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I. INTRODUCTION 

The purpose of this paper is twofold: first we show that all the systems 
discussed in Adler and van Moerbeke [2] (paper I) in connection with Kac- 
Moody Lie algebras can be linearized according to a general scheme common 
to all of them reminiscent of Mumford and van Moerbeke’s treatment of the 
Toda lattice [16]. The methods reflect the decomposition of the Lie algebra as 
explained in I and therefore are divided into two different sections dealing on the 
one hand with Toda-type flows and on the other hand with flows of spinning 
top type (Sections 2 and 3). 

The second part of the paper adresses the following problem: each Lie 
algebra representation leads to a different curve and therefore a different Jacobi 
variety; therefore one might expect the linearization to depend on the representa- 
tion; i.e. the same flow would lead to essentially different solution by quadra- 
tures, depending on the representation. We show this is not the case, because 
the Jacobi varieties corresponding to higher-order representations all contain 
one or several copies of the Jacobi variety going with the fundamental represen- 
tation. To show this, use is made of the theory of correspondences: a corre- 
spondence is established between the fundamental curve and the curves corre- 
sponding to higher-dimensional representations; the latter curves are Galois 
extensions of the fundamental curve. Such a correspondence induces a homo- 
morphism between the associated Jacobi varieties, which is shown to be different 
from zero and injective; the first statement follows from an inequality of 
Castelnuovo and the second from the irreducibility of the Jacobians for Toda-like 
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curves. In an appendix we sketch the main concepts and theorems of the theory 
of correspondences in a style reminiscent of the classic Italian geometers. 

2. LINEARIZATION OF THE TODA-TYPE FLOWS 

In I, Sect. 4, we discussed special orbits of the classical Lie groups of minimal 
dimension. For sZ(n), these orbits gave rise to the classical Toda systems. 
However, for the other groups, discussed in I, Section 4, they give rise to 
generalizations of this system; their linearization will be dealt with in thii 
section. We first state the main theorems which emphasize the analogies and 
the differences between these cases. It is interesting to point out that the distinc- 
tion between the Lie algebras reflect themselves at the level of the curves and/or 
the way the isospectral set is embedded in the Jacobi variety. 

We first sketch the proof of the theorem for sZ(n) (cf. Moerbeke [IS]), then 
we linearize the problem in detail for so(n, n + 1) and sketch the proofs for the 
other groups; the case G, is covered by so(3,4) and some additional structure. 
As compared to s&z) the methods involve particular attention to the special 
symmetries and degeneracies inherent in the description of the Lie algebras; 
they reflect themselves in Prym subvarieties on which the flows evolve. 

Consider a matrix A, in the orbit corresponding to any of the Toda matrices 
(I, Sect. 4) associated to the classical groups and G, , specifically (4.24), (4.25), 
(4.26), (4.27), (4.28). R emember that to each matrix Ah is associated the curve X 
given by 

Q(z, h) = det(A, - zI) = 0. 

For every group above, define the isospectral set d(X), defined by a given 
curve X, and the functions x and h on it: d(X) = (Ah 1 det(Ah - ~1) = Q(z, h)} 
modulo a discrete group action. This action takes on the following form for 

(1)l sZ(2n): conjugation by diagonal matrices with entries fl. 

(2) so(n, n + 1): (i) the conjugation by diagonal matrices of the form 
diag(a, 1, b) where a = diag(f1, fl,..., fl) of size n 
and b is the same diagonal matrix read right to left 

(ii) interchanging a1 and u,+~ and also --b, and b, simul- 
taneously. 

(3) so(n, n): (i) the conjugation by diagonal matrices of the form 
diag(u, b) where a = diag(fl,..., +l) of size n and b 
is the same diagonal matrix read right to left. 

(ii) interchanging a, and --a,+, and also --b, and b, simul- 
taneously. 

(iii) interchanging u, and a,, and aho --b, and b, . 

1 For analogy we have picked the even-dimensional case which is not different from 
the odd case. 
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(4) sP(4: 
(5) G 

conjugation by the same matrices as in (3i) 

conjugation by the same matrices as in (3i) with n = 3 
and a as in the above, but in addition restricted to be 
of the form (dI , 6, , d,d,). 

THEOREM 1. (a) Any matrix of the form A, with all a,, f 0 leads to a 
hyperelliptic curve X (with hyperelliptic involution T) of genus g = 2n - 1 having 
two distinguished non-constant meromorphic functions h and z and distinguished 
points P, Q = P7, R, S = R7 such that (z) = -P - Q + R + S. 

Except for s&t), it has the extra-involution a defined by 

a: (z, h) + (-z, h). 

The set of matrices d(X) maps one-to-one onto a set (containing a Zariski open set) 
in the variety Y defined below; let J be the natural embedding of Yin Jac(X). 

Lie Algebra sl(2n) so@, n + 1) 

Genus g 2n - 1 2ff - 1 

(h) -(g + l)P + (g + 1)Q -k + W + (g + l)Q 
Y w-v 

I 

9 E so+‘(X) 
9 = &a I 

J linear3 Jac (Xl W&q + WZk(.@O) = 0 
variety in Jac(X) l<k<n-l,O(g)=g+l 
defined by 

dim sQ(X) = g (g + I)/2 
dim Y = dim J 

2n - 1 2n - 1 5 

-k - 1)P + (g - l)Q - 2R + 2s -(g + 1)P + (g + l)Q -6P + 6Q 

I 

9 E s’+‘(x) 

I 

2 

I 

9 E S’(X) 

I 

hypersurface of 
9 E cao 9 SE gm the so(3,4) case 

w,d=q + %a(~~) f 0 War@) + w&P) = 0 Abelian variety 
1 <h<n- 1,0(B) =g-t 1 1 ShSn- 1,0(.9)=g of so(3, 4) case 

t&T + 1)/2 k + 1)/2 2 

(b) Every linear flow on Y 

s 
act, 

wk = a,t, 
.9(o) 

al, = 0 for k even (except for sl(2n)), 

2 - refers to equivalence in terms of Abelian sums. 

3 WY = .z-‘y-‘dz, y hyperelliptic irrationality. For a divisor .9 = 21 p’c , w,(9) = 
ZiS, sPi wj = spwj for some appropriate choice of origin. 
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is associated with a polynomial T(z) of degree Qg, which except fm the case of d(n) 
is odd, T(z) is chosen such that 

a, = Res,(w,T(s)). 

Thif jaw translates into a system of diffiential equaticms given by 

(strictly “upper triangular” part of T(A) in the sense of Km-Moody (I, Sect. 3)). 

Rwk 1. The algebras differ from 42~) by the presence of the involution g. 
The algebra so@, n) differs from the other algebras from the point of view of the 
function h, which imposes different conditions on the curve. The algebras 
sZ(2n), so@, n + l), and sp(n) all give rise to the same curve via the relation 
between h and z. In addition, the cases so@, n + 1) and s&z) give rise to the 
Prym variety u on Jac(X). However, at the level of Y (divisors) things are 
different, as is seen from the table. 

Rwk 2. Except for sZ(2n) and q(n), the various cases present degeneracies 
and seemingly non-uniqueness of the map d(x) + Y due to O(9) = g + 1 > g. 
However, the symmetries inherent in the matrices eliminate the non-uniqueness. 
The more complicated “boundary conditions” suggest the use of a Wronskian- 
type function. 

Sketch of the proof for sZ(N). The curve X of genus g, defined by Q(z, h) = 
det (Ah - J) = 0 has the above properties, where h and z are regarded as 
meromorphic functions on X. The elements of the eigenvector f = (fO , fi ,..., 
f&* defined by Anf = zf and normalized at f,, = 1 are considered to be 
meromorphic functions on the curve; they are defined by4 

where Ai, stands for the minor of An - ZI corresponding to the i, jth entry; 
one further defines fk+jN = h*fk , j E Z; one verifies that 

(X)>--g-@+kQ (1) 

with equality at P and Q and 9 minimal; moreover 9 has order g and dim 
9(~9 + k.P - (k + l)Q) = 0, k E H. Given a divisor of order g satisfying the 
latter property, one constructs uniquely a set of functions fk satisfying (1) and 
these define the matrix A,, above uniquely via the relation 

zf = A,,f. 

‘A NO = ANNh-? 
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Consider the flow 
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A’ = [A SKI = [A, Bl, (2) 

where T(z) is a polynomial of degree <g. As an ordinary differential equation 
for the entries uk and b, , this Lipchitzian flow exists for 0 < t < E. For E small 
enough, the set of divisors (.9(t) 1 0 < t < l } projects into a compact set in 
0, on which 1 h 1 is bounded by M. Let U(t) be the finite matrix, analytic in 
h and t, defined by5 

ri<t) = UB, U(0) = I, 1 h 1 < M, 0 < t < E’ < E. 

Hence 

U(t) = I + tB(0) + O(t2), Ihl GM, 
= I + tS, B = B(O) + O(t), 

where, by considerations of I, Section 4, the infinite-dimensional representation 
of fi is a strictly upper triangular matrix; hence B is analytic in h and t, never 
containing h-l. Since U(t) makes the eigenvectors move, we have5 that (1+ &) 
f(0) and f(t) are proportional vectors; so let 

(I + &f(O> = (1 + @Y(t), 

where, by equating the 0th entry of both vectors, we compute that 

1 + tg = 1 + @fw), 

= 1 + @f(O)), + O(t2); 

= 1 + t c BdO)fdO) + t c W)f@) 
01 91 

= 1 + tim + c W2)fN 
01 

(3) 

(4) 

with O(F) analytic in h. Since 9 is the minimal set of poles on X0 = x\P u Q 
of the left-hand vector in (3) and since the new divisor 3(t) of f(t) (after flowing 
by (2)) is generally distinct from 9, the divisor of poles of 1 + tg must be 
9, at least within X0. Since the minimal divisor of poles of f(t) is 9(t) and 
since the left generally does not have poles at B(t), we conclude that 

(1 + tg)o = -w - 9 

and from the last equality in (4), 

(1 + &(W, = =w) - 53 

“f(O) =flt=,,w-v = at-o. 
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for some divisor W(t) near 9. By manipulating power series and using the fact 
that the above functions differ by O(P), it is easy to show that pointwise 

9(t) - P(t) = O(P). (5) 

Since g(O) = CrZl ~,,t(O)f@), w ‘c is a finite sum extending up to K, for hi h 
instance, 

(+ + g(O)) = --KzJ - 9 + g(t) + f: Pi(t), 
t 

where the points PI(t) are near P for t small. Using Abel’s theorem, for every 
holomorphic differential 

I 

J’(t) 

9 
w = -f y) w, 

i p 

which by a lemma in Mumford and Moerbeke [16, Sect. 4.21 

= --t Res,(wg(O)) + O(t2) 

= --t Res,(wT) + O(t2); 

the latter equality holds, because (PK(T(A))f),, = &, B,,i(0)fi contains the 
polar part (at P) of (T(A)& = T(z). Therefore, 

= - Resp(wT). 

Proof of Theorem 1 for so@, n + 1). Let u, applied to matrices, be the 
operation of taking the transpose about the minor diagonal. X shall be the curve 
defined by 

Then 

Q(z, h) E det(& - 21) = 0. 

Q(-2, h) = det(& + J) = det(A, + z@ = (-l)an+ldet(&, - &) = -Q(~, h), 

i.e., Q(z, h) is odd in z and therefore Q(z, h) has a z-factor. Simple inspection 
of the matrix shows that 

Q(z, h) = (-lY+4 [2A(h + h-l) + (-I)” &a)], (6) 

where g is a manic polynomial of degree n and 

A = a, fi a,2a,+, . 
2 

607/38/3-7 
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This hyperelliptic curve X of genus g = 272 - 1 (odd) clearly has the two 
involutions 

T: (z, h) --f (z, h-l)(hyperelliptic) and 0: (z, h) + (4, h). 

Moreover, by (6) 

(h) = -2nP + 2nQ and (z) = -P - Q + two zeros. 

The eigenvector f = (JLn, f-n+l ,..., fel, f. , fi ,..., fn-l , f,J+ of A, with 
f,, = 1 can be extended as usual to an infinite vector using the relation 

h!fk =fk+hz+~) , j E H. 

The meromorphic functions 

fk = ‘;WyWxk = A;+l+k.n+l+k 
(7) 

n+l+k,n+l 

have the properties 

(5s) 3 -s--P+kQ, --n<k<n, with equality at P and Q, (8) 

where 9, a positive divisor of order g + 1 = 2n, satisfies 9 = 95 and is 
minimal with regard to (8). The proof breaks up into several lemmas. 

LEMMA I. The order of the pole of fk at P equals the order of zero at Q. 

First we observe that6 

@A = -2nP - 2nQ. (9) 

This is so, because A, is a manic polynomial of degree 2n in z, except for j = 1 
or 2n + 1 where it contains an extra term in (h + h-l) with coefficient A, 
instead of 2A. Second, let 

(A n+l.n+l+k)m = --0rp - 8&j % BEZ 

Then on the one hand,’ since (A,$ = Aii and P7 = Q, 

(A n+k+l.n+dm = -+p - 0~8, 

“( )m = ( )P”Q. 
’ Ll(z, h)r E Ll(z, h-1). 
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and on the other hand, because of (7), (9) and (10) 

(A n+k+~,n+Joo = (A n+l+~+l+doo + (&+wa+Jm - (An+~.n+k+dm 

= -(4n - a)P - (4n - p)Q. 

Comparing (10) and (1 l), (Y + /I = 4n holds and therefore, since 

UJm = (A n+m+~+dm - (An+m+& 
= -(a - 2n)P + (-+I + 2n)Q, 

the order of the pole of fk at P equals the order of zero at Q. 

(11) 

LEMMA 2. Statement (8) holds. 

