthonormal polynomials in z for the inner-product
(o, ¥)y = / P(DY (2)e-"7 p(2) dz,
Toda latti P
oCalaeeY L = (7. 2)Y and my = (uijdosi.jn-1.
Tn(t) = detmy = i/ el VOOFET XD g x
n! R
-/ 7ten =o0"t2nio L@,
map O(2t) such that{ O(2t) is lower-triangular,
O(2t)S(2t) € %
On(t,2) = (O(2t) p(2t, 2)),, skew-orthonormal polynomials
in z for the skew-inner-product (weight
(0, )P = (o, N vy
1 iy
=05 [ | 000umet—yemtesh
Pfaff lattice [(x)[(y)dx dy,
ij (1) = (X ) andmn = (fij)o<i,j<n—1,
= — bf(for) — TV OO+ 6 XD g x
Ton(t) = pf(Mmgn) 20 (2n)! /J’Zne dX,
~ 1
with V(2) = E(V(z) + log f (2)).
—®
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In the first integral definingn(t), d X denotes Haar measure on Hermitian matrices
Lines in above display

00 wide for page: this (see.Sectlo.n 4.1), wheregs the second integydt) involves Haar measure on sym-
break OK? metric matrices (see Section 4.2).

Proof
At first, check that

d\-1 1
(5) ¢ =73 [ s0x=yemdy (6.1
Indeed,
d, d\-1 19
&(&) ¢(X)=/§&8(X—Y)§0(y)dy
9
=/8(x—y)<p(y)dy (using a—xe(X) = 25(X))

= ¢(X).

Consider now the operator
ut=n(1=< —J/f ) , sothatup=n;lp=.+"1p,
prdz
according to (5.2). Let it act on a functign(x):

D 1 dy- pt(X))
A ‘”(X)_<¢f(x)pt(x)<dx> IRTARE

=/ 1 ex=y) [y
om0 2\t

p(y)dy (using (6.1))
One computes

(@, V)K= (o, U2tlﬂ>sy

(2 n2t

pa(X p2(y
/Az\/?( _Y)\/TWX)I/f(y)dxdy

_ 5 //Rz ﬁ(X)ﬁ(Y)eZl t (XK 4y )E(X — V()Y (y) dx dy.

So, finally setting\7(x) = (1/2)(V(x) + log f (x)) yields by (4.17) that

1 Y, 00t yri
Ton(t) = pf(Mgn) = (2n)!/5ﬁ el (=VOO+7 6 X g x
2n
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The map O for the classical orthogonal polynomials at 0
Then, the matrix O, mapping orthonormal ipto skew-orthonormal polynomialg g
is given by a lower-triangular three-step relation:

C
G2n(0,2) = /=22 pan(0, 2),
aogn

aon
Oon+1(0,2) = /| —
Con

2n
c
( — Con-1P2n-1(0,2) + a—? ( > bi) P2n(0, 2) 4 Con P2n+1(0, Z)),
n
0

(6.2)

where the aand k are the entries in the tridiagonal matrix defining the orthonormal
polynomials, and the; s are the entries of the skew-symmetric matrix

In [6], we showed that, in the classical cases beldWis tridiagonal, at the same
time asL (see Appendix B):

bo ao 0 ¢
apg by & —c 0 ¢
L= a; by - ’ = —-cp O
(6.3)
with the following precise entries:
Hermite:p(2) = e*ZZ, an-1=+/Nn/2,byp =0, ch = an;
Laguerre:p(2) = & “Z"lj0,00)(2), @n—1 = v/N(N + ),
bh=2n+ao+1,¢c,=an/2;
Jacobi:p(2) = (1 - 2“1+ 2)*11—1.11(2);
anq = ( ann+a+ )N+ a)(n+ B) )1/2
T\ entarpentatprh@ntarp-1/
062 _ 132
bn == )
@n+a+B)2n+a+B+2)

If the skew-symmetric matrix#” has the tridiagonal form above, then one checks that

