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1. INTRODUCTION 

In this series of two papers, of which this is the first, we discuss in a systematic 
fashion the relationship between what is classically known as completely 
integrable Hamiltonian systems, and polynomials in the indeterminate h, h-l, 
with coefficients in one of the simple Lie algebras. The reason for putting these 
Hamiltonian systems in a Euclidean Lie algebra setup is that these systems 
linearize naturally on Jacobeans of curves associated to these Lie algebras; 
in many cases the linearization occurs on Prym varieties of the Jacobeans, to 
be more precise. The linearization shall be discussed in paper II [23]. 

It had previously been realized that complete integrability is strongly related 
to either Lie algebra [l, 21 or algebraic curve theory [3, 41. For instance 
Adler [5] shows that both the Korteweg-deVries equation and the Toda 
systems’ can be viewed as Hamiltonian systems on the co-adjoint orbit of a 
sdvable group with the Kostant-Kirillov orbit structure, and moreover, the 
complete integrability of these systems may be traced to a single abstract 
Lie algebra theorem. Moreover, van Moerbeke [6] shows that the periodic 
Toda systems may be linearized on the Jacobean of a curve related to this 
system in some reasonable fashion. It is thus natural to combine these two 
approaches and to see how they relate. In fact they relate quite intimately, 
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268 ADLER AND VAN MOERBEKE 

and also in great generality; and this is the main message of these two papers. 
The large number of examples illustrates this message. We also point out that 
our methods have the severe shortcoming that even if given a completely 
integrable system (with rational integrals) they do not provide a systematic 
procedure for discovering what the underlying Lie algebra is. 

Specifically, we shall study the generalized (in the sense of Lie algebra) 
periodic-type Toda systems associated to the simple Lie algebras, of which 
the basic example associated to sZ(n) is a Hamiltonian equation of the form 

8H --aH 
*k=-&, jk=---r 

axk 
k = l,..., 12, 

for 

We shall also make a Lie algebra study of the so-called m-agonal generalizations, 
both symmetric and non-symmetric [3], of these equations. Next we study 
the Neumann problem, i.e., harmonic oscillators constrained to lie on a 
sphere, and geodesic flow on an ellipsoid (a problem of Jacobi) and centrally 
forced motion on an ellipsoid, two problems of the last century. We also focus 
on the well-studied spinning top problem (Euler and Lagrange) and a specializa- 
tion of it related to geodesic flow on tonics, also studied during the last century. 

The main thrust of the method is to associate with all the above Hamiltonian 
systems a Lax matrix differential equation which moreover contains a parameter, 
i.e., we associate with these systems an equation of the form 

/i = [A, B] zz AB - BA, (1.1) 

where A, B are square matrices whose entries depend on the phase space 
variables, and are polynomials in the indeterminate h and h-l. Equation (1 .I) 
thus takes place in a Kac-Moody Lie algebra, and we use an abstract theorem 
used in [5] (to study the Korteweg-deVries equation) to yield the complete 
integrability of (1 .l) and in addition to concoct a sequence of flows which 
commute with (1.1). We then form the curve in (h, Z) space 

X: det(A - Z) = Q(z, h) = 0, (1.2) 

whose coefficients are functions of the phase space. From (1 .I), the curve 
X: Q(z, h) = 0 (of genusg) is time independent, i.e., its coefficients are integrals 
of the motion (1.1); we then linearize (1.1) and its associated flows on the Jacobean 
Jac(X) of X. This is done by associating uniquely to each A of the above form a 
fixed curve X (A E d(X)) and an element in Y = P(X) or P+‘(X) which then 
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projects, via abelian sums, into a subvariety J contained in Jac X. The curves 
(1.2) will, for all “physical systems,” turn out to be hyperelliptic, i.e., expressible 
in the form ys = P(a), so that the linearization statement indeed translates into 
solutions of our systems by quadrature; namely, the problem is to find 
“enough” vi’s which depend on the phase coordinates of our system so that 
the motion of our systems may be expressed in J in the form 

with constants ck . The set C vi lies in Y. 
The fact that algebras other than sl(n) come into play, reflects itself in sym- 

metries of the matrix A, which in turn is reflected in the existence of an in- 
volution (other than the hyperelliptic involution T) on the curve Q(z, h) = 0, 
i.e., 0: (2, h) -+ (-2, h). These involutions 7 and a constrain our set of 
C vt = $9, .9 E Y, to have certain Prym-like symmetries related to the involu- 
tions, i.e., symmetries of the form .W = 9, where the = means an identity of 
abelian sums. The actual Lie algebra under discussion reveals itself not only at 
the level of the curve, but in the map Jg(X) + Y, i.e., two different algebras may 
give rise to the same curve X, but then not to the same Y, however, the projection 
of Y into Jac X, may be identical for the two different algebras and so rela- 
tionships are often subtle. 

In addition, since Eqs. (1 .I) arise in Lie algebras, it is natural to ask how 
representation theory interacts with the linearization theory. Specifically two 
diierent representations of the Lie algebra, say s@), may very well lead to 
different curves X given by (1.2), but they must of course be intimately related. 
It turns out, that using the theory of curve correspondences, especially an 
important theorem of Castelnuovo [22], we find that two curves arising in 
such a fashion X, X’ are such that their Jacobeans Jac(X), Jac(X’) must contain 
(up to isogeny) a common abelian subvariety and it is on this piece that in fact 
the linearization of our systems occurs. In short the linearization theory is 
representation independent precisely in the above sense. 

The plan of paper I is as follows. In the second section we display explicitly 
the classical examples to be discussed so as to get the reader acquainted with 
the breadth of examples covered by our method. The third section contains 
the abstract Lie algebra framework, which will apply to the examples of 
Section 2. The fourth section explains how the examples of Section 2 are 
“poured” into our abstract container: The last section then discusses how 
geodesic flow on an ellipsoid and related systems fit ‘very naturally into 
the co-adjoint orbit method for the groups U(n), U(n) @ S, GL(n), U(n) @ u(n), 
where in fact their complete integrability can be’ easily checked. However, 
this approach does not indicate at all the way to the linearization. Paper II 



270 ADLER AND VAN MOERBEKE 

contains all of the machinery of the curve theory, but it is crucial to the con- 
ceptual understanding of the reader that the two papers be read as one. 

The results containing the geodesic flow and some related systems were 
originally to appear as a joint paper of the first author with J. Moser, but different 
directions of approach and other considerations terminated that plan. In Section 4 
we point out how Moser’s [7] matrices derive naturally from ours as a limiting 
case, which indeed reflects the course of events. Kostant informed us of his 
results [S] with regard to the integrability of the Toda systems. Also, Ratiu [25] 
embarked upon a study of some aspects along his own directions. In addition, 
I. Frenkel, A. Reiman and M. Semenov-Tian-Shansky [31, 321 informed us 
by mail, after having seen a reference to our study in [5], that they had also 
undertaken such a study. The results in these papers have been the subjects 
of lectures throughout the period 1978-1979 at the University of California, 
Berkeley (3/79), Brandeis University (3/79), and Northwestern University 
(12/78, 6/79), Yale U niversity (9/78), The University of Louvain (12/78), 
and M.I.T. (11/79), in which most of the important theorems of this paper 
have been explicitly displayed, and hence these results have been announced 
throughout the above period. We wish to thank J. Wolf, C. Moore, J. Roberts, 
R. McGehee, B. Kostant, T. Matsusaka, and S. Sternberg for their kind help, 
and T. Ratiu for assistance at the beginning of this project. Also, there is overlap 
of some of the results of Section 5 and the last section of the recent preprint of 
Sternberg and Jacob [24]. We also wish to thank Mary Birnbaum for her 
excellent drawings. 

2. CLASSICAL EXAMPLES TO BE DISCUSSED 

In this section we give explicitly the classical Hamiltonian systems discussed 
in this paper. They are (a) the periodic Toda systems and their Lie algebra 
generalization; (b) the Euler-Arnold spinning top equations and the Lagrange 
top; (c) the Neumann problem, geodesic motion on an ellipsoid, and centrally 
forced motion on an ellipsoid, and a special case of the Euler-Arnold spinning 
top corresponding to geodesic motion on a conic. The periodic Toda systems 
were studied by van Moerbeke [6], while Kostant [8] studied the Lie algebra 
generalizations of the nonperiodic Toda systems. The spinning top problem 
has been studied by Arnold [l], Mischenko and Fomenko [9], and Dikii [lo], 
and, as especially related to our work, by Manakov [l I], and implicitly by 
Dubrovin et al. [4]. Case (c) is studied by Moser [12] in related work. That 
all these cases fit into our framework is part of the essential message of this 
paper. A notable example still missing is the top of Kowalevski [13]. 