To begin with, observe that 

mm = -Mk)oo 3 

as follows from 

(12) 

From the relation (12) and (see I (4.26)) 

2 = zfo = a& - anfi 

either jr or f+ has a simple pole at P. First, assume it to be fr ; then from the 
relation 

it follows that fa has a double pole at P; so, in general, using a similar argument, 

Ct-i)m = ---w + kQ, --n+l<k<n-1. 

From the relation 

zf& = -azL2 - WA -ad, + a,di+~ 

it follows that 
. 

(a& - an+Ji+dP = --nP. (14) 

Next we show that f,, and f,,+l both have a pole of order n at P. Indeed, assume 

1 (fn)p = -lsp7 
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hence, using (12) in the second equality 

(fiz+llP = WJP = -P - BY? 

If ,6 # n, then of the two numbers /3 and 2n - ,6, one would be larger than and 
the other smaller than n, contradicting (14). Th ere remains the possibility that 
f-r has a simple pole at P; then using the linear relations, as before, 

(X>m = w - kQ, --n+l,(K,<n-l, 

and, according to the relation 

we have that 

Let 

(-an+lL-n--l+ dL)P = --nP. 

cf4JP = -BP; 

(15) 

then, again using (12), 

(La-1)P = W%)P = (B + WP. 

Either p 3 n or /3 < n; in the first case, in view of (14), /3 + 2n = -/3, i.e., 
/3 = --n, which contradicts ,6 > n. In the second case, /3 + 2n = -n, i.e., 
@ = -3n. Then, the relation 

zf-, = an+A--1 + Wn + aJL+l 

and the fact that fpnd2 = klfnpl leads to the contradiction 

-(m + 1)P = (f+-Jp = (h-y& = (2n + (n - 1))p. 

This establishes (8) at the points P and Q. Let 9 be the minimal positive divisor 
satisfying (8); it has finite order, because every function fk(k E Z) is obtained 
from the finite list fj (-n <j < n) by multiplication with an appropriate power 
of h. Moreover, since fmk =fT’, we have 9~~ = 9; the fact that O(9) = 2n . 
will be established later. 

Define 

and 
d(X) = {AhI of type above; det(A, - aI) = Q(z, h)} 

mod the discrete group action. So far we know that A, maps into a divisor 9 
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where the functions are uniquely determined by the relations 

(6&c = --p + Q, tt* - 4P b P, wo 2 -9 
&)m = Q, @a - l)P >, P, &)o 2 -9 (28) 

and similarly for e-r and h-r with P and Q interchanged. Equation (25) will now 
be used to determine bl and (Y. As before, we make the generic assumption 
that b, and b17 are not in .C3. Therefore from (25) 

ocg_,(--b,) + a-‘g,(--b,) = 0, 
age,(-b,‘) + a-‘g2( -4’) = 0, 

(29) 

which implies that 

(g-lga’ - gLga)(--bJ = kg; - ghd--b,‘) = 0. 

Hence, 

W(z) = (2-l+ &>y; + .a&) - (El + Jwga + &) 

vanishes at -b, and -4’. From a similar argument where f,, is normalized at 1, 
instead of fr (thus the roles offs and fr and bl and -b, are interchanged), we 
have that W(z) also vanishes at b, and 4’. Moreover from (28) 

(w(s)) b -9 - 9’ + br + b,’ + b,O + y’ - 2P- 2Q + all 4n branch points 

and hence equality; then we conclude ~(9) = 273 and the zeros of W(z) are 
precisely the zeros specified. Therefore a is determined uniquely by (29) and 
so is fs , g-, , g, . Using the next relation in the set of relations AJ = zf, one 
shows that fi is uniquely determined up to a constant factor by an argument 
similar to Lemma 4 and in the fashion for fk (-n + 2 < k < a + 1). First 
by the periodicity relations hjfk = fk+znj for -(n - 2) < k < (n - l), are 
determined. Using the nth and (n + 1)th relation in A,,f = zf, and by an ar- 

gument precisely the same as that used to determine fn , f,,+l in Lemma 4, 
we see that indeedf, , fn+l are uniquely determined (modulo the group action). 
We have thus determined the fd uniquely up to the map fi + cifi ; however, 
the symmetry of the A, shows that cia = cga for all i, j, hence the matrix A, 
is indeed uniquely determined modulo the group action. The linearization 
argument proceeds exactly as for sZ(n) with the modifications made for so(n n+ 1). 

Proof of Thewem 1 for g(n). The curve X is the same as the one for sZ(272) 
with the additional (I involution. The example is of course a subcase of sZ(2n); 
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and the fact that LI~+~,~+~ is fixed under 7 and u, the zeros of An+l,n+l have the 
structure 

(A n+m+l) = 2 pi + f PLY’ + f P: + f ~7 - in@’ + Q). 
1 1 1 1 

We show that, possibly after relabeling, 

9 = i pi= + i /Ai’ (s < n). 
1 1 

First we define the divisors C4” oli , C:” & , by 

(A n+l.n+J = $I ai - 2~ - 2nQ9 
1 

(A n+z,n+J = 1 Si + E fir - 2nP - 2nQ- 1 
The latter is permitted because of the generic assumption 

(@) 4+2.n+2 and q(z2)a - 4/P do not vanish simultaneously. Using 
the fact that 

and the relation A7,+1,,+2 = An+2,n+l , we have that 

where the points of the positive divisor 9 are distinct from those of 93. Cancella- 
tion must take place on the left-hand side, because otherwise, say, pI would 
appear among the 01~~‘s and p17 would cancel with one of the ai’s. So by possibly 
relabeling, let k = CQ ; then by (G,), k 4 9 and py 6 guT = 9. Hence ~7 
must also cancel on the left-hand side; let try = 01~ . Therefore, among the 
points /1r , prr, pro, p;” only p17 + pIu = 01r7 + %’ could appear in 9. Then, 
after canceling this expression on the left- and right-hand sides of the first 
equality (17) one gets 

then also, on the right-hand side, two of the [i)s, say fI and t2 # tIr (because of 
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(G,)) must cancel two of the ai’s, say as’ and ad7 ; so we get after cancellation of 
0~s + a, = trT + &r in the equality above 

which puts us in the same situation as before; so, we proceed by induction until 
nothing is left, concluding that among the pi’s, only pi7 + pto can appear in 22. 
Hence 9 CC: pcT + C: pdO; since ~2 = PO and because of (G,), 9 = Ci pi7 + 
Ci pi0 for some 1 < s < n; hence O(a) = 2s < 2n = g + 1, establishing 
Lemma 3. 

We now turn to 

LEMMA 4. The map in Lemma 3 is o?ze-to-one, for a possibly smah?r .%zriski 
open set in d(X); moreover O(9) = 2n. 

Proof. Let two matrices A,, and Ai in the Zariski open set defined by 
Lemma 3 lead to the same divisor; then we show that Ah = A; and that fk = f E 
modulo the group action above. 

To begin with, fi and fi satisfy the properties 

(2: + anfilm b P - Q and (2: + a6f ;joD 2 P - Q, 

(fi)m 2 --p + Q and (f& >, --P + Q. 

Hence, a,, fi - ai f i E L?(g - P - Q). Moreover by the Riemann-Roth 
theorem 

dim 2(~2 - P - Q) = dim a(--9 + P + Q) + 2s - (2n - 1) - 1 (18) 

and 
-dim rCa(-9 + P + Q) = 2(n - s), (19) 

because w E Sa(-9 + P + Q) has the form 

w = R(2) y-1 dz, ya = (q(z*))~ - 4A* 

with R(z) a polynomial of degree at most g = 2n - 1 vanishing at the 2s 
distinct points in 9, distinct from a branch point. Therefore combining (18) and 
(19), U(Z2? - P - Q) = {0} and f; = c, fi with cl = a,,/al . 

Since then 

anf-l = zfo + an fi = zfo + a:f; = aLfL1, 

also fml and f Lr are proportional. Next we show fi = cs fB ; indeed, since 

(&+anfo+bA 2 --2p+2Q--53 
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and 

(.?fi + 4fo + 62 f;) = (ZfL + cyla; f. + 6; fJ 3 -2P + ZQ - 3, 

we conclude a,, = $a; = azaG and b, = bb , i.e., a, = c;-ia: and c, = &l ; 
also 

Proceeding in this fashion, we show that & = c,& for -n + 1 ,< k < n - 1 
and a I 

n+l--k = Ck-LCkan+l-k ) 'k = +l,forl fk<ti- l;moreoverc,=l and 
C-k = c, . Finally,f*, and f& satisfy the first (multiplied by h) and last recursion 
relations: 

where j;i = c,-lfn--l and fn+$ = c,+&+s . We show that the respective 
coefficients in the above relations and so the f&‘s are equal modulo the group 
action. Remember that by (G,), 9 does not contain 6, , by, b,~, b;” . Therefore 
each of the expressions on the right-hand side vanishes and breaks up as follows: 

%,l fn-l(4) + a,fn+aP1) = 02 -alfn&Y - a,+lfn+2(4u> = 0. 

(21) 

a,+Lfn-l(bL’) + alfn+d43 = 0, -aLfn-L(Y’> - a,+lfn+sW) = 0. 

and similarly for the primed expression. Since a, and a,,, do not vanish, the 
determinant 

vanishes at b, , 47, brO and b’;‘, which are all distinct by 

(G4) b, # 0 and ~(b,~)~ - 4A2 # 0. 

Moreover 

(W) >, - .9 - 9’ + b, + b,’ + b,” + b,“’ - 2P - 2Q + all 473 branch points 

with equality at P and Q, (22) 
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and 
(fn-lf:+e)P = -(n - l)P + (n + l)P = 2p 

(f;-lfn+B)p = (n - l)P - (n + l)P = -2P. 

Therefore 

and 
# of poles of W < 4n + 4 

# of zeros of W > 4n + 4; 

hence equality. As a by-product, equality hoIds in (22) and o(.@ = 2n; therefore 

9 = ipi0 + &. 
1 1 

For the primed equations (20), we have the same W(z) up to a constant and hence 
the same zeros; in particular 

bl + b,’ + b,” + by = b; + b;’ + b;” + b;“‘. 

Going back to numerical values, we get that b, = fb; . First assume that 
4 = b; . Then Eqs. (21) for the primed and nonprimed quantities yield 

%+1 _ fn+a(h) _ f:+&J _ 4+1 

---fn-lo--fb-lo-7' % 

Let c = u&z, = ~~+,/a,,, . Then 

(z - b,)fi+, = (z - bi)fA+, because b, = bi 

= a’ n+JL + 4f 6+2 by (21) for the primed relation 

= cn-*&a+, fn-I(4 + 4fn+&)I 

using f L = c,-~ fn-l and f6+2 = c,-~ fn+z 
= c,-rc(z - b,)f,+,(z) by (20) for the unprimed relation 

and 
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Therefore fi and fi+l = hf; are proportional to f,, and fn+l = hf, respectively, 
with the same proportionality constant. Since 

I , 
%%+I =- nfii2 = k2 = w,+l , as A’ = A 

we have that c2 = 1, so that u: = -&a1 , uk+i = +z,+, , and f; = +z,,.& 
simultaneously. Second, we assume b, = --b; ; as a result of (21) the same holds, 
except that in the latter relations fn and fn+l and also ar and --a,+, become 
interchanged. This finishes the proof of Lemma 4. 

Define 
Y =(~I~>o,9=?P,o(q =2n}CY,. 

LEMMA 5. For generic curves X, a Zariski open set in d(X) maps one-to-one 
onto a Zariski open subset of Y. 

Proof. Indeed 

dim d(X) = # parameters in A, - # relations defining a given curve X 

> (2n + 1) - (78 + 1) = n 

and (see Lemma 3, for the definition of E). 

dim E < n; 

since the map from d(X) to E is one-to-one analytic, it follows that 

dim d(X) = dim E = n. 

Since E is a Zariski open subset in Y, the result follows. 
We now indicate why (G,) is a generic statement; indeed from the form of 

the matrix A, , letting uL -+ 0 (1 < k < n + I), we see that dn+r,n+l N 
n: (as - bi2) and hence for bi # 0, the zeros of dn+l,n+l are all distinct on X, 
modulo the hyperelliptic involution T. Another limiting argument will show 
that a branch point of X does not need to be a zero of An+l,n+l . The other 
generic statements follow in a similar fashion. 

To conclude the proof of statement (a) of Theorem 2, we observe that by the 
continuous variation of the roots of a polynomial and its coefficients we may 
extend the map above from the Zariski open set in Z&‘(X) to the whole of d(X). 

As to the linearization in (b), the proof previously given (Theorem 1) can 
be taken word by word; we only observe that the Lax equation preserves the 
form of A, since the polynomials T(z) are taken to be of odd degree. So, any 
Lax flow of the type described in Theorem 1 translates into a flow 

wk = t Res,(w,T(z)) (which vanishes for k even), 
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which automatically preserves Y by (a). To see that J is the embedding of Y 
in Jac(X), observe that any divisor 9 = Bo + &‘* in E trivially satisfies 

9 + 9 E 0 in Jac(X) 

with a r-invariant base point. By closing up Y, this shows that Y embeds in J. 
In fact dim Y = dim J, because dim Y = n; indeed the condition 9 + 90 = 0 
in Jac(X) is trivially satisfied for wb = 9-l+ da for k odd; so, also 

and dim Y = g - (n - 1) = n. This concludes the proof of Theorem 2. 

Renrmk. From the arguments above we cannot exclude the fact that zZ(X) 
is a multiple covering of J. 