2002/217
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its inverse has the following form:
_1 —C1 —C1C3 —C1C3C5
0 Co 0 CoC2 0 CoC2C4 0 CoC2C4Cq
< 0 0 0 0 0 o0 0
_1 —C —C3Cs
(2 0 ? C2 0 C2Cq 0 C2C4Ce
oy 0 & 0 0 0 0
- 0 0 0 o o -z o Z=
C1C3 G 1
CoC2C4 0 C2C4 0 Cq 0 0 0
0 0 0 0 0 o 0 -2
C1C3Cs5 C3Cs Cs5 i
CoC2C4Cs 0 C2C4Cq 0 C4Cs 0 Ce 0
(6.4)
In order to find the matribO, we must perform the skew-Borel decomposition of the
matrix —%:
— % =-n"t=0"130"1
The recipe for doing so is given in Theorem 4.1 (see also the important remark fol-
lowing that theorem). It suffices to form the Pfaffians (0.18) by appropriately border-
ing the matrix—#"~1, as in (0.18), with rows and columns of powerszof/ielding
skew-orthonormal polynomials; we choose to call tirésninstead of the)'s of The-
orem 4.1, withO x (z) = r (2). They turn out to be the following simple polynomials,
with 1/Ton = CoCaC4 - - - Con—2:
1 conz?" 1 on
ron(2) = = ConZ™,
oz Co---C C;
/Tznfzn+2 CoC2 2n +/Con
1 Co ZZn+l —Cy _122n—1 1 B
ront1(2) = —— i CoCa 2 = \/C_(CznZZ”“ — 17",
/'E2n1~'2n+2 2 2N 2N
Then, also from Appendix A, in order to gé&t — O in the correct form, we compute
the skew-orthonormal polynomialg, with C)X(z) =f(2):
N 1 C2n _on
fon(2) = ron(2) =,/ —727,
" /&2n " azn
2n b|
Foni1(2) = =2 : ron(2) + «/@2nr2n+1(2)
n
a C 2n
= ﬂ( _ C2n_122n_1 + an ( Z o] )ZZH + 02n22n+1) . (65)
Con azn o
From the coefficients of the polynomiél, one reads off the transformation ma-
trix from orthonormal to skew-orthonormal polynomials; it is given by the matrix
—®
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O such thatOx (z) = f(z). Thereforeq(t, z) = O(2t) p(2t, 2) yields, after setting
t =0,

C:
02n(0,2) = [ pon(0, 2),
aon

a
Gon41(0,2) = |22
Con
o 2n
x ( — Con-1P2n-1(0, ) + a—Z" (D°bi) P2n(0.2) + CanPansa (O, Z)>,
n
0
(6.6)
confirming (6.2). O

7. Example 2: From Hermitian to symplectic matrix integrals

PROPOSITION7.1
The matrix transformation

f'"+g
2

maps the Toda lattice-functions with t-dependent weight

A =f(L)M —

(L)

p(2) = e VORI v = gt

(Hermitian matrix integral) to the Pfaff lattice-functions (symplectic matrix inte-
gral), with t-dependent weight

~ 1/2 _ _ _ o0t i
P12 = (pa(@ (@)% = e W2V @-log f@-255 4 2)
= e V@I _ 57tz
To be precise:

Pn(t, 2) orthonormal polynomials in z for the inner-product
_ e =@y @eXi p(2)dz,
Toda latticey 1; (t) = (Z, 2))yY and my = (1ij)o<i,j<n—1.

1 i
m(t) = detmy(t) = = el"=VOO+2tXh g x

“ln
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—/(2t) =012 o 12,
map O2t) such that{ O(2t) is lower-triangular,
O(2t)S(2t) € %

on(t, 2) = (O(2t) p(2t, 2)),, skew-orthonormal polynomials
in z for the skew-inner-product (weight),

(@, ¥)$K = (@, nayr)y)

1 i
2 //Rz{fp(z), Y@ o f (2 dz

Pfaff latticey _ Ok ! }
fiij (1) = (Z', 2))P and My = det(iijo<i,j <n-1,
~ _ = _ 1 Tr=V(OO+Y 6 X))
on(t) = pi(Tan(t) = —5ro /yz & dx.
~ 1
with V (2) = E(V(Z) —log f (2)).
Proof

