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1 Introduction

Random matrix theory has led to the discovery of novel matrix models and
novel statistical distributions, which are defined by means of Fredholm determi-
nants and which, in many cases, satisfy nonlinear ordinary or partial differential
equations. A crucial observation is that these matrix integrals, upon appropri-
ate deformation by means of exponentials containing one or several series of
time parameters, satisfy (i) integrable equations and (ii) Virasoro constraints
with respect to these time parameters. Most of the time, such matrix integrals
can be written — by expressing the integrand in “polar coordinates” — as a
multiple integral, which then can be expressed in terms of the determinant of
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a moment matrix; this may be a moment matrix with regard to one or several
weights. The extra time parameters are added in such a way that each weight
has its own exponential time deformation.

The main point is to show that this determinant satisfies (i) and (ii). These
features turn out to be extremely robust! The purpose of the present paper is to
show point (i) in great generality, which is the determinant of moment matrices
associated with one or several weights and defined on various different domains,
satisfies the multi-component KP hierarchy with regard to the time parameters.
This is a very general class of integrable equations.

This determinant will turn out to be the τ -function of this integrable hierar-
chy; this τ -function with appropriate shifts of the deformation variables will be
expressed in terms of the “orthogonal polynomials” defined by the weights and
their Cauchy transform. We list below a number of examples having their origin
in Hermitian random matrix theory, in random matrices coupled in a chain, in
random permutations and in Dyson Brownian motions (non-intersecting Brow-
nian motions) on R leaving from the origin, where some paths are forced to end
up at one point and others at another point, etc. . . These examples will then be
discussed in detail in Section 7.

• GUE: orthogonal polynomials.

1

n!

∫

En

∆2
n(z)

n∏

ℓ=1

e
P∞

k=1 tkzk
ℓ ρ(zℓ)dzℓ = det

(∫

R

zi+je
P∞

k=1 tkzk

ρ(z)dz
)

0≤i,j≤n−1

• Coupled random matrices / Dyson Brownian motions: bi-orthogonal
polynomials.

1

n!

∫∫

En

∆n(x)∆n(y)

n∏

ℓ=1

e
P∞

k=1(tkxk
ℓ−skyk

ℓ )ρ(xℓ, yℓ)dxℓdyℓ

= det

(∫∫

E

xiyje
P∞

k=1(tkxk−skyk)ρ(x, y)dxdy

)

0≤i,j≤n−1

• Longest increasing subsequences in random permutations: orthogonal
polynomials on S1.

1

n!

∫

(S1)n

|∆n(z)|2
n∏

ℓ=1

(
e
P∞

k=1(tkzk
ℓ −skz−k

ℓ
) dzℓ

2π
√
−1zℓ

)

= det

(∮

S1

dz

2π
√
−1z

zi−je
P∞

k=1(tkzk−skz−k)

)

0≤i,j≤n−1

• m1 + m2 non-intersecting Brownian motions on R leaving from 0 and
m1

2

paths forced to end up at ±a: multiple orthogonal polynomials on R.

1

m1!m2!

∫

Em1+m2

∆m1+m2(x, y)
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(
∆m1(x)

m1∏

ℓ=1

e−
x2

ℓ
2 +axℓe

P∞
k=1(tk−sk)xk

ℓ dxℓ

)

(
∆m2(y)

m2∏

ℓ=1

e−
y2

ℓ
2 −ayℓe

P∞
k=1(tk−uk)yk

ℓ dyℓ

)

= det




(∫

E

zi+je−
z2

2 +aze
P∞

1 (tk−sk)zk

dz

)

0 ≤ i ≤ m1 − 1
0 ≤ j ≤ m1 + m2 − 1(∫

E

zi+je−
z2

2 −aze
P∞

1 (tk−uk)zk

dz

)

0 ≤ i ≤ m2 − 1
0 ≤ j ≤ m1 + m2 − 1




• ∑q
α=1 mα =

∑p
β=1 nβ non-intersecting Brownian motions on R, with

mα paths starting at aα ∈ R and nβ paths forced to end up at bβ:
mixed multiple orthogonal polynomials (mixed mops) on R.

A moment matrix for several weights: Define two sets of weights

ψ1(x), . . . , ψq(x) and ϕ1(y), . . . , ϕp(y), with x, y ∈ R,

and deformed weights depending on time parameters sα = (sα1, sα2, . . .) (1 ≤
α ≤ q) and tβ = (tβ1, tβ2, . . .) (1 ≤ β ≤ p), denoted by

ψ−s
α (x) := ψα(x)e−

P∞
k=1 sαkxk

and ϕt
β(y) := ϕβ(y)e

P∞
k=1 tβkyk

.

That is, each weight goes with its own set of times. For each set of positive
integers4

m = (m1, . . . , mq), n = (n1, . . . , np) with |m| = |n|,
consider the determinant of a moment matrix Tmn, composed of blocks and of
size |m| = |n|, with regard to a (not necessarily symmetric) inner product 〈· | ·〉
τmn(s1, . . . , sq; t1, . . . , tp)

:= det Tmn

:= det




T 11
mn . . . T 1p

mn
...

...
T q1

mn . . . T qp
mn




:= det




(〈
xiψ−s

1 (x)
∣∣ yjϕt

1(y)
〉)

0≤i<m1
0≤j<n1

. . .
(〈

xiψ−s
1 (x)

∣∣ yjϕt
p(y)

〉)
0≤i<m1
0≤j<np

...
...

(〈
xiψ−s

q (x)
∣∣ yjϕt

1(y)
〉)

0≤i<mq
0≤j<n1

. . .
(〈

xiψ−s
q (x)

∣∣ yjϕt
p(y)

〉)
0≤i<mq
0≤j<np




.

(1)

4|m| =
Pq

α=1
mα and |n| =

Pp
β=1

nβ .
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A typical inner product to keep in mind is

〈f(x) | g(y)〉 =

∫∫

R2

f(x)g(y) dµ(x, y), (2)

where µ = µ(x, y) is a fixed measure on R
2, perhaps having support on a line

or curve.

From moment matrices to polynomials and their Cauchy transforms:

I. Then, for 1 ≤ β, β′ ≤ p, the following expressions are polynomials (with
coefficients depending on s and t)5

znβ
τmn(tβ −

[
z−1
]
)

τmn
:= Q

(β,β)
mn (z) = znβ + . . .

εββ′(n)znβ′−1
τm,n+eβ−eβ′ (tβ′ −

[
z−1
]
)

τmn
:= Q

(β,β′)
mn (z),

{
of degree < nβ′

for β′ �= β,
(3)

satisfying, for each β, the following orthogonality conditions

〈
xiψ−s

α (x)

∣∣∣∣∣∣

p∑

β′=1

Q(β,β′)
mn (y)ϕt

β′(y)

〉
= 0 for

{
1 ≤ α ≤ q
0 ≤ i ≤ mα − 1.

(4)

II. In the same way, the following expressions are polynomials (depending on s
and t)

ǫβα(n, m) zmα−1 τm−eα,n−eβ
(sα + [z−1])

τmn
= P ∗(β,α)

nm (z) of degree < mα (5)

satisfying, for each β, the orthogonality relations






〈
q∑

α=1

P ∗(β,α)
nm (x)ψ−s

α (x)

∣∣∣∣ yjϕt
β′(y)

〉
= 0 for

{
1 ≤ β′ ≤ p, 0 ≤ j ≤ nβ′ − 1
except β′ = β, j = nβ − 1

〈
q∑

α=1

P ∗(β,α)
nm (x)ψ−s

α (x)

∣∣∣∣ ynβ−1ϕt
β(y)

〉
= 1.

(6)

III. The following expressions are Cauchy transforms of the polynomials ob-
tained in II:

5Introduce the notation [α] := (α, α2

2
, α3

3
, . . .) for α ∈ C. Only shifted times will be

made explicit in the τ -functions; i.e., τmn(tℓ −
ˆ

z−1
˜

) means that τmn still depends on all
time parameters, but the variable tℓ only gets shifted. Moreover, here and below all the
expressions εαβ(n), ǫαβ(n, m), etc. . . all equal ±1 and will be given later. Throughout the
paper, we use the standard notation e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .).
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z−nβ
τmn(tβ +

[
z−1
]
)

τmn
=

〈
q∑

α=1

P ∗(β,α)
nm (x)ψ−s

α (x)

∣∣∣∣∣
ϕt

β(y)

z − y

〉

εββ′(n)z−nβ′−1
τm,n+eβ′−eβ

(tβ′ +
[
z−1
]
)

τmn
=

〈
q∑

α=1

P ∗(β,α)
nm (x)ψ−s

α (x)

∣∣∣∣∣
ϕt

β′(y)

z − y

〉

(7)

IV. Similarly, the following expressions are Cauchy transforms of the polyno-
mials obtained in I:

ǫαβ(m, n) z−mα−1 τm+eα,n+eβ
(sα − [z−1])

τmn
=

〈
ψ−s

α (x)

z − x

∣∣∣∣∣∣

p∑

β′=1

Q(β,β′)
mn (y)ϕt

β′(y)

〉
.

(8)

The statements I, II, III and IV summarize sections 1, 2 and 3. As will appear
in Section 2, the polynomials appearing in (I) are called Type II |

ϕt
β

mixed

multiple orthogonal polynomials, whereas those appearing in (II) Type I |ψt
α

mixed multiple orthogonal polynomials. These were introduced by E. Daems
and A. Kuijlaars [9], in the context of non-intersecting Brownian motions; they
are a generalization of multiple orthogonal polynomials, where instead of one set
of weights, there are two sets (the classical orthogonal polynomials correspond
to one set with one element). They were introduced and studied by Aptekarev,
Bleher, Geronimo, Kuijlaars, Van Assche [6, 14, 15, 8]. Around the same time,
they were introduced by Adler-van Moerbeke in the context of band matrices
and vertex operator solutions to the KP hierarchy [2]. In [7, 8], they were used
in the context of non-intersecting Brownian motions and random matrices with
external source.

The (p + q)-KP hierarchy: Define two matrices Wmn(z) and W ∗
mn(z) of

size p + q, whose entries are given by ratios of determinants τmn of moment
matrices as above, but with appropriately shifted t and s parameters. They
turn out to be the wave and dual wave matrices for the (p + q)-KP hierarchy.
It is remarkable that, upon setting all t and s parameters equal to zero, the
matrix Wmn(z) below is precisely the Riemann-Hilbert matrix characterizing
the mixed multiple orthogonal polynomials! Similarly W ∗

mn(z) at t = s =
0 satisfies the Riemann-Hilbert problem characterizing alternately the “dual”
multiple orthogonal polynomials or the inverse transpose matrix of Wmn(z) at
t = s = 0. The Riemann-Hilbert matrix for the multiple-orthogonal polynomials
has been defined in Daems-Kuijlaars [9], which is a far generalization of the
Riemann-Hilbert matrix of Fokas-Its-Kitaev [11] and Deift-Zhou [10]. Using
identities as in I to IV, the two left blocks of Wmn and the two right blocks of
W ∗

mn are mixed multiple orthogonal polynomials, and the remaining blocks are
Cauchy transforms of such polynomials; for explicit expressions, see Section 5.
The matrix Wmn(z) is defined by

5



Wmn(z) diag
(
e−
P∞

1 t1kzk

, . . . , e−
P∞

1 tpkzk

, e−
P∞

1 s1kzk

, . . . , e−
P∞

1 sqkzk
)

:=




0

B

@
ε

ββ′ (n)

τm,n+eβ−e
β′

(t
β′−[z−1])

τmn
z

n
β′+δ

ββ′−1

1

C

A

1≤β≤p

1≤β′≤p

 

ǫαβ(m,n)
τm+eα,n+eβ

(sα−[z−1])

τmn
z−mα−1

!