Sketch of proof of Tkeomn 1 (so(n, n)). The hyperelliptic curve X is defined 
by (see I (4.27)) 

Q(z, h) = det(A, - XI) = 4Azs(k + k-l) + (- 1)” g(9) = 0, 

n-8 
where A = q~,+~u,-~u, I-I2 a3 and 4 is a manic polynomial of degree n. 
The curve X has the same involutions T and (I as before and again g = 2n - 1; 
the functions k and x clearly have the divisors given in the statement of the 
theorem. The eigenvector f = cf, ,..., fen)* of Ah with fr = 1 can be extended 
by the formula 

h!fti = fk+eni 9 jfZ 

to an infinite vector. The meromorphic functions 

fk4&A& 

have the properties 

(fd 2 -9 - (A - 1)P + (k - 118, l<k<n 

-9 - (k - 2)P + (k - 2)Q, n+l<k<2n 

with equality at P and Q, (23) 

where 9 is a positive divisor in Y and is minimal with regard to (23). The proof 
of this statement follows, roughly speaking, the same lines as those for Theorem 2; 
we shall point out the relevant difference: the structure of the divisor 9 is 
genericallys given by the divisor of fzn on X0: 

8 All generic statements can be taken care of es in Thebrem 2. 
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(f&l = ($yo = (8, + 82 + 81” + b2°) - (91 + 92 + 91T + 92’) 
(24) 

A zzz ( > --s- A = (iBl” + 9; + LBI” + Lq) - @TIT + CT,’ + apT + a?), 
2n,1 0 

where bi and CBi are positive divisors of order n; this is a consequence of the 
facts: A; = d,, = A.&,, , A;,,, = A2n,l . Only the formal aspect of the 
argument will be given; as in the previous case, an induction argument is neces- 
sary. If no cancellation occurs in (24), we may assume without loss of generality 
that %$ = CF’~~, which implies cancellation does occur and so we shall in fact 
assume .JT@~ = &IT, which leaves us with the relation above without the index 1. 
So we start again, assuming 9s = ~9s~; from the above, we conclude 9 = 
%+I + 9s = 6r7 + ~7~~ and so we have 

and 
(A,,,,,) = 9 + 9 - (2n - 1)P - (2n - l)Q - R - S 

(A,,,,) = 9’ + .CW - (4~2 - 3)P - Q - 3R + S; 

therefore taking the difference of their corresponding Abelian sums 9 - CPU = 
(h) E 0, which shows that &‘(X) maps into Y. 

We now sketch the uniqueness argument; we show that two matrices A, 
leading to the same divisor 9 are equal modulo the group action, i.e., that the 
ak’s and bk’s are uniquely defined by Akf = zf. In particular, because of 
I (4.27), 

-aIf- - an+& = (z + bdh f 

a,+,f-, + aIf = (z - bdf, v.l = 1); 

we first determine bl and the ratio OL = aJa,+l . Letting g-, = a,+,f-, and 
gs = a, f2 , we rewrite the linear equations above as 

q-1 + chz = -@ + h)fo, (25) 

g-1 + g, = (x - b,); (26) 

from (26) and the generic statements9 dim 9(9 - P - Q) = 0, dim 5?(9 - Q) 
= 1, dimP(B- P) = 1, dimT’(B--2Q) = 0, dim 5?(9 - 2P) = 0, it 

follows that g, and g-, can be uniquely written as an identity in 4: 

(27) 

8 Their genericity is proved in a fashion similar to that in Theorem 2. 
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where the functions are uniquely determined by the relations 

(6&c = --p + Q, tt* - 4P b P, wo 2 -9 
&)m = Q, @a - l)P >, P, &)o 2 -9 (28) 

and similarly for e-r and h-r with P and Q interchanged. Equation (25) will now 
be used to determine bl and (Y. As before, we make the generic assumption 
that b, and b17 are not in .C3. Therefore from (25) 

ocg_,(--b,) + a-‘g,(--b,) = 0, 
age,(-b,‘) + a-‘g2( -4’) = 0, 

(29) 

which implies that 

(g-lga’ - gLga)(--bJ = kg; - ghd--b,‘) = 0. 

Hence, 

W(z) = (2-l+ &>y; + .a&) - (El + Jwga + &) 

vanishes at -b, and -4’. From a similar argument where f,, is normalized at 1, 
instead of fr (thus the roles offs and fr and bl and -b, are interchanged), we 
have that W(z) also vanishes at b, and 4’. Moreover from (28) 

(w(s)) b -9 - 9’ + br + b,’ + b,O + y’ - 2P- 2Q + all 4n branch points 

and hence equality; then we conclude ~(9) = 273 and the zeros of W(z) are 
precisely the zeros specified. Therefore a is determined uniquely by (29) and 
so is fs , g-, , g, . Using the next relation in the set of relations AJ = zf, one 
shows that fi is uniquely determined up to a constant factor by an argument 
similar to Lemma 4 and in the fashion for fk (-n + 2 < k < a + 1). First 
by the periodicity relations hjfk = fk+znj for -(n - 2) < k < (n - l), are 
determined. Using the nth and (n + 1)th relation in A,,f = zf, and by an ar- 

gument precisely the same as that used to determine fn , f,,+l in Lemma 4, 
we see that indeedf, , fn+l are uniquely determined (modulo the group action). 
We have thus determined the fd uniquely up to the map fi + cifi ; however, 
the symmetry of the A, shows that cia = cga for all i, j, hence the matrix A, 
is indeed uniquely determined modulo the group action. The linearization 
argument proceeds exactly as for sZ(n) with the modifications made for so(n n+ 1). 

Proof of Thewem 1 for g(n). The curve X is the same as the one for sZ(272) 
with the additional (I involution. The example is of course a subcase of sZ(2n); 
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so we need only prove the statement concerning Y and J. The argument is 
done as follows: let N = 2n; in view of 

(fN = l> 

and A&, = AIN , Azi = Aii, AGN = A,, we have that generically for some 
divisors .9 and d of order g 

(AIN)~ = 9 + go, (AN& = a7 + +‘, 

(ANN)~ = 8 + @, (A,,), = b- + gTo, 

from which it follows from an argument previously given that, possibly after 
relabeling, one has g = E and 9 is minimal. Therefore by Abel’s theorem 

applied to 

(A,,) = 9 + 9- - 2gP 

we have for 9 = Ci pL 

which proves the assertion concerning Y. Nothing is special about the linearization. 

Proof of Theorem 1 for G, . From the considerations in I, Section 4, the matrix 
A, is treated with the so(3,4) case; however one checks that there are three curve 
invariants, hence dim d(X) = 2, while dim Y for SO(3,4) equals 3, and 
so d(x) maps onto a two-dimensional subvariety of Y, which moreover is linear 
by the fact that two independent linear flows on J preserve it. We also note that 
by the considerations in so(3,4), any linear flow is given by a specific odd 
polynomial of degree at most five. Since from the Lie algebra considerations, 
z leads to a linear flow on the subvariety J corresponding to the G, case, 
another independent flow must be generated by a specific linear combination 
of 9 and z5. 

3. LINEARIZATION OF FLOWS OF SPINNING TOP TYPE 

In I, Section 4, various problems were shown to be related to isospectral 
deformations of polynomials with matrix CoefficientslO 

A = i Ash”. 
8=0 

For such matrix polynomials we have the following theorem. 

lo ek = (Wl<,+z . 
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THEOREM 1. There is a one-to-one correspondence between 

(i) a polynomial A = x15,, AJan with matrix coefiients (mod& conjuga- 

tion by complex diagonal matrices), having the propertie, A, = diag(% ,..., a,), 

af E @*, I& (ai - a,) # 0, and (A,.&, # 0 (k # 1); morewer A has in 
the limit h --f 0 distinct eigenvectors all not perpendicularll to ek for some k. 

p (4 a curve X of genus g = (n(n - 1)/2)v - n + 1 with 2n distinct points 

1 s..., P, , Ql,..., Q,, and a general positive divisor 9 on X of degree g not con- 
taining any of the points Pi or Qf; the points abwe have the following properties: 

fm some meromorphic functions h and z on X 

and 

(h) = -$ Pi + $ Qi 

(2) = YiPi+ ny zeros, distinct from the Pi . 
1 

Moreover any polynomial ficnction u = P(z, h, h-l) on X leads to an isospectral 
deformation of A 

A = [A, P(A, h, h-l),], 

where P(A, h, h-l), denotes the polynomial part (in h) of P(A, h, h-l). The flow 
above is a 1inemJlow on Jac(X) defined by 

i Re+;(wu)t. 
Z=l 

In particular the$ows (cf. I (4.43)) 

A = [A, (f ‘(Ah-j)h”-i),] 

are linear jlows on Jac(X); they are equivalent to one of the polynomial flows 
above. 

Proof. As a first step, the curve X, defined by the algebraic equation 

Q(z, h) = det(A - zI), 

is shown to have the properties stated in (ii). For I, h large, 

Q(,z, h) = fi (aihY - z) + C1hnrl + Cs~-l + lower-order terms, 
1 

I1 Dubrovin et al. [6j have considered sikilar matrix polynomials. 
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whence, using the local parameter t = h-1 at co, 

x = ait-” + lower-order terms, 1 <i,(n. 

Therefore, covering co, there are n distinct branch points PI ,..., P,, of order 

Y - I. The spectrum of A, in the limit h + 0, defines n distinct points Qr ,..., Qn . 

so, 

(4 = $6 + f  Qi 
1 1 

and 

(z) = ---It (i .) P, + nv zeros, distinct from the points Pi . 
1 

So, the ramification index V, at cc over z equals 

v, = n(v - l), 

while the ramification index V,, for the atline part equals the total order of 
pole of the expression 

8Q 
--BY P, 

1 = -& n (a - a$) lP- + lower-order terms 
I 

= ----a&~‘-~ n (z - a,h”) + lower-order terms 
j#i 

at the points Pi (1 < i < n), i.e., 

v, = n((v - I) + (fz - 1)V). 

Hence 

v  z v, + v, = n(v - 1) + ?z((V - 1) + (?z - 1)V) = 2nv + 2g - 2. 

and 

g= 
n(n - 1) 

2 V--n+1. (1) 

Let #J” be the eigenvector of A near the points P, , normahzed at (4~)~ = 1. 
Since, at P, , the spectral problem reads 

(Ah-v)es = a@, h = co, 

y5” can be expanded around es and zh-” around a,y 

p(t) = es + vt + O(P) with v  E C”, v, = 0, and O(ta)s = 0, 
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and 
2kh” = Q, + b,t + O(P). 

To find v and b, , set up the spectral problem 

(A” + 4-d + O(P)&” + vt + W)) 
= (as + b,t + qtaw + vt + O(t*)), 

which to the first order yields the linear equation 

A,,+* + Ap = a8v + bg8 

or, componentwise, 

Mt--lb + up* = a$+ , i # s. 

Therefore, solving for et< , 

(+)$ = e t + O(t*), i # s, 
f 

= 1, i = s. 

Consider now the eigenvector f = (fi ,..., f,,)* of A, normalized at fi = 1, at 
each of the points P,; then 

(4% _ W-I)~I k#l fA!=--- (rjql a, - czk t + OP) 
at PI 

(AY4h8 a8 - a’ + O(t) 
=(Arl)Ls-a, 

at P, , s # k, 

= et-1 + O(1) at Pk, 

which makes sense, since by assumption (AY-& # 0 for s # 1 and &, (a* - a,) 
# 0. Therefore” 

(fK)m 2 PI - s with equality at PK . 

Let ~2 be the minimal positive divisor such that 

(fd > -.Q + PI - pn 9 1 <k<n. 

I* ( b = ( )ZP< * 
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Neither of the points Pj or Qj appears in 9. If L-3 contained Pi then 

(fk) 2 -(9 - pj) + pl - pk 

because fk never has a pole at Pi ( j # k) and has a pole of order 1 at Pk . Then 
9 would not be minimal. If 9 contained Q3 , then at least one of thef,‘s would 
have to have a pole at Qj . This is impossible, because the eigenvector of A, 
when h -+ 0, has a nonzero first component by assumption. In general, for 
anyk+anEZ 

f k+on = ?fk 

and 

(fk+m) >, -L@ + PI - pk + a f  (St - pd. 
1 

The proof that ~3 is general or, equivalently, dim Z(B) = 1 follows the lines 
of Moerbeke and Mumford [16]; consider the spaces 

R ~ W, h-l, 4 
Q(k 4 

c zl = {linear span of fk’s} 

C 2’ = (f meromorphic with (f ) + 53 >, any 

linear combination of Pk and Qk with k E 72). 

Since gI is an R-module (indeed zfk and hfk E Zx), gI = 9 must hold, because 
otherwise all functions in 9 would vanish at some point p E X, which 1 E PI 
clearly violates. Hence any function off E Z(9) is a linear combination of f,‘s; 
no fk with k >, 2 can occur, because any such linear combination would always 
have at least a pole at the points Pk; therefore 

f  = b,fi + h-l f  fibi1 + -I- + h-a f  fibiU 
( 1 ( 1 

, a>, 1, 
i=l i=l 

and 

fh”(Qi) = b,flh’(Qj) + ha-l ( 2 bfi) (QJ + *** + i b<afi(Qj), 1 <i G n, 
i=l i=l 

i.e. 

i bi”fi(Qj) = 0, 1 < j < n. 
i=l 

Now, it is assumed that the eigenvectors of A, in the limit h --t 0, are distinct. 
Hence the 71 eigenvectors (fi(Qj))lciGn are independent and det(fi(Qj))l<i,j<, # 0, 
implyingbia=O,l ,(i<n.Inthesamewayb(=Oforl <i<n, 1 <j<a, 
proving that f  = b,fr = b, . Therefore P”(9) = {constants} and dim S?(B) = 1. 
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To show that o(9) = g, we show that dim S(8) = ni + 1 for d = 9 + 
i Cy Pk with i large enough. Clearly dim L?(B) 3 ni + 1, since every function fk 
(1 < K < ni + 1) belongs to that space. But every function f E .!?‘(&) is a linear 
combination of X’s (1 < R < ni + l), because at each P, it has a pole of order 
at most i. Therefore, since dim 4-6’) = 0, by Riemann-Roth 

ni+o(S@)-g+ 1 =dimY(I) =ni+ 1 

and 
o(9) =g. 

