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0 Introduction

In recent times, there has been a considerable interest in matrix Fourier-like
integrals over the classical groups @), O_(£), Sp(¢), and U¢) due to their con-
nection with the distribution of the length of the longest increasing sequence in
random permutations and random involutions and also with the spectrum of ran-
dom matrices. This connection first appeared in I. Gessel's work [12], who showed
that some generating function for the distribution of the length of the longest in-
creasing sequence can be represented as a Toeplitz matrix. One of the purposes of
this paper is to show that all those expressions are unique solutions to the Painlevé
V equation, with certain initial conditions. In this work, we present both new re-
sults, concerning @), and known ones, concerning4); all cases are done in the
same unified way.
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Our method consists of appropriately adding one set of time varidbles
(t1,t5, ...) to the integrals for the real compact groups and two sets of times
(t,s) = (11,15, ...,5,S,...) for the unitary group. The point is that these new
time-dependent integrals satisfy integrable hierarchies:

() OL(¢) and SE¢) correspond to thetandard Toda latticethe associated
moment matrices are Hankel, whose determinants provide the f-oda
functions.

(i) U(¢) corresponds to a very special case ofdiserete sinh-Gordon equa-
tion, leading to a new lattice, th€oeplitz lattice This lattice involves a
dual pair of infinite variables; andy;, themselves matrix integrals. Its
t-functions are determinants of moment matrices, which are Toeplitz.

Both systems, the standard Toda lattice and the Toeplitz lattice, are peculiar
reductions of the 2-Toda lattice. Each reduction has a natural vertex operator, and
S0 a natural Virasoro algebra, a subalgebra of which annihilates-thactions.
Combining these equations and, in the end, evaluating the result along appropri-
ate (t, s)-loci all lead, in a unifying and quick way, to different versions of the
Painlevé V equation for the integrals. More details about the precise nature of the
Painlevé equations will be given in Propositions 3.3, 4.1, and 4.2. After this pa-
per was written, we found out that the Toeplitz lattice coincides with the so-called
Ablowitz-Ladik system; see Suris [17]. However, our approach to that system is
novel.

Let S, be the group ofi! permutationsr, andS), the subset of2n—1)!! = &

fixed-point free involutionsr® (i.e., (%2 = | andz®k) # k for 1 < k < 2n).
m, refers to a permutation i& andz9, to an involution inS),. Also consider
Sk = {words of lengtm from an alphabet dk letterg.

An increasing subsequencér € S, or Lisasequence & j; < --- < jx <
nsuch thatr(j,) < --- < 7 (jk). Define

o (mn) = length of the longest increasing subsequence,of

In the case ofS, k, the definition ofo is the same except that the subsequences
must be increasing, without necessarily being strictly increasing.

Notation.The expectation&o(), Eu(), - . ., refer to integration with regard to
the Haar measure, normalized so tBat, (1) = 1, Ey)(1) = 1,..., asitshould.
Sometimes it will be more convenient to use integis,, /., - - - » which refer

to integration with respect to the Haar measure, normalized as in Proposition 1.1
below. For U¥), the two normalizations happen to agree.
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THEOREMO.1 For every? > 0, the generating functions below have the following
expression in terms of specific solutions of the Painlevé V equation

@D@ZZ %%e%omm<un

5 (2n)!
— EO(£+1),eXtrM + Eo((g+1)+eXtrM

X f= X £+
=exp(/ wdu)—ﬁ-exp([ fy (u)du)
0 u 0 u

n

(0.2) (i) Z %#{nn € S :o(my) < £} = EygeV*rM+w
n=0 " °

- exp/X log (E) ge(du,

mo}:—mme&kam@<0_ammm+M)€”M
n=0

(0.3) = exp(

)

where {, g,, and hy are unigue solutions to three different versions of the Painlevé
V equation, with the initial condition indicated belpt® be precise,

2 2 2
f'/'+3f/'+§f/2_iff/_uf/_i_l_esf+M=0
(i) | u u u2 u2 u u
t+1
with f; (u)_uziug + O@*?) nearu=0,
/" g/2 1 1 g Ezg—l
-2 24 = -1 -2 = _
e e I R T
4
withgg(u):l—#—%O(u”l) nearu=0,
., h2/ 1 1 h 2t+k,, .,
h 2<h/—+1+ﬁ> TR h'(h" + 1)
1
G —zﬁﬁﬁ:ﬁﬂu—@W—h—O«%+u+@W+h+@:O
i
k—¢ utt k+e-1
ith h = — O(u‘+?
with h,(u) uk+€ (Z+1)!< ¢ )—i- )
nearu=0.

That the orthogonal matrix integrals (i) satisfy Painlevé V is new. The identity
() involving orthogonal matrix integrals and random involutions is due to Rains
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[16]. That the W¢)-integral (i) satisfies Painlevé was first established by Hisakado
[13], using our methods (see [1]), and then reestablished by Tracy and Widom [18],
using methods of functional analysis. The identity between random permutations
and unitary matrix integrals via Toeplitz determinants goes back to Gessel [12].
Similarly, the U¢)-integral (iii) was first established by Tracy and Widom [19],
again using methods of functional analysis. The relation of the combinatorics to
integrals over the groups was extensively studied by Diaconis and Shahshahani
[11], Rains [16], and Baik and Rains [8]; see also Johansson [14], Baik, Deift, and
Johansson [7], Aldous and Diaconis [5], and Tracy and Widom [18, 19].

Our methods have the benefit of providing a unifying (and also quick) way of
establishing these results as well as new and known ones. The relationship with
integrable systems can be summarized by Theorems 0.2 and 0.3:

THEOREMO0.2 Define the integrals
i) 170 = / e"™dM and (i) l.(x, y):/eWxMyM)dM.
O+ (0) ue)

The expressions

|+ 2 2
i X) = logetf -2 withef = ——  ande = ———— |
O o =loge; % C T 0T 2loven 0 T T Lleven
lesa

(i) de(x,y) =log——,

le
satisfy, respectively,

L 192 _
(i) ZWQZK = —el7%1 4 1% (standard Toda lattice

.. 32Q( _ _ . . .
(i) xdy gh—d-1 _ g¥+1=%  (discrete sinh-Gordon equatipn

Remark.Note that if the lattice is 2-periodic, i.eq; = Q..2«, then (ii) becomes
the sinh-Gordon equation for= g, — g,_1:

ar

oxay

= 4 sinhr .

Define the following probability measure on the unitary group))
PLtj(sn)(M e dM) := 1,(t, 5)~LeXt T VIR |
andh = diag(ho, hy, ...), hy = 741/, With
Th(t, S) 1= f eZTTr(tiMi_SMi) dM.
u(n)

1in this statement, we use the following notati¢n]even:= maxevenx such thak < n}.
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Also, let p®(t, s; z) and p® (t, s; 2) be bi-orthogonal monic polynomials i
depending or ands, satisfying(p’(t, s; 2), pj(z)(t, s: 2))1.s = &jh; with regard
to the inner product

dz

" f(2g(z HelTtZs7h |t ge ™.
2712

(f(2,9@)ts ;:f
st

The statement of Theorem 0.3 contains the elementary Schur polyAqmjal
defined bye>i i% := 3" pi(ty, tp, ...)Z and applied to the spectrurg = €%
of the unitary matrixM € U (n).

THEOREM 0.3 Consider the following variables, expressed in terms of the expec-
tation for the distribution above or expressed in terms of the bi-orthogonal polyno-
mials evaluated at z O:

t,s 1 2 1 3
Xn(t,S) := Eu(n)pn —TrM,—ETrM ,—éTrM

_ Po(=0)m(t,s)

wts) Pt s;0),
._ rts v 1 2 1 VE]
a(t. S) = EGGy po( =TT~ Tr N2 —ZTr WP,

_ Pn(3s)Tn(t, S) _ r(12)(t’ s;0).
(t, )

The % and y, satisfy the following integrable Hamiltonian system

X JH®D 9 aH®
= (1 —XnYn) o ﬁ = —(1—XnYn) —
(Toeplitz latticé
(2) 2
8xn_(1 « )8Hi Yn (1 x )8Hi
8S - nyn ayn [} as - nyn aXn ’

with initial condition %,(0, 0) = y,(0,0) = 0 for n > 1 and boundary condition
Xo(t, S) = Yo(t, s) = 1. The traces

1 ; .
HO = —STrL, i=123.., k=12,

of the matrices L below are integrals in involution with regard to the symplectic
structure

o0

. dxe A dyk
w'_; 1— XY

2The Schur polynomial should not be confused with the bi-orthogonal polynomlfilé?let, S; 2).
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where Ly and L, are given by thérank 2” semi-infinite matrices

—X1Yo 1—xiy1 0 0
—XoYo —Xoy1 1—Xo¥» 0
h=lL;h:= | —XsYo —Xsy1 = —XaY2 1-—Xays

—X4Yo —Xa\1 —X4Y2 —X4Y3

and
—XoY1 —XoY2 —XoYs  —XoYa
1-xy1 —X1y2 —X1Y3  —X1Ya
L,:= 0 1-Xy2 —Xo¥3 —XoYa

0 0 1—X3ys —Xays

Moreover, the precis&rank 2” structure of Iy and L is preserved by the equations

aL; aL; .
Wﬂ':[(LE)%Li] and a—gﬂ':[(l_g),,l_i], i=12n=12...

(2-Toda lattice

Remark.The first equation in the hierarchy above, corresponding to the Hamilto-
nians

Hi' = —TrLi=) Xy, HZ=-Trl=) XV,
0 0

reads
X Y,
a_tf = Xn+1(1 — XnYn) , 8_'[: = —Y¥n-1(1 = Xa¥n) ,
X d
8—32 = Xn—1(1 — XnYn) , a—iz = —¥n+1(1 = Xa¥n) .

Here we outline the ideas and the results in the paper. Throughout, consider a
weightp(x)dx on an intervaF C R satisfying

P _ XisobX g0
p(X)  Yieax  f(X

We now define two time-dependent inner products, one given by a we{ghd x
on the real lindR and another given by a contour integration about the unit circle

(0.4)

with p(x) decaying rapidly ad F .