The n-periodic Toda equations are best introduced by considering, with 
Toda. the Hamiltonian 
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H = H(x, y) = 5 5 yk2 + f  exr-Xx+1, .q,+i = xi , (2-O 
1 k=l 

which describes 1z particles on a ring with an exponential restoring force. The 
Hamilton equations 3, = H,,, , j, = -Hz, imply $, = ezk-l-zk - ezb-zb+l, 
which, after the transformation of Flaschka [20], a, = $@-z~+l)l~, b, = -4~~ , 
become 

b, = 2(a,2 - UK,), cik = ak(bk+, - bk), all k. (24 

To describe the Lie algebra generalizations of (2.1), (2.2), of Bogoyavlensky 

[211, set Vk = Z:b, exp(x, - xi+r); then the Hamiltonians going with the 

various simple Lie algebras are of the form H = &C%, ylc2 + V, where V 
equals 

VA, = V, + exp(x,+l - XI), n>,2(theVof(2.1)withn-+n+l), 

VBm = V,-, + exp(x,) + exp(--xl - x2), n 2 2, 

V, = V,-, + + exp(2x,) + 4 exp(-24, n 3 3, 

VDn = VieI + exp@,-, + x,) + exp(--xl - X2), n Z 4, 

VG2 = exp(x, - q) + exp(--2x1 + x2 + x3) + exph + x2 - 2x3); (2.3) 

V,, = V, + exp(S(--xl + x2 + a.* + x7 - x8)) + exp(--xl - x2) 

+ exP(--x7 + x3h 

VE8 = V, + exp(+(---xl + x2 + ... + x7 - 4) + exp(--xl - x2) 

+ exp(x, + -4, 

V, = exp(q - x2) + exp(x, - 4 + exp(4 + exp(H--xl - x2 - x3 + x4) 

+ d--xl - x3. (2.4) 

We cast the systems of (2.3) into a form similar to that of (2.2) and give an 

analogous mechanical interpretation. Cases (2.4) shall be dealt with sketchily 

throughout this paper. For A,-, we have the following mechanical diagram 
of n particles located at x1 ,..., x, , 

I 

x,-x~-xj-. , .-x -x n-l n J 

where the identical connections indicate exponential springs, and where the 
arrows indicate whether the connection is of type e* or type e-2. For Vc, it is ob- 
vious from (2.3) that we may interpret the system as a subsystem of the system 
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denoted by VAzn-, , where the particles are symmetrically arranged about 
the origin, 

I ?WWl: 

xyx;?+--. . 
’ (2.5) 

. -,-~xp-- -xp+- -x,g-+. . .++ -x - I -x I * 

For this system we again have Eq. (2.2) with n + 2n, 

a1 ,*-a, %I , b, ,..., b,, , such that 

@k + %n-k = 0, k = l,...,n - 1, 

b, + bm+l--k = 0, k = l,..., n, 
(2.6) 

Uk = l&-%+,)/2 
2 , k = l,..., n - 1, a, = &?, u2n = Je-% , 

b, = +k , k = l,..., n. 

In a similar fashion the following diagram goes with D,: 

Note that the particles at -x, , x, are not connected, and this is clearly not 
a subsystem of the VA tn--l case. The equations of type (2.2) going with VDn 
again require the introduction of 

al ,..., a2n-ly 4.2n-l , G-~.~+~ T 4 ,--, b2, v where 

ui + u2n-i = bi + b2nfl--i = 0, i=l ,.-., n, 

u, = le(“i-“i+1)/2 - 1 (x,-l+z,)/2 
1 2 , i = l,..., n 1, un-l.n+l = 2e 

a. 
1 2n-1 = @+4/2 

(2.7) 

The differential equations satisfied by a, ,..., a,-, , b, ,..,, b,-, are as in (2.2), 
and we have that, b, = 2a12 - 2uf,2n-1 , b, = 2u,a - 2u,a - 24 2n-l , b,-, = 

2&l - 24L2 + 24-l,n+lr b, = --24&-i + 24~,,,+,. ’ 
For VB, we have the mechanical diagram 

x j-+Xp+XJ-m- . . *-x,-o -m -xmp+. , .“-x3--XT-X, 
I I 
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so we now have a particle sitting at the origin, x,,, = 0. We consider the 
variables 

Ql 9***, a2n 9 4.2n , b 19--*9 bsntl , where 

4 + %“+l--i = 0, i = l,..., n, 

bi + b,,+,-, = 0, i=l ,**-, n + 1, (2.8) 

ai = &e (zpq+1) /2 , i=l ,..., n, xnfl = 0, a1,2n = &e-(z1+Q)‘2, 

hi = -bi 9 i=l ,***, n, 

and the differential equations governing the motion in these variables are 
(2.2) except that b1 = 2ur2 - 2af,,, , b, = 2a22 - 2a12 - 2u,2,,, , b,,-, = 
2a2-1 - 24”,a + hL,n+l t b, = --2aL + M,-,,,+I . 

For the Hamiltonian associated with V,- in (2.3), one has three body forces 
= 

a 

in this three-particle problem, and if in the Hamiltonian equations 4 
ji=-H~‘,i=1,2,3,H=~~~=1YIe+~oB, one sets 

bl = (-35 +Y3)/29 b2 = 011 -372)/Z 

al = ; e(51-“*)/2, a2 _ w2 e(-2s,+r,+x,)/2 

2 , 

H vi r 

(2.9 

3112 
as==--e (z1+2a-2z3EQ) 12 

2 , 

then in these variables, the differential equations become 

bl = 2(a,z - a22 + a,2), d, = a,b, , 

b, = 2(a,2 - 2Q), d2 = %(h - b,), 

4 = -424 + 6,). 

(2.10) 

We shall see (Eq. (4.28)) that (2.10) is just a special case of the B, equations, 
and so the G2 equations have two mechanical interpretations. 

We now discuss the spinning top equations; see also Arnold [I]. We start 
with the equations of motion of a rigid body B about a fixed point. Let M be the 
angular momentum of the body with respect to the body coordinates. Let 7 
be the (Eulerian angles) coordinates of the z-axis (fixed in space) with respect 
to the body. If the angular velocity of the body is D = (p, q, T), then the total 
derivative with respect to time is given by 

. 

$ (-1 Itotal 
= -g (9 + Q x (a). 
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The torque exerted on the body by the (vertical) force of gravity is 1 x (gravity 
force), where 1 = center of gravity in the body coordinates, and the pi = 
downward gravity force, p being the mass of the top. Thus the rotational 
version of Newton’s law, 

$ (angular momentum) 1 
total 

= torque, and $ Waxis) Itotal = 0, 

yield the Poisson-Euler equations 

dM 
--MxQ==,gyxl, g- 
dt 

yxQ=O. (2.11) 

If  the body frame is principal and Zr , Ia , Za denote the principal moments of 
inertia, then we have M = (Zrp, Z,q, Zar). As is well known, if one identifies 

vectors in R3 with skew-symmetric matrices by the rule 

a = (a1 9 a2 9 a,), A= 

[ 

0 ---a3 a2 
a3 0 -a1 

-a2 a, 0 I> (2.12) 

then a x b H [A, B] = AB - BA. 
Using this isomorphism, (2.12), we write (2.11) as 

$ = [W Ql + tLg[y, 4 (2.13) 

which may be regarded as the Lie algebra version of (2.11). In the absence of 
gravity we have the quadratic differential equation, 

z = [M, Ql, (2.14) 

where [M, 81 = [Q, 011, [LY, /3] = 0, 01 = /Y, /3 = &(Z, + Z, + Z,)Z - diag(Z, , 
I, , Z3). Equation (2.14) is the Euler-Arnold spinning top equation when 
(Y = $; we shah also study (2.14) . m g enera1. The Lagrange top corresponds 
to the case where Zr = Ia , and where the center of gravity and fixed point 
belong to the principal axis of inertia. Let z0 be their respective distance and 

let 1 = (0, 0, z,,). In that case we adjoin to (2.13) for future reference the relation 

[M, /?I = [Q, &I, ,d = pgl, CG = Z& hence [a, /?I = 0, (2.15) 

as we adjoined a similar relation to (2.14); and so we think of (2.13) and (2.15) 
as the equations of the Lagrange top. 
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We now discuss geodesic motion on an ellipsoid, for which we refer the 
reader to Moser [12]. Let OL = diag(q , % ,..., a,,), 0 < q < ua < 0.. < CU, , 
and we give the ellipsoids by (CY-lx, x) = 1, x E Rn. We introduce the notation 

Q&G Y) = <(z - 4-lx, Y>, QzW = Qz@, 4, 

and so the equation of our ellipsoid is 

So(x) + 1 = 0. 