1≤β≤p

1≤α≤q
 

ǫαβ(m,n)
τm−eα,n−eβ

(tβ−[z−1])

τmn
znβ−1

!

1≤α≤q

1≤β≤p

 

εα′α(m)
τm+eα−e

α′ ,n(sα−[z−1])

τmn
zδ

αα′−1−mα

!

1≤α′≤q

1≤α≤q


 ,

(9)
with inverse transpose matrix given by

W ∗
mn(z) diag

(
e
P∞

1 t1kzk

, . . . , e
P∞

1 tpkzk

, e
P∞

1 s1kzk

, . . . , e
P∞

1 sqkzk
)

=




0

B

@
ε

β′β
(n)

τm,n+eβ−e
β′

(tβ+[z−1])

τmn
z

δ
β′β

−1−nβ

1

C

A

1≤β′≤p

1≤β≤p

 

−ǫβα(n,m)
τm−eα,n−eβ

(sα+[z−1])

τmn
zmα−1

!

1≤β≤p

1≤α≤q
 

−ǫβα(n,m)
τm+eα,n+eβ

(tβ+[z−1])

τmn
z−nβ−1

!

1≤α≤q

1≤β≤p

 

εαα′(m)
τ

m+eα−e′α,n
(s

α′+[z−1])

τmn
zδ

αα′−1+m
α′

!

1≤α≤q

1≤α′≤q


 .

(10)
The matrices Wmn(z) and W ∗

m∗n∗(z) satisfy the bilinear identities which char-
acterize the τ-function of the (p + q)-KP hierarchy

∮

∞

Wmn(z; s, t)W ∗
m∗n∗(z; s∗, t∗)⊤dz = 0, (11)

for all m, n, m∗, n∗ such that |m| = |n|, |m∗| = |n∗| and all s, t, s∗, t∗ ∈ C∞.
The integral above is taken along a small circle about z = ∞; writing out the
identity above componentwise and using the expressions (9) and (10) for W and
W ∗, the bilinear identity (11) is equivalent to the single identity

p∑

β=1

∮

∞

(−1)σβ(n) τm,n−eβ
(tβ−[z−1])τm∗,n∗+eβ

(t∗β+[z−1])e
P∞

1 (tβk−t∗
βk

)zk

z
nβ−n∗

β
−2

dz=

q∑

α=1

∮

∞

(−1)σα(m) τm+eα,n(sα−[z−1])τm∗−eα,n∗ (s∗
α+[z−1])e

P∞
1 (sαk−s∗

αk
)zk

zm∗
α−mα−2 dz,

where |m∗| = |n∗| + 1 and |m| = |n| − 1 and

σα(m) =
α∑

α′=1

(mα′ − m∗
α′) and σβ(n) =

β∑

β′=1

(nβ′ − n∗
β′).

It remains an open problem to have a clear understanding of why the Wmn(z; s, t)-
matrix above, evaluated at t = s = 0, coincides with the Riemann-Hilbert
matrix for the mixed multiple orthogonal polynomials.
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PDE’s for the determinant of moment matrices: Upon actually comput-
ing the residues in the contour integrals above, the functions τmn, with |m| = |n|,
satisfy the following PDE’s expressed in terms of the Hirota symbol6:

τ2
mn

∂2

∂tβ,ℓ+1∂tβ′,1
ln τmn = Sℓ+2δββ′

(
∂̃tβ

)
τm,n+eβ−eβ′ ◦ τm,n+eβ′−eβ

τ2
mn

∂2

∂sα,ℓ+1∂sα′,1
ln τmn = Sℓ+2δαα′ (∂̃sα

)τm+eα′−eα,n ◦ τm+eα−eα′ ,n

τ2
mn

∂2

∂sα,1∂tβ,ℓ+1
ln τmn = −Sℓ(∂̃tβ

)τm+eα,n+eβ
◦ τm−eα,n−eβ

τ2
mn

∂2

∂tβ,1∂sα,ℓ+1
ln τmn = −Sℓ(∂̃sα

)τm−eα,n−eβ
◦ τm+eα,n+eβ

. (12)

Whereas the formulae above have in their right hand side different τmn’s, one can
combine these relations to yield PDE’s in a single τmn; so, these are PDE’s for
the determinant of the moment matrix (1). In particular, one finds the following(
p+q
2

)
PDE’s, which play a fundamental role in chains of random matrices and

in the transition probabilities for critical infinite-dimensional diffusions:

∂

∂tβ′,1




∂2

∂tβ,2∂tβ′,1
ln τmn

∂2

∂tβ,1∂tβ′,1
ln τmn



+
∂

∂tβ,1




∂2

∂tβ′,2∂tβ,1
ln τmn

∂2

∂tβ′,1∂tβ,1
ln τmn



 = 0,

∂

∂sα′,1




∂2

∂sα,2∂sα′,1
ln τmn

∂2

∂sα,1∂sα′,1
ln τmn



+
∂

∂sα,1




∂2

∂sα′,2∂sα,1
ln τmn

∂2

∂sα′,1∂sα,1
ln τmn



 = 0,

∂

∂sα,1




∂2

∂tβ,2∂sα,1
ln τmn

∂2

∂tβ,1∂sα,1
ln τmn



+
∂

∂tβ,1




∂2

∂sα,2∂tβ,1
ln τmn

∂2

∂sα,1∂tβ,1
ln τmn



 = 0.

2 Tau functions and mixed multiple orthogonal

polynomials

Following [9] we introduce the notion of mixed multiple orthogonal polyno-
mials (mixed mops), with regard to two sets of weights {ϕ1, ϕ2, . . . , ϕp} and
{ψ1, ψ2, . . . , ψq}:

6For a given polynomial p(t1, t2, . . .), the Hirota symbol between functions f = f(t1, t2, . . .)
and g = g(t1, t2, . . .) is defined by:

p(
∂

∂t1
,

∂

∂t2
, . . .)f ◦ g := p(

∂

∂y1

,
∂

∂y2

, . . .)f(t + y)g(t − y)

˛

˛

˛

˛

y=0

.

We also need the elementary Schur polynomials Sℓ, defined by e
P∞

1 tkzk
:=

P

k≥0
Sk(t)zk

for ℓ ≥ 0 and Sℓ(t) = 0 for ℓ < 0; moreover, set

Sℓ(∂̃t) := Sℓ(
∂

∂t1
,
1

2

∂

∂t2
,
1

3

∂

∂t3
, . . .).
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Definition 2.1 Let A1, A2, . . . , Ap be p polynomials in y and set

Q(y) := A1(y)ϕ1(y) + A2(y)ϕ2(y) + · · · + Ap(y)ϕp(y).

Type I For α ∈ {1, 2, . . . , q} the polynomials A1, A2, . . . , Ap are said to be
Type I normalized with respect to ψα, denoted Type I |ψα

, if deg(Aβ) < nβ for
β = 1, . . . , p and Q satisfies the following orthogonality conditions

〈
xiψα′(x) |Q(y)

〉
= δαα′δi,mα−1, i = 0, . . . , mα′ − 1, 1 ≤ α′ ≤ q. (13)

Type II For β ∈ {1, . . . , p} the polynomials A1, A2, . . . , Ap are said to be
Type II normalized with respect to ϕβ, denoted Type II |ϕβ

, if Aβ is monic of

degree nβ and deg(Aβ′) < nβ′ for 1 ≤ β′ ≤ p, with β′ �= β, and Q satisfies the
following orthogonality conditions

〈
xiψα(x) |Q(y)

〉
= 0, i = 0, . . . , mα − 1, 1 ≤ α ≤ q. (14)

In both cases, the polynomials A1, . . . , Ap are called multiple orthogonal poly-
nomials of mixed type, or mixed mops for brevity.

Proposition 2.2 For β = 1, . . . , p, let

Q(β)
mn(y) := Q(β,1)

mn (y)ϕt
1(y) + · · · + Q(β,p)

mn (y)ϕt
p(y), (15)

where Q
(β,β′)
mn , with 1 ≤ β, β′ ≤ p are the polynomials, defined by

Q
(β,β)
mn (z) := znβ

τmn(tβ −
[
z−1
]
)

τmn

Q
(β,β′)
mn (z) := εββ′(n)znβ′−1

τm,n+eβ−eβ′ (tβ′ −
[
z−1
]
)

τmn
, β′ �= β,

(16)

and

εββ′(n) =

{
(−1)nβ′+1+nβ′+2+···+nβ+1 if β > β′,

(−1)nβ+1+nβ+2+···+nβ′ if β < β′.
(17)

Then Q
(β,1)
mn (y), . . . , Q

(β,p)
mn (y) are Type II |

ϕt
β

mixed mops.

Proof For j = 0, 1, 2, . . . and β = 1, 2, . . . , p we define a column vector Cβ
j

of size |m| by

Cβ
j :=




(〈
xi1ψ−s

1 (x)
∣∣∣ yjϕt

β(y)
〉)

0≤i1<m1(〈
xi2ψ−s

2 (x)
∣∣∣ yjϕt

β(y)
〉)

0≤i2<m2

...
(〈

xiq ψ−s
q (x)

∣∣∣ yjϕt
β(y)

〉)

0≤iq<mq




. (18)
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When its size is important (see the proof of Proposition 2.3) we write Cβ
j (m)

for (18). Notice that the moment matrix Tmn, defined in (1), can be expressed

in terms of the columns Cβ
j , and so

τmn = det
(
C1

0 , C1
1 , . . . , C1

n1−1, C2
0 , C2

1 , . . . , Cp
np−1

)
. (19)

For future use, let us point out that the dependence of τmn on the t variables is
as follows:

τmn(t1) = det(C1
0 (t1), C1

1 (t1), . . . , C1
n1−1(t1), C2

0 , C2
1 , . . . , Cp

np−1),

τmn(t2) = det(C1
0 , C1

1 , . . . , C1
n1−1, C2

0 (t2), C2
1 (t2), . . . , Cp

np−1),

...

τmn(tnp
) = det(C1

0 , C1
1 , . . . , C1

n1−1, C2
0 , C2

1 , . . . , Cp
np−1(tnp

)).

(20)
Since

Q(β)
mn(y) =

p∑

β′=1

Q(β,β′)
mn (y)ϕt

β′(y) =

p∑

β′=1



δββ′ynβ +

nβ′−1∑

j=0

Aj
ββ′y

j



ϕt
β′(y),

(21)

the orthogonality conditions (14) for Q = Q
(β)
mn can be written as the linear

system
p∑

β′=1

nβ′−1∑

j=0

Aj
ββ′C

β′

j = −Cβ
nβ

,

of |m| equations, in the |n| (= |m|) unknowns Aj
ββ′ , where 1 ≤ β′ ≤ p and 0 ≤

j < nβ′−1. If we order these unknowns as follows: A0
β1, A1

β1, . . . ,An1−1
β1 , A0

β2,

A1
β2, . . . , A

np−1
βp , then this linear system has precisely τmn as determinant, in

view of (19). Since τmn �= 0, generically, we have by Cramer’s rule,

Aj
ββ′ =

det
(
C1

0 , C1
1 , . . . , Cβ′

j−1, −Cβ
nβ

, Cβ′

j+1, . . . , Cp
np−1

)

τmn
. (22)

Substituted in (21) this yields an explicit expression for the Type II |
ϕt

β

mixed

mops Q
(β,1)
mn (y), . . . , Q

(β,p)
mn (y).