Conversely, let 9 be a general divisor not containing Pi’s or Qi’s on the 
curve X as described in (ii). Then 

1 ~dim.9(~-Pp,+P~)~dimJZ(~--P1)+1 =l; 

the first inequality is a consequence of Riemann-Roth, the second a con- 
sequence of the fact that .adding a pole increases the dimension by at most one, 
and the third (equality) a consequence of the fact that dim Z(9) = 1. Then the 
unique function fk E LE’(9 - PI + Pk) must have a pole of exact order one 
at Pk , because otherwise fk # constant would belong to 3’(9), contradicting 
dim 9’(g) = 1. Then 

(zf*) 2 -9 -. (v - l)P, - -Y c P* - (v + l)P, 
i#l 
i#k 

with equality at Pk . Then, for some ak E C* 

@fk - a&fk) > -9 - (v - 1 )pl - v  g2 pi . 

From the expression in brackets, subtract some multiple of hY-‘f (j # 1) if it 
has a pole of exact order v at some P, (j # 1). Proceeding in this way, sf* is 
seen to be expressible as a linear combination 

defining a matrix 

A=A&+CAgz", A, = diag(a, ,... i a,), 
.9-l 

8-Q 
fj ak # 0. 

Also, ni<j (ai - a$) # 0 must hold, because otherwise the tl points PI ,..., P, 

would not be distinct.. Moreover (A,,),,k # 0 (K # l), because otherwise fj 
(2 < j < n) would not have a pole of order higher than 1 at Pj.. Finally A, must 
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have in the limit distinct eigenvalues, for otherwise the points Q,. would not be 
distinct. The divisor 9 not containing Qi’s forces the A, eigenvectors to all 
have non-zero components. 

Note that since the functions fb can be multiplied with a scalar, the matrix A 
is determined modulo conjugation by diagonal matrices. 

As in Moerbeke and Mumford [16], the isospectral flows derive from polyno- 
mials u in z, k and h-l, which admit the splitting 

U = Ufi = i Cifi + f Cifi = g- + g+ * 
iz-N’ id 

Abel’s theorem applied to the functions 1 + tg+ and 1 - tg- for small t leads to 

w = - i /P*(t’ w = t c Respi wu + O(F) 
f=l p* 

and 

w = - 2 jodft) w = -tx Reso,ou + O(F), 
i=l or 

where 9(t) = CT vi(t) in the divisor of zeros of 1 + tg+ and B’(t) = C vi(t) 
of 1 - tg- . For the function f&(t) associated with the divisor B(t), 

((1 + %+)f&)) 2 -9 - C Pi + c Qi 7 

where the sum in C Pi extends to those Pi as if (1 + tg,) were replaced by U. 
Let f = (fi ,,.., fn)$; then 

(1 + tg+)f&) = i @,f)@ 
.9=0 

(1 - tg-)fk@) = : @,f)khS 
$=-& 

for some matrices B, . Comparing the two formulas and using the fact that 
g+ + g- = u, we have that 

= t’+]ki = t(P(A, h, h-l),),, . x( 

Moreover, for any basis (u.&(~<~ of holomorphic differentials, we have that 
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because the polar part of u at Pi can be prescribed by allowing arbitrarily large 
poles at the points Qd . This implies that every linear flow on Jac(X) can be 
obtained by the right choice of u E C[z, h, h-l]. Remark that, after possible 
cancellation, u must contain h-1 in order for the flow to be nontrivial.13 

From the group theoretical argument (I), the dimension of the orbit correspon- 
ding to A equals n(rr - l)~, implying the existence of n(n - l)v/2 independent 
Hamiltonian flows. The set of coefficients of the polynomial Q(z, h) provides 
a basis for these Hamiltonians: 

(i) g = [n(rz - 1)/2]u - (n - 1) among these coefficients lead to independent 
flows on the orbit modulo conjugation by diagonal matrices, according to the 
argument above. 

(ii) The flows on A generated by conjugation by diagonal matrices can be 
spanned by the flows 

A = [A, diag(ulk,..., ask)]; h = l,..., n - 1. 

They are independent since 

These flows derive from the Hamiltonians (see I (3.6)) ((Ah+)k, h”), k = 2,..., n, 
which are among the coefficients of Q(z, h). 

This finishes the proof of Theorem 1. 

COROLLARY. Any smooth function of the Humiltoniutzs, uppeming us coeficiezts 
of Q(z, h), leads to u lineur$ow on Jac(X). 

Proof. L&t A, )...) A, be the set of coefficients of the polynomials Q(a, h); 
then for any function H = H(h, ,..., AN), the vector field, defined by 

can be written 
X&9 = {a HI 

Since the hi’s are constants of the motion, aH/a& are also constants of the 
motion; therefore X, is a constant linear combination of the vector fields 
defined by A1 ,..., hN . 

u The linearization argument of Theorem 1 could have also been used, but the one 
given here proves more as it does not assume the Lax equation but in fact deduces it. 
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EXAMPLE. In view of later applications, it is more practical to choose for 
Hamiltonians nonpolynomial functions of A. For instance the Hamiltonian 
(f(AkV), /~~+~)i with 

f(x) = [2/(v + ~)]LY(~+~)/~ leads to the linear flow generated by 

(Al/y)+ = Ayh + r GE Bh + r, 

where (see I (4.44))14 

r = ads ad;t((l - Pa) A,-,) f (~/2)(Ay)Y’2-1 P,(A,-i) 

We now discuss several special cases of physical or geometrical interest: 

1. A = A,h + A, with A,, + A,* = 0 and the Properties of Theorem 1 

The set of such isospectral matrices maps one-to-one onto the general points 
23 of the [(n - 1)2/4]-d imensional variety in Jac(X) defined by the relations 

s 

53 
w=o for 0.1~ = w, 

where T is the involution 

(z, h) --j (-z, -h). 

The only flows preserving the antisymmetry of A,, are those for which uT = -u, 
i.e., linear combinations of zikk such that i + k is odd; they linearize on 
Prym(X). In particular, the flow generated by the Hamiltonian H = $((Ah--1)3/2, 

h2h > namely, 

A = [A, ((Ah-‘)‘/“h)+] = [A, + A,h, E + /3h] 

(Euler’s rigid body motion), where p = A:‘2 = diag(aij2,..., a’,““) and Eij = 
(j3, + &-‘(A& , linearizes on Prym(X). 

Proof. The map 7 is an involution on the curve X, because whenever 
det(A,h + A, - ~1) = 0, we have that 

det(-A,h + A,, + zI) = det(-A,h + A, + xl’)* = det(-A,h - A, + ~1) 

= (-1)” det(A,h + A, - zI) = 0. 

According to Theorem 1, the matrix A maps into a general divisor $9 on X of 
degreeg, which because of the property A,, + A,,* =0 belongs to the Prym variety 
for the involution 7. More precisely, since d;;JN = A,, (mod &l), an argument 

I’ P,(B) = diagonal part of B. 
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similar to the one in Moerbeke and Mumford 116, Sect. 3, Theorem 21 leads 
to the fact that 

(ANN) = 9 + 9 + poles at Pi and Qi . 

Therefore, from Abel’s theorem, the following relation holds for some choice 
of origin and for every holomorphic differential, 

/Bw+J9Tw =o. (2) 

It is trivially satisfied for the holomorphic differentials w,such that WT = --w 
and leads to genuine relations for the ones such that UJT = W. Now, the dimension 
of their space (i.e., with WI = W) is g,,-dimensional, where g, is the genus of 
the quotient curve X0 = X/r. Therefore the variety of divisors 9 in Jac(X) 
satisfying (2) is (g - g,,)-dimensional; let it be Prym(X). Conversely, every 
general divisor inPrym(X) leads to a matrix A = A$ + A, with A, + A,* = 0, 
modulo conjugation by diagonal matrices with entries fl. 

We now compute g, . To begin with, 

Q(k, z) = fi (a$ - 2) + Qn&lh - z ,..., a$ - 2) 
1 

+ Q,+&zlh - a,. . . , a,h - z) + -a- = 0, 

where Qk(tl ,..., tn) are homogeneous polynomials in tl (1 < i < n) of degree K. 
The substitution t = h/z turns the equation above into 

zn,(utt-l)+sn-aQ,,(u,t-l,...,u,t-l)+*~~+Qo=O forneven 

+ *** + 2Ql = 0 for n odd. 

In the even (resp. odd) case, the curve X0 is obtained by putting u = 2a in the 
latter equation 

U”” @ (ait - 1) + ~(~-~)‘~Q,~~(u,t - l,..., a,$ - 1) + . . . + Q. = 0 (3) 

(resp. u(n-1)/8 n (ait - 1) + ~(~-~~~~Q,+s((zlt - l,..., a,+ - 1) + ... + Q1 = 0); 
it is a [n/2]-sheeted covering of the t-plane with branch points at the zeros of 
the discriminant 

A = [n/2]~[(‘+-*)‘~1 fi (ait - 1) + r+] 0’-*)~slQ,&z,t’- I,..., a,,t - 1) + .a. 
1 

and possibly also’at the poles of A. Dividing (3) by J-J; (u*t - l), we find that, 
near t = o& it reads 
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p/2 + (3 + . ..) @/2-l + (+!$ + . ..) &s/2-2 + . . . + 2 = 0 

( resp. &-1)/2 + (4 +...) *n/2-1 + (4 +...) p/2-2 +...+ L& + . . . = 0). 

Therefore u has the following expansion with generically distinct constants Ci 

u+o +, ( ) 1 <i< ?,tnearco; [I 2 

So, u has a double zero at [n/2] points, labeled Iii . Moreover, the function II 
has a simple pole at t = u;l (1 < i < n). So A has poles at 

resp.3 

and therefore vanishes at 

n(n 2 4) + n = 4,; 2) fresp. n(n; 5) + 3(n; 1) = 4n -22) - 3 ) 

points on X0 . Let V,, be this number; then from the Riemann-Hurwicz formula, 

( resp.g, VO = - 
2 

- q + 1 = (fi - ;I’ - 1 )* 

Observe that formula (1) for the genus g of the curve X can be recovered; 
indeed X is a double covering of the curve X0 branched at the points where u 
has an odd pole or zero; this only occurs at the n points Pi and one extra 
point where n is odd. So 

g = 2g, + f$ zzz [ 1 n(n - 1) 
2 

v-(n- 1) for v=l. 

We conclude that 

dimPrym =g-gg, = 
n(n - 2) 

= (n : 1)” ’ 

n even, 

4 ’ 
n odd. 

The statement about linearization follows at once from Theorem 1. 
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2. The Special Orbits (a), (b), (c) of I, Theorem 4.4 (geodesic Flow on Ellipsoids, 
Neumann Problem, etc . . . .) 

The curves defined by det(A - 21) = 0, where15 

(a) A = orb + A,, , OL = diag(g ,..., a,,), ai all distinct, 

(b) A=c&h2+hA~Y-~~2, 

(4 A = c@ + Mc, + (4y - 4 

are hyperelliptic of the form 

(a) h2 = -(I x I2 1 y I2 - (x, Y)~) nyi: (t - ui) a(t)-l with t = zh-1, 

(b) h2 = - 1 x I2 n,“r,’ (t - p$) a(t)-‘, 
(c) h2 - 1 = 2(x, y) J-J;:. (t - us) a(t)-l 

of genera g = n - 2, n - 1 and n - 1, respectively. The function h has the 

property 

(4 = f Qe - i Pi, 
1 1 

where the distinct points Pi correspond to h = co, t = 0~~ . One assumes that 
for some 1 < i < n, xiyj - xjyi # 0 for all j # i. The eigenvectors of Ah-2 in 
the limit h + 0 are all distinct, because they are the eigenvectors of the matrix L 
considered in I, (4.54). For instance in the geodesic flow case, the eigenvectors 
are the components of the Chasles frame. Then from Theorem 1, the matrices 
of the form above parametrize a part or all of the Jacobi variety. We now show 
they parametrize a Zariski open set of the Jacobi variety using a dimension 
count. Consider 

(a) 9’ = {A 1 (Y fixed, 1 x 1 = 1, (x, r) = 0, det(A - ~1) = Q(z, h)} 
modulo the rotation 

xi -+ xi cos 8 - * sin 8, 

yi -+ xi sin f3 + & cos 0. 

The variety has dimension (2n - 3) - (a - 1) = n - 2, the same as Jac(X). 

(b) 9’ = {A 1 (Y fixed, (x, y) = 0, det(A - ~1) = Q(z, h)}ls has dimension 
(2n - 1) - n = n - 1 = dim Jac(X). 