Its family of confocal quad& is given by 

Q&) + 1 = 0. (2.16) 

We wish to determine those lines in Rn with distinguished point y and 
direction X, in other words lines of the form y + sx, x # 0, which are tangent 
to the surface given by (2.16), i.e., those y, x for which the equations 

Qe(y + 4 + 1 = 0, Qz(r + sx, 4 = 0 

hold for some s; then s = -QB(y, X) E’(x). Eliminating s from the first 
expression, we find 

@z(y, 4 = &a(x) + Q&) Qz(r) - Qz% Y) = 0 (2.17) 

as the equation for tangency to the surface (2.16). This may be thought of as an 
equation for the tangent bundle of Q#(x) + 1 = 0. 

We consider the Hamiltonian system 

restricted to the energy surface @. = 0. Remembering the expression for s above 
it is easily verified that d2(y + sx)/dP is proportional to VQz at the pointy + sx, 
i.e., this differential equation governs the motion of the tangents of the hyper- 
quadric Q.(x) + 1 = 0 along geodesics (the parametrization, however, is not 
of arc length.) We obtain the geodesic flow by just following the motion of 
the point of tangency, y + sx, which amounts to reducing the system by 
the integral 1 x Ia. If we set z = 0 we obtain geodesic flow on the ellipsoid 
Qa(x) + 1 = 0. If instead of (2.17) we consider 

ff’s(y, 4 = --28&s Y) + (Q&4 Q.(Y) - Q*% Y)), (2.18) 

607/3W3-4 
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this Hamiltonian leads to the motion on a hyperquadric under the influence of 
a central force. This is most easily seen by rotating the point (x, y) by 7r/4 so 
that YS -+ Qz + Qz(y), which amounts to the sum of a kinetic and a potential 

energy Q&9. 
It is natural to view z as a parameter and make the developments 

yls(Y, 4 = i+ 7 GAY, 4 = -2~7, + H, , (2.20) 
1) 

and we also define 

(2.21) 

and thus geodesic motion on the ellipsoid Qa(x) + 1 = 0 is given by the 
Hamiltonian @s = -C a;‘FV(y, x) on QO(y, x) = 0. It is also natural from 
(2.19) to consider for good functions f Hamiltonians of the form 

F, = $ C ,W’v(r, 4 with /3v =f(~~). (2.22) 

A particular simple instance is 

F, = & c a,F,(x, y) = &( ax, x> + HI x I2 I Y I2 - <xtY)2)- (2.23) 

Then Hamilton’s equations * = i?F,/ay, j = -aF,/ax, lead to 

f, = --01,x, + Ax, , v = I,..., n, x = (ax, x) - 1 R 12. (2.24) 

These are the Neumann equations of forced harmonic motion constrained to 
lie on the sphere 1 x 1 = 1, as a result of the constraining force /\x; observe 
1 x 1 is an integral of (2.24). Note that (-7 - P,)y = y  - ((x, y)fj x 1”) x = f/[ x 12, 
which suggests reducing the above Hamiltonian system by 1 x j2. In [12] it 
is proven by a geometrical argument that the Fv’s (and HV’s) form an involu- 
tive system of integrals, and so the Neumann and ellipsoid systems belong 
to the same completely integrable family. 

From (2.21) it is also natural to study systems of the form 

He = i~P,H,, (2.25) 
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where PO = (&)1/s = Ju , so that upon introducing the n x n skew-symmetric 
matrices 

k&=x@y--y@x, (X OY)fj = XiY5 , etc., l-f5 = (rmJf,(Jf + J,)-‘9 

we find H, = H = -4 tr(rzy . r). Then the differential equations f = aHlily, 
j = --aHlax, are equivalent to the special case of the Arnold-Euler equations [1] 

(2.26) 

and -2H is the first Mischenko integral, Jl [lo]. For n = 3, it is easy to see 
that (2.26) amounts to the classical equation of Euler for the spinning top 
problem [l]. In fact, the above observation lead us to the tie between the systems 
discussed in this section and isospectral deformations of a particular nature. 
This will be discussed in the next section. We remark that the F, , v = I,..., n, 
were first discovered by K. Uhlenbeck. 

3. EUCLIDEAN LIE ALGEBRAS AND INTEGRABILITY 

In this section we discuss a unified group theoretic framework in view of the 
examples of Section 2. The next section will be devoted to fitting these examples 
into that framework. It has the disadvantage of not directly expressing all the 
geometric data like spatial symmetries of the system in the most immediate 
fashion, but it has the virtue of @king up all the various hidden symmetries, 
which are not obvious geometrically. It remains mysterious how to fit an example 
into this framework. The main tool will be the (modified) at&es Lie algebra 

9 = A = 
I 

c Aihi N arbitrary, finite, Ai E.& , 
rco<f<N I I (3.1) 

A a semi-simple Lie. algebra, or the algebra ,of n x n matrices, and we view 
elements of 9 as Laurent series in the indeterminate h and h-l. We shall 
show, and this is one of the basic results of this series of papers, that all the 
differential equations of Section 2 are expressible in the Lax (isospectral) form 

A = [A, 4, A, B polynomials in h, h-l, (3.2) 

and that the complete integrability of these systems follows from a general 
theorem of Lie algebra relating Lie algebra decompositions to integrability 

8 For simplicity of exposition we work only with the afline Lie algebras, but we could 
work perfectly ~611 with the,Euclidean Lie algebras, i.e., the algebras which arise in the 
classification of automorphisms ‘of finite type [29]. 
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statements. In paper II it will be shown that these systems (3.2) are linearized 
on the Jacobeans of the curves 

X: det(A - J) = Q(h, Z) = 0, (3.3) 

and the linearization procedure is intimately related to the Lie algebra decom- 
positions to be discussed. Moreover, we shall give an interpretation of the 
curves X which will prove useful in understanding the decompositions. 

We first make some general observations concerning 9. The bracket in 9 
is defined as follows: 

[c Aihi, c By] = c [A, , B$] hi+j. (3.4) 

In addition we have the induced (ad-invariant,4 nondegenerate, symmetric) 
Killing form on 9, 

(z Aihi, c B,hi) = c (Ai ) B,), (3.5) 
i+i=O 

where (., .) is the Killing form on A. This form is of course ad-invariant, 
nondegenerate, and symmetric. We will need to define the following forms, 
having the same three properties, 

(4 B)k = (A, Bh”) = C (A,, B,); 
i+j=-k 

thus (A, B). = (A, B). The stated properties of (3.6) follow immediately 
from those of (3.5). T o motivate calling (3.5) the Killing form of 9, observe 
from (3.4) 

adA . ad,(C) = [A, [B, C]] = C [Ai[Bj , CJ] hi+j+’ + C {.}, 
i+j=O, I i+izO.l 

hence only the first term contributes to tr(ad, . ad,), which is therefore 

tr adA, . adz, 
> 

and we drop the irrelevant term xr=, 1, i.e., we “renormalize” the trace. 
Given a representation 4 of A onto P(P), it induces a representation 

of 9, also represented by 4, via 

c$ : A = 1 Aihi -+ c +(A,) hi = +(A). (3.7) 

We shall think of +(A) as a matrix Laurent series over gZ(n); however, we 

4 The term “ad-invariance” means <[A, C], B) + <C, [A, El]) = 0, i.e., the 

operator [A, .] is skew-symmetric with respect to (a, .). 
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also think of it in another way. Consider the map $(A) + &A) of #(A) into 
the infinite n periodic matrices given by 

+(A) = c cj(Ai) hi E c M,h” -+ &A) = 

(We fix a basepoint.) It is easy to check that the map +(A) + &A) is an algebra 
isomorphism, and in fact +(A) is essentially a Fourier representation of the 
operator &A). For define the “character” x*(w) = (,.. Jr-%, v, hn, h%, . ..)r E R”, 
D E Rn, then &A)x*(v) = &+(A)w) and so xh(w) is an eigenvector of &A) if 
and only if &A)w = zv, where z = z(h), w = o(h), and so the characteristic 
equation for the infinite-dimensional operator &A) reduces to the representation 
dependent curve 

X : det(#(A) - a) = Q&, x) = 0. 

Thus the infinite dimensionality of &A) is reflected in a characteristic equation 
containing an indeterminate, i.e., a curve. It is of course natural to consider 
X in its own right, without discussing &A). 