In order to connect these polynomials with the tau functions τmn we first
expand τmn(tβ −

[
z−1
]
) using (20). Thus, we need to compute Cβ

j (tβ −
[
z−1
]
),

which we claim to be given by

Cβ
j (tβ −

[
z−1
]
) = Cβ

j (tβ) − z−1Cβ
j+1(tβ) = Cβ

j − z−1Cβ
j+1, (23)

where the last equality is the notational simplification agreed upon. To prove
the first equality in (23), which is an equality of formal series in z−1, let us write

9



a typical entry of the column vector Cβ
j (tβ) with its explicit time-dependence

on tβ ,

〈
xiψ−s

α (x)
∣∣ yjϕt

β(y)
〉

=
〈
xiψ−s

α (x)
∣∣∣ yjϕβ(y)e

P∞
k=1 tβkyk

〉
,

where 1 ≤ α ≤ q and 0 ≤ i < mα. The following trivial identity will be used
over and over again in this paper

e−
P∞

1
xi

i = 1 − x. (24)

In view of the latter, the same entry of Cβ
j (tβ −

[
z−1
]
) (as above) is given by

〈
xiψ−s

α (x)
∣∣∣ yjϕt

β(y)
(
1 − y

z

)〉
=
〈
xiψ−s

α (x)
∣∣ yjϕt

β(y)
〉
−1

z

〈
xiψ−s

α (x)
∣∣ yj+1ϕt

β(y)
〉

which proves (23). Using the fact that the determinant is a skew-symmetric
multilinear function of its columns, which vanishes when two columns are equal,
it follows from (20), (23) and (22) that

znβτmn(tβ −
[
z−1
]
)

= det(C1
0 , . . . , Cβ−1

nβ−1−1, zCβ
0 − Cβ

1 , . . . , zCβ
nβ−1 − Cβ

nβ
, Cβ+1

0 , . . . , Cp
np−1)

(∗)
=

nβ∑

j=0

zj det(C1
0 , C1

1 , . . . , Cβ
j−1,−Cβ

j+1, . . . ,−Cβ
nβ

, Cβ+1
0 , . . . , Cp

np−1)

=

nβ∑

j=0

zj det(C1
0 , C1

1 , . . . , Cβ
j−1, −Cβ

nβ
, Cβ

j+1, . . . , C
β
nβ−1, Cβ+1

0 , . . . , Cp
np−1)

=

nβ∑

j=0

zjAj
ββτmn

= τmn Q(β,β)
mn (z).

In (∗) it is understood that all the columns between −Cβ
j+1 and −Cβ

nβ
come with

negative signs and no others; this notation shall be used freely in the sequel,
without further mention.

For Q
(β,β′)
mn with β �= β′ we also need to keep track of signs and of shifts

in the first index of the tau function, as is seen in the following computation,
where we suppose that β < β′:

znβ′−1τm,n+eβ−eβ′ (tβ′ −
[
z−1
]
)

= det(C1
0 , . . . , Cβ

nβ−1, Cβ
nβ

, . . . , zCβ′

0 − Cβ′

1 , . . . , zCβ′

nβ′−2 − Cβ′

nβ′−1, C
β′+1
0 , . . . , Cp

np−1)

=

nβ′−1∑

j=0

zj det(C1
0 , . . . , Cβ

nβ
, . . . , Cβ′

j−1, −Cβ′

j+1, . . . ,−Cβ′

nβ′−1
, Cβ′+1

0 , . . . , Cp
np−1)
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= εββ′(n)

nβ′−1∑

j=0

zj det(C1
0 , . . . , Cβ

nβ−1
, Cβ+1

0 , . . . , Cβ′

j−1, −Cβ
nβ

, Cβ′

j+1, . . . , C
p
np−1)

= εββ′(n)

nβ′−1∑

j=0

zj Aj
ββ′ τmn

= εββ′(n) τmn Q(β,β′)
mn (z).

The sign εββ′(n) which we introduced when moving the column Cβ
nβ

to the right

is given by (−1)nβ+1+···+nβ′ , in agreement with (17). When β > β′ the column
Cβ

nβ
is moved to the left, which yields a sign εββ′(n) = −(−1)nβ′+1+···+nβ , as is

easily checked. ✷

The tau functions τmn also lead to Type I normalized mixed mops, as given
in the following proposition.

Proposition 2.3 For α = 1, . . . , q, let

P (α)
mn (y) := P (α,1)

mn (y)ϕt
1(y) + · · · + P (α,p)

mn (y)ϕt
p(y), (25)

where P
(α,β)
mn are the polynomials, defined by

P (α,β)
mn (z) := ǫαβ(m, n)znβ−1 τm−eα,n−eβ

(tβ −
[
z−1
]
)

τmn
, (26)

with leading sign

ǫαβ(m, n) = (−1)m1+···+mα(−1)n1+···+nβ . (27)

Then P
(α,1)
mn (y), . . . , P

(α,p)
mn (y) are Type I |

ψ
−s
α

mixed mops.

Proof Letting

P (α)
mn (y) =

p∑

β=1

P (α,β)
mn (y)ϕt

β(y) =

p∑

β=1

nβ−1∑

j=0

Bj
αβ yj ϕt

β(y), (28)

the orthogonality conditions (13) for Q = P
(α)
mn can be written as the linear

system
p∑

β=1

mβ−1∑

j=0

Bj
αβCβ

j = Eα
mα

,

where Eα
mα

denotes the column vector of size |m| with a 1 at position mα of the
α-th block (so at position m1 + m2 + · · ·+ mα), and zeros elsewhere. Cramer’s
rule now yields

Bj
αβ =

det(C1
0 , C1

1 , . . . , Cβ
j−1, Eα

mα
, Cβ

j+1, . . . , C
p
np−1)

τmn
,

= ǫαβ(m, n)(−1)j+1−nβ
det(D1

0, D1
1, . . . , D

β
j−1, D̂β

j , Dβ
j+1, . . . , D

p
np−1)

τmn
,

11



where the last line was obtained by expanding the determinants along the Eα
mα

column, ǫαβ(m, n) is given by (27) and Dγ
k is the column vector Dγ

k with its
(m1 + · · · + mα)-th entry removed, i.e., Dγ

k := Cγ
k (m − eα). This yields ex-

plicit expressions for the Type I |
ψ
−s
α

mixed mops. To connect them with tau

functions, we notice on the one hand that the columns Dγ
k appear in the ma-

trices which define the tau functions τm−eα,⋆, and on the other hand that these
columns behave in the same way (23) as Cγ

k under shifts. Therefore we can
compute, as before

znβ−1τm−eα,n−eβ
(tβ −

[
z−1
]
)

= det(D1
0, . . . , D

β−1
nβ−1−1, zDβ

0 − Dβ
1 , . . . , zDβ

nβ−2 − Dβ
nβ−1, D

β+1
0 , . . . , Dp

np−1)

=

nβ−1∑

j=0

zj det(D1
0, . . . , D

β
j−1, −Dβ

j+1, . . . ,−Dβ
nβ−1, Dβ+1

0 , . . . , Dp
np−1)

=

nβ−1∑

j=0

(−1)nβ−j−1zj det(D1
0, . . . , D

β
j−1, D̂β

j , Dβ
j+1, . . . , D

p
np−1)

= ǫαβ(m, n)

nβ−1∑

j=0

zj Bj
αβ τmn

= ǫαβ(m, n)P (α,β)
mn (z) τmn.

✷

3 Cauchy transforms

We now show that certain shifts of the tau function, appearing in the Riemann-
Hilbert matrix of [9], are (formal) Cauchy transforms. For a function F and a
weight ψ, define its Cauchy transform as

CψG(z) :=

〈
ψ(x)

z − x
|G(y)

〉
=

∞∑

i=0

1

zi+1

〈
xiψ(x) |G(y)

〉
, (29)

i.e., our Cauchy transforms will be formal in the sense that we always think of z
as being large, and this is precisely how it will be used. The first type of Cauchy
transforms which we are interested in are given in the following proposition.

Proposition 3.1 For α = 1, . . . , q and β = 1, . . . , p, the Cauchy transforms

of Q
(β)
mn(y) = Q

(β,1)
mn (y)ϕt

1(y) + · · · + Q
(β,p)
mn (y)ϕt

p(y), with respect to ψ−s
α can be

expressed in terms of tau functions as follows.

Cψ−s
α

Q(β)
mn(z) = ǫαβ(m, n) z−mα−1 τm+eα,n+eβ

(sα −
[
z−1
]
)

τmn
. (30)
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Proof The proof is based on an investigation of the moment matrix by row.
Therefore we define, for α = 1, . . . , q and for i = 0, 1, 2, . . . the row Ri

α of size |n|
by

Ri
α :=

( (〈
xiψ−s

α (x)
∣∣ yj1ϕt

1(y)
〉)

0≤j1<n1
· · ·

(〈
xiψ−s

α (x)
∣∣ yjpϕt

p(y)
〉)

0≤jp<np

)
.

When its size is important we write Ri
α(n) for Ri

α(n). The moment matrix Tmn

can now be expressed in terms of the rows Ri
α, and so

τmn = det




R0
1

R1
1

...

Rm1−1
1

R0
2

...

R
mq−1
q




. (31)

The tau function which we need to compute is τm+eα,n+eβ
(sα −

[
z−1
]
); so

throughout the proof, Ri
α′ stands for Ri

α′(n + eβ) for all 1 ≤ α′ ≤ q and i =
0, 1, 2, . . .. Notice that the only rows which depend on the time variables sα =
(sα1, sα2, . . .) are the rows Ri

α. Recall the dependence of ψ−s
α on sα as follows

ψ−s
α (x) = ψα(x)e−

P∞
k=1 sαkxk

,

so that, according to the identity (24), when sα gets replaced by sα −
[
z−1
]
,

then ψ−s
α (x) gets replaced by ψ−s

α (x)
(
1 + x

z + x2

z2 + · · ·
)

. It follows that

Ri
α(sα−

[
z−1
]
) =

(〈
xiψ−s

α (x)

(
1 +

x

z
+

x2

z2
+ · · ·

) ∣∣∣ yjβ′ ϕt
β′(y)

〉)

1≤β′<p
0≤jβ′<n′

β′

,

where we introduce the convenient abbreviation n′
β′ := nβ′ + δββ′ = (n + eβ)β′ .

Notice that

Ri
α(sα −

[
z−1
]
) = Ri

α(sα) +
1

z
Ri+1

α (sα −
[
z−1
]
),

for 0 ≤ i ≤ mα − 1; we stop at mα − 1 because the highest index i for which Ri
α

appears in Tm+eα,n+eβ
is i = mα. By recursively applying this formula we get

that for 0 ≤ i ≤ mα − 1

Ri
α(sα −

[
z−1
]
) = Ri

α(sα) + lin. comb. of lower rows.

This leads to the first equality in

z−mα−1τm+eα,n+eβ
(sα −

[
z−1
]
) (32)
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= z−mα−1 det




R0
1

...

Rmα−1
α

Rmα
α (sα −

[
z−1
]
)

R0
α+1

...

R
mq−1
q




= det




R0
1

...

Rmα−1
α

R̃α(z)

R0
α+1

...

R
mq−1
q




.