(c) Y = (A ) OL fixed, 1 x 1 = 1, det(A - ~1) = Q(z, h)>16 has dimension 
2n - 1 - n = n - 1 = dim Jac(X). 

~~~I,=x@y-~@x, rn2=x@x, A,=x@y+y@x. 

16 The isospectral set is obtained by dividing out by the discrete action (XS, ys) + 

c-xi , -Yd. 
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Finally the linearization of the flows described in I, Section 4, is straightforward 
by Theorem 1. 

3. The Lagrange TopI’ 

It describes the motion of a rigid symmetric body (Ii = I,) under gravity, 
with center of gravity belonging to the principal axis. As was explained in I, 
Sections 2 and 4, the equations of motion take the form 

1 (y + hM + h21J) = [y + hM + h2111, Q + Ih], (4) 

where 

We perform a unitary operation on A’ = y + hM + R21,1 in order to make 
the leading coefficient Ill diagonal. Let 

Then 

I7 See Ratiu and van Moerbeke [20] and especially Ratiu [ 193. 
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with 

and 

p = - & (A& - z-A;;*) = y + hx, p* = J + hi!, 

1 

w = iAiz = i( - 2&hz - I*Q*h - ya). 

349 

(5) 

Then the curve X is defined by 

Q(z, h) = det(A - ~1) = -x[z* - UP + 2/3/l*] = 0, 

which amounts to the elliptic curve 

za = P,(h) 52 W‘J - 2/3p* 

with two points P and Q covering h = co and RI and R, covering h = 0; so 

(4 = --p - Q + RI + R, , 

(s) = -2P - 2Q + 4 other zeros. 

The eigenvectors f = (f’ ,fs ,fs) normalized at fr = 1 equal 

8bJ + 2) 6 w+z f3 = $J = -(w” _ 2”) = - - = - ; 
w-z 2q9* 

observe thatf, . fs = -i/2. In view of (5) and the expansion 

(6) 

z = fiz,,Ilh2 1 + 
( 

2 i + 0 (&)) about P and Q, 

we have that 

w + 2 = O(1) at P 
= -2izJlha + O(h) at Q 

so that 

(fa)m = --p + Q, (fdm = P - 8. 

According to (6), the functionf, has a pole at the point Y defined by w + .z = 0 
and fi = 0, i.e., h = -y/x and z = w jh=-y,2 and has a zero at the point i; 
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defined by w -Z = 0 and /3* = 0, i.e., h = -y/x and z = w jh=-ylx. 
Therefore, 

(fi) =-P+Q-v+v and (f3) = P - Q + ” - F. 

This defines a map Ah -+ v from 

Se(X) = {A, 1 Ah of the form above, a,, # 0 and 
det(A, - xl) = Q(z, h)} mod the rotation 
x -+ xeie and y + yeis 

to the curve X. To show that the map is onto, we show that it is one-to-one. 
From the curve one determines uniquely the coefficients of the polynomial 
~3 - 2/3/3* in h, in particular xJr and IaL), . The divisor v defines -y/x and w 
evaluated at h = -y/x; therefore, from (5), 

~3 = iw - zoIlh2 - I,sZ,h jh=-r,z 

and also W, as a polynomial in h, are known. Hence the polynomial in h 

x2 - w2 = -2@* = -2(( y I2 + j x I2 h2 + (yf + j7x)h) 

is known, i.e., 1 J j2, 1 x 12, (yx + 7x) and xy = (y/x) / x 12. This implies that x 
and y are known, up to a common rotation x --f xeie, y ---f yeis. 

The linearization statement can be established by direct computation or by 
the general method, somewhat adapted. The direct computation cannot be 
generalized to higher dimensions, while the general method could easily be 
extended to higher dimensions. Any linear flow of the point 

” = (h, x) 

= (-5 I,=_,,,) 
= ( - : ’ *w I+,,) 

on the elliptic curve aa = ~2 - 2p8,8*, reads 

ii = *cw l+-y,5 = fcix-2(-xJlya + 13Q3yx - +) 

= x-“(Xy - 9x). 

Since, from the differential equations (4) 

3 = --i (JJ) Q3X + key, j = i.Q3y - 2x, 
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and 

we have that c = &I;“; hence, the Lagrange top motion is a linear flow on 
Jac(X) = X. 

We now apply the general method to this case. Consider the non-singular 
curve X, of genus = 4 defined by 

( 

&z 
-up- z 

i/l* 

Q&x, h) = det(A(<) - ~1) = det +3* 0 

$3 0 w-2 1 
= (eh2 - z&z” - w”) - 2/l/3*2 

= -2 + chQ2 + (-2/l/3* + w”)z - eh*w* = 0, 

with three points Pl , P, , P, defined by x = co, h = co such that 

2 
P=al=E 

at Pl 

“a, = -&I at Pz 

5 a, = J1° l ix at P, 

where E + 0, X, tends to a reducible curve X0 containing X; the points Pz 
and P, go over into P and Q. The nonzero flow generated by the meromorphic 
function I;%h-l linearizes, as a consequence of Theorem 1, on the four- 
dimensional variety Jac(X,). The Lax point corresponding to this flow reads 

A”’ = [A’“, I;l(AI” + Ak’h)]. 

When Q I 0, it converges to A = [A, 81, where 

and the linear flow on Jac(X,) goes over into a linear flow on Jac(X,) and, more 
specifically, on its compact piece Jac(X). Since the matrix A can always be 
conjugated by a diagonal matrix depending on t, without modifying the flow 
on Jac(X,), we may modify the diagonal entries of B so as to get 

( 

0 
B = -I;lz I-‘; :;)+[ $-ijh ;, 

iI;lx 0 

= U-l(f2 + Zh)U, 

which establishes the linearity of the original flow (4). 
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Remark. It is interesting to further explore some phenomena of Example 2. 
In the ellipsoidal problem (see, for instance, Arnold [24]) or the Neumann 
problem (see, for instance, Devaney [25]), one knows that one has hyperbolic 
phenomena. Associated to geodesic motion on the ellipsoid 

;‘+lg+$= 1, a<b<c, 

we have a curve of the form X: h2 = ~(.a - &/(z - a)(z - b)(z - c), but 
the hyperbolic periodic orbit U about x2 = 0, corresponds to the case yr = 6, 

and it linearizes on the real part of the Jacobian of the curve h2 = ~/(.a - a)(.~ - c). 
Orbits entering the stable manifold of U wind into U as time t ---f 00, while 
these orbits actually hook up to the unstable orbit as t + - 03, and hence wind 
backwards into U. These orbits in fact are characterized as those passing 
through the umbilics of the ellipsoid (see Arnold [24]. Such asymptotically 
behaved orbits could not possibly be linearized on a torus and so must correspond 
to the case where the curve X is singular i.e. (see I, Section 2, for definition of 
the F,‘s) 

ly ’ lz2 = (z - a)(z r b)(z - c) 
+??~+~g??‘+$gL@z 

From I, Section 2, and the above it follows that the stable-unstable manifold 
is the two-dimensional real variety V in R6 given by 

L’ = I(%, Y) 12 + F + $ = 0, (b + c)Fl + (a + c)F2 + (a + b) F3 = 0, 

1x1=1 <.Y,.Y)=O. 
I 

Thus our isospectral set maps into the generalized Jacobian of X, which is 
C x torus, whose real part is a cylinder. The geodesic flow corresponding to 
the stable-unstable variety V is linearized on a cylinder, with exponentials 
playing a role, as in fact is intuitively suggested by the asymptotic orbits 
“screwing” forward and backwards in time into the hyperbolic orbit U. It 
would be interesting to explicitly show from our machinery that the coefficients 
of the exponentials are the Floquet multipliers, as they must be. A similar 
discussion applies to the Neumann problem, which may have equilibrium 
point@ (as none of the pi’s need be zero) and thus as Devaney [25] discussed, 
the Neumann flow is far from ergodic near hyperbolic equilibria points. In 
general the linearizations will take place on Real Jacobian(X) = Rk x Ti for 
appropriate j, k, again with exponentials playing a role. 

There is one technical hitch to this argument, namely the assumption that 
if the curve is nonsingular the flow is actually linearized on the torus, with no 

I* This must be related to the n-soliton solution of the KdV equation using the well 
known relation between the KdV equation and the Neumann problem. 
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exceptional behavior. To see that, one must check that for this case, the map 

JGV * Jac(-T is defined for all A E &.Y). For the case tt = 3, geodesic 
flow, it is easy to see that ,the criteria of Theorem 1 are satisfied, for if there 
is one zero element in every row, then we might as well assume the first row and 
column of A, = A,, = A,, to be zero. In that case, it is easy to see, since 
1 x 1 # 0, that either xi = yd = 0 for some i, in which case we are in the n = 2 
(periodic orbit) case, or else A,. = 0. In that case by the formula X: h2 = 
z(z - pJ(x - u)(z - b)(z - c), at most one of the xe may equal zero, in 
which case we are again in the n = 2 case. If none of the xs equal zero, by the 
equations of motion (I, Theorem 4.4) for geodesic flow, we see that &, in- 
stantly has all non-zero entries, and so we can use the flow to complete the 
map d(X) + Jac(X), for these special cases. Thus the hypotheses of Theo- 
rem 1 are verified and so asymptotic geodesic flow is linearized on a cylinder. 
This argument fails for n > 3, but nonetheless singular curves and hence asymp- 
totic behavior associated with the joining of the stable and unstable manifold 
abound. We just cannot rigorously prove there is a one-to-one relation, although 
it is undoubtedly true. 

4. INDEPENDENCE OF THE LINEARIZATION ON THE REPRESENTATION 

We have seen in Sections 2 and 3 how to linearize. the various differential 
equations of this paper. We noted that the linearization takes place on the 
Jacobian of the curve X defined by the Kac-Moody recipe. Moreover it was 
noted in I, Section 3, that the curve X is representation dependent. The recipe 
for linearization, although given for the classical representation (minimal 
dimensional), extends to the higher-dimensional representations. Since the 
ordinary differential equations and their isospectral sets are representation 
independent, one would expect that the Jacobians of the curves associated 
with the different representations have a common abelian subvariety on 
which the linearization takes place. This is in fact the case; the purpose of this 
section is to prove this fact. 

Consider the hyperelliptic curve 

F&z, t) sic A(t + t-l) + P(z) = fi (z - h,(t)) = 0, 
1 

(1) 

where A is a non-zero number and P(Z) an arbitrary manic polynomial of degree 
N. Fix 1 < 7 < N; let CQ (1 < i < 7) be integers and let Zi( jr ,..., jn) = ji . 
Suppose 

011 = ***  = c$ ) a,,+1 = *-- = Olal++op ,..., “al+...+al-l+l = ***  = cdq+.“+az 

with Ci a, = 7. Let 57 denote a permutation of the set (l,..., N). 



354 ADLER AND VAN MOERBEEE 

Consider now the curve X’, defined by 

G(z, t) = JJ z - i a&(,,)(t) = 0, 
i=l 

where the product extends over the orbit of C$ c&(t) under the action of the 
permutation group {r}. X’ will be irreducible with X, by I, Lemma 3.1; the 
latter is generically irreducible. Observe that the curves associated with any 
higher-order representation involve curves of the type x’ in the case of the 
Toda systems. This section is concerned with proving the following theorem. 

THEOREM 1. When X is non-singular, the following decomposition holds: 

Jac(X’) = Jac(X) @ B, 

where B is an abelian variety and where @ is understood to be a direct sum mod&o 
a finite group of translations (isogenies) and therefore, whatever be the representation 
the linearization can always take place on the Jac(X) piece of the Jac(X’), and 
hence the linearization is indeed representation independent. 

Remark. The above theorem deals with the Toda system of sl(n), but can 
be extended to the other classical groups; this point will be discussed at the end. 

Proof of the theorem. X is an N-sheeted covering of the t-plane, while x’ is 
an M/-sheeted covering with 

M’= a, N! 
1’ **a! a,! (N - T)! . 

For notation, definitions and theorems about correspondences, the reader is 
referred to the Appendix. Consider now the correspondence C[n, n’] between X 
and X’ defined by 

(t, L(t)) --z I(4 i Gh,~(t)) 1 over all 
1 

permutations 7~ such that l;(v) = m for some i 
I 

and the inverse correspondence between X’ and X defined by 

This is indeed a correspondence; the two equations can be exhibited.19 

I9 They take a particularly simple form when G(z, t) = ni.+ (z - (A( + A,)); to wit, 
F(z, t) = 0, t = t’, F(z’ - z, t) = 0, G(z’, t’) = 0. In the general case, the expressions 

are more complicated. 
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The indices of the correspondence are n = T and 

n’= i (N - l)! 

m=l Ql. I ..a! (a, - l)! a,,,! .-a! a,! (N - T)! a,&?‘$ (3) 

because the number of elements in the orbit above containing a fixed element A, 
can be obtained by adding ~r,~+...+,n?~ to each of the 

( N-l 
a, ,...) a, - 1 ,...) uz 1 

permutations of A, ,..., A,-, , X,+r ,..., AN, where m ranges between 1 and 1. We 
now state two lemmas, whose proofs will be delayed. 

LEMMA 1. The correspondence C[n, n’] between X and X’ is sing&r. 

LEMMA 2. Generically Jac(X) is irreducible, i.e., Jac(X) has no nontrivial 
sububeliun varieties. 

Let R be the homomorphism between Jac(X) and Jac(X’) induced by the 
correspondence C[n, n’] between X and X’. Fix a generic curve X, for which X 
is nonsingular and irreducible. By Lemma 1, this homomorphism is nontrivial. 
Then, according to Weil [22, p. 22, Theorem 1121, there is an abelian sub- 
variety 

A S J44 

and a finite number of points al E Jac(X), forming a group such that 

ker h = u (A + uj). 
i 

But since Jac(X) is irreducible, ker h is a finite group; so h( Jac(X)) can be 