If we stick to the ciassical Lie algebras A, ,..., D, , and G, C Bs , and if 4 
denotes their classical representation (or for general Lie algebras their adjoint 
representation), then up to an inessential factor, (C, D) = tr(+(C) .4(D)), 
C, D E Jl, and so for A, B E 9, C M,h* = +(A), if we define 

(($?$))=trM,,,then(A,B)=(&A)~&B)), (3.8) 

where the . indicates matrix multiplication. To see this, note that, by the 
(algebra) isomotphism, (&A) - &B)) = <(Ct., +(A) * MW+‘)?, 

(q(A) -q(B)) = tr @+(A,) . d(&)) = c tr(+(Ai) * +(B-t)) 

= 1 (lj, B-,) = (A, B). 
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We also note, for future use, the obvious identity 

It is also natural to inquire how the characteristic curves X vary as one 
changes the faithful representation 4. To answer this question we need the 
following fact of Chevalley [ 141: Given any Lie group G, and any representation g, 
faithful at the group level, any other representation faithful at the group level 
is contained, up to conjugation, in Crr+B>lg@~ @ (g*)@B, i.e., in the direct 
sum of all combinations of the tensor product of g, and the contragredient 
of g (which over the reals corresponds to taking the transpose). This translates 
immediately by differentiation at the identity of G to a theorem about repre- 
sentations of the Lie algebra L of G, which come from representations faithful 
at the group level. Indeed, given a representation I of L, faithful at the group 
level (upon integration) then any other representation i of L, faithful at the 
group level, is contained, up to conjugation in Ca+@r lE,e , with 

lu,a = i idQ(a-6) @ l @ id@(6+6-1) + ‘2 (id)O(a+s) @ l* @ (id)O(B-6-1). 

6=1 6=0 

Furthermore, each I,,, splits up into irreducible pieces I,., = C @ lLa , and 
so finally we have the identity &-I = C’ @ ll,, , where C’ indicates summation 
with repetition, over some set of (01, /3, y), and where u is a nonsingular matrix. 
The product n’ is defined similarly. We thus have 

P&x) = det(Z - z) = fl’ (det(Z& - x) z n’ (PLg,p)), (3.10) 

and so we must analyze det(Z& - z), which occurs in the above products. 
Let us write 

Pf(x) E det(Z - z) = fi (X - &), 
i=l 

(3.11) 

i.e., assume lvi = Api , i = 1,. . . , n, where vi and hi are functions of L; then 

etc., for l,*, (remember we work over the reals), hence 

S, the symmetric group on k letters. We wish to find the irreducible factors 
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of Pk, for which we need the following facts of Galois theory, which can be 
gleaned from Artin [15]: 

(1) Given an arbitrary polynomial P(z) = P + u,&+~ -+ *** + a,, over 
the base field K, with splitting field E, then if A? is the associated Galois group 
of E/K, and if A E E, then the product l7(z - T) taken over the orbit T E 0 = 
0, ={h(A)lh~&‘} is an irreducible polynomial in K. 

(2) (a) If K =F(a, ,..., Qn-1), P(x) = 2% + an-@-l + .** + a, = J-J;=, 
(2 - A+), E = K(h, ,..., Q, & = S, , which permutes (A1 ,..., A,). 

(b) IfP(2)=((2)“+u,-,(22)+...+~)=n(2-~\i).n(2+h,),~= 
S,, @ (Z,)“, where the last factors act by taking & + &hi , i = l,..., 71. 

(c) If P(2) = 2n + an+@-3 + a,-32”-3 + 0.. + fzo , K = qu, )..., a,-,), 

E = K(h, ,..., h,-l), 2 = S,-, on (Ai ,..., 4-i). 

Let us apply these facts first to the case of A = sZ(n, R) in (3.1 l), and use 
for I the classical representation. PI(z) of (3.1 l), which depends on L, may 
be regarded as a generic polynomial of the form P(2) = 2% + u,-~P-~ + 

... + a,, and so we apply (2~). Now observe that Pk above has factors of 
the form (2 - C,k, m,h,), t < k, Ci mi = k, mi a positive integer, and using 
g-r Xi = 0, we rewrite Cf=, mihi to minimize t, allowing mi < 0; concluding 
that the irreducible factors of P, are of the form (using (1) and (2~)) 

Il,d,E,it (2 - $lmdi&) = P+‘W, m = (ml ,..., mJ, (3.12) 

n’ a restricted product if some m, = mj . Note that P”(2) is a well-defined 
polynomial over K, even though the his are not really well-defined global 
objects. As an example of the above considerations, for the case n > 3, we 
would not work with &...<i,-, (2 - C,“p;’ &,), but rather with n:=l(2 + A,), 

etc. We observe that as the representation ranges merely over the “Toda-type 
matrices” of Section 4, the coefficients in PE(2) of (3.11) may (except for the 
2+1 term) be regarded as indeterminates. We thus have from (3.10), (3.11), 
and (3.12), 

LEMMA 3.1. If the au-we cowespmding to the classicul representation is 

Qdh, 4 = i (2 - W)) = 0, 
i-l 

(3.13) 

then the curves Q,(h, 2) = 0, corresponding to the faithful (on the group level) 
representation #, factor into the generically irreducible curves 

Qm(2, h) = n’ (2 - c rn&) = 0. (3.14) 
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Remark 1. Note that if 1/, = $z.s , a + /I > n, one can expect Q&Y, h) to 
contain factors where some of the 1 mi 1 > 1. 

Remark 2. We also note that the above considerations imply that the algebra 
of coefficients of Qs(2i, x) is independent of the particular faithful representa- 
tion. This is actually true if the representations are faithful only on the Lie 
algebra level, if by algebra we admit various analytic operations, like taking 
the square root. 

Remark 3. If for the classical Lie algebras B, , C, , D, , G, C B3, we take 
for r/~ the classical representations (to be used in Section 4), then we have the 
generically irreducible curve (after perhaps dividing out by z) 

Qdk 4 = fj (z' - ii2(h)) = o, 
i=l 

(3.15) 

and so from (1) and (2b), we find that Qs(z, h) = 0, # a faithful representation, 
factors into irreducible curves of the form (see (3.14) for notation) 

rj K?‘W, 4) = 0, u = (cl ,..., et), ei = fl, u(m) = (elm1 ,..., c,m,). 
(3.16) 

In paper II we shall show that also at the level of their Jacobeans (3.13)- 
(3.14), (3.15)-(3.16) respectively, are intimately related, as one would guess 
from the Torelli theorem. 

We now give an appropriate (but by no means the most general) formulation 
of a general Lie algebra integrability theorem, discussed by Adler [5], and 
used crucially in a study of the symplectic structure and integrability of the 
Korteweg-deVries equation and Toda systems. This theorem is a generalization 
by Symes [16] f o an integrability argument of Adler for the Toda systems. 
It is related to a theorem of Kostant [8]. 

THEOREM 3.1. Let L be a Lie algebra paired with itself oia a nondegenerate, 
ad-invariant, bilinear form ( , ), L having the vector space direct sum decom- 
position L = K + N, for K, N, Lie subalgebras. We identzfy L with L* via ( , >. 
Then L = K-’ + Nl, I being taken with respect to ( , ), and so ia&t;fr 
K-’ w N* = the dual of N. Therefore K I inherits, via this identification, the co- 
adjoint orbit symplectic structure of Kostant and KiriZlov [I]. Let FC K1 be a 
manifold invariant under the above co&joint action of N on K1 = N*, and 
let S?(T) be the algebra of L* (which is identi$ed with L) functions, or functions 
at least defined on a neighborhood of r, which on I’ are invariant under the co- 
adjoint L action on L* (=L). (The two d$j%rent co&joint actions are not to be 
confused.) Then the algebra &(I’) forms a system of commuting integrals on F 
(when thought of as functions on r by restriction), and thus on the orbits of Ir 
themselves via the orbit symplectic structure. Moreover, ; f  HE d(F), the Hamil- 
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tmian equations induced by H via the orbit sympkctic structure have the isospectral 

f arm 
ci = [a, h], 6 = P,(VH). (3.17) 

In the above, VHE (L*)* = L is the gradient6 of H when &wed as a function 
of L* ( wL), whik we have in general that PK , PN , PK~ , P,, are respectively 
the projections onto K, N, Kl, N-L along N, K, Nl, Kl, respectively. 

Proof. We sketch a proof. First observe that if H is a function on L* ( mL), 
and if V,IH, V,AH, VH are the gradients of H in the Kl, NL, L* directions, 
respectively, then from calculus 

VK,H = PN VH, V,,H = PK VH. 

Also note that an L* function being L invariant on I’ is equivalent% to 

[VH(a), a] = 0, a E r, or equivalently, [a, V,,Hl = -[a, PK WI, (3.18) 

by the formula above. If  H and F are functions on N*, then the Kostant- 
Kirillov Poisson bracket has the form 

W,Fl(a) = <a, [Vdf, VA>, aEN*, 

where (( , > is the natural pairing between N and N*, and where V,,H E N is 
the natural gradient of H defined by dH(X) = ((dX, V,,H)); so for our case 

K-L w N* and (( , >> = ( , ) lKIXN ; hence 

W, F)(a) = <a, [V,A V,JW 

Suppose H, F E &(I’), (satisfying (3.18)); then 

(3.19) 

WF) = <a, [V,Jf, V,Zl) 
= ([a, V,,HJ, V&9 (by the ad-invariance of < , )) 

= --([a, PK VHI, VKLF) (by (3.18)) 

= -(a, [P, VH, VKI Fl 

= <a, [Pl,vH, PIPIPIPIPIPIPIPIPIPIpIpIpIpIpIpIpIpIpIpI) by repeating the argument for F 
= 0 

since a E KL and since K is a Lie algebra. 