For the second equality, in which we have put

R̃α(z) :=

( (〈
ψ−s

α (x)
z−x

∣∣ yj1ϕt
1(y)

〉)

0≤j1<n′
1

· · ·
(〈

ψ−s
α (x)
z−x

∣∣ yjpϕt
p(y)

〉)

0≤jp<n′
p

)
,

(33)
it suffices to show that

Rmα
α (sα −

[
z−1
]
) = zmα+1R̃α(z) + lin. comb. of higher rows Ri

α. (34)

To do this, compare a typical entry of Rmα
α (sα −

[
z−1
]
), to wit

〈
xmαψ−s

α (x)

(
1 +

x

z
+

x2

z2
+ · · ·

) ∣∣ yjϕt
β′(y)

〉

= zmα

〈(x

z

)mα

ψ−s
α (x)

(
1 +

x

z
+

x2

z2
+ · · ·

) ∣∣ yjϕt
β′(y)

〉

= zmα

〈
ψ−s

α (x)

((x

z

)mα

+
(x

z

)mα+1

+ · · ·
) ∣∣ yjϕt

β′(y)

〉

with the corresponding typical entry of zmα+1R̃α(z), to wit

zmα+1

〈
ψ−s

α (x)

z − x

∣∣ yjϕt
β′(y)

〉

= zmα

〈
ψ−s

α (x)

(
1 +

x

z
+
(x

z

)2

+ · · ·
) ∣∣ yjϕt

β′(y)

〉
.

It leads to the following explicit expression for (34):

Rmα
α (sα −

[
z−1
]
) +

mα−1∑

i=0

zmα−iRi
α(sα) = zmα+1R̃α(z),

and hence to the proof of the second equality in (32).

In order to make the connection with mixed mops, we introduce for β′ =

1, . . . , p the row Sβ′

β (z) of size |n + eβ| = |n| + 1 which has zeroes everywhere,

except in its β′-th block, namely7

Sβ′

β (y) =

(
0 . . . 0

(
yj
)
0≤j<n′

β′
0 . . . 0

)
.

7Recall that n′
β′ = nβ′ + δββ′ .
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Notice that with this notation, definition (33) of R̃α(z) can be rewritten as

R̃α(z) = Cψ−s
α




p∑

β′=1

Sβ′

β (z)ϕt
β′(z)



 . (35)

It suggests the introduction of the following polynomials (in y)

Sβ′

αβ(y) := det




R0
1

...

Rmα−1
α

Sβ′

β (y)

R0
α+1

...

R
mq−1
q




. (36)

Expanding this determinant along its (m1 + · · · + mα + 1)-th row, which is the

(unique) row that contains y, it is clear that if β′ �= β, then deg Sβ′

αβ(y) < n′
β′ =

nβ′ . In view of (31) we also have8

Sβ
αβ(y) = ǫαβ (m, n) τmnynβ + O(ynβ−1).

Moreover, for any α′ = 1, . . . , q and i = 0, . . . , mα′ − 1, we have by linearity of
the determinant

〈
xiψ−s

α′ (x)

∣∣∣∣∣∣

p∑

β′=1

Sβ′

αβ(y)ϕt
β′(y)

〉

=

〈
xiψ−s

α′ (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det




R0
1

...

Rmα−1
α

p∑

β′=1

Sβ′

β (y)ϕt
β′(y)

R0
α+1

...

R
mq−1
q




〉
(37)

8See (27) for the definition of ǫαβ(m, n).
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= det




R0
1

...

Rmα−1
α(〈

xiψ−s
α′ (x)

∣∣∣ yjϕt
β′(y)

〉)
1≤β′<p
0≤j<n′

β′

R0
α+1

...

R
mq−1
q




= det




R0
1

...

Rmα−1
α

Ri
α′

R0
α+1

...

R
mq−1
q




,

which is zero, since the latter matrix has two identical rows (i < mα′). This
shows that

ǫαβ(m, n)

τmn
S1

αβ(y) , . . . ,
ǫαβ(m, n)

τmn
Sp

αβ(y)

are type II mixed mops, normalized with respect to ϕt
β . It follows from Propo-

sition 2.2 that
Sβ′

αβ(y) = ǫαβ(m, n) τmn Q(β,β′)
mn (y), (38)

for any9 α = 1, . . . , q. Since Q
(β)
mn(y) = Q

(β,1)
mn (y)ϕt

1(y) + · · ·+ Q
(β,p)
mn (y)ϕt

p(y), it
follows from (32), (35), (38) and (20) that

z−mα−1 τm+eα,n+eβ
(sα −

[
z−1
]
)

τmn
=

1

τmn
Cψ−s

α




p∑

β′=1

Sβ′

αβ(z)ϕt
β′(z)





= ǫαβ(m, n) Cψ−s
α




p∑

β′=1

Q(β,β′)
mn (z)ϕt

β′(z)





= ǫαβ(m, n) Cψ−s
α

Q(β)
mn(z) (39)

This finishes the proof. ✷

Observe our proof shows, as a byproduct, that each Q
(β)
mn(y) is expressible nat-

urally as a determinant, like in the classical case, namely

Q(β)
mn(y) =

ǫαβ(m, n)

τmn
det




R0
1
...

Rmα−1
α

p∑

β′=1

Sβ′

β (y)ϕt
β′(y)

R0
α+1
...

R
mq−1
q




. (40)

9The formulas for the different values of α are all the same, up to a sign, as they amount
to changing the location of a row in the evaluation of a determinant.
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We now get to the second type of Cauchy transforms which correspond to the

Type I mops P
(α)
mn (y).

Proposition 3.2 For 1 ≤ α, α′ ≤ q the Cauchy transforms of P
(α′)
mn (y) =

P
(α′,1)
mn (y) ϕt

1(y) + · · ·+ P
(α′,p)
mn (y)ϕt

p(y) with respect to ψ−s
α can be expressed in

terms of tau functions as follows:

Cψ−s
α

P (α)
mn (z) = z−mα

τmn(sα −
[
z−1
]
)

τmn
, (41)

Cψ−s
α

P (α′)
mn (z) = εα′α(m) z−1−mα

τm+eα−eα′ ,n(sα −
[
z−1
]
)

τmn
, α′ �= α.(42)

Proof Up to a relabeling of the indices, the shifted tau functions in question
were already expressed as polynomials in the previous proof. Let us show how
this leads to a quick proof of (41). Shifting the mα and nβ indices down by 1,
it follows from (32) that

z−mατmn(sα −
[
z−1
]
) = det




R0
1
...

Rmα−2
α

R̃α(z)
R0

α+1
...

R
mq−1
q




,

while the orthogonality relations (37) become

〈
xiψ−s

α′ (x)

∣∣∣∣∣∣

p∑

β′=1

Sβ′

αβ(y)ϕt
β′(y)

〉
= det




R0
1

...

Rmα−2
α

Ri
α′

R0
α+1

...

R
mq−1
q




= δαα′δi,mα−1τmn. (43)

Since deg Sβ′

αβ < nβ′ for β′ = 1, . . . , p this means that the polynomials

1

τmn
S1

αβ(y) , . . . ,
1

τmn
Sp

αβ(y)

are type I mixed mops, normalized with respect to ψ−s
α , so they coincide ac-

cording to Proposition 2.3 with the polynomials P
(α,1)
mn (y), . . . , P

(α,p)
mn (y). We
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conclude, as in (39), that

z−mα
τmn(sα −

[
z−1
]
)

τmn
=

1

τmn
Cψ−s

α




p∑

β′=1

Sβ′

αβ(z)ϕt
β′(z)



 = Cψ−s
α

P (α)
mn (z).

Similarly, one obtains (42) from (30) by shifting m′
α and nβ down by 1; the sign

in this case is determined (for α′ < α) from the right hand side of (43) now
taking the form

det




R0
1

...

R
mα′−2
α′

R0
α′+1
...

Rmα−1
α

Ri
α′′

R0
α+1

...

R
mq−1
q




= εα′α(m) det




R0
1

...

R
mα′−2
α′

Ri
α′′

R0
α′+1
...

Rmα−1
α

R0
α+1

...

R
mq−1
q




= εα′α(n) δα′α′′δi,mα′−1τmn.

✷

4 Duality

By interchanging the rôles of the weights ψt
α with the weights ϕ−s

β we obtain
Type I |

ϕt
β

mixed mops and Type II |
ψ
−s
α

mixed mops, expressed in terms of tau

functions, leading to a duality. As a general rule, in order to dualize a formula
one does the following exchanges

q ↔ p, m ↔ n, ψ ↔ ϕ, s ↔ −t, x ↔ y. (44)

At the level of the indices, duality amounts to

α ↔ β, i ↔ j. (45)

As for the mixed mops which we have constructed, they will correspond to new
mixed mops for which we will use the same letter, but adding a star. Thus,

P (α)
mn ↔ P ∗(β)

nm , P (α,β)
mn ↔ P ∗(β,α)

nm , Q(β)
mn ↔ Q∗(α)

nm , Q(β,β′)
mn ↔ Q∗(α,α′)

nm .
(46)

What happens to the tau functions τmn? To see this, pick a typical shifted tau
function τm+eα−eα′ ,n(sα −

[
z−1
]
) and make its dependence on the weights and

18



on all times explicit, writing τm+eα−eα′ ,n(s −
[
z−1
]
eα, t; ψ, ϕ). According to

the above rule it becomes τn+eβ−eβ′ ,m(−t−
[
z−1
]
eβ ,−s; ϕ, ψ) which is equal to

τm,n+eβ−eβ′ (s, t +
[
z−1
]
eβ ; ψ, ϕ), since transposing the moment matrix has no

effect on the determinant, while it permutes the indices in the tau function, it
permutes the time-dependence (with signs) and it permutes the weights. Thus,

τmn ↔ τmn

τmn(tβ −
[
z−1
]
) ↔ τmn(sα +

[
z−1
]
)

τm−eα,n−eβ
(tβ −

[
z−1
]
) ↔ τm−eα,n−eβ

(sα +
[
z−1
]
)

τm+eα−eα′ ,n(sα −
[
z−1
]
) ↔ τm,n+eβ−eβ′ (tβ +

[
z−1
]
),

and so on. Dualizing Propositions 2.2 and 2.3, we get the following proposition.

Proposition 4.1 For α = 1, . . . , q and β = 1, . . . , p, let

P
∗(β)
nm (x) := P

∗(β,1)
nm (x)ψ−s

1 (x) + · · · + P
∗(β,q)
nm (x)ψ−s

q (x),

Q
∗(α)
nm (x) := Q

∗(α,1)
nm (x)ψ−s

1 (x) + · · · + Q
∗(α,q)
nm (x)ψ−s

q (x),
(47)

where P
∗(β,α)
nm and Q

∗(α,α′)
nm are the polynomials, defined by

P ∗(β,α)
nm (z) := ǫβα(n, m)zmα−1 τm−eα,n−eβ

(sα +
[
z−1
]
)

τmn
, (48)

and

Q
∗(α,α)
nm (z) := zmα

τmn(sα +
[
z−1
]
)

τmn

Q
∗(α,α′)
nm (z) := εαα′(m)zmα′−1 τm+eα−eα′ ,n(sα′ +

[
z−1
]
)

τmn
, α′ �= α.

(49)

Then P
∗(β,1)
nm (x), . . . , P

∗(β,q)
nm (x) are Type I |

ϕt
β

mixed mops, while Q
∗(α1)
nm (x), . . . , Q

∗(α,q)
nm (x)

are Type II |
ψ
−s
α

mixed mops.