Representingl/dx as an integral operator

d / a /
—w(X)=/8(X—y><p (y)dy=—/ —S(X—y)w(y)dy=/8(X—y)<p(y)dy,
dx R R Y R

compute

f
U =Nt = Ed%,/ for, sothatnip(t,z2) = 4 p(t, 2);

remembers” from (5.2). Let it act on a function(x):

f d
Utp(X) = <\/;&\/ fpt><ﬂ(X)

|
= f ﬂ8’(x =YV e (y)e(y) dy.
R\ ot(X)
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Then
(@ ) = (o, ua )y = (o a3
B / /R ”Zt(x)‘”(x)\/%y(x — YV Y2V (y) dxdy
= //Rz V)02 ()@0(X)8' (X — y)v/ T (y) p2a () ¥ (y) dx dy
- /fRz (%WMX))MX ~ YV Ty (y) dx dy
= —/R(aa—x/mgo(x))/mwx)dx

1 a
=3 / (5 T00p200900) v/ T X002 00w (x) dx
R X

2
1 d

I /R F00p2009 00 (5 v/ T 000 G0p (9) dx
1

Z_E/R{ f (X) p2t )@ (%), v/ F (X) p2 () () } dIx

1 00 ¢y
= —E/R{QD(X),w(X)}ﬁg(X)eml X dx,

using the notation in the statement of this proposition. Seflibg = —V OO with
V(x) = (1/2)(V(x) —log f),

(xt, xJysk = —%/{xi, x1152(x) 2 LT X' gx
R

= —%/{xi,xj}ez(v(x)Ztixi)dx,
R

and so

Tan(t) = pf (Mzn (1)) = fy TV O+ X)) gy
2

(=2)"n!
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The map O'! for the classical orthogonal polynomials att 0
Then, the matriXO, mapping orthonormaby into skew-orthonormal polynomiatg,
is given by a lower-triangular three-step relation:

agn—2
P2n (0, 2) = —Con-1,/ czn 2C|2n—2(0, Z) + /aznCon G2n (0, 2),
n_

pon+1(0,2) = —Csz: O2n—2(0, 2)
Zb. ,/ qzn(o z>+,/ q2n+1<o 2),

where theg; andb; are the entries in the tridiagonal matrix defining the orthonormal
polynomials, and the; are the entries in the skew-symmetric matrix.
In this case, we need to perform the following skew-Borel decompositiba=at

(7.1)

0:

—~% =—-#=0"130"1,
where_/" is the matrix (6.3). Here again, in order to fi@j we use the recipe given in
Theorem 4.1, namely, writing down the corresponding skew-orthogonal polynomials

(0.18), but where thaij are the entries of %7 = —.4#": consider the Pfaffians of the
bordered matrices (0.18); they have the leading term

n-1
Ton = l_[ C2j.
0

Then one computes

n—i—1 i—1
fon = —— Z 2"~ 2'( I1 CZj)(l_[Czanjfl),
v T2nT2n+2 =0 0 0
1 n—i—1 i—1
Fonit = ———— <2n+11—[C21 +ZZZn 2|< l_[ ch)<1_[C2n_2j_1>),
\/T2nf2n+2 i=1 0 0
(7.2)
with
V TonTant2 = CoC2 - - - Can_2+/Con, Tot2 = /Co.
Setting
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the matrixO is the set of coefficients of the polynomials above, that is,

1 0
0 1
C1 0
C2 0

O=D1| cacz 0 «@¢C3

0

0

0

of oo

0
0
0
(6]
0
C1Ca cs O

C1C3Cs
C1C3Cs

=: DIR.