3Decaying rapidly meang(x) f (x) = 0 atfinite boundary points of-, or ,o(x)f(x)xk —- 0
whenx — {an infinite boundary poipfforallk =0, 1,2, ....
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St cC,

(F (0, gO0) = f F (0GOS ™ p(x)dx, teC™
(0.5) R

(f(2,9@)s = yg E f(Z)g(Z_l)eZEO(“Zi‘Sfi), t,se C*.
q 2miz

These inner products lead to Hankel and Toeplitz moment matrices, respectively,
My (t) == ((x', Xj>t)0§i,j§n—1 (Hankel)
ma(t, s) == ((Z, Zi)tvs)OSi,jgnfl (Toeplitz)

The determinants, of the m,’s have different representations: On the one hand,
as multiple integrals, involving Vandermondes,(z), and on the other hand, as
inductive expressions in terms gf_; involving a vertex operatd‘r

(0_6) Xlz(t, S; u’ v) T921 (t|U| Sv) 721( i WiTE X(UU)

to be explained in (0.7). The,(t) and,(t, s) are, respectively, solutions to the
standard Toda lattice, and the so-called Toeplitz lattice, both reductions of the semi-
infinite 2D Toda lattice’

(0.7) I, =n!detr, = n!detm, =

4+t s—t
/RnAzneZ. 1tlzkp(Zk)de fdu,o(u)(Xlz(s2 ST,u,u)l)n

(standard Toda-functiong

n
00 11 i —i dzk du
AZ eZ]_(tIZk_SZk)—Z/ X tSUUl|
fslwl " kUl 2mizy 5127“”( i n

(2-Todar-functions

wherer,(t) andz,(t, s) satisfy the following differential equations (the second one
is new)

2

32 2 32 3
Iog Tn + 6< 12 log rn> + 3 Iog Th — at13t3 logt, =0

4

(KP equation

i lo 22 1og ™ i lo ” lo
Th= —2— —_— T — —— 1097
a0t O 95 Oty oSt O astat, O

(2-Toda equation)

4Forv = (vg, v1,...) |, (Av)n = vng1, (AT v)n = vp_1 andx (2) := (1, 2, 22, ...).
5The expressiomlz(s—gt, S—Et; u, u) is actually independent af The expressions in (0.7) are
inductive inn because of the presence of the downward shiftin X1».
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The unique factorization of the time-dependent semi-infinite moment mainges
(defined just under (0.5)) into lower- times upper-triangular matrices

My (t) = St ST (1)
My (t, S) = Si(t, 5) 'S(t, 5)
leads to matrice§(t), S (t, s), andS(t, s) of the form

S=) aA', St.9=) bA, Sts=) bA

i<0 i<0 i>0

(0.8)

with bp = | anda;, by, b diagonal matrices. By “dressing up” the shift(defined
in footnote 4), they evolve according to the following integrable systems:
L(t) = S(t)AS %(t) : symmetric and tridiagonal (Toda lattice)
Li(t,s) = Si(t, )AS (L, )
La(t,s) = Si(t, 5)ATS, (1, 5)

As already pointed out in (0.7), that expression involves the following reduction of
the 2-Toda vertex operatéit; »:

(Toeplitz lattice).

u=t 9

s+t s—t wor i _oscouT o
i U, U) =: X(t;u) = ATx(uz)e21 LY 2305 a;
uT 9l B)

X12< ,—
(0.9) 2 2
Xao(t, s U, udy = ATeXT U —su e L5 ag —Tag) |

Each of these vertex operators leads to Virasoro algetjtaandv 2 of central
chargec = 1 andc = 0, respectively, defined by

UMW Wpw = [F20, X )]
iumﬂxﬁ(t’s u,ut)
au u
and having the explicit expressions (see notation (0.4)).
g0 = (@ I — b I )],,.
i>0
VR (t.9) =PI (1) — I (—s)

—m(E IR + 1 -0 150 =9)|,_, -

’

Xaa(t, s;u,u™h)
=[Vv@t,s), ————]

(0.10)

in terms of generator§] 2 defined in (A.3) below and arbitrasy.
The point is that a big subalgebra gf’s and a small one 0¥(?’s annihilate

7o(t) andz,(t, s), respectively, for appropriateand for alln > 0,
gD (t) =0 form> —1
V@r,(t,s) =0 form=—1,0,1(SL2, Z)-algebra).



RANDOM PERMUTATIONS 9

To summarize, we have that combining these equations and restricting to the three
different loci L below always leads to Painlevé V:

;2)(?‘2,[):_00 {Painlevév for
m “n - Y .
form=-1,0 £—[ ty = x, all other} O (n)-integral
“1t=0
2-Toda PDE
V@1(t,s) =0, PainlevéV for
form=-1,0,1 . _[wsi#0, aloter U(n)-integral
Toeplitz relation = { ti,s =0 }0

;o { allit; = —k(—1)!, }
5 = 0 excepfs; = x

1 Integrals over Classical Groups and Combinatorics

This section contains a number of useful facts about integrals over groups, its
relation with combinatorics, and finally the behavior of some of the integrals near
x=0.

The situation is quite different depending on whether one integrates over the
real(O., Sp(¢)) or the complexU(£)). The real group integrals involve the Jacobi
weight,

(1.1) pop(dz:= (L —2*(1+2fdz fora, = i%

and the Chebyshev polynomialg(z), ddined by T,(cosf) := cosnf. In par-
ticular, we havel;(z) = z. We now have the following theorem (see Johansson
[14]):

PropPosSITIONL.1 (Weyl) Defining
9@ :=2) tT (2,
1
the following holds

n
/ez‘f’tr(tiMi—sMi)szi / |An(z)|21_[ez‘l’°(tizik—sz;i) dz
n! 1

27TiZk
u(n) (shHn
n
f elT M g\ = gxi't / An@?[ [y -1, (@0d%

o@n+1)4 [—1,1n k=1

n
Xt tr M A=) 2 9(z)
eX1 dM = ex1 / An(2) l_[e Yo 1.3)(@0dz

k=1

o@n+1)_ [—1,2
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n
/ez?titrM'dM= / An(z)zl_[eg(zk)p(,%,,%)(Zk)de

oen), (=12 k=1
n—1
/ el iM g\ = gkt 22 / An 1@ [ [ 1) (20d%
O@2n)- 1,101 k=1
n
2 i tr M _ 2 9(zx)
(1.2) f el1t dM = / An(2) He K p(%’%)(zk)dzk.
Sp(n) [~1,1 k=1

With this normalization, we haygee AppendiK)

fdM:l,

un)

dM:anli[ = =5

- n+j—1!
O@n+1)+ -
jIr?(j — 3
dM = 2D
/ 1_[ n+j- 2)'
O(2n)+
jIra(j +
2n(n 1)
l—[ n+j— 1)'
o@2n)_

Letting: € S, denote the permutatidn— n + 1 — k, we also state:
PrRoPOSITION1.2 The combinatorial quantities that follow have an expression in
terms of integrals over groups

x2n _
Z W#{TF € S :on(m) < £} = Eyge"™ ™M

n>0

)3 XP y[reSnimt=1 0? =11 _ g oumim
e 2n)! 7 | T (Y) # Yoty oun() <20 © ’

X2n T € SZFI . 7'[2 =1
2 —# ’ —E extrM E extrM ,
n; (2n)! {ﬂ(y) # Y, on(w) < ¢ 0-® + Eo.

Xn
D T e S in? =1 on() <€) = €Eo ™,

n>0

Z —#{n €S : ()’ =1, on(n) < €} = €Eo_(1€"™™

n>0
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x2n T eSy:(m)?=1, _ trM
ng‘) @n)! #{ 7(y) # 1Y, om() < 2¢ [ ~ Fo-s2€ T

X2n _
Z (N2 #m € Sn e =m, oan() < 20} = Ef, @ "MW

n>0

2n
X TESyimL=m, | X tr(M+M)
Zo (n!)2 #{O'Zn(ﬂ') <20+1 } = Buoe

n>

. Eu(g+1)eXtr(M+M) ,

n _
> %#{n € Sk : on(m) < £} = Eyg det(l + M)keX™

n>0

The firstidentity goes back to Gessel [12] and in this precise form to Rains [16].
The third, seventh, and eight equalities between the combinatorics and the integral
expression above are due to Rains [16], the next ones are due to Baik and Rains
[8], and the last one is due to Tracy and Widom [19].

We now state the following elementary lemma:

LEMMA 1.3
2 e XA 2 X2 (2n)!
e7 — # : % = 1, fixed-point fred = ,
ng(:) o reSn:m ixed-point fre¢ g 2l 2!
2 = x" = X" n\ (2m)!
+X _ 2 — I
Ty Hres iAol =Y o0 Y (Zm) o,
n=0 n=0 0<m<[3]

We now estimate the following integrals ovef&+ 1) and U¥¢) nearx = O.
In all cases, one notices a big gap in the expansion, roughly speaking, of the order
£. This would be hard to obtain at the level of the integrals, but easy to obtain via
combinatorics.

ProPoOsSITION1.4 The following estimates hold near=x O:
X2 xt+1

E "™ —exp( & +
O (£+1) p 2 Tt

+ O(XZ+2)> ,

XZ
(1.3) Eo, €™ + Eo i€ ™™ = 2exp(5 + O(x“z)) ,

PrRooF From the second relation in Lemma 1.3, it follows that
#Hre& sl =1, on(m) < ¢}

HreS:int=1= Y (n)(zm)! forn < ¢

— 2m/ 2™"m!
0<m<[n/2]
Mo eS:n?=1-1 forn=¢+1.




12 M. ADLER AND P. VAN MOERBEKE

Hence we have from the fourth identity of Proposition 1.2 and from Lemma 1.3

Xn
trM L2
€Eo_+p€"" = E ] #meS:n?=1 on(r) <}

n>0
2 +1
:em(§+x_w+¢y+m%HO’
and so
2 xit+1
(1.4) Eo ¢10€"™dM = exp(E - T n O(x“z)) '

Butfor2n < ¢ + 1,

#{m € Sn:n® =1, on(w) < €+ 1, fixed-point fred =
, . 2n)!
{7 € S m? =1, fixed-point fred = %

and so, from the third identity of Proposition 1.2,

Eo_r€"™ + Eo, ¢+1&"™
S X2n
#{m € Sn:n® =1, oxn(w) < €+ 1, fixed-point fred

:ZE:Qm!

n=0
X2
=2 exp(E + O(x“z)) ,

which establishes the second relation (1.3). Combining this formula with (1.4)

leads to the following estimate near= 0:
2 e+1

E '™ — exp( =
O (6+1) P( > + @+

+ O(XZ+2)> ,

which establishes the first relation (1.3).