regarded as a subabelian variety A’ of Jac(X’), modulo the finite group accounting 
for isogenies. By the “Poincare reducibility theorem” (Weil[22, p. 176, Theorem 
26]), there is another abelian variety B’ C Jac(X’) such that 

A’ n B’ = finite subgroup of Jac(X’), 

VzE Jac(X’),x =y+z with ~EA’,zEB’. 

Observe that the decomposition above is not unique; if x = y + z = 3’ + z’, 
then y - y’ = z’ - z E A’ n B’, which is a finite set. Therefore the decom- 
position can be chosen in a consistent fashion so that 

Jac(X’) = A’ @ B’, 

A’ is isogenic to Jac(X). 

607/38/3-9 
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For the nonsingular curves X for which Jac(X) is reducible, one uses a 
different argument, invoking the principle of specialization, to be explained 
below. Consider the coefficient of P(Z) in the expression F(z, t) to be the in- 
determinates u1 ,..., UN, which take on values in U = CN\(points where X 
becomes singular}. I f  u = (21r ,..., uN) is specialized to u” = (ur’,..., UN’) E u, 
the curve X, specializes to X,, . With Chow [4] and Matsusaka [12] construct 
the Jacobi variety Jac(X,) (&ought of as defined over the indeterminates 

Ul ,...> uN); it has the property that 

Jac(&)lu=u, = JacF&,). 

Similarly, the equation G(z, t) = 0 is a polynomial in the indeterminates 

u1 ,*.., uN and the equation defining the correspondence between XU and Xi 
as well. Let r, be the graph of the associated homomorphism h, between 
Jac(XU) and Jac(X:): 

r, C Jac(X,) x Jac(X;); 

I’, is an algebraic subvariety; since hu is a homomorphism, I’, has the group 
structure induced by Jac(X,) x Jac(X:). Therefore, according to [4] and [12] 
I’, is a subabelian variety over the field generated by ur ,..., uN . By putting 
u = u. , rUO is a closed algebraic subset of Jac(XUO) x Jac(XiO), which is also 
a group. Therefore by 

ru Iu=uo = rTAo . 

Also 

has the same dimension as r, . Under the theorem of specialization (Matsusaka 
[13] or Shimura [21]) 

and in the specialization the dimension does not drop; so therefore 
dim huo( Jac XUO) = dim AU0 = dim A, = the dimension of {the generic AU1 
for U, E U} = g and the result that Jac(X) is a subabelian variety of Jac(X’) 

holds even for a nonsingular X, for which Jac(X) - is reducible. This establishes 
Theorem 1. 

We now prove Lemmas 1 and 2: 

Proof ofLemma 1. Theorem 1 of the Appendix will be used to show that the 
correspondence between X and X’ is nonsingular; it will suffice to show that 

7 <2n(d+g’- I), 
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where n = 7, n’ = APT/N and g’ is the genus of curve X’. We have mentioned 
that the correspondence C[n, n’] was given by two equations; this does 

not suffice to conclude nonsingularity of C, because possibly these two equations 
could be reduced to one in the usual or in some other coordinates. Therefore we 
establish the inequality above. Unfortunately 77 cannot be computed by inspec- 
tion, because most coincidence points p E X (where C(p) has at least double 
points) are all branch points of X with regard to the s-plane; also for these’ 
points, C(p) contains branch points of X’, which makes it a delicate matter.’ 
Instead of this argument, we use Zeuthen’s formula (Lemma 1 of the Appendix) 
to compute 7. 

Introduce the graph curve X” of the correspondence C[n, n’], whose sheet 
number equals n’N. Let g” be its genus. There’ is a C[l, n’] correspondence. 
between X and X”; hence, according to Lemma 2 (Zeuthen formula) of the 
Appendix: 

?j = 2(g” - 1) - 2n’(g - 1). 

So, it suffices to show that 

(g” - 1) - ?r’(g - 1) - T(g’ - 1) < 7-n’. (4) 

Let V, V’ and V” denote the ramification indices of X, x’ and X” respectively. 
Then according to the Riemann-Hurwicz formula, 

g-l=+-, 

g’-1 +M’. 

Combining the relations (3) and (4), it suffices to show that 

V” V --n’---r 
2 2 

; < -(N - +‘. (5) 

Generically, X has 2(N - 1) simple b ranch points for t E C* and a branch 
point of index N - 1 at t = 0 and at t = co, so that 

V = 4(N - 1). 

The curve X’ will have branch points for those values of t E @* which produce 
branch points for X, at t = 0 and at t = co. Whenever hi = X, , one has two 
types of branch points. First obtained by adjoining hi or h, to all the different 
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combinations of 7 - 1 symbols (taken from the N - 2 symbols h, ,..., /ii ,..., 
& ,..., AN) in the “box” corresponding to alll over all m (1 < m < E) 

i al! . ..! @, -‘;!I;$ (N - T - I)! = fg+. 
WI=1 

Second, those obtained by adjoining hi and Xj to all the different combinations 
of r - 2 symbols (taken from the N - 2 symbols A1 ,..., /ii ,..., /ii ,..., hN) in 
the “boxes” corresponding to a, and a,, with m # m’: 

c (N - 2)! n’ -- 
mzm, a,! *-*! (a, - l)! -*.! (a,, - I)! .a.! a,! (N - ,)! 7(N- 1) mZm, amam’ c 

Assume that the roots h, ... hN of F (see (1)) are labeled such that winding once 
around t = 0 or t = cc amounts to going from sheet hi to sheet &+r . This 
transformation i --f i + 1 extends to 

Let rk be the number of elements in each orbit under this transformation, where 
1 < K < # orbits. Then the ramification index at t = 0 and t = co combined 
equals 

2 c (rk - 1) = 2M’ - 2 # orbits. 
l@@arbits 

Therefore we conclude that, using (3) i.e., n’ = M’T/N, 

i 
f-c 1 $)T(NI l)n’] 

+ k (27M - 27 # orbits) 

= 7(N - T)n’ + $ - $ g n’ + n’N - 7 # orbits. 

The points of the graph curve are given by 

1(&(t), i c+$r,(“)) 1 over all i and all 
k=l 

permutations such that X,, = Xi for some K I 
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over the t-plane. For those t E C* for which Ai(t) = &j(t), branch points occur 
in three different fashions. 

(i) Every point of the type (hi(t), C’ i ol,J, (t)) equals some point of the type 
(h,(t), C &r;(t)) and vice versa; so taking &to account all the abide branch 
points of X this contributes 

2n’(N - 1) 

to the ramification index. 

(ii) Within the group of points (Ah(t), cl ~lJr~(t)), h # &j, there are some 
points containing Ai and not Aj and some A* and not hi . Whenever hi = hi , 
some point in the first group equals a corresponding point in the second group 
and vice versa. Its number equals the number of different combinations 
Ci ~lJr,(t) containing A, and hi and not hj for fixed h, i.e., 

(N - 3)! 
**-! (a, - I)! me*! (a, - l)! *es! al! (N - 7 - I)! 

(N-4 
= (N - l)(N - 2)~ R’ 

( 
5 apt + T adad - 1) 

= (N -“I@- ‘4 “tT2 - d 
(N - T)(T - 1) 

= (N - l)(N - 2) “’ 

Let now t E C* run over all branch points of X and let h # i, j run from 1 to N, 
then the total contribution amounts to 

(N - T)(T - 1) 
2(N - l)(N - 2) (N _ l)(N _ 2i n’ = 2(N - T)(T - 1)~‘. 

(iii) Within the group of points (Ah(t) C Q&~(Q), h # i, j, there are some 
points containing hi and A, in different “boxes.” For a given such group, per- 
muting hi and hi leads to a different combination; but, when Xi = Aj , they are 
the same. The number of such combinations is given by the different combina- 
tions C ~rJr~(t) containing A, and At , Aj in different boxes. Its number equals 

c (N - 3)! 

t<u a11 a--! (a, - l)! e-e! (a, - I)! ***! (a, - I)! .*.! al! (N - T ) !  ’ 
a11 8 

When h takes on all values #i, j and t E C* runs over all the branch points of X, 
the total number of such points equals 
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Finally, both at t = 0 and t = CO, there are n’ branch points each of index 
N - 1, because winding around t = 0 or t = co has the effect of raising each 
of the n’ sheets associated to hi into each of the n’ sheets associated to /\i+l in 
X”; this contributes 

2n’(N - 1) 

to the ramification index. Adding up these contributions, 

q = 2n’(N - 1) + (N - T)(T - l)n’ + n’ (f - c $) - ; (G - c a;). 

Putting these expressions for V, V’ and V” into the equality (5), we are led 
to the inequality 

# orbits < T  + g (T’ - c Us2) = M’ + $ (TZ - c U?) ; 

this inequality now is obvious, since the number of orbits is clearly smaller 
than M’. Note that whenever 7 = a, (1 = 1), the right-hand side equals M’. 
This finishes the proof of Lemma 1. 

Remark. The reader will observe that in the above, there is actually another 
source of ramification, namely, the case, for instance, where for a fixed t = t, , 
hr + 3& = /\a + 3X,, )I1 # A2 , X, # h, . This leads to ramification on X’, x”, 
but not on X, and as we will show, such a situation leads to an increase SV’, S V” 
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in V’, V”, such that 8V” - TSV’ < 0, and so by (5), can be ignored in our 
computations. Suppose a sum consisting of bi ( <ai) XI’s from each of the 
“boxes” of ai elements is equal to another such set, with entirely different Ai’s. 
Set C bi = r’ < r. This leads to ramification on x’ by holding fixed in their 
“boxes,” the first set of 7‘ hi’s, and considering how many points can occur 
over t, , where the rest of the Ai’s in the sum C c&(,,)(t,) are drawn from the 
N - 27’ X,‘s in neither of the two sets. Such points are coincident with the sum 
C c&,(,,) , where the role of the first two sets of T’ points are interchanged. This 
clearly leads to 6V’ = [(N - 27’)/ni (ai - b,)! (N - 7 + T’)!]. On the X” 
curve, the above situation leads to ramification at the points (h,(t,), C &$,(tJ), 
where Ai is not one of the 27’ points in the two special sets of Ai, and the 
C a,& (to) contains Xi and one of the special sets, but no element in the other, 
and vi:e versa. This situation occurs precisely 

61/‘“=(N-27’) x 

= 8v’(T - 7’) number of times; 

hence 6V” - TSV’ = -T’6r < 0, as promised. That the above situation does 
not occur twice at the same time can be assumed by taking a generic X. 

Proof of Lemma 2. The proof of this lemma is reminiscent of a proof of 
Lefschetz [8] for general curves, which cannot be applied to this case. Consider 
a real Toda curve X with branch points A, < A, < a.1 < $,+, with homology 
cycles 

Cj = Uj , 1 <iGg, 

= b,-, , g+l <i<%, 

FIGURE 1 
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as in Fig. 1. Define cj(w) = scj w. The Toda character is expressed by the fact 
that (see Moerbeke [14]) 

or, equivalently, 

4 real < cc, different from branch points. (6) 

As explained in McKean and Moerbeke [lo], the Marcenko-Ostrovskii trans- 
formation maps the A-plane of Fig. 1 cut along [h, , co) to a slit domain with 
vertical spikes at the points mi (1 < i < g). Conversely, any slit domain with 
vertical spikes at g positive multiples of r gets mapped into the &plane depicted 
in Fig. 1. The height of the ith spike controls the width of the corresponding 
band [hsiWl , X,J and since the height of the spikes can be chosen arbitrarily, 
the width of the bands can be varied independently of each other. So, in particular, 
any band can be squeezed to a point, while maintaining the other bands open, 
possibly at the expense of moving all the Ai’s. This degree of freedom in the 
Toda variety is the main ingredient of the proof, reminiscent of an argument by 
Lefschetz [8]. 

Next we show that the Toda character of X is maintained after squeezing one 
band; namely, it reduces to the Toda relation for the smooth Riemann surface 
X0 of one lower genus. Indeed, let w be an arbitrary differential vanishing at 

zj E [Xaj, , h,J; then, when haj - X,j-1 + 0, 

w = JW(~ - 4 dz - w,, = JW dz 

WW’” (Ro(~N1’2 ’ 
degree P(x) < g - 1, 

where y2 = R(z) = (z - h,) ... (z - h,,,,) and 

-------A 
yo2 = R,(x) = (z - A,“) a.. (x - X;j-,)(z - A&) 1.. (z - A!&,+,). 

So, w tends to a generic holomorphic differential w” on the curve X0 defined by 
yea = R,(z). Moreover 

s 

hi 
W--f 

*,,-I 
s 

*t 
WO, 

4-I 

i# j, 

andzO 

2o Using the integrals 

(7) 

b dz 

s 

b 
v and 

(.a - c)dz a+b 

a ((2 - a)@ - z)y2 (I ((z - a)(b - z))112 = 2 - c 71p 
o<c<b. 
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I 
bf 

I 
bj 

W= C2 - 3) P(z) dz 

b-1 Azj-1 (t2 - hW-l)(z - h2.f)Y’2 <IIi+2i.25-1 C2 - ‘i>Y” 

E.z c (h2j-12+ ‘a - 2,) T -.+ 0. 

Therefore (6) reduces to 

which expresses the fact that X0 is also Toda. 
For future use, we also evaluate bj(w) for w vanishing or nonvanishing at sj 

where hsj - &j-r + 0. When w(sj) # 0, one gets after a deformation of the 
integration path. 

bj(w) = c + c’ d;ra ((x2j-l - 2g2j - 2))lP 
= ln(2((&j-1 - 2)(&j - 2))l" + 22 - h2j-l - h2j) 1"'-' 

= In x2j-l - x2j 
2(U(&j - Ati-1 + Q))li2 + &j-l - h2j - 2U 

= -O(ln(& - La+,)) t co logarithmically, 

where C and C’ are functions of the other branch points and a 
away from zero. Moreover when w(zj) = 0, 

N c + C’ (x” +2h-l - Zj O(ln(& - &j-l)) < Co. ) 

h*j-1-a 
(9) 

> 0 is bounded 

(10) 

Assume now that every Toda curve is reducible; then, the period matrix 
9 = (Cj(wi)), 1 < i < g, 1 < j < 2g, splits up in two blocks (for a proper 