0
0
0
0

Cc3Cs 0 @cCacs
CC3C 0 @CaCs

0
0
0
0
0

OOOOOOO

S
1%

(7.3)

As before, in order to get the skew-symmetric polynomials in the right form, from the
orthogonal ones, one needs to multiply to the left with the md&iddined in (A.2):

O=EO=ED!R,

and so,

O 1l=R1IDEL

(7.4)

(7.5)

it turns out the matrO is complicated, but its inverse is simple. Namely, compute

We made all ¢'s roman

here and in (7.3). OK? 1 0 0 0
0 1 0 0
C1 1
&, 0% 2
OCO 0 —-& 08
R'=[ ¢ o _&
Co C2
0 O 0 0
0 O 0 0

<l
UQO,QHOOOO

CoC2Cy
Cs

T CoCacy

o
N
OOI\? OOOOO

0
0
0
0
0
0
0

1

Ca

f
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and

oo

—Bo

Sl- o

o2

E-Ll_ —B2

Sl o

, (7.6)

as O
1

—Ba g

4

0

with a2, andBan as in (A.5). Carrying out the multiplication (7.5) leads to the matrix

O~1, with a few nonzero bands, yielding the map (7.1), by the recipe of Proposition

6.1 inverted. O

Appendix A. Free parameter in the skew-Borel decomposition
If the Borel decomposition ofH = O~1J O 1 is given by a matrixO € %, with
the diagonal part 0O being

op O
0 o0 0
oo O
(0)o = 0 o2 , (A1)
os O
0 o2
0
then the new matrix
Is “O=:EQ,” a separate
1/oto 0 equation?
Bo (&70] 0
1/ap O
0= P2 a2 O=EO, (A2
1l/ag O
Ba g
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with free parameterso,, Bon, is a solution of the Borel decompositionH =
013071, as well. The diagonal part @ consists of2 x 2)-blocks

(1/052n 0 ) (UZn 0 ) _ (UZn/‘YZn 0 )
Ban o2n 0 oo Bano2n  a2no2n ’
Imposing the condition that
k .
a@= Y Ojpj@, with p@ =) pz,
O<j<i i=0

has the required form, that is, the same leading terrg£panddyon..1 and noz?"-term
in d2n+1,

0n(2) = QononZ? + - - -,

2n+1 2n—1
O2n+1(2) = O2n,2nZ B 02n,2n-12Z R (A.3)
implies
o2n
— P2n,2n = 02na2n P2n+1,2n+1,
azn

o2nf2n P2n.2n + oon2n Pan+1.2n = 0
yielding, upon using the explicit form of the coefficierg of the polynomialspy,
associated with three-step relations (see Lemma A.1),

2 _  Penon
2n —
P2n+1,2n+1

2n
@ __ Pention 2.0 bi

(o4 = a2n7

= (A.4)
aon P2n,2n agn
Hence
1 2n
aon = /& and = b;. A.5
2n 2n ,32n \/a_2n ; i ( )
So, if
rz = Ox(2),
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then (A.2) yields

1l/ag O
,30 (040] 0
1/ap O
F(2):= Ox (2 = P a2 [(2) = Er(2),
1l/ag O
Ba a4
0
and thus
Is“r(z) = Er(z)"a
A 1 A6) separate equation?
fon(2) = Fon(zZ )
2n( ) T‘Zn 2n( ), (
2n
R b;
font1(2) = ZoaTnl Fon + +/@2nf2n+1(2). (A7)
LEMMA A .1

A sequence of polynomials,@ = Y[, pniz of degree n satisfying three-step
recursion relatiori

Zph = an-1Pn-1+bnpPn+anpns1, N=0,1,..., (A.8)

has the form

n
Pnt1(2) = %(Z“*l— (Xolbi>z”+-..),

Proof
Equating the™* andz” coefficients of (A.8) divided by n yields

Pn+iner 1

Pn.n an
and 0 0
n,n—1 = a, n+1,n + bn-
Pn,n Pn.n
Combining both equations leads to
an Pn+1,n —any Pn,n-1 — by,
Pn.n Pn-1,n-1

*We seta_; = 0.