PropPOsSITIONL.5 The following estimates hold near= O:

- +1
Eug e "™MWdM = ex (x -+ O(x"*? ) :
u(e) P @+ D2 (x™)

Euc det(l + M)*e MM = exp( kx — LH K+ + O(x*?)
© ern\e+1 '



RANDOM PERMUTATIONS 13

PrROOF. Using the first identity of Proposition 1.2, we have

IZ EU(De\/—tr(MJrM) dMm
> }
= #Hr e onr) <t
7 (N2
¢ XN 0+1 vin
=y 4 = DI—1 +
%jn T pp DI =D +0x)
= ex XZ+1 4 O(X€+2)
P T U e '

Since the number of (increasing) sequences

+1

1,1,...,2,2,2,...,k Kk, k)

k+-¢

of length¢ + 1 and consisting ok symbols is given b>(Hl

Sk ={words of length¢ from an alphabet dk letters}:

), one computes for

#{m € Sk:on(r) <} =K" forn<¢,

k4 ¢

# : <) =kt — forn=¢+1.
{7 € Stk oa(n) < ¢ (£+1> +

Therefore, using the last identity of Proposition 1.2, one finds

I, = EU((Z) del(l + '\/l)keixtr'\7| dMo

n

X

'#{T[ € Sik:on(m) < E}

Xn XZ+1 k+ Y
Z k" ké+l o) 42
! +@+w( Q+J)+(X)

n!
X k4 ¢ 42
( w+m@+0+qx)>

=)

: ey
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2 2-Toda Lattice and Reductions (Hankel and Toeplitz)

2.1 2-Toda on Moment Matrices and ldentities forz-Functions

2-Todar-functionst,(t, s), n € Z, depend on two sets of time variables €
C* and are defined by the following bilinear identities formlln € Z:

(2.1) % To(t = [271, 8)tmaa (t' + [271], §)eEL 7 M1z —
Z=00

?g Tnra(t, s — [Z])mm(t'. S' + [z])eZi"(s —s)z n-m-1g,
z=0

or, specified in terms of the Hirota symiSdby
22) Y Pronsj(—22)py ()T (ot toe) o o g =
j=0

e ~ o 0 9
3 Pomint (—2b) py (Be)e (e D:a) 1y 71
j=0

For the semi-infinite case, the same definitions hold buhfon > 0.

THEOREM 2.1 2Todar-functions satisfy the following

(i) theKP-hierarchyint and s separately, of which the first equation reads

a\* 9 \?2 2 9 \? PY;
— ] lo 61— ) lo 3] — ) logr —4 logr =0,
(8t1> gr+ ((atl> gf) + <8t2) T T

(i) an identity involving t and s and nearest neighbeys, andz,,

2

Th—1Tn+1
logt, = —
sty o 72

9

(ii) a(new identity involving t and s and nearest neighbegs; andt,,

2 | 9 | o 2 | 3
0gth = —2— log 9T — —5—
8518t1

(2.3) % o
0501 051 Th—1 0S101

logt,.

The proof of this theorem will be given later in this section.

SFor the customary Hirota symbab(a) f o g := p(aiy) ft+yoat - y)|y:O.
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The “wave vectors” defined in terms af(t, s),’
- -1 o] i 00 i
(2.4) Vi(t,s,2) = (MeZl Lz z”> = eX1 25 y(z),
wn(t, s) nez
Tn (t, S + [Z]) e_ ZC{O S Zfi Z_n)
rn+l(t’ s) nez
=& X8 x@ ™,

specify lower- and upper-triangular wave matricgsand S, respectively. They,
in turn, define a pair of matricds; andL o,

Ll:zslAsflz Z a1(1)AI+A,

—o0<i<0

L2 — &ATS:L — Z ai(Z)Ai ,

—1<i<oo

wi(t, s, z) = (

(2.5)

whereA = (8j_i1)i.jez anda™ anda

(ty,to,...)ands = (51, S, ...). Then

@ are diagonal matrices depending tos

(2.6) zZ¥ = LW and z705 = L] v,

and the matriceg; satisfy the 2-Toda lattice equations

oL oL
(2.7) Wnl =[(L1),. L] and a_sql = [(L2) Li]
i=12andn=12,...,

with w1 and W3 satisfying the following differential equations:

3\I’1 81111
= (LM, Wy, = (LD 0y,
i (LD 7S (LY)-w
Iv; . v .
at: =—((LDHp v, as: =—((LY ) w;.

For future use, define the diagonal matrix as

Tkr1(t, S)

2.8 hi=(...h_1hohy... ) wherehy(t,s) =
(2.8) (...,h_1,ho, hy,...) whereh(t,s) .9

"We have

x@=(....z75 1,724, ...) inthe bi-infinite case

=(1,z272...) in the semi-infinite case.

Also, A~1 should always be interpreted as in the semi-infinite case.
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In [4] we have shown thdtX has the following expression in termsofunctions®

Lk = i diag( Pe(3) Thik—41 © Tn) ARt
nez

=0 Tn+k—€+1Tn
(2.9) - B
hLkh~t = Z diag Pe(—0s) Tnk—+1 © Tn Akt
=0 Tn+k—e+1Tn N
= €7

There is a general involution in the equation, which we shall frequently use,
namelyt «— —s, Ly «— hLJh™%

Finally, we define the 2-Toda vertex operator, which is the generating function
for the algebra of symmetries acting effunctions (it will play a role later!),

00t 1 iy _yoo (ul o vl 8
(210) Xio(t, s; U, v) = A71921 (tiuiﬁv)e 2 ( P as)X(uv),

leading to a Virasoro algebra (see Appendix A) with= 1 and thus with central
chargec = —2,

d
SU Xt s U, v) = IO,y Xaalt, s U, )],

(2.11) UXia(t, 53 U, v) = [PIP O],y Xaat, 51U, 0)]

with generators (irt), explicitly given by (A.3). Similarly, the involutiom < v,
t < —s, leads to the same Virasoro algebraiwith same central charge.

PROPOSITION2.2

K Pk (dt)Thy1 © Tn 0 Tn+l
(Ll)n n = = — |Og ’
2.12) Tnt1Tn oty T
(h LTkh_l) . Pk (—0s) Th41 © Tn . 0 o Tn+1
2 - - T L. )
nn Tn+1Tn IS Tn
and
= 32109 Tn1
(LY _ P-1(3)The20 T Tasian
Unnttl — Tni2Tn 32logtn.y
(2 13) ds10t1
. ~ 82109 tny1
(h LTkh_l) _ Pk-1(—0s)Thy2 0 Tn o Otdx
2 n,n+1 Tn+2Tn 92 l0g th41 '
010ty

PrROOF. Relations (2.12) follow from (2.7) and a standard argument; see [4,
theorem 0.1, formula (0.15)].

8pg(5) f o g refers to the Hirota operation, defined before. Hereghare the elementary Schur
polynomialseX-1 7 := Y _q pi (7. Also py(3) = p((aitl, %aitz %Bitg ...) and py(—ds) =
9 19
pe( ~ 3 235

19
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To prove (2.13), seh = n + 1 and allb, anda, = 0 except for oney 1 in the
Hirota bilinear relation (2.2). The first nonzero term in the sum on the left-hand
side of that relation, which is also the only one contairapg linearly, reads

~ a0
(2.14) pja(—22)pj ()€ i 0Ty 4 - =

- 2a‘] +1 p] (5t)fn+2 o TI’] + O(a12+1) 9
whereas the right-hand side equals

~ S a0
(2.15) Po(0)pa(ds)€” T+ Ty 11 0 Tays =
3 3
95 +aj+1atj+l+~- Tnt1 O Tnyl-

Comparing the coefficients @f 1 in (2.14) and (2.15) yields

- 92
—2pj(0)Thy20Th = mfn+l O Tn+1 -
In particular, we have
Pk_1(3) Thy2 © T 2

2.16 =— log thi1,
( ) ‘L_nz+1 8S[|_8tk 9 n+1
and so, fok = 1,

TnTn+2 02
2.17 = — logthit .
( ) ranrl 8818t1 g n+1

Dividing (2.16) and (2.17) leads to the first equality in (2.13), since according to
(2.9), the(n, n + 1)-entry ofL'; is precisely given by (2.16). The similar result for
LK is given by the involution

t<— —s and L; <— hiLjh™t.

O
LEMMA 2.3 The first upper subdiagonal offland hL]?h~! reads
32
0 Thiz 3535 109 Thi1
(2.18) ('—i)n,nH:glOg n+2 _ S;th
1 Tn mlogfn_’_l
d ti1)® 92
=—1Ilo lo ;
ot g(( rn> dsot, J T
Tov—1 0 Tni2 —mi’;& log tn41
(hLz*h™), =~ log Y
: 9s1 Tn ——logtn1

dt10S1

_ lo 1) 0% logT,
TS g o 9510t JTn+1 ) -



18 M. ADLER AND P. VAN MOERBEKE

PrRoOOF. From Proposition 2.2k = 2), we have the first two identities in
(2.18); it also follows from these identities that

82|Og"fn+1

0$101s

_ 82|Og Thy1 O | Tn4-2
Tty oty o 1

_ 82|Og Th+1 i |0g Th+2 + i |og Th+1
051017 oty Th+1 oty Tn
_ 32|09 Tn+1

0910171

0 Tny1 02 ad Tntl .
| —log| — lo —lo using (3.17
<atl g( T 95101 gf”+1>+atl 9 g(3.17)

2 lo 2

as10ty Mt C T oy IS0ty
9 Tnp1 02 B 92

=2—1Io lo — | ——1o ,
ot O T st gf”“Jratl(asiatl U1

which establishes the first equation (2.18). The second equation (2.18) is simply
the dual of the first one by — —s. d

PROOF OFTHEOREM2.1: The frst statement concerning the KP hierarchy is
standard. The proof of the second identity follows immediately from (2.16) for
k = 1, and the third identity from the last identity in the proof of Lemma 2.3 and
the duality. O

A prominent example of the semi-infinite 2-Toda lattice is given by an (arbi-
trary) (t, s)-dependent semi-infinite matrix

(2.19) mu(t,s) = (uij (t, S))o<i j<co  With mp(t, s) = (wij (t, S))o<i,j<n-1,
evolving according to the equations

My
oty

(0]

0
(2.20) = A¥m, and AL —Me (A K.
GEN
According to [2], the formal solution to this problem is given by
(221) Myt =1 "m0, 0e X9 = 5Tt 9t 5),

where the associated unique factorization into lower- times upper-triangular ma-
trices actually lead to the wave matricsandS;, as déined in the general Toda
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theory (2.4). The expression (2.21) contains the matrix of Schur polyndmials

eI =N ATt = (pi-i (1)
0

1§i_<OO ’
1<j<oo

of which a truncated version is given by the following« co submatrixp; (t):

1 p® p2(t) ... Paa® | pa(®)
0 1 m@m® ... pn2()| pna®)
Em=|: : i o z
0 © 0 ... pu®) P2(t)
o 0 o0 .. 1 pa(t)
(2.22) = (Py-i (t))11<§ji§n .

So, for a semi-infinite initial conditiom., (0, 0), the T-functions of the 2-Toda
problem are given by

(2.23) Ta(t, 5) := detmy(t, s) = det(Eq(t) M (0, 0) E, (—9)).

Incidentally, the wave vector¢; and w; define monic polynomialp™® (x) and
p@(y),

T x4 ph(z) = 24 54 (2).

vy = e X Pt = e g ) T Y,

which arebi-orthogonalwith regard to the original matrim,; that is, for allt, s,
(2.25) (pP, p?) = 8nmh, for the inner product defined bix', y!) := u;;
with h, as in (2.8).