✷

Dualizing Definition (29) we get the following definition for the dual Cauchy
transform: for any function F and a weight ϕ we put

C∗
ϕF (z) :=

∫∫

R2

ϕ(y)

z − y
F (x)dµ(x, y) =

〈
F (x)

∣∣∣∣
ϕ(y)

z − y

〉
. (50)

If we dualize now Propositions 3.1 and 3.2, then we get the following proposition.

Proposition 4.2 For α = 1, . . . , q and β, β′ = 1, . . . , p, the Cauchy transforms

of P
∗(β′)
nm (x) with respect to ϕt

β, and of Q
∗(α)
nm (x) with respect to ϕt

β can be ex-
pressed in terms of tau functions as follows:

C∗
ϕt

β
P ∗(β)

nm (z) = z−nβ
τmn(tβ +

[
z−1
]
)

τmn
,

19



C∗
ϕt

β
P ∗(β′)

nm (z) = εβ′β(n) z−1−nβ
τm,n+eβ−eβ′ (tβ +

[
z−1
]
)

τmn
, β′ �= β,

and

C∗
ϕt

β
Q∗(α)

nm (z) = ǫβα(n, m) z−nβ−1 τm+eα,n+eβ
(tβ +

[
z−1
]
)

τmn
.

✷

5 The Riemann-Hilbert matrix and the bilinear

identity

Orthogonal polynomials were shown to be characterized by a Riemann-Hilbert
problem in [11] and [10]. This was generalized by Daems and Kuijlaars to the
case of mixed mops. According to [9]10 the corresponding Riemann-Hilbert
matrix is given by the (p + q) × (p + q) matrix

Ymn(z) :=




(
Q

(β,β′)
mn

)
1≤β≤p
1≤β′≤p

(
Cψ−s

α
Q

(β)
mn

)
1≤β≤p
1≤α≤q

(
P

(α,β)
mn

)
1≤α≤q
1≤β≤p

(
Cψ−s

α
P

(α′)
mn

)
1≤α′≤q
1≤α≤q




=




0

B

B

@

ε
ββ′ (n)

τm,n+eβ−e
β′

(t
β′−[z−1])

τmn
z

n
β′+δ

ββ′−1

1

C

C

A

1≤β≤p

1≤β′≤p

 

ǫαβ(m,n)
τm+eα,n+eβ

(sα−[z−1])
τmn

z−mα−1

!

1≤β≤p

1≤α≤q
 

ǫαβ(m,n)
τm−eα,n−eβ

(tβ−[z−1])
τmn

znβ−1

!

1≤α≤q

1≤β≤p

 

εα′α(m)
τm+eα−e

α′ ,n(sα−[z−1])
τmn

zδ
αα′−1−mα

!

1≤α′≤q

1≤α≤q




whose inverse transpose matrix is given by

Y ∗
mn(z) =




(
C∗

ϕt
β

P
∗(β′)
nm

)
1≤β′≤p
1≤β≤p

(
−P

∗(β,α)
nm

)
1≤β≤p
1≤α≤q

(
−C∗

ϕt
β

Q
∗(α)
nm

)
1≤α≤q
1≤β≤p

(
Q

∗(α,α′)
nm

)
1≤α≤q
1≤α′≤q




=




0

B

B

@

ε
β′β

(n)

τm,n+eβ−e
β′

(tβ+[z−1])
τmn

z
δ
β′β

−1−nβ

1

C

C

A

1≤β′≤p

1≤β≤p

 

−ǫβα(n,m)
τm−eα,n−eβ

(sα+[z−1])
τmn

zmα−1

!

1≤β≤p

1≤α≤q
 

−ǫβα(n,m)
τm+eα,n+eβ

(tβ+[z−1])
τmn

z−nβ−1

!

1≤α≤q

1≤β≤p

 

εαα′ (m)
τm+eα−e

α′ ,n(s
α′+[z−1])

τmn
zδ

αα′−1+m
α′

!

1≤α≤q

1≤α′≤q




We will obtain bilinear identities for these tau functions from an identity which
is satisfied by the Riemann-Hilbert matrix and its adjoint. We define the wave
matrix Wmn(z) by Ymn(z)∆(z), where ∆(z) is the diagonal matrix11

∆(z) := diag(eξ(t1,z), . . . , eξ(tp,z), eξ(s1,z), eξ(sq,z)),

10Up to a factor diag(Ip, −2π
√
−1Iq) which we suppress.

11Throughout this section, we set ξ(t, z) :=
P∞

1
tkzk.
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with adjoint wave matrix Y ∗
mn(z)∆−1(z). In order to make the dependence

on the time variables (s, t) explicit, we will write Wmn(z; s, t) for W (z) and
W ∗

mn(z; s, t) for W ∗
mn(z).

Theorem 5.1 The tau functions τmn satisfy the following bilinear identities
that characterize the tau functions of the (p + q)-KP hierarchy (see [13]):

∮

∞

Wmn(z; s, t)W ∗
m∗n∗(z; s∗, t∗)⊤dz = 0,

which is equivalent to the single identity

p∑

β=1

∮

∞

(−1)σβ(n) τm,n−eβ
(tβ −

[
z−1
]
)τm∗,n∗+eβ

(t∗β +
[
z−1
]
)eξ(tβ−t∗β ,z) znβ−n∗

β−2 dz =

q∑

α=1

∮

∞

(−1)σα(m) τm+eα,n(sα −
[
z−1
]
)τm∗−eα,n∗(s∗α +

[
z−1
]
)eξ(sα−s∗

α,z) zm∗
α−mα−2 dz, (51)

where

σα(m) =
α∑

α′=1

(mα′ − m∗
α′) and σβ(n) =

β∑

β′=1

(nβ′ − n∗
β′). (52)

and |m∗| = |n∗| + 1 and |m| = |n| − 1.

Proof For the entry (β′, β′′) of the product

Y ∆(Y ∗∆−1)⊤ = Y diag(eξ(t1−t∗1 ,z), . . . , eξ(tp−t∗p,z), eξ(s1−s∗
1,z), . . . , eξ(sq−s∗

q ,z))Y ∗⊤,

we need to prove that

p∑

β=1

∮

∞

Q(β′,β)
mn (z) C∗

ϕt∗

β

P
∗(β′′)
n∗m∗ (z) eξ(tβ−t∗β ,z) dz =

q∑

α=1

∮

∞

Cψ−s
α

Q(β′)
mn (z)P

∗(β′′,α)
n∗m∗ (z) eξ(sα−s∗

α,z) dz

(53)
where it is understood that all polynomials P ∗ go with starred times s∗ and
t∗. Also, the integral stands for (minus) the residue at infinity, and can be
computed using the following formal residue identities, with f(z) =

∑∞
i=0 aiz

i,

1

2π
√
−1

∮

∞

f(z) Cψg(z) dz = 〈f(x)ψ(x) | g(y) 〉 , (54)

1

2π
√
−1

∮

∞

C∗
ϕf(z) g(z) dz = 〈f(x) |ϕ(y)g(y) 〉 , (55)

whose proof we defer until the end. Using this, and Definition (47) of the

functions P
∗(β)
nm (x), the left hand side in (53) becomes (up to a factor 2π

√
−1)

p∑

β=1

〈
P

∗(β′′)
n∗m∗ (x)

∣∣∣Q(β′,β)
mn (y)ϕt∗

β (y) eξ(tβ−t∗β ,y)
〉

=

p∑

β=1

〈
P

∗(β′′)
n∗m∗ (x)

∣∣∣Q(β′,β)
mn (y)ϕt

β(y)
〉

=
〈
P

∗(β′′)
n∗m∗ (x)

∣∣∣Q(β′)
mn (y)

〉
.
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Similarly, the right hand side in (53) becomes (up to a factor 2π
√
−1)

q∑

α=1

〈
P

∗(β′′,α)
n∗m∗ (x)ψ−s

α (x) eξ(sα−s∗
α,x)

∣∣∣Q(β′)
mn (y)

〉
=

q∑

α=1

〈
P

∗(β′′,α)
n∗m∗ (x)ψ−s∗

α (x)
∣∣∣Q(β′)

mn (y)
〉

=
〈
P

∗(β′′)
n∗m∗ (x)

∣∣∣Q(β′)
mn (y)

〉
.

The three other identities are obtained in the same way.

In terms of tau functions, it means that we have shown that for any m, n, m∗, n∗, β′

and β′′, with |m| = |n| and |m∗| = |n∗| the following bilinear identities hold:

p∑

β=1

∮

∞

♣ τm,n+eβ′−eβ
(tβ −

[
z−1
]
)τm∗,n∗+eβ−eβ′′ (t

∗
β +

[
z−1
]
)eξ(tβ−t∗β ,z) dz =

q∑

α=1

∮

∞

♠ τm+eα,n+eβ′ (sα −
[
z−1
]
)τm∗−eα,n∗−eβ′′ (s

∗
α +

[
z−1
]
)eξ(sα−s∗

α,z) dz,

where

♣ = εβ′β(n)εβ′′β(n∗)znβ−n∗
β−2+δββ′+δββ′′ ,

♠ = ǫαβ′(m, n)ǫβ′′α(n∗, m∗)zm∗
α−mα−2.

For different values of β′ and β′′ this yields the same identity, up to a relabeling
of n and n∗. Namely, replace in the bilinear identity n+eβ′ by n and n∗−eβ′′ by

n∗ and multiply by (−1)n1+···+nβ′ (−1)n∗
1+···+n∗

β′′ to find the following symmetric
expression for the identity, that is independent of β′ and β′′:

p∑

β=1

∮

∞

(−1)σβ(n) τm,n−eβ
(tβ −

[
z−1
]
)τm∗,n∗+eβ

(t∗β +
[
z−1
]
)eξ(tβ−t∗β ,z) znβ−n∗

β−2 dz =

q∑

α=1

∮

∞

(−1)σα(m) τm+eα,n(sα −
[
z−1
]
)τm∗−eα,n∗(s∗α +

[
z−1
]
)eξ(sα−s∗

α,z) zm∗
α−mα−2 dz,

where σα(m) and σβ(n) are given by (52). Notice that, due to the shift, one
must have in this symmetric form that |m| = |n| − 1 and |m∗| = |n∗| + 1. The
other three identities also yield the above identity, up to relabeling.

Finally, to prove (54), compute

1

2π
√
−1

∮

∞

f(z)

〈
ψ(x)

z − x
| g(y)

〉
dz =

1

2π
√
−1

∮

∞

∞∑

i=0

aiz
i

∞∑

j=0

1

zj+1

〈
xjψ(x) | g(y)

〉

=
∞∑

i=0

ai

〈
xiψ(x) | g(y)

〉
=

〈
∞∑

i=0

aix
i ψ(x) | g(y)

〉
= 〈f(x)ψ(x) | g(y) 〉 ,

and similarly for (55), completing the proof. ✷
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6 Consequences of the bilinear identities

In this section we will derive from the bilinear identities (51) a series of PDE’s
for the tau functions τmn. In order to keep the formulas transparant we will use
the following simplification in the notation. Recall that we have time variables
sα = (sα1, sα2, . . .) and tβ = (tβ1, tβ2, . . .), where α = 1, . . . , q and β = 1, . . . , p.
In the bilinear identities (51) we consider in each term a shift in tα, for a single
α, or in sβ , for a single β; we will denote this tα or sβ by v (so v is an infinite
vector v = (v1, v2, . . .) and we assemble all the other r := p + q − 1 series
of time variables in w = (w1, w2, . . . , wr), where w1 = (w11, w12, . . .) and so
on. Moreover, precisely like in the bilinear identities we will want to consider an
independent collection of all these variables, in fact we will consider here (v′, w′)
and (v′′, w′′) besides (v, w). We use the Hirota symbol, which takes in our case
the following form

P (∂v, ∂w)F ◦G = P (∂v′ , ∂w′)F (v + v′, w + w′)G(v − v′, w − w′)∣∣
v′=w′=0

. (56)

The elementary Schur polynomials Sℓ(v) are defined by

e
P∞

k=1 vkzk

=
∞∑

k=0

Sk(v)zk, (57)

for ℓ ≥ 0 and Sℓ(v) := 0 otherwise. In particular, if we put degree vi := i, then

S0 = 1, S1(v) = v1, Sℓ(v) = vℓ + degree ℓ in v1, . . . , vℓ−1. (58)

We also use the standard notation

∂̃v =

(
∂

∂v1
,

1

2

∂

∂v2
,

1

3

∂

∂v3
, . . .