choice of cycles and basis wi of holomorphic differentials), consisting of QI , 
a matrix of order (k, 2k), and 52, , of order (g - k, 2(g - k)) 

Since IR, and Qa correspond to abelian subvarieties, we have that for some 
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antisymmetric integer matrices Jr and Jz of order 2k and 2(g - k), respectively, 

.n, JIQIT = 0 and Q,J2.Q2’ = 0 

as a consequence of the Riemann bilinear relations. Therefore both relations, 

fJ J1 ’ Q= = 0 ( 1 0 Jz 
and Q(i -Ojz)RT=O 

are valid, i.e., Q has a complex multiplication besides the usual Riemann bilinear 
relation. Now since the Toda curves of fixed genus corresponding to the same 
relatively prime set of integers 0 < m, < ma < .‘. < mB < N form an analytic 
variety [l 11, and since there are only a denumerable number of complex multi- 
plications, they all must share the same additional complex multiplication; let 

QdQT =0 

for an integral matrix d of size 2g. This implies the quadratic relation 

; 44 d&4 = 0, 1 < 4 k < g. 

Hence, for any pair of holomorphic differentials w and w’ 

; 4~) 444 = 0. (11) 

This relation now holds for all Toda curves of a given genus with fixed integers. 
We now show by induction on the genus that the matrix d reduces to the sym- 
plectic matrix 

More precisely, if this property is true for genus = g - 1, then it holds for 
genus g. The quadratic relation (11) can be split up in its real and imaginary 
parts, which because of the reality of the branch points leads to the following 
two relations (A) and (B): 

By successive choices of wr and wa , the integers nii and rnij will be shown to 
vanish. 

(i) Squeeze the cycle aB to the point z, (h,,-, < z, < h,,) and let wz(zQ), 
wl(zg) + 0. Then by (9), b,(w,) b,(ws) blows up faster than &(w,) b,(w,) and 

47(4 b(%) (1 <j < g - 1) while all the remaining terms in (A) remain 
finite by (7) and (8). This implies n,, = 0. 
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(ii) Squeeze both cycles a, (1 < i < g) and a, to the points zt (Xal-1 < zi < 
hai) and z, (ha,-, < z, < &), respectively; let 

Then by (7), (8), (9), and (lo), only bi(w,) and b,(o,) blow up; so the leading 
term in (A) is n,,,b,(wl) b,(w,) with the result that nisD = 0, 1 < i < g - 1. 

(iii) The roles of wr and wa can be reversed, implying that also lznsi = 0, 
1 <i<g. 

(iv) Consider now two arbitrary differentials wr and wa both vanishing at 
zV (l\zo-1 < a, < ha,) and squeeze a, . Then, according to (7) and (8), aj(wi) and 
b,(wJ (1 < j f g - 1, 1 < i f 2) lead to generic abelian integrals for a Toda 
curve of genus g - 1, as pointed out before, and 

%(wl) -+ 0 and &Js) - 0. 

So, relation (A), taking into acount (i)-(iii), g oes over into a similar relation for 
a generic Toda curve (defined by ml < ma < .*. < m,-, < M) of genusg - 1. 
By assumption, this generic curve has no complex multiplication, so that 

nij = mdj = 0, 1 <i,j<g-1. 

(v) All that is left in (A) is the sum 

a-1 

2 md%(wJ uj(wZ) + i mjpui(wl) u~(wJ = 0. j=l 

Choose w1 and wa such that 

4%) = ..* = W1(Ziel) = wl(zI+l) = ... = w*(zp) = 0, 

hence 

then by (7) and (8), upon squeezing all a, (1 < i < g), uj(wl) + 0 (1 < j < g, 
j # i), ai ++ 0, u,(wa) finite, and a,(wJ + 0; therefore in the limit the only 
surviving term in (12) is lim mipi(wl) u,(wJ = 0 with lim Ui(w&Jwa) # 0; 
hence mt, = 0 (1 Q i < g) and by interchanging the roles of w1 and wa , also 
mgi = 0, 1 < i <g; hence (A) is seen to be zero. 

(B) i b(wl) i ntjuj(wJ + i 4~1) i mdj(wtJ = 0. 
i=l f-1 i-l is1 
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(i) Squeeze all ai (1 < i < g) and choose wr and we such that 

wl(zl) = w&J = ... = wl(xg-l) = 0, &i-l < 3 < 3 A,, 

44 = %(%J = ... = wz(zjj-1) = W&j+J = ... = wz(zg), 1 <j <g - 1. 

Then, by (7) (8), (9) and (1% and the fact that wl(zg) # 0 and w2(.zj) # 0, 

and 

Uj(WJ-fO, I <i <g- 1, QOM + 0, 

%(WJ - 0, 1 < i Gg, i # j, Uj(WJ + 0. 

Then both ai bj(wz), 1 < i < g - 1, i # j, and aj(wr) b,(wa) -+ 0 by 
letting Azi - h,,-l --f 0 independently of 1 < i < g - I, using estimates (7) 
(8), (9), and (10). Consequently, the leading term of (B), namely, 

must vanish. Since both A,, - h28-1 and haj - hai-, can be made to vanish 
independently, we conclude that ngj = rngj = 0 (1 <cj < g - 1). 

(ii) By interchanging the roles of wr and ws , also nip = mj, = 0, 1 < j < 
g- 1. 

(iii) Squeeze ug. and put wr = wz , with wl(zp) # 0; then using (i) and (ii), 
the leading term reads 

~gg~gh) ~,bJ + mgg~g(wl) b,(wJ = bog + moo) ag(4 b,(wJ 

and it vanishes only if ngB = -m,, . 

(iv) Consider now two arbitrary differentials wr and ws both vanishing at a,. 
Then if a, gets squeezed, uj(wi) and b,(w,) (1 < j < g - 1, i = 1, 2) lead to 
generic abelian integrals for a Toda curve of genus g - 1, while u,(wJ --j 0 
(i = 1, 2) by (8) and b,(wJ < co (i = 1, 2) by (10): Therefore in that limit, 
relation (B) tends to a complex multiplication for a generic Toda curve of lower 
genus, defined by m, < m2 < *.. < rnp-r < N. Since, by assumption, such a 
generic Toda curve has no complex multiplication, the limiting relation must 
reduce to Riemann’s bilinear relation. Putting the corresponding values of n, 
and mjj in relation (B) and taking into account (i)-(iii), we find for c = lzQg, 

O-1 
c WJJl) 44 - &k2> 4%)) 
i=l 

+ CPO(Wl) ~o(%J - wok%) (~O(Wl>> = 0. 
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The special role played by the band going with a, could as well be played by 
any other band, say a,-, , leading to a similar relation 

i (M4 4~2) - k(w2> 44> 
i=l 

{#g-l 

+ m7-lbJ1) %-402) - Llb2) %-lb4 = 0, 

implying that c’ = c = 1. 

Remark. For the case of the Toda systems in the other classical groups and 
G, , one constructs a correspondence in a similar fashion between the curves 
(I, 3.15, 3.16) occurring in these cases. The correspondence is given by 

(4 L(O) - 
I 
6 $ 4~id~) 1 Over 4 

permutations 7~ such that hlt(,,) = &h,,,(t) for some i , 
I 

and one observes that the correspondence commutes with the involutions (T on 
both curves given by (h, z) -+ (h, -z). Now up to isogeny, the involutions 7 
on X, x’ lead to the decompositions 

Jac X = x + y, Jac x’ = x’ + y’, 

where y and y’ are the Prym varieties associated with u, etc. The correspondence 
C induces the complex multiplication (see the Appendix), where, for the sake 
of notation, we have identified Jac X and the Riemann matrix of X: 

i.e., 
Jac x’ * N = A * Jac X, 

(x’ @ y’) * N = A * (x 03). (13) 

Upon observing that, at the level of Jac X, u induces the map ($9) -+ (2, -y), 
etc., and also that u commutes with C, we find that acting upon (13) with u 
implies2r 

(x’ @ (-y’)) * N = A(x 0 (-3)). 

Thus upon adding and subtracting (13) and (14) we find 

x’ . N = A . x, y’.N=A.y. 

(14) 

(15) 

One proves in the same fashion as in Lemma 1 that C is singular, and hence the 
complex multiplications (15) are nontrivial; thus, x’, x and y’, y, respectively, 

81 This involves picking a basis of holomorphic differentials of X, X’, consisting of 
even and odd differentials with regard to (I. 
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have common abelian subvarieties, by Weil [22]. Thus the extra symmetry in 
these cases is reflected in the double factorization statement consistent with the 
symmetries of the Jacobians. We have that the linearizing Prym subvariety of 
Jac(X) is contained in all the Pryms coming from all the different representations. 
Thus Theorem 1 has this strengthened form for these cases. Similar remarks 
can be made for the other examples in I, Section 4. 

APPENDIX 

The purpose of this appendix is to provide definitions and notations to 
Section 4 and to provide a clear but limited exposition of the classical theory 
of correspondences leading up to Theorem 4.1; the theory of correspondences 
was developed mainly by the Italian geometers. These results can be found 
in Coolidge’s book [5] in an obscure way or can be proved using Chern classes 
of line bundles and modern intersection theory. Therefore we give an exposition 
in the spirit of this paper. 

A correspondence C[n, n’] between two curves X and X’ of genera g and g’, 
respectively, is defined by one or several algebraic relations between the coor- 
dinates of X and X’ mapping a point p E X onto n’ points C(p) = ql -t ‘.. + qn, E 
X’ and a point q E X’ onto n points C-l(q) = p, + ... + p, E X. 

Remark. Let f(~, y) = 0 and f’(~‘, y’) = 0 define the curves X and X’, 
respectively. Thus the correspondence C[n, n’] will be given by 

M%.Y, X',Y') = +z@,Y, X',Y') = .'. = 4m("?Y, X'> Y') = 0. 

In fact we show that these equations & = 0 (1 < i < m) can be replaced by at 
most two new algebraic equations: Given a point (x’, y’) E X’, the intersection 

of the curves f  = 0, #i = 0 ,..., and #,n = 0 is given by n points (xi , yi) 
(1 < i < n), whose abscissae can be assumed generically distinct after possibly 
a birational transformation of coordinates. Let yj(x) be the solutions of the 
polynomial f(~, y) = 0 in y. Form the poZynomiuZ in x, s’, y’ 

qx, x’, y’) = I-J $i(% Y&), x’, Y’> 
j 

and let 19(x, x’, y’) be the polynomial 22 in x, x’, y’ which is the g.c.d. of the ~9~‘s. 
The solutions in x of this polynomia1 are precisely the points si , by the g.c.d. 
construction. Let A(x) be the unique polynomial of degree n in x, also depending 
on x’ and y’ such that yi = A(%<) (1 < i < n); then the n common solution of 

qx, x’, y’) = 0; y  - A(x) = 0, A(x) depending on x’ and y’, 

22 By the Euclidean algorithm for forming the g.c.d. this still is a polynomial. 
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provides us precisely with the n points xi , yi . Moreover A(x) depends ratio&j 
on x’ and y’, because A(x) is a symmetric function of the xi , which themselves 
are roots of the polynomial 0(x, x’, y’) in x, x’ and y’; this uses the customary 
interpolation formula in the construction of A(x). Possibly undoing the pre- 
paratory birational transformation we have shown that a correspondence is 
defined by at most two equations cpi (1 < i < 2). A dimension count shows that 
if two equations are fully needed, this would be rare indeed and, in fact, implies 
that the two curves X and x’ are intimately related. 

A singular correspondence is one where two equations are needed, i.e., one 
equation does not suffice. 

We now show, following Hurwicz, how a correspondence implies a relation 
between the period matrices, as explained next. Let wi (1 f  i < g) and W; 
(1 < i < g’) be the respective bases for holomorphic differentials on X and x’. 
Then 

is a holomorphic differential on X, since upon integration it does not blow up 
and hence we have equality of the differentials 

(1) 

for some appropriate choice of aik . Let ci and ci be a basis of homology cycles 
on X and x’, respectively. Then whenever p sweeps out a cycle et, then 
C(p) = C &) sweeps out a cycle on X’ of the form Czz, n,,c~ with 
n,, E Z. Hence upon integrating (I), we find our statement of complex multi- 
plication, namely, 

or, equivalently, 

l2’N = A!2 with (JQj = c~(w;) and Qcj = ci(wJ. 

In view of Riemann’s bilinear relation f2JQT = 0, the latter implies 

.Q’CP = 0, where C = NJ is an integral matrix. 

So a self-correspondence of X (i.e., a correspondence of X to itself) implies a 
quadratic integer relation between the elements of the period matrix 

QCLP = 0 with C a 2g x 2g integral matrix. 
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Whenever this relation is different from Riemann’s bilinear relation, it is called 
complex multiplication. 

Given a correspondence C of X onto x’ define the numbers of coinci&nces:2s 

and 
7’ = #(4EX’/pi =p,forsomei #ji>. 

A self-correspondence of X is said to have value y  if for any two points p, q E X 

C(P) + rP = C(q) + w in Jac(X). 

Let f  be the number of fixed points (i.e., such that23 [E C(c)). The Chasles- 
Cayley-Brill formula (Coolidge [5, p. 129, Theorem 141) affirms that for any 
seIf-correspondence C[n, n’] of X, 

5 = n + n’ + 2gy. 

Let fO ,..., fT be Y + 1 independent meromorphic functions. Then the r- 

dimensional family of zero divisors of the functions 

with h, E C defines a linear system gNT, where N is the order of the minimal 
divisor 53 of poles of the fi’s. Then given r generic points p, ,...,p, on X and 
since for this generic choice det(f;,(p,)) # 0, 1 < i, j < Y, unique constants 
h 1 Y.-e, X, , up to a factor, can be found such that for 1 ,( j < r, and for a fired /\a, 

4lfXPJ + i hfi(PJ = 0, 
i=l 

defining N - r other zeros. In particular a linear system g,r associated with 
&fO + Alf, defines a self-correspondence C[N - 1, N - l] of X (f(x, Y) = 0) 
by the N - 1 nontrivial solutions of 

JJl ~ f1(x, Y)fO(X 7 Y’) - fo(x9 r)fXx’, Y’) = 0 
x’ - x 