ProrPoOsSITION2.4 Given the semi-infinite initial condition g0, 0), the 2-Toda
r-function has the following expansion in Schur polynomials,

(2.26) T(t.s) = Y  detm")s,()s,(—s) forn>0,
AV
il,ﬁlgn

where the sum is taken over all Young diagramad v, with first columns.; and
P1 < n and where

(2-27) m)\'u = (l/«Ai —i+n,u-—j+n)1§i,j§n-
J
%The Schur polynomialg;, defined byeXi 2 = Y% p(t)z¢ and py(t) = 0 fork < 0 are

not to be confused with the bi-orthogonal polynomipifg), k=12
100r a given Young diagramy > --- > An, déines, (t) = det(py,; i +j 1)1, j<n-
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PrROOF. Note that every increasing sequence k; < --- < ky < oo can be
mapped into a Young diagram > A, > --- > A, > 0 by settingkj = j +Any1—j.
Relabeling the indices j with 1 < i, j < n, by settingj’ :=n—j +1,i' :=
n—i+1,wehavel<i’,j <nkj—i=2xr—j +iandk —1 =1y —i"+n.
The same can be done for the sequence 4; < --- < £, < oo, leading to the
Young diagramv, using the same relabeling. Applying the Cauchy-Binet formula
twice, expression (2.23) leads to

To(t, S)
= det(En(H)Mx (0, 0)E, (—9))

= ) det(pgi(®)), -, det((Me(0, 0E, (=) )y oo

1<ky<---<kn<oo

= Z det(py i (t))lsi,jfn det((,uki—l,j—1)11551i<5g0(pi—j (—S))léi <oo)

1<ki<--<kn<oo j<n

— Z det(pkj —i (t))lgi,jfn

1<kj<--<kn<oo

Z det(ﬂki =1 *1)1§i,j <n dEt( Pe; - (_S))lgi,jgn

1<tly<--<lp<oo

=Y det(py, i 4(®) 1 1y
A

A1<n
Z det(u)»i/—i'+n,1}j/—j’+n)15i/’j/5n det(p"i’—i/‘i'j'(_s))lsi/,j’gn
legn
= ) deu* s 1)s,(~).
Av
Xl,ﬁlgn

O

2.2 Reduction to Hankel Matrices: The Standard Toda Lattice and a
Virasoro Algebra of Constraints

In the notation of (2.7), consider the locus @fy, L»)'s such thatl; = L.
This means the matrik, = L, is tridiagonal. From equations (2.7), it follows that
along that locus,

oli—La) _ 4 dli—La) _
oty ’ 9s,
We now define new variable$ ands, by

(2.28) tt=th—s, and s, =t,+ s,

0.
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and thus
d 1/ 0 0 d 1/ 0 0
(2.29) _:_<___), =_(_+_),
a2\ ot, os ds, 2\ at, = os
Then
oL; 1/ 0 d
2.30 =—-|—+— )L =[(L} LM, Li]=[L" Li]=0
e30) G2 =3 (505 b = 1LDy+ WY LI =D L
and
oL 1/ 0 0 1
= - — )L = 2Dy — (L) + LML
at/ 2<atn asn) =l =)+ L L
(2.31) =[(LD)+, Lil usingL; = L,.

So, equation (2.30) implies that, = L, is independent of'. Sincer(t,s) is a
function oft — s only, we may set (t') := 7(t — s). After noting (see (2.12))
9 k
3_t|2 logh, = (Ll)n,n ’
this situation leads to the standard Toda lattice equations on symmetric and tridiag-
onal matriced. = h~/2L,h%? and wave vectors (expressed in terms of the 2-Toda
wave vectors (2.4))

W(t', 2) := h Y20y(t, s; e BT+ = g2t s; 7 1)ed LTt +s)?

232 _ eint? (an)
()1t /nso ’
namely,
(233) LY =zv¥, W = E(Ln)skqj , and W = E[(Ln)Sk’ L] ’
n n

(standard Toda lattice)

where()« refers to the skew part in the skew and lower-triangular Lie decomposi-
tion.

We now define the standard Toda vertex operator as the reduction of the 2-Toda
vertex operatoK,,, defined in (2.10), using (2.28) and (2.29):

, ST N T T e DDy Aliﬁ
(2.34) X(t';2) =X, s; z Z)|t=(s’+t’)/2 =A'x(z )621 i‘e i
s=(s'—t)/2

In the rest of this section, we shall omin t’ ands'. This vertex operatoX(t; z)
generates a Virasoro algebra wgh= 2 and thus central charge= 1 (see Ap-
pendix A and (A.5))

(2.35) %ukﬂxa, w=[J20],_, Xt; 0], keZ.
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An interestingsemi-infinite examplef the standard Toda lattice is obtained by
considering a weight (z)dz = e~ V® dzdefined on an intervaf C R, satisfying
(0.4) and an inner product

(2.36) (f. g = / f (292" p(2)dz.
R

leading to &-dependent moment matrix
(2.37)  Mao(® = (1] () oei oo = (Vs Y )N) o oo (HaNKel matrix)

THEOREM 2.5 (Adler-van Moerbeke [1])The vectorr (t) = (1o = 1, 11(1), ...)
of integrals

1 00t M 1 0 0o ¢ i
Tn(t) — ﬁ / etl’(—V(M)-‘er M )dM — ﬁ / An(Z)zl_[eZizltlzk,O(Zk)de
Fn

Ea k=1

(2.38) = det(uij (©)oi ;s

is a set oft-functions for the standard Toda lattice. Also, eaglt) satisfies the
KP hierarchy, of which the first equation is given in Theo2r It also satisfies
() of TheoremD.2with t; = X. Moreover, ther,'s satisfy the following Virasoro
constraints forg = 2 (see(2.35)):

0 =g@ct), m> -1,

= (a0 X I b )

k>0 i+j=k+m

2 1 0)
= (Z(—ak(ﬁ 38+ 20 30, + 0230,
k>0

(2.39) +h(PIT .+ n5k+m+1,o)) |ﬂ T (t))

(1)
B=2

=2 n>0

where the @ and k are the coefficient§0.4) of the rational functionp’/p, and
where the?J’ and#J" for = 2 are given by(A.1), (A.3), and (A.5). The
relation between the vertex operafii(t, u) and 72 is given by

(2.40) %um“ fXt, wpu) =[-¢. Xt,wpW].

SKETCH OF PROOF. Formula (2.40) is a direct consequence of (2.35), while
(2.39) hinges on the fact that the vectoe (g, 71, ..., n'ty, ...) of Toda lattice
r-functions is a fixed point for a certain integrated vertex operator in the following
sense:

Y1)y :=1, forn=>1wherey ::/du,o(u)X(t, u,
F
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which is just an iterated integral formula. Upon integrating (2.40) on the full range
F, deducd g?, Y] = 0 from the boundary conditions (0.4). Acting brwith this
relation, one deduces (2.39) by inductionroand the fact thaty = 1. O

2.3 Reduction to Toeplitz Matrices: 2-Toda Lattice and an SI2, Z)-
Algebra of Constraints

Consider the following inner product, depending(oys):

p(d2)
2iz

@41)  (1@.9@hsi=§ 50 f@gE e e e
st

where the integral is taken over the unit cir@earound the origin in the complex
planeC. Instead of having" = Z in the Hankel inner product, we havk’ =
z ¥ in this inner product:

(2.42) (ZF(2), 9@ s = (T (D, 2 g@)rs -

Thus the moment matrim,,, with entries

d o0 i —i
(243) Mkﬁ(ta S) — (Zk, ZZ)t,s — f /0( .Z) Zk—€e§ Tz -sz )’
g 2miz

is a Toeplitz matrix for allt, s), satisfying the differential equations (2.20) of the
2-Toda lattice, i.e.,

ke
= ie and — = — i
Mk+i, e 35 MK, e+i

THEOREM 2.6 For p(d2) = dz, the vectoe(t, s) = (1o = 1, 71(t, S), . ..) with

0 ke
ot;

Th(t,s) = / XTI M —s M) 4\

un)

1 n 00 (4. S —i de
= = A 2 exi tiz—sz’)
=l NG g( bizk)

(shn

= det(,bbkf (t, S))osk,lzgn—l

(2.44) = > S.(1)s.(—S)

{Young diagrams. with first column< n}

is a vector ofr-functions for th&-Toda lattice. Hence, they satisfy the iden(Ry3)
and (ii) of TheorenD.2with t; = X, 5, = y. Moreover, they are annihilated by
the following algebra of three Virasoro partial differential operators, which form a
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SL(2, Z)-algebra(note that the expression below is a semi-infinite vgctor

k=-1,0=0,
0=Vt s) for 1 k=0, 6 arbitrary, ¢ only
k=1,0=1,

(2.45)
= (ﬂJf?(t) — P38 (=) —k(BPIL 1) + (1 —0) ﬂJSl(—s))) ’ﬂ_lt(t, s),

whered is an arbitrary parameter andj]ff) for 8 = lis givenin(A.4). Thisis a
subalgebra of a Virasoro algebi@enerated by the 2-Toda vertex operaidrl0)):

d Xio(t, s;u,u™?t Xio(t, s;u,ut

Car ket [ya g Ketsuud] g
u u u

of central charge c= 0:

(2.47) [VZ, vP] = k- 0V2,.