)
.

We first give an identity which will allow us to compute the formal residues
which appear in (51) in terms of derivatives of the tau function.

Lemma 6.1 For any n ∈ Z we have the following formal residue identity

∮

∞

F (v′′ +
[
z−1
]
, w′′)G(v′ −

[
z−1
]
, w′) e

P∞
ℓ=0(v

′
ℓ−v′′

ℓ )zℓ

zn dz

2π
√
−1

=
∑

j≥0

Sj−1−n(−2a)Sj(∂̃v) e
P∞

ℓ=1(aℓ
∂

∂vℓ
+
Pr

γ=1 bγℓ
∂

∂wγℓ
)
F (v, w) ◦ G(v, w),

(59)
where

v′ = v − a, v′′ = v + a, w′
i = wi − bi, w′′

i = wi + bi,

a = (a1, a2, a3, . . .), bi = (bi1, bi2, bi3, . . .),

for 1 ≤ i ≤ r.
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Proof The proof is an immediate, but tricky, consequence of Definition (57) of
the Schur functions and of the following two properties of the Hirota symbol:

F (v +
[
z−1
]
, w)G(v −

[
z−1
]
, w) =

∞∑

j=0

z−jSj(∂̃v)F ◦ G,

F (v + a, w + b)G(v − a, w − b) = e
P∞

ℓ=0(aℓ
∂

∂vℓ
+
Pr

γ=1 bγℓ
∂

∂wγℓ
)
F ◦ G.

✷

Proposition 6.2 The bilinear equations imply, upon specialization, that the tau
functions τmn, with |m| = |n| satisfy the following PDE’s expressed in terms of
the Hirota symbol:

τ2
mn

∂2

∂tβ,ℓ+1∂tβ′,1
ln τmn = Sℓ+2δββ′ (∂̃tβ

)τm,n+eβ−eβ′ ◦ τm,n+eβ′−eβ
(60)

τ2
mn

∂2

∂sα,ℓ+1∂sα′,1
ln τmn = Sℓ+2δαα′ (∂̃sα

)τm+eα′−eα,n ◦ τm+eα−eα′ ,n(61)

−τ2
mn

∂2

∂sα,1∂tβ,ℓ+1
ln τmn = Sℓ(∂̃tβ

)τm+eα,n+eβ
◦ τm−eα,n−eβ

(62)

−τ2
mn

∂2

∂tβ,1∂sα,ℓ+1
ln τmn. = Sℓ(∂̃sα

)τm−eα,n−eβ
◦ τm+eα,n+eβ

(63)

Equations (60) resp. (61) for β′ = β (resp. for α′ = α) yield a solution to the
KP hierarchy in tβ (resp. in sα), while for β′ �= β and α′ �= α, (60) — (63)
yields

∂2

∂tβ,1∂tβ′,1
ln τmn =

τm,n+eβ−eβ′ τm,n+eβ′−eβ

τ2
mn

(64)

∂2

∂sα,1∂sα′,1
ln τmn =

τm+eα′−eα,nτm+eα−eα′ ,n

τ2
mn

(65)

∂2

∂sα,1∂tβ,1
ln τmn = −τm+eα,n+eβ

τm−eα,n−eβ

τ2
mn

(66)

∂

∂tβ,1
ln

τm,n+eβ−eβ′

τm,n+eβ′−eβ

=

∂2

∂tβ,2∂tβ′,1
ln τmn

∂2

∂tβ,1∂tβ′,1
ln τmn

(67)

∂

∂sα,1
ln

τm−eα+eα′ ,n

τm−eα′+eα,n
=

∂2

∂sα,2∂sα′,1
ln τmn

∂2

∂sα,1∂tα′,1
ln τmn

(68)

∂

∂tβ,1
ln

τm+eα,n+eβ

τm−eα,n−eβ

=

∂2

∂tβ,2∂sα,1
ln τmn

∂2

∂tβ,1∂sα,1
ln τmn

(69)

∂

∂sα,1
ln

τm−eα,n−eβ

τm+eα,n+eβ

=

∂2

∂sα,2∂tβ,1
ln τmn

∂2

∂sα,1∂tβ,1
ln τmn

. (70)
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It leads to the following
(
p+q
2

)
PDE’s for ln τmn involving not just one sα or tβ,

but a few of them

∂

∂tβ′,1




∂2

∂tβ,2∂tβ′,1
ln τmn

∂2

∂tβ,1∂tβ′,1
ln τmn



+
∂

∂tβ,1




∂2

∂tβ′,2∂tβ,1
ln τmn

∂2

∂tβ′,1∂tβ,1
ln τmn



 = 0, (71)

∂

∂sα′,1




∂2

∂sα,2∂sα′,1
ln τmn

∂2

∂sα,1∂sα′,1
ln τmn



+
∂

∂sα,1




∂2

∂sα′,2∂sα,1
ln τmn

∂2

∂sα′,1∂sα,1
ln τmn



 = 0, (72)

∂

∂sα,1




∂2

∂tβ,2∂sα,1
ln τmn

∂2

∂tβ,1∂sα,1
ln τmn



+
∂

∂tβ,1




∂2

∂sα,2∂tβ,1
ln τmn

∂2

∂sα,1∂tβ,1
ln τmn



 = 0. (73)

Proof Let us denote for a = (a1, . . . , aq) and b = (b1, . . . , bq) by Ω(a, b) the
differential operator

Ω(a, b) :=

∞∑

ℓ=1




q∑

α′=1

aα′ℓ
∂

∂sα′ℓ
+

p∑

β′=1

bβ′ℓ
∂

∂tβ′ℓ



. (74)

Using Lemma (6.1), rewrite the bilinear identity12 (51):

p∑

β=1

(−1)σβ(n)
∞∑

k=0

Sn∗
β
−nβ+1+k(−2bβ)Sk(∂̃tβ

)eΩ(a,b)τm∗,n∗+eβ
◦ τm,n−eβ

−
q∑

α=1

(−1)σα(m)
∞∑

k=0

Smα−m∗
α+1+k(−2aα)Sk(∂̃sα

)eΩ(a,b)τm∗−eα,n∗ ◦ τm+eα,n = 0.

(75)
Note that all infinite vectors aα and bβ can be chosen completely arbitrary. We
set all components of a and b equal to zero, except bβ,ℓ+1 = B �= 0 (for some
fixed β and ℓ), and we set m∗ = m and n∗ − n = −2eβ′ (for some fixed β′).
Then only the first term in (75) survives, the signs σβ(n) are all 1 (see (52))
and, in view of (58), the identity (75) becomes

0 =

p∑

β′′=1

∞∑

k=0

S1+k−2δβ′β′′ (−2bβ′′)Sk(∂̃tβ′′ )e
B ∂

∂tβ,ℓ+1 τm,n+eβ′′−2eβ′ ◦ τm,n−eβ′′

= B

(
−2Sℓ+2δββ′ (∂̃tβ

)τm,n+eβ−2eβ′ ◦ τm,n−eβ
+

∂2

∂tβ′,1∂tβ,ℓ+1
τm,n−eβ′ ◦ τm,n−eβ′

)
+ O(B2).

Expressing that the coefficient of B in this expression must vanish we get (60),
upon relabeling n−eβ′ �→ n and upon using the following property of the Hirota
symbol, valid for f depending on (time-) variables s and t:

∂2

∂t∂s
F ◦ F = 2F 2 ∂2

∂t∂s
lnF. (76)

12Recall that in this form of the bilinear identity |m∗| = |n∗| + 1 and |m| = |n| − 1.
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(61) follows from (60) by duality, using P (−∂s)F ◦ G = P (∂s)G ◦ F . In order
to obtain (62) we consider again (75), with bβ,ℓ+1 = B �= 0 and all other
components of a and b equal to zero, but we set now n∗ = n and m−m∗ = −2eα.
Then (75) becomes

0 =

∞∑

k=0

Sk+1(−2bβ)Sk(∂̃β) e
B ∂

∂tβ,ℓ+1 τm+2eα,n+eβ
◦ τm,n−eβ

−
∞∑

k=0

Sk−1(0)Sk(∂̃sα
) e

B ∂
∂tβ,ℓ+1 τm+eα,n ◦ τm+eα,n

= −B

(
2Sℓ(∂̃tβ

)τm+2eα,n+eβ
◦ τm,n−eβ

+
∂2

∂sα,1∂tβ,ℓ+1
τm+eα,n ◦ τm+eα,n

)
+ O(B2).

The nullity of the coefficient of B in this expression, rewritten by using (76),
leads at once to (62), upon doing the relabeling m + eα �→ m. From it, (63)
follows by duality. Equations (64) — (66) follow from (60) — (62) by setting
β′ �= β, α′ �= α and ℓ = 0. Equations (67) — (70) follow from (60) — (63) by
setting β′ �= β, α′ �= α and forming in each equation the ratio of the cases ℓ = 0
and ℓ = 1, and using the following property of the Hirota symbol, valid for F
and G depending on a (time-) variable t:

∂

∂t
F ◦ G = FG

∂

∂t

(
ln

F

G

)
.