5 One defines the gradient VH of a function H on a vector space V, v E V, by dH = 
(VH, de)“, VH E V*, (Jv the pairing between V, V*. 

B This is immediately inferred from the identity (d/df)H(Ad,(u))lt,, = 0, for g = 
1 + tc + D(P), any c EL, = E IT 
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The Hamilton vector-field equals 

x?m = v, w = <[V,JT a], VK4, 

from which it follows that 

X,(a) = PKI [V&z, a]. 

Hence the corresponding Hamiltonian flow 

ci = P&V&I, u] (for HE d(P)) 

= P&z, P,VH] (by (3.18)) 

= [a, PKVfa as [Kl, K] C KL, 

(3.20) 

which proves (3.17) and thus concludes the proof of the theorem. 
For future reference, let (Ad*)N d enote the co-adjoint action of the group 

of N on N* m K-L and Ad* the L co-adjoint action; then since (Ad*g), = 
P K~ 0 Ad*g, 

0, = PdAd*gW I g E GA (3.21) 

where GN is the Lie group of N. 

4. EXAMPLES-DECOMPOSITIONS 

In this section we discuss the examples of Section 2 using the machinery 
of Section 3. This involves studying two different decompositions of 9 (Eq. 
(3.1)), which we shall explore in some detail. In addition, we discuss a decom- 
position of L = 9 @ .9 which leads to the nonsymmetric generalized Toda 
matrix systems studied by Mumford and Moerbeke [3], while one of the decom- 
position cases above leads to the Toda-type systems of Section 2, and also to the 
generalized symmetric Toda systems studied by Mumford and Moerbeke [3]. 

Example 1. Todu- Type Systems and Generalized Symmetries 

We first need some well-known facts. If JZ is a semi-simple Lie algebra, 
it may be decomposed as follows using the Cartan decomposition. 

&Z’ = A @ 1 @ e, , (Y E d, A* m R via ( , ), the Killing form, where 

lie, , 4 = k , [h, e,] = a(h) e, , h,, h E A, a(h) = (a, h), 

[em , 54 = 0, a+B#o, a+PCA, (4.1) 

k=, , 4 = N,,se,+s 9 a+ B ~4 Nm,, = --N-a,-, , 

i=l 

r = rank .&!, (pi , pj) = sij . 
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In fact, by a theorem of Chevalley, the Nu,B)s can be taken f(p + l), 
where p is the greatest integer i for which j3 - ia- is a root. There exists a set 
A, , of simple roots, which induce a leveling of A and A, 

Defineloll =j,ife,EAj;ifM=CMi,MiE..Hidefine (4.2) 

M=M-+M”+M+,Mf= c Mi,Mo=Mo. 
{20 

This decomposition generates an anti-involution on A, the generalization 
of transpose, which satisfies 

(C w, +p)‘= (~v-a+P), PE4 

(AT, BT) = (A, a [A, II]* = -[AT, BT]. 
(4.3) 

We say an element A is symmetric if A = AT, skew-symmetric if A = -A*, 
Note that by (4.3) 

symmetries = (p + c a,(e, + e-J), skew-symmetries = (1 u,Je. - e-J), 

(symmetric, skew-symmetric) = 0. 
(4.4) 

Remembering the definition (3.1) of 9, we see that (4.2) induces a leveling of 
9; namely, let 

_E”, z c @ (hjudk), and .z& E c @J&. (45) 
k+jd=s jQ<k 

IklCa-1 

From this it follows that 

PO = A0 , 9. = d, + h.M-(a-l) , Z1 = J-X-~ + h-l.d(,-,, , 

9 = 1 -% 3 %(k+l) = [%k P =%d 1% , %a] c -%+, (4.6) 

and we define fa = e,hk E 9#, p 3 ark , 1 /I 1 = s; therefore we may interpret 
9’ as a Lie algebra whose Cartan subalgebra is Jo, but whose simple eigen- 
vector space is not A1 , but rather 9r = u#r + U-(,-i). We interpret the 
simple root set of 9 to be not A, , but the extended root system, A, u i-y}, 
where y is the maximal root vector, i.e., &ca-r) = R . e,, . 
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We now apply Theorem (3.1) to the case L = 9’ above, ( , ) = ( , ),, 
of (3.5, 6), setting (see (4.3)) 

K= CAihi Ai+AI,=O,AiEJZ 9 
I I I 

N=C~i=~i~Aihi~AoC~~~~,A~~~l 
i<O \ 

K’- = 11 A,hi ) A< - Afi = 0, Ai E Ji’)> 

d --r.O T  

z JL-1 7 (4.7) 

and so (see (4.2)) 

PKI (x Aihi) = c (A,hi + A,rh-i) + (A,+ + (A,+)= + Aoo), 
i>O 

PK (c A,h”) = a;o (Aihi - AiTh-i) + (A,+ - (Ao+)T). 

Remark. For A’ = sZ(n), thinking in terms of infinite n-periodic matrices, 

we have that K and K-L are respectively the (infinite n-periodic) symmetric 
and skew-symmetric matrices, that Nand N’- are respectively the lower triangul- 
ar and strictly lower triangular (infinite n-periodic) matrices; and this is the 
intuitive content of the decomposition. We shall elaborate in the examples. 

For our invariant manifolds take 

r = l7, = K-L n ,ppm,, , 

and for elements of s$(P) take 

(4.8) 

f44 = (f(W)) h3 (4.9) 

(see (3.8) for notation), where 4 is a faithful representation of A&’ and f(x) is an 
analytic function. Hence H(A) is a function of the coefficients of det(qS(A) - z) = 
Q4(h, z). It leads to the Lax equations A = X,, = [A, P,VK]. 

We now elaborate on this example and verify the implicit claims. If  one 
defines (C Aihi)t = C ATihi, then one calls A symmetric if At = A, skew- 
symmetric if At = -At. Clearly K are the symmetries and K-L the skew- 
symmetries. One checks from (4.3) that [A, Bit = [F, At], hence K is a Lie 
algebra. The “lower triangulars” N = Cico Zi form a Lie algebra as follows 
from (4.6). That K-L and NA are what they are claimed to be in (4.7) follows from 
the last statement of (4.4). Note that dp = K-L + NL because (,) is non- 
degenerate. The statements concerning PKl and PK are obvious. 
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We now study the group GN whose Lie algebra is N, with a view to com- 
puting its orbits in K w N *. Pick a faithful representation of ..4Z on Rk(Ck), 
M + m, 2 + I, etc. We may, after conjugation, assume (see (4.2) m;(M- -+ m-) 
are lower triangular matrices, and so, using the isomorphism of Section 3, 
we may finally visualize N + II + fi, as infinite K-periodic lower triangular 
matrices. We shall suppress the first map and denote N + n + E by N -+ id. 
Taking exponent&& of such elements, and finite products of such exponent&+ 
we arrive at a representation of the group GN . We now define the auxiliary 
(finite-dimensional) Lie algebra N, = ~:s~~(O & = “I’-s,O, which is a Lie 
algebra under the (truncation) rule (see (4.6)) 

Under the representation N, -+ fl, , fa -fa , we construct the corresponding 
finite-dimensional Lie group GN. . If ai = C a$‘fa E m,, define the truncated 
product in “fid” : ((II 0 a2 0 0.. 0 ui) I8 = z(j& a&)(fucl, .f& ***j&j), the 
sum taken over C 1 a(i)I > -s, where * denotes matrix multiplication, and 
such elements multiply by the (associative) rule 

@lo ... 0 aj) 111 X (b, 0 ... 0 bk) Is = ((11 0 ... 0 a, 0 bl 0 .a. 0 bk) Is . 

Define 

whose inverse is exp(-a). Forming finite products of such elements via the 
above rules, and closing up this set, we have constructed a Lie group, (or 
rather its representation) GN. , whose Lie algebra is clearly fi, . We may view 
GNz as injected into GN via this truncation. Hence we have a filtration of N 
by N, , G by GN, > and we may view N as the direct limit of N, , etc., for G, 
i.e., N,GN,C*..CN, GN GGN,Ge.*GGN. WecamrotformagroupforZ 
in this fashion, but must impose a norm on OEP, which is not natural in this 
context. 

We are now able to describe the co-adjoint orbit of GN through the point 

AEI’,. ForanyBfY(B-+ giasZ+P),andgEG,,wedefine~) = 
gP’g-l. This definition makes sense, for from the definition of GN using expo- 
nentials it is immediate that g&-l stays in 9, and so by the isomorphism it 
defines a unique element B in 14. 