The statement hinges on the following statement about the vertex operator:

PROPOSITION2.7 For general weighto(dz) = €' dz, the column vector &
Todarz-functions(slightly rescalefl, z(t, s) = (zo, 71, ...), With
(2.48) In(t,s) = nlz, = n! / Xt T M =S MHgTr VM)
u(n)
is a fixed point in the sense that
(2.49) Y, s; =1, forn>1
for the operator

d
(2.50) Y, s p) = / %Xlz(t, s;u,uh.
st

PROOF OFPROPOSITION2.7 AND THEOREM2.6: On the one hand, using the
fact thatz = 1/z on the circleS! and a property of Vandermonde determin&hts
and Theorem 1.1, we have, for a general wejglttz) = V@ dz,

n! zo(t, s) = n! / Xt TG M'=s MHgTr VM)

un)

& i sz 0 (dZ)
— 2| | eE Ltiz-sz)
B / [An(2)] ( e 27TiZk)
(shyn k=1

UThe following holds:

de(Uﬁfl)lgz,ng det(vﬁfl)lgz,ng = Z def(uf;%vg(*k%)lg,ks,\, .
oeSN
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o o(d
a / ”(Z)An(z)l_[<ezl (1757 )/;;ékk)>

(shn
n p(dz)
1 l (t )
/ Zdet ny(m) ?(m) 1<t m<nl_[(eZl Aok 2riz )
(shn 7€ = k
= ) _ det / 21z 1kt (2 sz 202
~ 2riz
st 1<¢,m<n
i oy p(d2)
— nidet A-meY 752 yp(d2)
(/ 2riz
st 1<¢,m<n
(2.51) = n!det(um(t 9) oy men_1-

yielding the third equality of (2.44). On the other hand, ficr 1, we have

In(t,s) =n!1,(t, S)

Sioo(d
P ——

(Shn
:/ﬂeZio(tiuisui)unlunJrl
2iu
st
7y P (d2Z0)
A A 1—— ezl (tiz,—s 7 )10(
/ DA 1(2)1_[< u)( Zk) —
(Sl)n 1
/‘p(du)ez ui—su) g X (U 4 %)
2miu
st
T e sa P(dZ)
An_1(2)An_ Ttiz—sz’)
1A @ [ [ - Y
(Sl)n—l k=1
27iu
st

(252) = (Yt s p)l(t.9),.

from which (2.46) follows.
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Given the vertex operatdf;»(t, s; u, u~t), we now compute the corresponding
Virasoro algebra using (2.11):

d _
uﬁukxlg(t,s;u,u Y
— ( k+1dd +ku )Xlz(t,s; u,ut)

0 0
uktt— k= 4 kuk> Xya2(t, s U, v)
u v

v=u-1

v=u-1

0 ad
= <£u'“rl — —l K kUk) Xao(t, s; U, v)

uktt — iv — kouk — k(1 — e)v—k) X12(t, S; U, V)

v=u-1

[&Hf) ) — 12 (—s)
k(6738 ® + 1= 6) 1% (-9))Xz(t, 5 u,u™Y)] ‘ﬁ:l
(253  =[W. Xu(tsuu)],

from which (2.46) follows. Verifying (2.47) goes by explicit computation using
(A.2).
Since (by virtue of (2.46) for Lebesgue measureshn

. du
[ V@ Yit,s p= 1)] = |:”V(2) /Xlz(t,s; u,u 1)2mu:|

st
du
= [ | V®, Xt s;u,u™)——
/[ k o 12(5 Su’u )271-|u
st
_/ du d k+1X12(t s;u,ul
= | 24 da" u
st
=0

we have, using the notation (2.50) and the fact thathforO andp(dz) = dz, the
integralsl, = nlzy(t, S) are fixed points fof/(t, s, d2); hence

= (vPyt.s:d2" -yt s d2"v )

- (v|§2>| Yy, s; dz)”vf)l)
n
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Taking then™ component and taking into account the presenc& dfin Xio(t, s;
u, u™1), wefind

0= (vf)l _y(t, s dz)”v§2)|>
n

du o i _an—iy —ye(ut o d o
:vng)In_/‘—ijiu ezl (tiu'—su ')e Zl( [ i 03)

S
/ ZJCi_qu ?(tiui—su*i)e—Zio(”.;i%—“Ti%)vig)|O.
5
In the notation of (2.45) and (A.4) (t, s) has the following form:
V2 (t, s)
= % <Jk(2)(t) — 329+ @n+k+DIPM) —@n—k+ 1)J£1k>(_s))
—k (9 IV + (- e)Jﬁlk)(—s)) .

Working out the expression above leads to the expression written out in (4.7),
and one checks immediately that, given= 1,

k=-1,6=0
V2 (t,s)1o=0 onlyfor{ k=0,6 arbitrary |,
k=1,6=1

ending the proof of Theorem 2.6 except for the last equality of (2.44), which fol-
lows easily from Proposition 2.4. Indeed,

Mo (0, 0) = fzk‘zd—.z =0,
st 2riz 1<k,l<oo

wherel ., denotes the semi-infinite identity matrix. Finally, one uses identity (2.27)
and the fact that all the determinants of submatridgs)** (in the notation of
(2.27)) are zero except when the Young diagranasdu are equal. O

Remark.According to the strong Szeg6 theorem, we have
T = exp( — Zktksk) forn — oo
1

provided) 7° k(Jtc|? + |s]?) < oo. Therefore the Toeplitz case yields boundary
conditions forr, at both extremities, namely= 0 andn = oc.
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2.4 Toeplitz Matrices and the Structure ofL; and L2

The associated 2-Toda matridesandL , have a very peculiar structure when
the initialm., matrix is Toeplitz, as we shall see in the main theorem of this section.
Throughout we shall be using the multiplication operator iderttity= z~* with
regard to the inner product (2.41). This characterizes the Toeplitz case. Remember
from Section 2.1 that the polynomials (combining (2.4) and (2.24))

=] -1
Wt —[z77],9) and p(z)(z) — T, s+ [Z277])
(t, s) (t, s)

are bi-orthogonal for the special inner product (2.41); also consider the vector no-
tation

PP (2 =

p® = (P, p", ), pP = (p", pP,...), and

h:diag(r—;,i—j,...).

THEOREM2.8 The lower-triangular part¥ of the matrices k and hLj h=2, aris-
ing in the context of a Toeplitz matrixgn are the projection of a rank 2 matrix

Li=—(hp{© ® h*p@(0)_,
high™ = —(hp?(0) ® ™ p®(0))_,

COROLLARY 2.9 (Unsymmetric Identities)n particular,'®

h h
P1(O) Py, (0) = 1— =% PO PO =1 -
n n
0 0
P1 (0P (0 =~ —loghy . p1(0)pY(0) = - loghy.
1 St
&) ) a0
Pri1 (O pP,1(0) = — n. g log T,
Cha (9 2
P (0P, (0) = ;n (E) log s,
N ) Pk Pkt1(3) Tn_k+1 © Tn
0 0
pn+1( )p ( ) hn T k+1fn
(2.54) pr(fil(o) p(l) 0) = hn—k Pkr1(— 8s)"»’n k+1© Tn k> 0.

9
hn Tn—k+1Tn

12 the formulae belowA_q denotes the lower-triangular part &f including the diagonal.
133ee footnote 8 for notatiopy (3;) and px(—ds). The bi-orthogonal polynomialpl((') should
not be confused with the Schur polynomigis
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COROLLARY 2.10 (Symmetrized Identities)Ve also have for - m,

( hn )2 (1_ hn+1> (1_ hm+1) _
hme1 hi hm

1 ~ ~
ﬁ(pn—m(at)fm—ﬂ o Tn) : (pn—m(_as)fm+2 ° Tn) .

m+27Tn
In particular, form=n — 1,
hn+l hn
2.55 1- 1- — | h loghy,.
@9 (1) (1) =g ot o

Identity (2.55) was already observed by Hisakado in [13]. We first need a
lemma that explains the peculiar structure of the bi-orthogonal polynomfials)
and p? (z) associated with the inner product (2.41).

LEMMA 2.11 (Hisakado [13])The following holds
pr(izl(z) -z (2) = pr(wl+)1(o)z PP (1),
(2.56) 12 — 202 (@) = p2, 02" pP (7).
ProOFE The following orthogonality relations hold for& i < n:
(p1@ —zaP 2. 2) = (p{1 (2. 2) — (pP@.27H =0
and _
(Z'pP ™, 2) =", pP(2) =0.

Therefore the twa'" degree polynomlalpﬂl(z) —zpP(2) andz"p{@(z~1) must
be proportional, and since

Pia(@ — 28 @, = P10 and 2'pP(zH|,_=1,
the first identity (2.56) follows. The second one follows by duality. O
PROOF OFTHEOREM 2.8 AND COROLLARIES2.9AND 2.10: On one hantf,
(ph@ — 2080 @, P @ - 2HY @), n>m= -1,
= —(zd"@. 1 (2)

= —(pi@ + -+ LDnmi P (@ + -+, P (2)
= —(LD)nmia(Pira (@, P21 (@)
(2-57) - _(Ll)n,m+1hm+1,

and on the other hand,
(@ -zl @, P12 — 22 (), n=m=> -1,
(p31+)1<0>z P2z, py, (02 pY (z 1Y)
1pefine p(z) (2 =
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= p1(0)pE 02 pP(2), pP (2))
= P (0P (O)(pP @ + -+ . PR ()
(2.58) = pP.(0)p 1 (O)hy.

m+1

Comparing (2.57) and (2.58) yields
(2.59) (LDnmiz = —hapL @0t p2 .0, n>m> -1,

proving the first expression of Theorem 2.8. The second one is obtained by the
usual dualityL; — hLJh™% t < —s, and sop® <« p@ (see formulae in the
beginning of this section). Fer= m, we compute
(p1(@ — 208 @, P24 (2) — 22 (2)
= (p1@, P21 @) + (28D @), 202 @)
— (28 @. pZ1(@) - (P4 (@), 202 @)

= hn+1 + hn - hn+1 - hn+1 = hn - hn+1 s

which upon comparison with (2.58) far= myields the first line of Corollary 2.9:

(2.60) P10 P2, (O)hy = hy — hyya .

Remember from (2.9) and (2.12), we have

L, — -~ dia PLk (8) Tniks1 © Tn AK
o Z - nez

Koo Tn+k+17Tn

3 \?2 9
— ) logtnA~t + — logh, A® + A
+ <8t1> g + ot ghnA” +

-2 -
h L;hil = Z d|ag( pl—k(_as)fn+k+l o Tn)Ak

T T
Ke—o0 n+k+1tn

3 \?2 9
— ) logtnA™r — — logh, A + A .
+<3S¢> gtn 95, ghnn +

Together with the theorem, this yields Corollary 2.9.
Finally, upon multiplying relations (2.54), settimg+ 1 =n—k, n > m, and
using the relation above, one obtains, using Corollary 2.9,

(hm+1>2 (pn—m(ét)TerZ o Tn)(pn—m(_és)TerZ o 7—'n)
hn 2

m+2

= p®,(0)p2.,(0)p,(0) pL., (0)

2
T oTf
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(2.61) = 55— (th11 — ttns2) (Th1 — TmTmi2)
Tn+1Tme1

which is precisely Corollary 2.10. Relation (2.55) is a special case of (2.61) by
settingm =n — 1. O

PrROOF OFTHEOREMO.3: The structure of 1 andL, follows from Theorem
2.8. The statement about the mathematical expectation follows from

pP(t, s; 2)

- [z1s)

n(t, S)
_ N P n(t s
o Tn(t, S)
1 n
= — Zk
o
1 2 1 3 Xt Mi—s M)
Pn—k —TrM,—éTrM,—éTrM,.,, exi rtiM'—s dM
un)
and similarly
PRt s; 2)
Tn(t,s)
k=0 Tn(t,s)
1 n
= — Zk
o
VIR Y VLR TR VE St Mi—s M)
Pn—k —TrM,—ETrM ,—éTrM U R CL LN TVE
un)

Finally, we check the Hamiltonian flow statement for the first flow. Indeed,
from the equations fow (after (2.7)), (2.23), Theorem 2.8, and the first relation of
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Corollary 2.9, it follows thatl{_; = 0)