2002/217
page 54

—P

54 ADLER and VAN MOERBEKE

yielding

n

Pni1,n .
ap———— = — E bi (usinga_1 = 0). O
Prn - i ( ga_1 )

Appendix B. Simultaneous (skew-)symmetrization of. and ./

CLAIM
For the classical polynomials, the matrices L and can be simultaneously sym-
metrized and skew-symmetrized.

Sketch of proof

This statement has been established by us in [6]. Given the monic orthogonal polyno-
mials P, with respect to the weight, with p’/p = —g/f, we have that the operators
zand

fd d f'—g
= |- —Jfp=f—
n pdz P dzJr 2

acting on the polynomial§y’s have the following form:

an = 31%_1 f)n—l + bn r)n + r)n-i-l,

NPn=... = ¥nPn+1, (B.1)
in view of the fact that for the classical orthogonal polynomfals,

ita: —4d _
Hermite: n= 4~ %

Laguerre: n=z% —i@z-a-1),
Jacobi:  n=1-2)& - @+ B+2z+ (@ - ).

For the orthonormal polynomials, the matridesind—.4" are symmetric and skew-
symmetric, respectively. Therefore the right-hand side of these expressions must have
the form:

ZPpn = ar2171 Pn—1 + bn Pn + Pni1,
Npn = ar21713/n—1 Pn—1 — YnPn+1.
Therefore, upon rescaling thi's, to make them orthonormal, we have
Zph = (Lp)n = an—_1Ppn—1+ bnPn + @n Pn1.
Npn = (A4 P)n = An—1¥n—-1Pn—1 — @ ¥n Pn+1,

*They have the respective weights= e*Zz, p=e€722 p=1-2%1+2F.
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from which it follows that

0 o
- 0 o
N = . , ith ch = ,
N ¢ 0 . WItN Ch = @nyn
where—yj is the leading term in expression (B.1). O

Appendix C. Proof of Lemma 3.4
For future use, consider the first-order differential operators

20 d B (P c1
t,2) = —_ an Z) = —— z ' T— .
n(t, 2) 2 T o, 2 8Z+§1 7 (C.1)

having the property
B(e "@f(t) =B@f(t—[z1]) =0. (C.2)

LEMMA C.1
Consider an arbitrary functiornp(t, z) depending on te C*, z € C, having the
asymptoticg(t, z) = 1+ O(1/2) for z / oo and satisfying the functional relation

pt—15".2) _ ot-17".22)

, teC™, zeC. (C.3)
o, z1) e, 22)
Then there exists a functiart) such that
tt—[z71)
ot, )= ——7——. (C.4)
(1)

Proof
Applying B := B(z1) to the logarithm of (C.3) and using (C.1) and (C.2) yields

(e7"% — 1)Byloge(t; z1) = —Biloge(t, 22)

o . 1 8
==Yz —loge(t, z5),

: at;

=1

which, upon setting

fj(t) = Res,—z) Biloge(t, z1),
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yields termwise ire,
—1(22) 9
(e -Dfjt) = 0 logo(t, 2). (C.5)
j

Acting with 9/9t; on the latter expression and widliotj on the same expression with
j replaced by, and subtracting,one finds

af %>=O,

e 1) _q <_ _
( ) otj ot;

yielding
ofi  ofj A
otj at; ’
the constant vanishes becaudg/dtj never contains constant terms.
Therefore there exists a function le¢, to, . ..) such that

0 .
s logt = fj(t) = Res—Z'Bloge,
j
and hence, using (C.5),

d d
—logo(t,z) = (e7"@ —1)— logr,
at, go(t, 2 = ( )atj gt
or, what is the same,
d _
—(logy — (e7" —1)logt) =0,
8'[]'

from which it follows that

o0

logp — (77— 1)logt = _Z$z—i
1

is, at worst, a holomorphic series #T! with constant coefficients, which we call
—b;/i. Hence
T(t — [z e~ X B/D7

(1)
‘E(t _ [Z_l])eZio b (t; —z /1)

(p(t, Z) =

’

T(t)eXi bit

*It is obvious that[d/dt;, e @] = 0.
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that is, .
ot = 22D
T(t)
where
7= (et bt o

Thus Lemma 3.4 is proved. m
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