We now require our representation of 4 + M to be either the ad-joint 
representation, or for the classical cases and Gs C B, , the classical representa- 
tion; then as follows from (3.8) and (3.9) 

(AdgB, C) = <gBg-‘C) = <Bg-‘Cg) = (gt, Adg-IC’), 
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and so we have the desired formula 

Adg* = Adg-r. (4.10) 

By (3.22) and (4.10) we have for A E I’, = K1 n -Qz_,,, that 0, = 

PIG AddA) I g E %I. W e elaborate on the above formula. From (4.7), 
PK~ Adg(A) = P,l(Adg(A))+ , where (B), (with B E 9) is the projection 
of B onto Ciao Ppi along &, Si , and so only the “upper triangular” piece 
of Adg(A) matters in the above. But since g and g-l are “lower triangular” 
matrices (in a), PKI Adg(A) = P,l(Adg(A+))+ . Remembering the injections 
GN, C GN , we claim that GN may be replaced by GN, in (3.21). This is because 
by the truncation formulas defining GN, as products of elements of the form 
exp(A) = I + (A), + $(A . A)m + ..., only the GN, “part” of g E G above 
contributes to (Ad g(A+))+ , since A+ E JzZ,,, , and this is true likewise for 
products of such elements. We conclude 

OA = V’,dAd g(A+))+ I g E GN,,), AET,. (4.11) 

We claim 0, is intrinsically defined in N. For observe that GNm has Lie algebra 
N,,, , whose dual Nz may, through ( , >, be identified with Kmi = KL CT 

JLnJfL; this is compatible with the identification of N* with K’-. 
Therefore, we can think of 0A as a co-adjoint orbit of the finite dimensional 

group GN,,, , and the Kostant-Kirillov structure induced by GN on A is precisely 
the one induced by GN on A. Upon differentiating (4.1 l), we have the tangent 
space (where we impli&ly use our isomorphisms) 

(4.12) 

and the symplectic structure is independent of the representation we have chosen 
to construct GN and GN,, as is apparent from (4.12). Thus both 8, and its 
symplectic structure are intrinsically defined, as it should be. Note that those 
orbits 0, are manifolds, since the group GN, is finite dimensional. 

We now show that (4.9) are elements of d(r); by Remark 2 of Section 3, it 
suffices to do that for the representation used in the construction of GN . There 
are slight technical difficulties due to the setting which obscure the main point. 
We take H(A) = (f(A) hk) (th’ k’ g m m now of having fixed a representation and 
so A” is a polynomial matrix in h, h-l), with A E I’, , m arbitrary, and for simplicity 
we require f  to be a polynomial. 

Having constructed GN , we could just as well have constructed GNr , going 
with the “upper triangular matrices” and so we have (viewing g as a formal 
series in h or h-l) (f(gag-I) fV) = (&(A) g%“) = (g-r&(A) h”) = (j(J) hL) 
for g E GN , G,,,T where we have used that f is a polynomial without constant 
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term. That GNr $ A? is irrelevant for the discussion. Now define for any good 
function H of L??* its gradient by 

dH = <V,H, dA), VsH E 9, if it exists. (4.13) 

For the above function, 

dH = (f’(A) hk dA) s (P(f’(a)), dA), (4.14) 

where P(f’(A)) is, by the nondegeneracy of ( , ), the unique element in 2 
satisfying the identity (4.14); hence VH = VpH is perfectly well defined and 
equals ~cf’(A)). 

If in the previous formula V(gAg-1)) = <f(A)>, we substitute in g = 
exp EB, B E N, N’ ; regarding it as an identity in E, and if we just look at the 
E term, we have, upon comparison with (4.13) and (4.14), the identity 

0 = O’H, [A, Bl) = ([VK Al, B) 

for BEN, NT, and so for all BE 2; thus [VH, A] = 0, which shows H(A) E 
J&‘(F). We remove the restriction that f be a polynomial; assume that f’(A) 
makes sense for all h, and that f can be approximated by polynomials in the c1 
sense; and then take limits in formulas (3.17), and formulas of the form 
{H, F} (A) = 0. 

We now compute (3.17)and(3.19),the symplectic structures and thedifferential 
equations. Recall the definition of VH in footnote 5. Since N is paired with 
KL m N* via ( , >, we have that VxJI E N for a function H on K-‘. Since 
dH = (V,LH, dA) = (C(VKJZ)Jzi, C,htdAj) = CX(V&)-, , dA,), we 
have that (V,LH)-, = V,,H. 

We conclude 

Vx,H = c (V&J) P E N = z&s. 
i>O 

(4.15) 

Substituting (4.15) into (3.19), we have 

W, F> = C (4 , [%,X V,,FI). 
3+k=-i 

(4.16) 

To compute (3.21), we consider functions defined on LJ?*(wZ) and com- 
pute their gradients (4.13), 

dH = (V,H, dA), implies V&J = c (V,,W h-‘, 
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where VAiH E J% for all i; and so by (4.7) and the above we have 

P,(VH) = C (hiV,-tH - h-i(V,-,H)‘) + (Q,H)+ - ((V,,,H)+)r. 
i>O (4.17) 

For HE d(r), we substitute (4.17) into (3.17). 
Equation (4.17) can be improved for the classical Lie algebras if in the 

definition of H we use their classical matrix representations with which we 
shall identifr them. Except for SE(~), the classical Lie algebras are defined by an 
equation of the form Ma = -aM, for some definite 01, so M%. = (-l)%(M”), 
hence {X~~+~ 1 x E A} C A’, {x2s+1 1 x E Z} C 2. Thus forf’(z) an odd polynom- 
ial in a, f’(A), f’(A)h” E A?. We can conclude from the above, V(f(&zk) = 

f/(&r”, and so from (4.7), 

P,(VH) = P&‘(A) h”) = c ((f’(&, hi - (f’(A)):, Ki) 
i>O 

+ ((mi-k>+> - u’(4-k)+F 

It is useful to note that for the case H = &(A, A) = 4 Tr A2, 

(4.18) 

P,(VH) = P,(A) = c (A$.zi + AirA+) + A,+ - (A,+)? (4.19) 
i>o 

This gives rise to the Toda systems. Now given any representation $, we may 
use the above-defined Hamiltonians H in the Lax equation (3.17) 

with P,(VH) as in (4.18). 
Let us return to the level of abstract Lie algebras and for A E I’,,, = SZZ-,,, n 

KL we display explicitly the Lax flow A = [A, P,(VH)] for H = +(A, A): 

A = i &pi + 1 aY’(hpie-, + e,hi), 
j=l i>O 

O<id+lal<m 

J’,(A) = C a:)( --hPe-, + e$), 
i>O 

O<id+lml<m 

(4.20) 

Thus from (4.1), A = [A, P,(A)] is a differential equation in the a:‘, sj, 
which depends linearly and only on the roots oc and the largest integers Y  such 
that: /3 - ro1 is a root given that 01, /3 are roots. 

We consider further the special case m = 1; the Poisson bracket, the orbit 
invariant z?, and the Lax equation will be computed: 

From Eq. (4.16) the Poisson bracket takes on the form 

{f&F) = (A,, [V,+,f& %$‘I) + (A, 9 [V,,ff, V,$l+ F’A,K V$l), 
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where 

for 6 = the maximal root (see (4.1)). Written out, we get 

where ( , ) is the Killing form in (4.1), and so the Hamiltonian vector-field 
X, is 

If 6 = zSA, &a, then JJ z (nIaeAO &)a8 leads6 to a null vector-field, and hence 
& is an orbit invariant; in fact it is the only such invariant (up to a function 
of it). For observe that 

If we define In 1 a / = zjca) , the Poisson7 bracket has the form (F, G> = (JVF, 
VG), VF = (VsF, VP)T, 6 = @I,..., 6,.), z = (xl,..., z,+d, 1 = [2;r, :I, 
where P = (p,(ea)). S ince the Killing form is non-degenerate on h, and since 

6 = C ke, , the matrix P has rank r, and hence /has rank 21, and so the orbits 
in r, are typically 2r dimensional, the only generic orbit invariant being &. 
Equation (4.20) has the following form for the case m = 1. 

A = i 6$p5 + 1 aa(ea + e-,> + a&-% + he-b), 
j=l jal=l 

B E P,(A) = C a,(e, - e-,) + a6(--h% + k4, 
Ial= 

(4.22) 

and we thus conclude 

THEOREM 4.1. A = [A, B] is equiwdent to the following equations of 
Bogoyaoknsky [21] (f rom which he computed (2.3) and (2.4)): 

i* = -2 c aa2 - a(Pj) + 2a2 * W), 
lt+l 

ci, = a, csj . a(pJ, d, = us c 6j * S( pJ. 

5 j 

(4.23) 

8 This observation is due to B. Kostapt, who was also aware of the integrability state- 

ment (personal communication). 
7 This is a Lie algebra generalization of a formula which appears in [6, p. 781. 
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Note that the form of Eq. (4.23) just depends on the roots. 