% _ p(t,s; 2)

—((Ln-pY), |

& @
1 p®(t, s 0)p@t,s; 0
=h,p.(t,s; 0) E - ( ) ¢.s0

;_;

n—

= PnXasa h—y

3
|—\O

1 1 h
= hnXnt1 IX; (h_ - E) = Xn+1vil = Xn+1(1 — Xn¥n) ,

and similarly for the other coordinates; this ends the proof of Theorem 0.3

3 Painlevé Equations for Qin) and Sp(n) Integrals

3.1 Painlevé Equations Associated with the Jacobi Weight

THEOREM 3.1 (Painlevé Equation and the Jacobi Weighbe function H(x) =
x 2 1og (), with

(3.1) Th(X) 1= Cp / An(Z>21_[ €x(1l—-zy%A+ Zk)ﬂ dz,

(1,1 k=1
satisfies the Painlevé V equatitn:= o + 8, b:= o — 8, anda, 8 > —1)
X2H" 4+ xH" + 6xH'? — (4H + 4x? — 4bx + (2n + a)?)H
+ (4x — 2b)H + 2n(n + a)x — bn(2n+a) =0,

with initial condition

, —nb
(3.2) HO)=0 and H(© = aton
COROLLARY 3.2
(3.3) Hn(X) = x% loge™*1,(2x)

satisfies the Painlevé V equation

1 29/ } 37 3\2
X H +2xH + 3x(H)

L .
— 5(4H +16¢° —8(b + o)x + (20 + a))) H'



RANDOM PERMUTATIONS 33
+ (8x — 2(b + ©))H + (4n(n + @) + ¢(2b + ©))x

(3.4) — %(Zn +a)(2n(b +¢) +ac) = 0.

with
2n(b+c) +ac

(3.5) HO)=0 and H'(0) = — nta

PROOF OFTHEOREM3.1: Sincex, 8 > —1, the boundary condition (0.4) on
0(2) is fulfilled, so we may apply Theorem 2.5. We set

=1, a=0, a=-1, bh=a—-=b, bh=a+p=:a,
and all other; = b; = 0in (2.39), implying that

[—1,1]n k=1

satisfies the equations(= 1,2, 3,...):*®

2
0= fr’r(n) 2Tn
1 1 1
s (—ak TP A® . 4 bkﬁmm_l) -
k>0 i+j=k+m-2 B=2

= (3@ - 32, —2n3P, + @2n+a)JP + b, — n%6m o+ NbSm 1) T

Then introducing the functiofr, := log,(t), the two first Virasoro constraints
for m = 1, 2 divided byz, are given by

)
é’tﬂn (th. o —th, o +(2n+a) ) Fn+nb—t)=0
n 1+1 i—1

i>1 i>2
(()2) . 82
= = it; it — +b +@2n+a)—
Tn ; '8t.+2 g 'at. at2 ( )
oF
(3.6) + ( atf) —n?=0.

These expressions and their fitstandt,- derivatives, evaluated along the locus

L = {t; = X, all othert; = 0}

5The J,ﬂ) below are the ones of (A.3) f@ = 2.
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read as follows:

(2
T 0
0= Fam t1—+(2n+a) Fn+nb—-1t)| ,
Tn L atz L
(2) 2
Tn 3 9 a
o=%21 <t—+(b t)—+(2n+a) )F
™ |y \ ot ' at2
dFn\?
(&) -,
at Py
0= 2 9o > it o ;2 > it i
_3t1 Tn £_ i=1 '8ti+18t1 3t2 =2 Iati_latl
82
+(2n+a)—2)Fn —n
a2 ¢
= [t o + 0 +(2n+a)82
— Mooty atz az) ",
3 g@ ( 3 92 3 32
= = it itt—— — — +b—;
aty ; '8t.+28t1 ats ; otat, oty ol
9° 9? 9F, 92F,
JR— a —_ s
+a3+( - )at28t1> T ot |,
R R
otzdty  dts atZ oty ot
9? IF, 02F,
+@n+a F —
( ) tzatl) T Ta at2 |,
g,l‘ 1rn 92 3
0= it P S L P
aty Z '8t.+18t2+ dts I; Yot_qiot, oty
82
+@2n+a F
( )atlatz) "\,
92 0 9 02
t 2— —2— a Fo.
<18t2 TG G TNt )atlatz) "
The five equations above form a (triangular) linear system in five unknowns
dF, dFn 32Fn 32Fn 32Fn
A |, |, Adty|, Atidts|, az |,

Settingt; = x andF, = dF,/dx, the solution is given by the following expres-
sions:
oFn
o |,

1
= —;((Zn +a)F, +n(b - x)),
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aFn 1 " 12 /
T —p<X(Fn + R4+ (b= xF, +n(n+a)
—@n+a)(@n+a)F, + bn)),
32Fn 1
=——(@n+a)xF — F)) —bn),
|, — (@ AKF —Fy —bn)
32Fn 1/,
_ X F/// 2F/F//
3t13t3 £ X3< ( n + n n)
— x((x®=bx+ DF} + F2+ bF,+ (2n + a)?F/+ n(n + a))
+ 2(2n 4 a)%F/ + 2bn(2n + a)),
92F, 1 2 4 o , §
oz |, = ;(X(ZFn +20F, + (@2n+ @)+ 2)F] +2n(n + a))

~3@2n+a)F; — 3on2n + a)) .
Putting these expressions into the KP equation (Theorem 2.1) and setting

d
G(x) := Fi(x) = ax log 7, (X) ,

we find
(3.7) x3G" + 4x*G” + x( — 4x* + 4bx + 2 — (2n + a)%)G’
+8x2GG + 6x3G”” + 2xG? + (2bx — (2n + @)?)G
+n@2x —by(n+a) —bn*=0.
Finally, the function
d
H(X) := XG(X) = x& log 7 (X)
satisfies
(3.8) X2H"” +xH" + 6xH* — (4H 4 4x% — 4bx + (2n + a)>)H’
+ (4x —2b)H +2n(n+a)x —bn(2n+a) = 0.
According to Cosgrove [9], this third-order equation can be transformed into a
master Painlevé equation, which one recognizes to be Painlevé V; see Appendix B.
From Appendix D, identity (D.5), it now follows that
(0 it Jipap Aa@2 [Tiy Py (ZODZ yyy — b
7(0) Jr1p An @2 TTies Pl (A Z YT a+on’
This ends the proof of Theorem 3.1. O

HA(0) =
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PROOF OFCOROLLARY 3.2: The differential equation for

H(x) = x% loge™z,(2x) = H(2x) — cx

is obtained by fi[st setting — 2x in the differential equation (3.2) and then
settingH (2x) = H(x) + cx. This leads to the differential equation (3.5), which is,
of course, also Painleveé V. Relation (3.6) follows at once from (3.4). O

3.2 Proof of Theorem 0.1 (@n) and Sp(n))
We give here a more detailed version of Theorem 0.1(i).

PROPOSITION3.3 Given the integrdf

15(x) = / e"™dm,

0+(0)
the expressiort$
1= 2 2
(x) = loge" 42 withef = —— ande = ————
q‘z I E T Zewen 0T T € Lloven
satisfy the standard Toda lattice equations
1 82qE
L — e ele+1—0Ae
4 9x? +
PrRoPOSITION3.4 The function
d
(3.9) frx) = X35 log f e "™MdMm

O(¢+1D)+ or Spzh)

is theuniquesolution to the third-order equatiofi) in TheorenD.1:

(3.10)
1 6 4 16x2 + ¢2 16 2002 -1
f///—l-—f//—l——f/z——fo/—%f/-f——f—i-g:
X X X£+l X X X

with f=(x) = x* + XT +O(x*?) nearx=0.

0

This third-order equation can be transformed into the following second-order equa-
tionin f, quadratic in f':

X2 0?
Zf,,zz_(xf/z_ (4X2+Z) f’+X(£2—1)> f/
+(f2—8xf + 2 —1)f +4f2,

16The integral over the symplectic group@p- 1) can be identified with @n)_.
1 this statement, we use the following notation:

[n]even:= maxXevenx such thax < n}.
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which in turn leads to the standard Painlevé equatiBrB) for

o+ 12
===

a«=—p

PROOF OFPROPOSITION3.3: Proposition 1.1 and identity (2.38) imply

I (0 = nler,(2x, 0, ...),

Lh(X) = n!' (2%, 0, ...),

lonp1(X) = nle™ry(2%,0,...),

ln(X) = (N — D! 7y-1(2%, 0, ...).

Note that, since the functiong(t — s) = s (t, s) satisfy differential equation (ii)

of Theorem 2.1, we obtain for the functian(t), by subtracting two consecutive
equations,

32 Tn+l TnTn+2 Tn—1Tn+1
—log =— - >
3'[1 Tn Tn+1 Tn
from which the standard Toda lattice equations follow. g

PROOF OFPROPOSITION3.4: From Corollary 3.2 it follows that

- d n
(3.11) Hn(x) = Xoo log (ecx / An(z)zl—[ezxzk(l —2)%(1+ z)*f dzk)
[—1,1jn k=1
satisfies the Painlevé V equation (3.4). Then in view of TheoremH,(x) corre-
sponds tof,(x) in (3.9) when the parametensa = « + 8, b = « — 8, andc take
on the following values:

O(¢ + 1)_ with £ even: n:é,azo,b:—l,c:l,

O + 1)_ with ¢ odd: n=%,a=1,b=o,c=o,
O + 1), with £ even: n:é,a:O,b:l,c:—l,

O + 1), with £ odd: n=%,a=—1,b=0,c=0,
Sp(%) with ¢ odd: nz%, a=1 b=0, c=0.

Setting these values into equation (3.4) leads at once to equation (i) of Theo-
rem 0.1, namely

1 6 4 16x2 + ¢2 16 262 -1
f///—f—;f//—i_;f/z——ff/— X+ f/+—f+¥:

_— 0.
X2 X2 X X
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Moreover, for these values, we have that ¢ = ac = 0, and so from (3.5), it

follows that
~ v G 2n(b+c)+ac
(812) (O =H,© =0 and /0 =H©0=-"—7"""—=0

According to Appendix B (see Cosgrove [9]), this third-order equation has a
first integral, which is second order ih and quadratic inf”, thus introducing a
constant:

X 2 = — (xf’2 — (4x2 + e_z) f/ 4+ x(? — 1)) f/
4 4
+ (P2 —8xf + 2~ 1)f +4f2— %.
Evaluating this differential equation at= 0 leads to, sincd (0) = 0,
c=?f'(002=0 using (3.12).

Settingf = f — ¢2/4 in order to get the equation in Cosgrove’s form [10],

X2 _ _ _ _
= — (xf?— 42 — x(€® + 1)) f'

4
2

+(f_’2—8xf"—(£2+1))f'+4f_2+%.