Equations (71) — (73) are just respectively the compatibility equations between
(67) and (67)β↔β′ , between (68) and (68)α↔α′ , and between between (69) and
(70). ✷

Corollary 6.3 The tau functions τmn and the polynomials P
∗(β′′)
n∗m∗ (x) = P

∗(β′′)
n∗m∗ (x, s∗, t∗),

Q
(β′)
mn (y) = Q

(β′)
mn (y, s, t) appearing in Y ∗ and Y respectively, satisfy the following

4 formal series identities (δβ′β′′(n, n∗) = (−1)n1+n2+···+nβ′+n∗
1+n∗

2+···+n∗
β′′ ):

0 = δβ′β′′(n, n∗)τmn(s, t)τm∗n∗(s∗, t∗)
〈
P

∗(β′′)
n∗m∗ (x)

∣∣∣Q(β′)
mn (y)

〉
˛

˛

˛

˛

˛

˛

˛

˛

˛

m∗ �→ m
n �→ n − eβ′ + eβ̂ , n∗ �→ n + eβ′′ − eβ̂

s∗α �→ sα, tβ �→ tβ − bβ, t∗β �→ tβ + bβ

=

p∑

β=1

∞∑

ℓ=0

bβ,ℓ+1




−2Sℓ+2δ
ββ̂

(∂̃tβ
)τm,n+eβ−e

β̂
◦ τm,n−eβ+e

β̂

+
∂2

∂tβ̂,1∂tβ,ℓ+1
τmn ◦ τmn


+ O(b2),

0 = δβ′β′′(n, n∗)τmn(s, t)τm∗n∗(s∗, t∗)
〈
P

∗(β′′)
n∗m∗ (x)

∣∣∣Q(β′)
mn (y)

〉
˛

˛

˛

˛

˛

˛

˛

˛

m �→ m − eα̂, m∗ �→ m + eα̂

n �→ n − eβ′ , n∗ �→ n + eβ′′

sα �→ sα − aα, s∗α �→ sα + aα, t∗β �→ tβ

=

q∑

α=1

∞∑

ℓ=0

aα,ℓ+1




2Sℓ+2δαα̂

(∂̃sα
)τm+eα̂−eα,n ◦ τm−eα̂+eα,n

− ∂2

∂sα̂,1∂sα,ℓ+1
τmn ◦ τmn



+ O(a2),
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δβ′β′′(n, n∗)τmn(s, t)τm∗n∗(s∗, t∗)
〈
P

∗(β′′)
n∗m∗ (x)

∣∣∣Q(β′)
mn (y)

〉
˛

˛

˛

˛

˛

˛

˛

˛

m �→ m − eα̂, m∗ �→ m + eα̂

n �→ n − eβ′ , n∗ �→ n + eβ′′

s∗α �→ sα, tβ �→ tβ − bβ , t∗β �→ tβ + bβ

= −2

p∑

β=1

∞∑

ℓ=0

bβ,ℓ+1Sℓ(∂̃tβ
)τm+eα̂,n+eβ

◦ τm−eα̂,n−eβ
+ O(b2)

and

=

p∑

β=1

∞∑

ℓ=0

bβ,ℓ+1
∂2

∂sα̂,1∂tβ,ℓ+1
τmn ◦ τmn + O(b2),

δβ′β′′(n, n∗)τmn(s, t)τm∗n∗(s∗, t∗)
〈
P

∗(β′′)
n∗m∗ (x)

∣∣∣Q(β′)
mn (y)

〉
˛

˛

˛

˛

˛

˛

˛

˛

˛

m∗ �→ m
n �→ n − eβ′ + eβ̂, n∗ �→ n + eβ′′ − eβ̂

sα �→ sα − aα, s∗α �→ sα + aα, t∗β �→ tβ

=

q∑

α=1

∞∑

ℓ=0

aα,ℓ+1
∂2

∂tβ̂,1∂sα,ℓ+1
τmn ◦ τmn + O(a2),

and

= −2

q∑

α=1

∞∑

ℓ=0

aα,ℓ+1Sℓ(∂̃sα
)τm−eα,n−e

β̂
◦ τm+eα,n+eβ

+ O(a2).

Proof ¿From the proof of Theorem 5.1 and (59) it follows that

δβ′β′′(n, n∗)τmn(s, t)τm∗n∗(s∗, t∗)
〈
P

∗(β′′)
n∗m∗ (x)

∣∣∣Q(β′)
mn (y)

〉
˛

˛

˛

˛

˛

˛

˛

˛

n �→ n − eβ′ , n∗ �→ n∗ + eβ′′

sα �→ sα − aα, s∗α �→ sα + aα

tβ �→ tβ − bβ , t∗β �→ tβ + bβ

=

p∑

β=1

(−1)σβ(n)
∞∑

k=0

Sn∗
β
−nβ+1+k(−2bβ)Sk(∂̃tβ

)eΩ(a,b)τm∗,n∗+eβ
◦ τm,n−eβ

and

=

q∑

α=1

(−1)σα(m)
∞∑

k=0

Smα−m∗
α+1+k(−2aα)Sk(∂̃sα

)eΩ(a,b)τm∗−eα,n∗ ◦ τm+eα,n

and so if we just follow the 4 specializations leading to (60) – (63), in order, we
find the 4 equations of the corollary, in their given order. ✷

7 Examples

7.1 Biorthogonal polynomials (p = q = 1)

Given the (not necessarily symmetric) inner product with regard to the weight
ρ(x, y) on R

2,

〈f(x) | g(y) 〉 :=

∫∫

R2

f(x)g(y)ρ(x, y) dx dy
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and the deformed weight

ρt,s(x, y) = e
P∞

1 (tkyk−skxk)ρ(x, y).

Setting p = q = 1, m = m1, n = n1, with m = n, implies that the indices m, n
in τmn can be replaced by one single index; namely, set τn := τmn, where

τn(t, s) = det
(〈

xie−
P∞

1 skxk
∣∣∣ yje

P∞
1 tkyk

〉)

0≤i,j≤n−1
.

Moreover, set ψ1 = ϕ1 = 1 and define the monic polynomials p
(1)
n (y) :=

p
(1)
n (t, s; y) and p

(2)
n (x) := p

(2)
n (t, s; x) (with h−1

n−1 the leading coefficient of

P
∗(1,1)
nm (x)) by

p(1)
n (y) := Q(1,1)

mn (y) = yn + · · ·
h−1

n−1p
(2)
n−1(x) := P ∗(1,1)

nm (x) = h−1
n−1x

n−1 + · · ·

The orthogonality conditions (4) and (6) imply
〈
xie−

P∞
1 skxk

∣∣∣ p(1)
n (y)e

P∞
1 tkyk

〉
= 0 for 0 ≤ i ≤ n − 1

〈
h−1

n p(2)
n (x)e−

P∞
1 skxk

∣∣∣ yje
P∞

1 tkyk
〉

= 0 for 0 ≤ j ≤ n − 1

= 1 for j = n.

for all n ≥ 0, from which the bi-orthogonality can be deduced13

∫∫

R2

p(2)
n (x)p(1)

m (y)ρt,s(x, y)dxdy = δnmhn.

¿From (3), (5), (7) and (8) and from hn = τn+1/τn, it follows that

zn τn(t − [z−1], s)

τn(t, s)
= p(1)

n (z)

zn τn(t, s + [z−1])

τn(t, s)
= p(2)

n (z)

z−n−1 τn+1(t + [z−1], s)

τn(t, s)
=

∫∫

R2

p
(2)
n (x)

z − y
ρt,s(x, y)dxdy

z−n−1 τn+1(t, s − [z−1])

τn(t, s)
=

∫∫

R2

p
(1)
n (y)

z − x
ρt,s(x, y)dxdy. (77)

and from (51), the bilinear identity becomes
∮

z=∞

τn−1(t − [z−1], s) τm+1(t
′ + [z−1], s′) e

P∞
1 (ti−t′i)z

i

zn−m−2dz

=

∮

z=∞

τn(t, s − [z−1]) τm(t′, s′ + [z−1]) e
P∞

1 (si−s′
i)z

i

zm−ndz,

13It turns out that hn = τn+1(t, s)/τn(t, s).
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which characterizes the τ -functions for the 2-component KP hierarchy. Equa-
tions (77) and the bilinear identity were obtained in [1]. Indicating the depen-
dence on t, s in the polynomials, the following inner product can be computed
in two different ways, leading to14

τn(t,s)τn+1(t
′,s′)

∫∫

R2

dxdy p
(2)
n+1(t

′, s′; x)p(1)
n (t, s; y)e

P∞
1 (tkyk−s′

kxk)ρ(x,y)

∣∣∣∣∣∣t �→ t − a
t′ �→ t′+a
s′ = s

=




∞∑

j=0

−2aj+1Sj(∂̃t)τn+2 ◦ τn + O(a2)





=

(
∞∑

k=1

ak
∂2

∂tk∂s1
τn+1 ◦ τn+1 + O(a2)

)
. (78)

Identifying the coefficients of aj+1 in both expressions and shifting n �→ n − 1
yield a first identity; then redoing the calculation above for s �→ s − b, s′ �→ s′ + b
and t′ = t leads to a second one. All in all we find

Sj(∂̃t)τn+1 ◦ τn−1 = −τ2
n

∂2

∂s1∂tj+1
ln τn,

Sj(∂̃s)τn−1 ◦ τn+1 = −τ2
n

∂2

∂t1∂sj+1
ln τn.

Specializing the identity (73) leads to an identity, which can be expressed as a
sum of two Wronskians15 and which involves a single tau function:

{
∂2 ln τn

∂t1∂s2
,
∂2 ln τn

∂t1∂s1

}

t1

+

{
∂2 ln τn

∂s1∂t2
,
∂2 ln τn

∂t1∂s1

}

s1

= 0. (79)

The computation (2.2) was at the origin of the crucial argument (Theorem 5.1)
in this paper. It illustrates in a simple way what is being done in this paper.
These equations are used, when computing the PDE for the Dyson, Airy and
Sine processes ([3]).

7.2 Orthogonal polynomials

Given a weight ρ(z) on R, the symmetric inner product

〈f(x) | g(x) 〉 =

∫

R

f(x)g(x)ρ(x) dx,

and the formal deformation by means of an exponential ρt(x) := ρ(x)e
P∞

1 tkzk

.
This is a special case of the previous example, where the deformation only

14This integral is �= 0, unless t = t′

15in terms of the Wronskian {f, g}t = ∂f
∂t

g − f ∂g
∂t

.
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depends on t− s; thus t− s can be replaced by t. Then τn(t) is the determinant
of the moment matrix depending on t = (t1, t2, . . .),

τn(t) := det
(∫

R

zi+je
P∞

1 tkzk

ρt(z)dz
)

0≤i,j≤n−1
.

Then, from (77), it follows at once that the orthogonal polynomials pn(x) :=
pn(t; x) are given by

zn τn(t − [z−1])

τn(t)
= pn(z)

z−n−1 τn+1(t + [z−1])

τn(t)
=

∫

R

pn(x)

z − x
ρt(x)dx.

Moreover, the integral below can be computed in two different ways: on the one
hand, it is automatically zero, because pn(z) is perpendicular to any polynomial
of lower degree; on the other hand, for t and t′ close to each other, the integral
can also be developed, using the technique of Proposition 6.2, in t′ − t = 2y,
yielding the following formula

0 = τn(t)τn(t′)

∫

R

pn(t; z)pn−1(t
′, z)ρt(z)dz

∣∣∣ t �→ t − y
t′ �→ t + y

=
∞∑

3

yk

(
∂2

∂t1∂tk
− 2Sk+1

(
∂̃t

))
τn ◦ τn + O(y2),

showing that τn(t) satisfies the KP hierarchy.

7.3 Orthogonal polynomials on the circle

Consider the inner product on the circle between analytic functions on S1:

〈f(z) | g(z)〉 =

∮

S1

dz

2π
√
−1z

f(z−1)g(z)

and the determinant of moment matrices

τn(t, s) := det
(〈

zke−
P∞

1 siz
i
∣∣∣ zℓe

P∞
1 tiz

i
〉)

0≤k,ℓ≤n−1

= det

(∮

S1

dz

2π
√
−1z

z−k+ℓe
P∞

1 (tiz
i−siz

−i)

)

0≤k,ℓ≤n−1

Then it follows that

zn τn(t − [z−1], s)

τn(t, s)
= p(1)

n (z)

zn τn(t, s + [z−1])

τn(t, s)
= p(2)

n (z)
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z−n−1 τn+1(t + [z−1], s)

τn(t, s)
=

∮

S1

du

2π
√
−1u

p
(2)
n (u−1)

z − u
e
P∞

1 (tiu
i−siu

−i)

z−n−1 τn+1(t, s − [z−1])

τn(t, s)
=

∮

S1

du

2πiu

p
(1)
n (u)

z − u−1
e
P∞

1 (tiu
i−siu

−i),

with p
(1)
n (z) and p

(2)
m (z−1) monic orthogonal polynomials on the circle:

∮

S1

dz

2πiz
p(1)

n (z)p(2)
m (z−1) = δnmhn, with hn =

τn+1

τn
.