We now exhibit the “symmetric” matrices (4.22) for A, , B, , C, , D, , G, , 
using Gilmore [18, p. 2471, and Humphreys [19, p. 1031, which contain basic 
explicit information on the Cartan decomposition. For A,-, , the special linear 
algebra, we have 

A= 

ah a,., b, 

- - 

B= 

\ 

\ ‘1 a,, 

(4.24) 

-a,, 0 

where C bi = 0. Note that these hi’s are linear combinations of the hj’s. Under 
the isomorphism (see Section 3), A, B -+ A, 8, which are infinite n-periodic 
Jacobi matrices of the form 
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For C, , the symplectic algebra, we have 

- 

4 a, 

a”-, b, 

a. 

h an., 

- 

.h-b,,, 

a, 

Ib,, -a,., 

a,., 

-ci, -b, 

1 
-h-i,+, 

-an., 0 a, 

a, 0 -an-# 

a,., 

0, 0 
- 

(4.25) 



294 ADLER AND VAN MOERREKE 

As in the previous case, it is easy to compute (from Section 3) the symmetric 
and skew-symmetric matrices $ s, which are just infinite n-periodic Jacobi 
matrices having some obvious symmetries. For B, , the orthogonal algebra 
O(n, n + 1), we have: 

A= 

h-b,,, 0 

0 -h-h,+, 

1 

3n 

b, -a,., 

a”-, 

N -at 
-a, -b, 

- 

I  
f3= 

For D, , the orthogonal algebra 0(2n), we have: 

0 

ha,, 0 
0 -how 

- 

A= 

- - 

b, a, h-b,,, 0 

0, 

\ 

\ 
0 -h&a, 

\ a,., -a, 0 

a,., b, 0 a,, 

-a, 0 -b, -a,., 

h.,+, 0 

0 -ha.,., 

c - 

. I  

a 

i 

“C 

0, 

0 a, 

Q, 

\..\ 

\ 

\ 0,. 

-a,,., 0 

0, 0 

0 -%I 

h+, 0 

o -ha.,., 

- 

-Gl,,, 0 

0 h-b,,, 

2, 0 

1 07, 

Note for h = f I, the A’s, B’s of these examples are respectively symmetric, 
skew-symmetric, a reflection of the fact that the corresponding infinite periodic 
matrix versions are respectively symmetric, and skew-symmetric. 

Consider now (4.22) for G, . From Humphreys [19], it is easy to see, after 
some fiddling around, that ME Ga C B3 may be described by a matrix of the 
form 



From this matrix, after suitably modifying the eigenvector 

there, one finds A to be of the form 

andB 

0 LTa, 0 0 0 -&a, 0 

al O 0 0 b,+b2 0 -a3h -1 

0 0 0 -/7al 0 -b2 -a2 

0 0 -a1 0 -ajh 
-a2 -b1 

root table given 
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After subjecting A, B successively to the four conjugations by row and column 
permutation matrices summarized by the table, (3, 6) (2, 5) (1,6) (2, 7), read 
from left to right, we find 

A- 

(4.28) 

Note that this is just a special case of B, , (see (4.26)), if we make the inessential 
change h -+ h-l, B -+ -B (the latter reversing time), and so the G, system, 
A = [A, B], is a subsystem of the B3 system. From (4.24)$4.28), we easily 
check that A = [A, B] is equivalent (after some slight change in variables) 
to the Toda systems of Section 2, (2.2), (2.7) (2.8), (2.10), with the specified 
differential equations. Note that we have really shown G, sits in B, in such 
a way that the simple root eigenvectors of Gs are sums of simple root eigenvectors 
of B3', and so in general the level m eigenvectors of G, are sums of level m 
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e&vectors of Bs . Hence all the Toda systems (4.21) of G, are subsystems 
of the B, systems. 

We conclude this example by computing the orbit Poisson bracket (4.16) 
for the case of the A,, orbit of (4.24). We observe 

A = A, + a,(&,, + h-led see (4.24) for A,. 

(In the above, e,,, is the matrix whose only non-zero entry is one in the (1, n) 
slot.) If H = H(b, ,..., b, , a, ,..., a,), we have from (4.15) 

V,,H = h-lV,,H + V,,H , 

= h-lHamel,n + diag(HBl ,..., %,,I + C Hadet+l,i 
i-l 

and so 

(2% F}= i aiF&&.- Ht++,) + i F&i-&, - a&,), 
i=l i=l 

where Hb.+l = HaI, H,,, = H, . 
first observed by Moerbeke [6]. n 

This agrees with the standard formula, 

Remark. We note that all the curves det(A - z) = Q(z, h) = 0 have the 
form a(h + h-1) = R(z), where a = (JJkr #) a,,, . We claim that a = &, 
the orbit invariant computed previously. Remember that all the integrals of the 
motion of A = [A, B] are generated by the coefficients of Q(z, h). We claim that 
all functions generated by the coefficients of the R(x) are dependent on the b’s, 
and so a is the only b-independent integral, and this must equal some function 
of Lcs, which.by its form must be & itself. To see the above 6 independence, 
observe that for b very large compared to the ai’s, coefficients of R(z) essentially 
yield the b,‘s; hence if the coefficients are IabeledF = (F1 ,..., F,,); det(aF/ab) f 0, 
and so given any function H(F, ,... , F,), for H to be b independent, aFlab . 
V,H = 0, and since det(aF/ab) + 0, we must have V,H E 0, i.e., H cannot 
depend on the Fi’s, thus proving the assertion. 

Example 2. The Nonsymmetric Toda Systems 

: We now discuss the systems associated with nonsymmetric infinite periodic 
matrices, the nonsymmetric Toda systems.. The linearization of these systems 
was accomplished by Mumford and Moerbeke [3], along with the formula for 
the symplectic structure. We derive that formula from the point of view of Sec- 
tion 3. We need the following consequence of Theorem 3.1. 

THEOREM 4.2. Let L be, a I& algebra with a nondegenerate, ad-invariant, 
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bilinear form ( , >e through which we identifr L M t*. Suppose e has the level 
decomposition 

L=@OLi, Pi ,41 CL+j 9 [Lo J,] = 0. (4.29) 
iPZ 

Let B+ = xi>0 @$ , B- = &, I$ and P*, Pi be the projections onto B*, 

L< , respectively, along xi<0 @Li , xi>0 @Li , Cj+i @& . We require (15~ , 
(1 - P-i)L) = 0, h ence Ei is paired with & with respect to ( , ) by its non- 
degeneracy. We define the derived Lie algebra 

where 
E = {(I-, E+) 1 I’ E B+, l- E B-, P,,Z+ = P,,-}, 

w-3 h+)> (h-, &+)I = (K, c-1, a+, &.+I). 
(4.30) 

We may identify E* m J? via the nondegenerate pairing between E, t 

(4.31) 

and so the connected Lie group Ge generated by E induces through its co-adjoint 
action the Kostant-Kirillov symplectic structure on f, m E*. Then r = rkj = 
CleGiGj @Li is an invariant manifold of the co-adjoint action. Let d-(r) be the 

algebra of smooth functions defked on i (identified with e* via ( , )L), which 
moreover are invariant on F with respect to the co-adjoint L action on L* w E. 
Then the d(F) ( u p on restriction of its elements to rj form a system of involutive 

functions with respect to the GL symplectic structure on I’. Moreover, the Hamilton 
vector fields X, and Hamiltonian equations associated with HE d-(17) are 

ti = X, = [m, n], n = (P+ - P’dVHW), 

where VH(m) E E is the gradient of H thought of as a function on E. 

(4.32) 

Proof. The proof is most easily accomplished by just mimicking the proof 
of Theorem 3.1; however, when we showed this theorem to B. Symes, he 
observed that it could also be thought of as an example of Theorem 3.1 via 
(4.34) as follows: 

In Theorem 3.1 let us take L = e @L, where 

(4.33) 

and take 

K={(m,-m)JrnEE}~L, N =E, (4.34) 

K’- = {(m, m) 1 m EL} w L, NL = {(Z-, l+) 1 Z* E B*, PO(Z+ + I-) = O}. 
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That indeed N.L is as stated follows from the orthogonality properties of the Li . 
We define 1, = (xi2s PJl, Is = PJ, hence 1 = I+. + I, + I- , and also defining 
P* = P+ - $P, ) we observe P+ + P- = I. We now compute 

PK(m, 1) = (P+m - P-1, P-1 - P+m), 

PN(m, I) = (P-m + P-1, P+l + P+m), 

PKl(m, 1) = (P+m + P-1, P+m + P-l), 
(4.35) 

P+(m, Z) = (P-m - P-1, -P+m + P+l). 