In the notation (B.2), we have

EZ
a=16, &%=4("+1), =0, c=-_.
Solving (B.3) fora, B, y, ands leads to the canonical form for Painlevé V, with
1+¢)2
o=— =( z ) , y=0, §=-8,

and according to Appendix Df,’(0) = 2, ending the proof of the first half of
Theorem 0.1.
Of course, from combinatorics (Proposition 1.4), we have a much stronger
statement:
X Tr M x? x“H 42
Eo. (¢+1)€ = exp(E + D + O(x )) ,

and thus

+1

d
fEx) = x5 log Eowr1.€"™dM = x>+ XT +O(x"*?) nearx = 0.

It remains to show the uniqueness of the solution to the initial value problem
(3.10). Indeed, substitutinf(x) = x>+ >_i=3a&X" into the third-order differential
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equation (3.10) forf yields the recursive formula for the coefficients:

34— (*)ag =0,
313) (i +D(*—Ha1—16( —2a_1+ Y Na(6m—4a, =0
fori >3. ‘eimsis
Therefore, if¢ > 3, we have inductivelya; = --- = a, = 0 from (3.13). Setting

i = £ inthe equation above shows that the coefficagnt is free and can therefore
be specified; it is specified by the combinatorics, namaly; = +((¢ + 1)!)~L.
Oncea, . is fixed, all the subsequeat’s are determined by (3.13). O

4 Painlevé Equations for Un) Integrals
In this section we show items (ii) and (iii) of Theorem 0.1.
PROPOSITION4.1
d d v
4.1 X) = — X —log [ eXTrM+M) g\
(@) %) = 5 x5 10g |
un)
is the unigue solution to the initial value probldainlevé V equation
/! gr/12 1 1 gr/1 n2 (gn - 1) 2
- = — = - — — -1)=0
gn 2 (gn_1+ gn + X 2X2 gn + Xgn(gn )

n

with gh(X) = 1 — # + O(x"*1) near x= 0.

PROPOSITION4.2
Eug) tr M det(I + M)kextrM
Eum) det(l 4+ M)ke—xtr™

1 d .
— — log Eym det(l + M)KeXt(+M) g\
n+kde 09 Eum dettl + M)'e

is the unique solution to the initial value Painlevé V equation as:well
1/1 1 h,/ZJFKJFZ(nJrk)
X X

hn (x) =

(4.2)

h///__ -
AU RS

(x=nmh' —h—=n)(@h+x+nh"+h+n)=0

k—n xHl k4 n—1
— O n+2
k+n (n+1)!< n )+ *
near x=0.

h'(h + 1)

S22 (h + 1)
with h := h(X) = x

PROOF OFPROPOSITION4.1: The proofs of Propositions 4.1 and 4.2 are al-
most identical except in the end one specializes to a different locus.
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Throughout we shall be using the diagonal elements (2.1R) @indhL] h=%:

b ——Io
A 3'[1 ng—l

= (Ll)n—l,n—l s
(4.3)

bﬁ = T Ae IOg =(h L;h_l)n—l,n—l-

aS:I. Tn-1

From (2.55), (2.17), (2.3), Theorem 2.6, and (A.4), the integral below, which is
also the determinant of a Toeplitz matrix,

Tt s) = [ eZT M =sMIg )y
u(n)
" e [ e 82 )
st 2riz O<k,f<n-1
satisfies the following three relations:
(1) Toeplitz
0 a
T (0)n = — log —— — log —"

oty Th—1 0% Th—1

+(1+ o lo 1+ 8° lo 9 (2 log —"
T oHh—— | —
9s,9t; 9 9S19t; gn 9s, \ aty grn_l

92 92 9
4.5 = —byb* 1+——Io 1+——Io — —b,) =0,
@9 " ”+( M gf”)( T asot 9T as, )
(2) 2-Toda
92logt, 0 o 9° 33
=—-2—Iog logzh — ——logm
05011 0S; Th—1 0$101;1 8513t1
2 83

4.6 = 2b? lo —— o ,
( ) n 3513t gfn 8312_8t1 gfn

(3) Virasoro

V_1tn = <Z(l 1>t.+1 Z(u —Ds- 1—

i>1

0
+n<t1+_)>fn=o,
98

0 .0
Votn = Z (It. n Isia_s)r" =0,

i>1

(4.7) Vity = ( Z(u+1>s4+l—+2<u Dt

i>1 i>2 3'[,

e oo



RANDOM PERMUTATIONS

Therefore we have

1
0= l__('vfl + Vo) Tn

n

=D (G +Dt +it-)i
141 i ati

i>1

i>2 35
1
0=—Vo+ Vi
n
= Z (=Dt + i'[i)i
i of;

9s

i>1

0= i V_17n
3t1 Tn
2

32 3
- i+ Dtip——— Y (i —Ds_
(Z( + Dbz i;( S-151 73

i>1

2

ot109;

3 [V 0207 )
0=— 0fn = Z It — IS + —
oty Tn i1 at1 0t 0t10s oty

Ozi(vlfn>
S\ 1Tn

+n

)Iogrn+n,

92 92
:—Ei s Ei—lt»_
( i>1( + )S+183183 + i>2( )I 1aslati
- 2
n lo n
+ aSlatl) gth +

2 82

0 [ Votn . 0 . d
(4.8) 0 851( - ) ( Z (IS. 7575 it; 8318ti> 831) 09 Th

i>1
For the sake of this proof, consider the
locusL = {alltj =5 = 0 excepty, s # 0} .
From (4.7), we have ok,
Votn

Tn

. . ad 0
- Z((l - 1)3—1+I3i)— +(n— Sl)£> log 7, + nty,

: .\ 0 0
=Y ((+Dsy+is)—+ (n+t1)¥) logwn + ns;,
X 1

41
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implying z,(t, s)|I is a function ofx := —t;s; only. Therefore we may write
Tn| , = T(X), and so, alongt, we have
3 0 3 .0 % 9 9
o toxT as | tox owds | ax x|
Setting
fn(xX) = ixi logth(X) = — i logtn(t, S)
oX 0X 010 ’

and usingk = —t;5, the 2-Toda relation (4.6) takes on the form

92 d (9%logr,
—s (20— logmy — —
. Sl( " Ity 0 asl< 9510, ))
b*
(4.9) — x(zt—;1 fo + f,Q).

Setting this relation (4.9) into the Virasoro relations (4.7) and (4.8), we have

8%log T,
05011

Votn vofn_l 8 8 tn
4.10) 0= — =(t;— —s,— ) Io =t;b b*
( ) Tn Th-1 |g ( 181:1 Slasl) g Th—1'<L 10 Sy
3 V_11n 92 92
0= — =|- n lo n
ot w |, ( st otes ) 9Lt
b*
(4.11) = —X (Zt—f fn(X) + fn’(X)> +n(=f(x)+1).

This is a system of two linear relations (4.10) and (4.11pinand b}, whose
solution, together with its derivatives, is given by

b b n(f—1D+xf

s 2xfy
b 9 bn x(fafy = D+ (f+ N}
ds; X s 2f2 '

Settingd? log t,/ds,0t; = — f,, into the Toeplitz relation (4.5) yields
d
bnb: == (1 - fn) <1_ fn - Ebn) ,

which, using the expressions above pr b*, andab,/ds;, yields the differential
eguation

1 1 1 1 n(—f,+1) 2
4.12) f/—=f72 — )+ ——— T f (- fa+1) =0.
(4.12) 2”<fn—1+fn)+x nt e, x n(=Tn+1)

Note, along the locust, we may set; = /X ands; = —./X, since it respects
t1S1 = —x. Thus,

£.00 = 3 x L log )
)= GxXgx 090X
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with
], = [ esiam] — [ e,
SL

um) un)

satisfies (4.12). The behavior &f(x) nearx = 0 is given by Proposition 1.5 and
the above formula, with the uniqueness established as in the orthogonal case, thus
proving Proposition 4.1. d

Remark.Setting
f =
n(X) w0 — 1
leads to standard Painlevé V, with= 6 =0, 8 = —n?/2, y = —2.
PROOF OFPROPOSITION4.2: For fkedk € R, k £ 0, consider the locus
£ = {alliti = —k(—1)' ands = 0 excepts; = X} .

Then setting

0
(4.13) fa(X) = n log tn R

the Toda relations (4.6) become

2 82 83
—X lo = —2xb* lo X——Io
a5t 0 e % St 9™ T X5z, 09T
(4.14) = —2xb} f, + xf/.

The Virasoro relations (4.8) become, by using (4.3) and the locus,

0— ((Vo + Vo (Vo+ Vl)fn—l)
Tn Th-1

L

= xa—i-(n+k)a log Ty + nx
- sy o, ) 09"

0 d
- <—x£ +M-1+ k)a—tl) logth_1 — (n— D)x

%2 +(k+n=-1) 9 log—" + 9 log tn + X
=\ —~r5< e — T
Sy oty ng—l oty 9t

Tn Tn

= —X 9 log +k+n-1) 9 log
o RIS Tno1 oty Th-1

(4.15) =xbf + (k+n— Db, + fn + X,

+ fn+ X
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and, by using (4.8) and (4.14),
3 (Vo1 4+ Vo)t

9 X i 4+ (n—X) o lo +n=0
= _— = — T, =
o Lds osit) O
(4.16) = fn+ (n=x)f, +n—2xbf, + xf .

So, as before, we have a linear systerbjandbj; whose solution is
Xt/ + 12t +x+n)+ fn+n

b, =

" 2f/(n+k—1) ’
b xf/ — f/(x —n)+ f,+n

: 2x f/ '

Substituting this solution into the Toeplitz relation (4.5)
>k !/ /7 a
bnbn = (1 —‘I- fn) (1+ fn - a—xbn>

yields

1/1 1 £/ 2(n+k)
f///__ s f//2 _n f/ f/ 1
" 2(fé+f,4+1>”+x+ X n(f+ 1)

_m((X—n)fé— fo —n)(2fa +Xx +N) f.+ fa+n) =0.
n n

It remains to computd,(x) as in (4.13). Note that
W) =t )|, = f ST M-S g
un)

— / (e,trzio (ﬂw)i )ke—xtrM dMm

un)

= / det(l + M)Xe™*"M M .
un)

L

Therefore
| [UMETITEM SN g
- 2t Mi — Mi
N TN
_ [trMmdet] + M)ke*"™MdM
~ [det]l +M)kextrtMdM

fa(X) = iIo
)= 5y, 09

., 1 d
4.17 = By —nx
(4.17) n+kxdx 0g n€
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This last equality= will be shown later in Lemma 4.3. To conclude the proof of
Proposition 4.2, observe from (4.17) and Proposition 1.5 that

1 d v
fa(X) = K (de log / det(| + M)ke *"™MdMm — nx)
un)

_Xk—n x" k+n-1
~ "k+n  (n+ 1! n
this concludes the proof of Proposition 4.2. O

) + O(x"*?):

ProoOF OFTHEOREMO.1: Upon integrating expressions (4.1) and (4.2) and
exponentiating, one finds expressions (ii) and (iii) of Theorem 0.1 after using, re-
spectively, the initial conditions (0.2) and the first identity of Lemma 4.3. [

Recall that equality (4.17)) still needs proof.