The nature of the inner product implies some extra-relationship between the
orthogonal polynomials

p
(1)
n+1(z) − zp(1)

n (z) = p
(1)
n+1(0)znp(2)

n (z−1)

p
(2)
n+1(z) − zp(2)

n (z) = p
(2)
n+1(0)znp(1)

n (z−1).

leading to (in the notation of footnote 8)

(
hn

hm+1

)2(
1 − hn+1

hn

)(
1 − hm+1

hm

)

=
1

τ2
m+2τ

2
n

(
Sn−m(∂̃t)τm+2 ◦ τn

)
.
(
Sn−m(−∂̃s)τm+2 ◦ τn

)
.

In particular, for m = n − 1,

(
1 − hn+1

hn

)(
1 − hn

hn−1

)
= − ∂

∂t1
lnhn

∂

∂s1
lnhn.

7.4 Non-intersecting Brownian motions

Consider N non-intersecting Brownian motions x1(t), . . . , xN (t) in R, leaving
from distinct points α1 < . . . < αN and forced to end up at distinct points
β1 < . . . < βN . From the Karlin-McGregor formula (see [12]), the probability
that all xi(t) belong to E ⊂ R can be expressed in terms of the Gaussian

p(t, x, y) = e−(x−y)2/2t/
√

2πt, as follows (0 < t < 1)

P
β
α (all xi(t) ∈ E)

:= P
β
α

(
all xi(t) ∈ E

∣∣∣∣
(x1(0), . . . , xN (0)) = (α1, . . . , αN )
(x1(1), . . . , xN (1)) = (β1, . . . , βN )

)

=
1

ZN

∫

EN

det[p(t, αi, xj)]1≤i,j≤N det[p(1 − t, xi, βj)]1≤i,j≤N

N∏

i=1

dxi

=
1

Z ′
N

∫

EN

N∏

i=1

e
−x2

i
2t(1−t) dxi det

[
e

αixj
t

]

1≤i,j≤N
det

[
e

βixj
1−t

]

1≤i,j≤N

(80)
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The limiting case where several points α and β coincide has been the object
of many interesting studies. It is obtained by taking appropriate limits of the
formulae above. Just to fix the notation, consider

(α1, . . . , αN ) = (

m1︷ ︸︸ ︷
a1, a1, . . . , a1,

m2︷ ︸︸ ︷
a2, a2, . . . , a2, . . . ,

mq︷ ︸︸ ︷
aq, aq, . . . , aq)

(β1, . . . , βN ) = (

n1︷ ︸︸ ︷
b1, b1, . . . , b1,

n2︷ ︸︸ ︷
b2, b2, . . . , b2, . . . ,

np︷ ︸︸ ︷
bp, bp, . . . , bp),

where
∑q

α=1 aα =
∑p

β=1 bβ = 0 and

a1 < a2 < · · ·aq, b1 < b2 < . . . < bp,

q∑

α=1

mα =

p∑

β=1

nβ = N.

Then, take the limit of (80), make a change of variables in the second equality,
use the standard matrix identity in the third equality

∑

σ∈Sn

det
(
ai,σ(j) bj,σ(j)

)
1≤i,j≤n

= det (aik)1≤i,k≤n det (bik)1≤i,k≤n ,

and distribute the integral and the Gaussian over the different columns; this
yields

P
β
α (all xi(t) ∈ E)

=
1

ZN

∫

EN

N∏

i=1

e−
x2

i
2t(1−t) dxi

× det




(
xi

je
a1xj

t

)
0 ≤ i < m1
1 ≤ j ≤ N

...

(
xi

je
aqxj

t

)
0 ≤ i < mq
1 ≤ j ≤ N




· det




(
xi

je
b1xj
1−t

)

0 ≤ i < n1
1 ≤ j ≤ N

...

(
xi

je
bqxj
1−t

)

0 ≤ i < np
1 ≤ j ≤ N




=
1

Z ′
N

∫

ẼN

N∏

i=1

e−
y2

i
2 dyi

× det




(
yi

je
ã1yj

)
0 ≤ i < m1
1 ≤ j ≤ N

...

(
yi

je
ãqyj

)
0 ≤ i < mq
1 ≤ j ≤ N




· det




(
yi

je
b̃1yj

)
0 ≤ i < n1
1 ≤ j ≤ N

...

(
yi

je
b̃qyj

)
0 ≤ i < np
1 ≤ j ≤ N




∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Ẽ = E√

t(1−t)

ãi =
√

1−t
t ai

b̃i =
√

t
1−tbi
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=
N !

Z ′
N

det




(∫

Ẽ

dy e−
y2

2 yi+je(ãα+b̃β)y

)

0 ≤ i < mα
0 ≤ j < nβ




1 ≤ α ≤ q

1 ≤ β ≤ p

.

The numerator of this probability has exactly the form (1) evaluated at sα =
tβ = 0, with the inner product given by (2)

〈
xiψα(x)

∣∣ yjϕβ(y)
〉

=

∫

Ẽ

dy e−
y2

2 yi+je(ãα+b̃β)y,

upon setting ψα(x) = eãαx, ϕβ(y) = eb̃βy and dµ(x, y) = δ(x−y)e−y2/2χẼ(y) dx.

By multiplying each of the exponentials eãαy and eb̃βy by e−
P∞

1 sα,kyk

and

e
P∞

1 tβ,kyk

respectively, it follows that both the numerator and the denominator
of the probability above,

τmn(t1, . . . , tp; s1, . . . , sq)

= det




(∫

Ẽ

dy e−
y2

2 yi+je(ãα+b̃β)y+
P∞

1 (tβ,k−sα,k)yk

)

0 ≤ i < mα
0 ≤ j < nβ




1 ≤ α ≤ q

1 ≤ β ≤ p

= det

((〈
xiψ−s

α (x)
∣∣ yjϕt

β(y)
〉)

0 ≤ i < mα
0 ≤ j < nβ

)

1 ≤ α ≤ q

1 ≤ β ≤ p

and the same expression for E = R, satisfy the bilinear identity for p + q-
component KP and, in particular, all the general relations and identities, men-
tioned in this paper, namely (12) and (71), (72), (73). Note the equations are
independent of the set E.

In particular, for n non-intersecting Brownian motions, departing from the
origin, with n1 paths forced to end up at −a and n2 paths forced to end up at
a, we have for 0 < t < 1,

P
±a
0 (all x(t) ∈ Ẽ) =

1

Zn
det




(µ+

ij)0≤i≤n1−1, 0≤j≤n1+n2−1

(µ−
ij)0≤i≤n2−1, 0≤j≤n1+n2−1





where

µ±
ij :=

∫

E

xi+je−
x2

2 ±αxdx, (81)

with the change of variables

α = a

√
2t

1 − t
and E = Ẽ

√
2

t(1 − t)
.

In a similar way, for several times 0 = t0 < t1 < . . . < tm < tm+1 = 1,

P
±a
0 (all xi(t1) ∈ Ẽ1, . . . , all xi(tm) ∈ Ẽm) =

1

Zn
det




(µ+

ij)0≤i≤n1−1, 0≤j≤n1+n2−1

(µ−
ij)0≤i≤n2−1, 0≤j≤n1+n2−1



 ,

33



where

µ±
ij =

∫
Q

m
1 Ek

(x1)
j−1(xm)i−1e−

1
2

Pm
ℓ=1 x2

ℓ±αxm+
Pm−1

ℓ=1 cℓxℓxℓ+1

m∏

ℓ=1

dxℓ, (82)

with the change of variables

α = a

√
2(tm − tm−1)

(1 − tm)(1 − tm−1)
, Eℓ = Ẽℓ

√
2(tℓ+1 − tℓ−1)

(tℓ+1 − tℓ)(tℓ − tℓ−1)
,

and

cj =

√
(tj+2 − tj+1)(tj − tj−1)

(tj+2 − tj)(tj+1 − tj−1)
, for 1 ≤ j ≤ m − 1.

We now introduce the inner products

〈f | g 〉1 =

∫

E

f(x)g(x)F1(x)dx with F1(x) = e−
x2

2

and (m ≥ 2)

〈f | g 〉m =

∫
Q

m
1 Ek

f(x1)g(xm)Fm(x1, . . . , xm)dx1 . . . dxm,

with

Fm(x1, . . . , xm) :=

(
m∏

1

e−
x2

ℓ
2

)
e
P

p,q≥1

Pm−1
ℓ=1 c(ℓ)

pq xp
ℓ
xq

ℓ+1+
Pm−1

ℓ=2

P∞
r=1 γ(ℓ)

r xr
ℓ .

The precise form of Fm does not matter very much for the purpose of this paper,
but does play a crucial role in satisfying the Virasoro constraints.

In these two sets of moments (81) and (82), we insert extra time-parameters,
as follows, which can then be identified with the moments appearing in (1),

µ±
ij(s, u, v) =

∫

E

xi+je−
x2

2 ±ax±βx2

e
P∞

1 (sk−
“

uk
vk

”

)xk

dx

=

〈
xie−

P∞
1 skxk

∣∣∣∣x
je
P∞

1

“

uk
vk

”

xk

e±αx±βx2

〉

1

,

and

µ±
ij(s, u, v) =

∫
Q

m
1 Ek

xi
1x

j
mFm(x1, . . . , xm)e

P∞
k=1

“

skxk
1−
“

uk
vk

”

xk
m

” m∏

ℓ=1

dxℓ

=

〈
xie−

P∞
1 skxk

∣∣∣∣ x
je
P∞

1

“

uk
vk

”

xk

e±αx±βx2

〉

m
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In both cases, we have q = 1 and p = 2, and m := n1 + n2, leading to the
introduction of three sets of times si := −s1i, ui := −t1i and vi := −t2i.Thus,
from the general theory, the numerator of both probabilities,

τn1,n2 = det




(µ+

ij)0≤i≤n1−1, 0≤j≤n1+n2−1

(µ−
ij)0≤i≤n2−1, 0≤j≤n1+n2−1





satisfies the bilinear identity for the 3-component KP and, in particular, the
PDE’s and thus τn1,n2 satisfies the single PDE

∂

∂s1
ln

τn1+1,n2

τn1−1,n2

=
∂2

∂s2∂u1
ln τn1,n2

∂2

∂s1∂u1
ln τn1,n2

− ∂

∂u1
ln

τn1+1,n2

τn1−1,n2

=
∂2

∂s1∂u2
ln τn1,n2

∂2

∂s1∂u1
ln τn1,n2

.

∂

∂u1

∂2

∂s2∂u1
ln τn1,n2

∂2

∂s1∂u1
ln τn1,n2

+
∂

∂s1

∂2

∂s1∂u2
ln τn1,n2

∂2

∂s1∂u1
ln τn1,n2

= 0

and the same PDE with ui replaced by vi. These PDE’s play a crucial role in
establishing the PDE for the Pearcey process; see [4].

x

t

The methods developed in this paper should enable one to study more com-
plicated situations of non-intersecting Brownian motions, as indicated in the
figure above. The curves in the (x, t)-plane are the boundary of the equilib-
rium measure as a function of time. When two curves meet, one expects to see
a new infinite-dimensional diffusion in that neighborhood, beyond the Pearcey
process.
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