Clearly this self-correspondence has value y  = 1 because for any choice of p 

and q, 

(4lfO + 4fJ = P + C(P) - 9 for 444 = -fdP)/f,(P) 

za Counted with multiplicities. 
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and 

Therefore 

( 
Aofo + u-l _ 
TJfo + “Ifi ) - P + C(P) - Q - Ch) = 0 in Jac X, 

which implies that y  = 1. From the Chasles-Cayley-Brill formula applied to 
C[N - 1, N - 11, it follows that 

d = 2 # (divisors in g,l with double points} 

=(N-l)+(N-1)+2g=2(N-l+g). 

An algebraic system ynrr of index v  on a curve X is defined by a curve x’ and a 
correspondence C[N, v] between X and X’; so, the algebraic system yN1 is 
given by the family of common zero divisors of order N of 

w, Y9 x’, Y’) = M% y, x’, Y’) = 0 in (x, y) E X 

parametrized by (z’, y’) E X’. Moreover any point (x, y) E X corresponds to 
the v  zero-divisor corresponding to the v  roots (x’, y’) of $r = 4s = 0 on x’. 

Let d have the same meaning as above but for g,.,l replaced by yN1; un- 
fortunately this number cannot be computed in the above fashion; one would 
be tempted to replace the above formula for d by 2v(N - 1 + g); however, 
this only produces an upper bound (Lemma 4). The above recipe for providing 
the correspondence does not generalize to rE;l. 

LEMMA 1. A deformable algebraic system yN1 of index 1 on X is a g,l. 

Proof. Consider the self-correspondence of X defined by 

C(p) = the divisor of N points of r$ containing p. 

Consider now a one-parameter (,3) f  amily of rN1’s and the corresponding Ca; 
let Co = C. Then the numbers aik in (1) do not depend on the parameter in 
view of (2). Indeed let wr ,..., wg be a normalized basis such that cr(wk) = S,, 
(1 < 1, k < g). Then from (2) with g = g’ 

aik = %k + 5 %&bi), 
?n=g+1 

1 < i, k < g, 

and any continuous variation of the parameter /I above leaves the integers ntij 
and the periods c,(oi) fixed. Hence aik is constant with jY?. 

607/38/3-10 
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Moreover for any p’ E P(p), p’ # p, we have that Cs(p’) = C@(p); so, upon 
integration of (1) from p, to p, we have 

i aik jp wk = j;;“’ wi + di@ = j;!‘“’ wi + dis 

k=l 90 0 0 

= i aik j” wk in Jac(X), P’ E c’(P), 
k=l 

where dis is an integration constant independent of p. Now we pi& a pair of 
points Pl , Pz , which shall be fixed throughout the following argument. We 
can find a deformation Ca of CO = C such that for /3 = PO , C%(p,) = Cb(p,), 
and hence in (3), setting p = p, , p’ = p, , p = /Jo, we have 

(4) 

= 2 aik fpzwk = jN~‘p”~i + d? in Jac(X). 
PO 0 

Since a variation in ,6 leaves the aik unaltered, the two middle expressions are 
in fact also unaltered, and so the extreme expressions in (4) are also independent 
of /3, and equal; therefore putting /3 = 0 we conclude 

s 

Cb,’ 

wi = 
ND0 s 

CCP,’ 

wi on J=(X), 
ND0 

and therefore 

C(Pl) = C(Pz) in Jac X, for all p, , p, E X. 

Hence by Abel’s theorem, we have a rational function on X, algebraic in /\ 

g(p, 4 such that (g) = .9A - 9, gA ,9 E yNt, 

X being the parameter in yN1. Since the index of yN1 is one, g can be taken 
rational in /\, also; given p E X, there is precisely one solution to g(p, h) = 0, 
and so g is linear in /\, thus yN1 is a fN1. 

COROLLARY 1. Given a deformable y,,? of index v, the divisors (C-l 0 C)(p) 
(i.e., sum of the groups containing p) parametrized by p E X form a yb, of index 1 
and hence by Lemma 1, a linear system g&, . 
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LEMMA 2 (Zeuthen’s formula). The following relation ho&: 

?J + 2n’(g - 1) = 7’ + 2n(g’ - 1). 

Proof. First, assume n = 1 and let X be an N-fold covering of C. Then 
according to the Riemann-Hurwicz formula for the ramification indices V, 
and V,- of X and x’, 

v.r =2(Nfg- 1) and v,p = 2(Nn’ + g’ - 1). 

But observing that among the branch points of x’, some of them come from X 
by the correspondence and the others come from the coincidences, we have 

v,, = n’Vx + 7. 

Comparing these three formulas yields 

?j = 2(g’ - 1) - 2n’(g - 1). (5) 

Second, for arbitrary n, there is a natural correspondence C”[l, n’] from X to 
the graph curve r (associated with the correspondence C[n, n’]) with genus g”; 
it maps p rz X onto n’ points (p, qr),..., (p, qn,) E l7 Similarly, there is a corre- 
spondence C”‘[l, n] from x’ to r. Applying formula (5) to these two new 
correspondences and eliminating g” from them leads to the desired result. 

LEMMA 3 (Severi’s formula). For a given curve X of genus g, and r > 1, a 
linear system gNc and an algebraic system yM1 of index v, having d coincidences 

#(p =pl+ .**+p,+,suchthatp+ +*.EgN7andp+ ***~y~l} 

=2iv(“;‘,v-;d(y--;). 

Proof. Let +(N, T, M) be th is number for r 2 0. Consider the correspon- 
dence of X onto itself mapping a point p onto a divisor C(p) to be constructed as 
follows: 

(i) To p E X, associate the v sets of points qz5 + *** + qlMj (1 <j < v) 
such that 

(ii) Take any one of the (“;-‘) distinct divisors Q/ = d, + *a* + d, for 
I = (il ,..., ir) among the set Qi(p) not containing p; then to each such divisor 
there corresponds a unique one Pj = pi + *.. + pt, such that 



374 ADLER AND VAN MOERBEKE 

This defines a correspondence24 

of type 

C(P) ='IcgM, Prj + (:I:) i QTP) 
j-l 

isj(u 

c = c 
[ 
(M- r)#(N- 1, Y- l,M)+v(M- 1,(~~12),+V-r)(M; ‘) 

+ 04 - 1)) fy)]. 

We now explain the index count: the latter index can be read off from the 
divisor C(p). Conversely, given a point p’ E C(p); then p’ can appear either in 
the first or the second sum in C(p). In the latter case, there are v  ways to add 
(M - 1) points to p’ to make a divisor in yM1, and thus multiplying v(M - 1) 
with (“I:), the multiplicity with which thep’ appears, we get the latter contribu- 

tion to the first index of C. The other contribution is obtained by takingp’ EC Pj. 
Note that the divisors of g,r containing p’ form a g&I:, and if we look at the 
9 E gN’-_i having Y points in yM1, of which there are $(N - 1, r - 1, M), then 
the remaining (M - r) points of the yM1 are precisely the candidates for p. 
This explains the indices of C. The next point to observe is that the value y  of 
C is zero; indeed, since the combinatorial identity (y:f) C Q(p) = C Q,j, 
Implies 

C(P) = 1 (Pi + Qi), 

and since the Pj + Qj(p) ~~~~ are independent of p in Jac(X), we have that 
y  = 0. Hence by the Chasles-Cayley-Brill formula 5 = n + n’ + 2gy, 

,$=(&I-r)c$(N- 1, r- l,M)+v(M- l)(;~12)+v(N-‘)(M;1) 

+ VW- 1) (y;). 

The coincidences 6 can also be counted directly. We will have a coincidence 
whenever p coincides with C 8j(p) or C P,j. The first case occurs d x (“I.) 
times, where d is the coincidence of the y  ,$. The second case occurs precisely 
if p E P,i for some j, I, but that happens precisely if the I + 1 points Q,j(p) + p 
are common to yM1, gNC, i.e., #(N, r, M) times, and of course all of the r + 1 
elements of Q/(p) + p give rise to such an occurrence, which thus occurs 
(I + 1) +(N, r, M) times. We thus conclude 

E = (7::) d + (r + l)vW, r, M). 

24 We do not exhibit the polynomials defining this correspondence. 
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Upon equating the above expressions for .$ we have the recurrence relation 

(M - rb$(N - 1, I- l,M)+“(M- l)(yI;)+“(N-‘)(“; ‘) 

++4- l)(yr;) = (;:;)d+(‘+ l)$MN,r,M). (6) 

We now proceed by induction. Suppose $(N, s, M) (s < Y) has the desired 
form for all N; then a straightforward combinatorial computation shows that 
+(N, t, M) also does, by substitution. To start the induction put Y  = 1 in (6) 
using +(N - 1, 0, M) = Y(N - l), leading to the correct expression for 
+(N, 1, M). This proves Lemma 3. 

LEMMA 4. The coincidences of a correspondence C[n, n’] between X and X’ 
satisfy 

and 
7j < 2n’(n + g - 1) 

7) < 2n(n’ + g’ - 1). 

Proof. A correspondence C[n, n’] gives rise to a ynl of index n’. Observe that 

d = 2 # {divisors of order n in y,,l with double points} = 27’. 

According to Lemma 3 and because of the nonnegativity of z, a = #{p = 
p, + .** + p,, E ynl such that p + ... E g;&,} = 2n’(n + g - 1) - 7’ 2 0, 
from which Lemma 4 follows. 

THEOREM 1. (Castelnuowo) The following four statements are equivalent: 

(i) x=0 

(ii) y,,l is contained in a linear series g,l 

(iii) the correspondence of ynl is given by one equation, 

(iv) the homomorphism between Jac(X) and Jac(X’) induced by the corre- 
spondence is trivial. 

Proof. (i) implies (ii). To begin with, let x >, 0 be arbitrary; let ynl be 
given by the equations 

f  (x, y) = zqx, y, X’, y’) = F,@, y, x’, Y') = f  ‘(x’, Y') = 0. 

Take a generic gKi_, defined by 

607/38/3-I1 
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Eliminate y  fromf and F,; this yields a polynomial 

Eliminate y  fromf and F,: 

qx, x’, y’) = 0. 

e&x, x’, y’) = 0. 

Given a point (x’, y’) on X’, there are 71 solutions (X,(X’, y’),..., X,(X’, y’)) to 
these two equations (possibly after a birational transformation), i.e., tl points on 
X. Eliminating y  between the equation 4 and f yields a polynomial 

0(x, Al , A, )..., A,) = 0. 

Now we express the fact that the n roots xi(x’, y’) are also roots of 0 = 0. 
This yields 

0(x&‘, y’), A, ,..., A,) .= 0, I < i < n, where f  ‘(x’, y’) = 0. 

Note that this equation is parametrized by the gE&‘s. ASsume now z = 0, i.e., 
there is generically (ingE&) no solution to this system of equations in /\I ,..., h, 
for all (x’, y’) with f  (x’, y’) = 0. But now we exhibit a special a:& for which 
there is a solution; then for the # corresponding to the special choice of g&i-, 
there are an infinite number of solutions, by Bezout’s theorem. To get a special 
3, take a group a of ylzl and g other points p, ,..., p, such that 

0 

Q+~Pid+,. 
1 

Pick PI . Let ji& be the fixed linear system25 such that 

But since 

we have that 

26 Fixing one point in a linear system leads to a linear system of one fewer points and 
one fewer degrees of freedom. Indeed given a system defined by CI &j,(p) = g(h, p) = 0 

and imposing the condition g(A,g) = 0 enables us to eliminate, say, A0 = -(f&j))-’ 
& &f&5), and thus substituting in the above yields a linear system of the form Cl=, 
&hi = 0. 



LINEARIZATION OF SYSTEMS 377 

and since a E ynl we have indeed exhibited the right j& and thus 

and therefore 

Hence by symmetry 

(m’+Pd+ -*cg:+,, 1 <i<g. 

Let b E yR1; then for some unique divisor c = c(b) 

(7) 

b+cEgI+g. 

But, by (7), pi E c; we conclude c = & pt . Hence 

Therefore -ynl is contained in a iinear system g’,+‘, k 2 0. To establish the 
converse ((ii) * (i)), assume yn l C I+‘, which is complete; we need to show _ g, 
that m’ and an arbitrary (complete) gztWl have nothing in cgmmon. Now, 
assume ‘to the contrary, that z > 0; iat a be that divisor, i.e., for some points 
Pl P-,P.-1 

9-l 

Fixing xi-’ pi determines26 a unique complete &,h such that 

which clearly also contains a; therefore 

a E gnh n g’,‘” 

and hence they cointide; thus 

s8 See footnote 25. 

*I Because the divisors of both linear systems are equivalent to a in Jac(X) and both 
sy&ems are complete by assumption. 



378 ADLER AND VAN MOERBEKE 

which is absurd, because every generic linear system go.& would have some- 
thing in common. 

We now show that (ii) implies (iii); so assume ynl -Cg,l. Embed the curves X 
and x’ in projective spaces (PI)* and Pz, I >, 2, respectively, as follows: if 

* = vll >*-., $4) are the defining meromorphic functions for g,r, define the map 

P E x - #(PI E w* 

and a hyperplane (UY J(y, .x) = Ciyixi = 0} intersects X in the points #(pl),..., 
$(pn), where (y, I/@)) = 0 (1 <<i < n); therefore we can identify the hyper- 
plane with a divisor in g, I. Also note that y may be thought of as an element of 
IV. Let C: X--f X’ be the correspondence associated with ynl; if p’ E X’; then 
C-‘(p’) ~g%l N P; therefore x’ can be embedded in P. Let X and x’ be 
given by 

X:f(x) = 0, X’:f’(x’) = 0. 

Then the correspondence is given by 

which produces the one equation defining the correspondence, establishing (iii). 
Now assume (iii): the correspondence is given by one equation, besides the 
curve equations 

f(%Y) = 0, f’(X’,Y’) = 0, 

R(x, y, x’, y’) = c xiyQjj(x’, y’) = 0, 
i.i 

where Aij are also polynomials in (x’, y’). Note that for different values of (x’, y’) 
the divisors of zeros of R are equivalent in Jac(X). This implies that the map 
defined by 

P’EX, f(p’) = I”““’ w E Jac(X), 

is constant. Think of x’ as being embedded in Jac(X’); then any map f, as 
defined above, extends by linearity to a unique homomorphism 

h: Jac(X’) ---f Jac(X) with h Ix, = f, 

possibly after a new choice of origin. The fact that f = constant implies that 
h = 0 on Jac(X), establishing (iv). That (iv) implies (iii) can be done by retracing 
one’s steps. This ends the proof of Theorem 1. 
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