LEMMA 4.3
3
rn(0)=/de1(I +M*dM =1, a—:”(0)= /teret(I + M)XdM =0,
u(n) ! u(m)
and

[trMdetl + M)ke *"MdMm
[ det(l + M)ke=xtrM dM
1

_ d —nx kK —xtr M
_n+kxdxloge /del(I+M)e dM

un)

- tr M det(l + M)ke™xt" M ¢ M
(4.18) _ X ([irMded +Myte™ +n).
n+ k fde1(| + M)ke—xtrM d M

ProoOF. Recall from (4.17) thatf (x) is the left-hand side of (4.18). At first
we show, using the Toeplitz matrix representation (2.51) in the third identity, that
f (0) = 0; indeed,

(0) f(0) = / tr M det(l + M)XdM
un)

= 3—8 /det(l + M)¥det(l +eM)dM

e=0

) 0<¢,m=<n—-1|gs—0

dz
iz

_ d -m k
_dgdet(/z‘ 1+ 2) (1+gz)2n
st
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1
. d 1 x
= —det
de © -
@] 1 -0
d
(4.19) =—(1) =0.
de

The equality= is due to the fact that

dz _{O fore —m=>1

21+ 2K + £2) —
/ (1+2)7% +8)27r|z 1 foré =m.

st

The same but even simpler argument shoy®) = 1 by replacing 1 ez by 1 in
(4.19). From (4.8), it also follows that

9 (Vo+ Vi) 92 92 9
0=— — 7 = ((n+k —55———1lo
05 (( TR et o2 a5 ) o

+n
L

L

(n+Kk) 8xalo
= A T
X ax ax o,

of Jd 0
_ o PV —nx
n+K) ax  ox ax 9me

Integrating this expression from 0 koyields
0
N+ k) (fx)— f(0) = x& log e ™;

the fact thatf (0) = 0 establishes the first identity of (4.18). The second identity
of (4.18) follows from

1 d v

f(x) = — loge™ | + M)ke*"™MdM

(X) n+kxdx oge /del( + M)*e d
un)

—x { [tr M det(l + M)ke "M dM n
[ det] + M)ke=xrM dM '

T n+k

ending the proof of Lemma 4.3. O

Appendix A: Virasoro Algebras

In [3], we defined a Heisenberg and Virasoro algebra of vector oper%]l&’rs
depending on a parametgr> 0O:

(ﬂJI((l))n — #3% 1 n3® and («Ul((O))n —n3° = ns,
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and
PIB) = b Z PIDEID +(l — g)((k +1)7 3% — kI©)
I+j=k
= (g P3P+ (n,B + (k+ 1)(1 - g)).ﬂJk(l)
(A.1) n n((in—1HB +2) Jk(o)> ‘
2 nez

ThefJ?s satisfy the commutation relations (see [3]):

(P10, 3] = ; -

1 1
[f12, PI°] = 23, + k(k + 1)<B - E)Sk,—z ’

ke —k
(A.2) [f32, P1P] = k- 0 *12, +c( P >6k,e,

with central charge

ol

In the expressions above,

%( fork >0
pa = F(—kty fork <0
0 fork =0,

(A.3) P3P =3

i+j=k

— iti— it jti .
atlatJJr ;: ' ﬂz Z I

—i—j=k

In particular, ford8 = 1 and 2, thé’Jff) take on the form

1
=537 + @ +k+ D737 +nn + DY)

(A5) PI2M|,_, = (P37 +2n/ 3P +n230)

A4) ‘RPm],_ =

’

nez p=1

nez

p=2’
Appendix B: Chazy Classes

Given arbitrary polynomiald(z), Q(z), and R(z) of degree 3, 2, and 1, re-
spectively, Cosgrove [9, (A.3)], shows that the third-order equation
P’ 6 4P’ p” 4Q 2Q

2R
B1) "+ —f'+—f2— G+ P2 A9y 29 2R,
B T+rsi+p pz | T2 T2 pz | TP
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has a first integral, which is second orderfirand quadratic inf”,
/! 4 / / / i /. / / /
(B.2) f 2+E((Pf2+Qf +R)f'—(Pf?+Qf +R)f
1 1
+ _(P//f/ + Q//) 1:2 o _P///f3+ cl = O;
2 6
c is the integration constant. This is a master Painlevé equation, containing the six

Painlevé equations. When the polynomiBIsQ, andR have the forms

a -
P = X = ——X
, Q 25
then equation (B.2) can be reduced to the Painlevé V equation [10, p. 70]:

1
R= —Z(azx + agz),

(B.3) w' =
1 1 1 —1)? 8 1
- 4+ — w/2__w/+(w ) aw—i—é +Q+M,
2w w-1 X X2 w X w—1
with

1 1
a=-25, a= ZyZ + 288 —8(L—~2a)?, az= By + Ey(l— V2a)?,

1 1
¢ = — v (L= V2w —28) + 255((1 = V2w)* + 28)°.

Appendix C: The Volume of the Orthogonal and Symplectic Groups
Selberg’s integral (see Mehta [15, p. 340]), renormalized pvér 1],
n
f An(0? [ T@ = %)@+ x)" dx
[—1,11" i=1

_ on(a+p+y(—D+1) l—l F(Ol + JV +DI'(B + JV + 1)F(V + JV +1)
Fy+Dl(a+B—y+yin+j)+2)

j=0

_ onnketh) 1—[ i + )T +B)
1 T+ j+a+p)

upon settingy =1,

leads to the value af;, andc,, , in Theorem 1.1:

1 o J1G = DT — )
==+ — f dM=2"T] —
2 O@n+1). EREE
i - 3)
=p=-= dM = 2"
R / H L+ -2

o@n)4
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i3 +3)

_ _1 n(n—1)
a=B==-,N—>n-1— / =2 l_[(n+1—1)'

2’
O(2n)_

Appendix D: Direct Evaluation of Integrals
over the Orthogonal Group and Their Derivatives atx = 0

Referring to Theorem 3.1, formulae (3.3) and (3.4), we evaldiAde log 7,(x)
andd?/dx?log t,(x) directly from the integral representation, not using the com-
binatorial interpretation of the integrals. To do this, we need the Aomoto extension
[6] (see Mehta [15, p. 340]) of Selberg’s integtal:

fol"'folxl"'xm|A(X)|2y l‘[j”:lxja(l_ Xj)ﬁ dxg---dx,

' Ja - S AGOR TT_y X (L — %)) dxg -~ d
T a+l4+(-—jy
D.1 = .
(-1 Hoz+ﬂ+2+(2n—j—l)y

j=1
In particular, by settingg = 1, formula (D.1) implies

n+ao nN4+a—-1)(n+ )
D.2) (X)) = —— and (xix ,
(B:2) () 2n+ B+« axe) = 2n+B+a—-1@2n+h+a)

and from the identity (see [15, p. 349])

@n+B4+a+1D) (X2 =@n+a)(x) — (N—1)(XX2)
we derive

(N4 a) (3n* + 28N + 3an + o + a® — 1)
@en+B+a—-@n+B+a)@n+B+a+1)

(D.3) (x2) =
We now consider the following ratio of integrals (remembpgg(z) := (1 —
2)*(1+2)%)
Jiovap Y1 YmBa ) [Tk Py (YO YK
S a2 [Tk Pep AW

The relationship between the two integrals (D.1) and (D.4) is obtained by setting
X; = (L —j)/2; so we have

(D.4) (Vi Ym)-11) :=

1 1
(X1) = 5(1 —(y1)), (XaXo) = Z(l — 2(y1) + (y1y2),

1
(x2) = 2= 20y) + (¥2)).

18Rea, Rep > —1, Rey > —min (31, Reo”lrl, Rﬁﬁrl)
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Thus, these relations, upon using (D.2) and (D.3) and upon settiaga + b)/2
andg = (a—b)/2, yield

—b b?> —a—2n
(B-3) o = a+2n’ WYz = @+2n—1@+2n’
42) — b%(a+ n) + n@+ 2n)2 — (a + 2n)
1

T @+2n—D@+2n@+2n+1)

Hence, setting

n
|r§a,ﬂ)(x) = An(z)2 1_[ ezxzkpa,ﬂ(zk)dzk s
[-11" !

we compute for future use:

"

[
y(n):=2 I—”

n 2
- 8<<Z yi) > =8 (n(y?) +n(n — 1)(y1¥2))
x=0 1

=8n ((y2) + (N — D{y1y2))

@+ 2n)(b>n+a+n) — b?
@+2n—hH@a+2n@+2n+1)°

(D.6) — 8n

Note this formula appliesto a genetéff‘ﬂ)(x), where a combinatorial interpre-
tation is absent. These considerations will now be applied to the orthogonal case.
Indeed, considering the special values@hdp and thus foa andb, we evaluate:

a=-1b=0:yn) =2,
a=1b=0:y(n) =2,
a=0 b=1:y(n) =4,
a=0 b=-1:y(n)=4.

It is easily seen that

N\ 2
§ g\ SN (e am)

and so, using (3.12) and the fact that the volufrieM does not vanish,

d trM !
(xdxlog/eX dM)

_, (fextrM dM)”
x=0_ fexterM
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Using f;(0) = 0 to evaluatd,,(0) below and using (1.2) and (D.6), we now verify
in each of the cases:

14

for 1(0) = xixlog / g™ dMm

d
O(2n)+
x=0
|22
n
n x=0

"

for 4(0) = xilog f eT™dMm

dx
o(2n)_
x=0
I”(%l,%)
n— J— — J—
(%»%) - )/(n 1)‘a=1,b:0 - 2’
Infl

1.1
_ 2 (exlrgz' 2))//

d
f;(0) = | x=— log / g™ dM —
dx exlrg?’ié)

o@n+1),

_, I+ 21, + Iy
In

"

x=0
x=0

x=0

=2<hq_) ﬂmﬂ@hanw_M=M®%Hd®=0

In

=2+ y(n)iazo,b:+l =2,

’ x| (=3.3)
d e XI 2227\
fn(0) = | x5 log / Cll _p& M ) "(71 ;))
eXl, #'7

o@n+1)- 0 =0

4 I
Il =21+ 1,

In

=2 from (e‘xln(x))/ ‘ = 0
X=

x=0
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"

|
=2 I—n — =-2+ y(n)|a:0,b=—l =2.

n
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