From (3.22), (4.30), (4.10) (4.35) it follows that the @ orbit 0, C K-L M e 
through m equals (first without the P* which we may add without any harm) 

0, = {P+(gZ1(P+m) g-1 + P-(g+(P-m) g;‘) I (g- , g+> E @I; (4.36) 

TO, IL = P+Wm, -I) + P-F+ , P-ml I (L , I+) -3, (4.37) 

from which it is immediate that I’ = I’,i is an invariant manifold of the GL 
action. For d(r) of Theorem 3.1, take the special H(m, 1) = f(m), where 
f(m) is t invariant as discussed in the statement of the theorem. Then the 
gradient VH of H in f, M E* is (VH(m), 0), where VH E L is the gradient of 
f in L; hence using (4.35): the Lax Hamiltonian vector-field (3.17) on r, reads 
for this special H, 

t+z = [m, P+(VH(m))l, (4.38) 

in agreement with (4.32). This concludes the proof. 

Remark 3. We compute the Poisson bracket (3.19) on r Since K-L ME 
(see (4.34)), any K1 function is also an f, function; if Vzf is its gradient when 
viewed as a function on I!., then by (4.35), V,,f = (P-Vef, P+Vzf ). And 
by (3.19) and (4.34), 

(ftg>(m) = <(m,m),[(P-Vef,P,Vtf>,(P-V~g, P+Vtil)~ 

= (m, [P-Vzf, P-Vd - [P+vef, P+Vd>e . (4.39) 

We apply these considerations to the example f. = 9 = C @ gi of the 
previous example, where for concreteness we take 4 = sZ(n). The construction 
of GL is exactly as the construction of GN previously described, yielding a 
filtration of CL by CL”, where Ailc = L n (J& , JX&). Here we view Z,& 
as a Lie algebra with a truncated product rule inherited from Nj and NkT in the 
first example; therefore the I’,, are really invariant manifolds for the co-adjoint 
action of Gzrk. This is the result analogous to that for the r,,, of the last example. 
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The invariant functions have the form, as usual, H = (f(A) hk) (see (3.8)) 
and the Lax equations are of the form (from (4.38)) 

A = [A, P+Cf’(A) h”)]. (4.40) 

Equations (4.39) and (4.40) are in agreement with the formulas of Mumford and 
Moerbeke [3]. 

Example 3. The Spinning Top and Ellipsoid Examples 

In this example we set in Theorem 3.1 L = 8, J! = gl(n, I?) or gl(n, C) 
(that &z‘ is not semi-simple is irrelevant), ( , )r. = ( , >1 of (3.6), ands 

K = KL = dO,+ , N = N’- = a’&, , 
so (4.41) 

Pi (c Aih”) = %; Aihi = (1 A,h”) + , P, (1 Aih”) = C Aihi = (c A,h’) . 
i<o 

For the invariant manifold I’ we take 

r = rm(a, y) = orb” + yhm-l + RZ-;,~-~ , (4.42) 

with 01 = diag(oll ,..., a,), ~&cx~ - aiJ # 0, y a diagonal matrix and SX$,-~ = 
(~ogism-l Aih* 1 diag(d,-,) = O}. The terms oi, y are in fact orbit invariants, 
or parameters. 

Actually we may take &, = I&(a) = cJz” + JZ&+~ , where OL is some 
constant diagonalizable matrix, but since UolU-l = diag(orl ,..., CX,) for 
some U, we may as well map JZ + UPEDU-l, and hence we shall just take (y. 
to be already in diagonal form. We also make the nondegeneracy assumption 
that the ai’s are distinct, and thus find ourselves in the situation of (4.42). 

For &(I’) we shall take functions of the form H = (f(Ah-i), h”), , and so 
(3.17) becomes 

A = [A, (f’(Ah-j) V-j),], A = czhm + yh”-l + c A,hi. (4.43) 
o<ign-1 

For the case i = m, K = m + 1, one easily computes from (4.43) (first for 
f(x) = xt, and then in general) 

~4 = [A, E + Bhl, B = f’(4, E = o?ds&A,n-~ + f”(4 * Y, 

Eij = (1 - &)(A - &)(a, - W(A,,-,)ij + &jrii.f”(4, (4.44) 

H = (f(Ah-“), hm+l), . 

* In analogy to (4.5), we define afi,: = {&i<r A,h” 1 Ai E &}. 
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We examine the above example. That K = K’-, N = NL under ( , )r , 
is easily checked, as is the validity of the remainder of (4.41). The group 
GN is the afline group GN = I+N, and hence ifI---xEGN, (I-x)-l= 
I+x+xa+ a.*. Thus N is filtrated by Lie algebras Nk = .sl_,,-, , with the 
bracket [c;i-* A$*, C;Ln &hi] = c$_-JAi , Bi] h*+j, and the corresponding 
Lie group is GNL = I + Nk , with the truncated multiplication rule 

i Aihi . i Bihj = i A&.hi+j, A, = B, = I. 
b-k I--k i+j-4 

This is analogous to the situation in Example 1. The orbits 0, through A E I’, 
are of the form, by (3.21), (4.10), (4.41), 

0a.t =W&)+Ig~l +W; 

since only the nonnegative terms in g-1Ag register in (g-lAg)+ , the orbit is 
easily seen to equal 

and so, 

@A = W1&)+ I g E GN,+J = k’-14k)+ 1 g E GN,>, 

(4.45) 

In the first formula since A E JZ&, M N$+, , under ( , )i , we think of A 
being in the dual of N,,,,, , and so @A can really be identified with the co-adjoint 
orbit of the finite-dimensional Lie group GNm+l. 

That the given function HE d(r) is proven in the same fashion as in Example 
1, as is (4.43). That (4.44) follows from (4.43) is most easily seen for f(x) = 
xtfl/(t + l), as for a general matrix A,-, we have (h(a + h-IA,-, + **e)“)+ = 

ath + ULh Cat ai 8 L1-s] = ath + [(l - G,,)(A,-,),(a: - aJ(at - aj)-l + 
8djtAbfa~v1J = E + ph. Subsequently, for a polynomial f  we have (4.44) by 
the above and linearity, while in general we Cl approximate f by a sequence of 
polynomials to obtain (4.44). Using V,IH = &Jz-‘-~V~,H (compare with 
(4.15)) the Poisson bracket (3.19) of Theorem 3.1 is easily seen to be: 

W, F} = 1 (4 , [%fHs hk 0, with (A, B) = trace A * B. 
i--i+lc+1 

From (4.42) and (4.45), t i is clear that I’ = r,,, is an invariant manifold; a 
typical orbit 0, , A & r, will be shown to be of dimension mn(n - 1). It 
suffices to compute dim(TO,(A)). &place S,+ A,-, by A,-, ; then first 
compute [A, B], = [arh” + CT;’ Aih*, ckml B-,h-*I+ = [a, B-#z~-~ + 
([a, B-J + [A,,,-1 , B-l-j)hm-a + ... + ([a, B-,] + F(Gzi., B-,-,))h”-” + 
--* + ( )hO E d&,, . So for a fixed A< and given C = Ci=r Cihi we wish to 
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solve the linear system, [A, B], = C for B EN, . This breaks up into a 
triangular system of m matrix equations, to be solved by induction: 

-[a, Bek] = [Amel, B-k+11 + ... + [Am--k+1 > B-J - ‘m-k 3 1 .<k 6m, 

where [Al, B-,lii = (B-&(o~~ - oli) h as a zero diagonal; the diagonal of B-, 

is therefore irrelevant and may be assumed equal to 0. Consequently this system 
is solvable uniquely if and only if the diagonal of the right-hand side vanishes, 
which determines the diagonal of each C, (0 < k < m - 1). Therefore the 
dim To,(A) or, what is the same, the dimension of the range of the linear 
operator B -+ [A, B], is mn(n - 1). 

We now come to the remaining examples of Section 2. 

THEOREM 4.3. If in (4.44) we set m = 1, y  = 0, /3 = cG/~, we arrive at the 
Euler-Arnold spinning top for the Lie algebra gZ(n), while if we set A, = -A,T, 
we arrive at the E&r-Arnold top for u(n). 

Proof. The proof is a direct consequence of the definitions [l], upon setting 
h = 0 in (4.44). 

Now let us define for x, y E R” or C” , 

r,,=x@y-y@x, rxs=x@x, r,,=y@y, A,,=x@y+y@x, 
(4.45) 

where (x x y)ii = x,y, . If in Theorem 4.3 we set A,, = I’,, , then as time 
evolves A,, remains in this form; but this is part of a more general observation: 

THEOREM 4.4. We have that (a) the special Arnold-Euler equations (2.2~9, 
(b) (i) the geodesic flow on an ellipsoid, (ii) the Neumann problem (2.24), and (c) 
the central force problem on an eUipsoid associated with the Hamiltonian (2.18) 
correspond respectively to the following three cases of the Lax equation, A = 
[A, I’ + /3h], A = A(h), j3 = diag@, ,..., &J, r = ad, ad,’ I’,, (see (4&I)), 

(a> A = ah + G, , 
(b) A = (rh2 + hr,, - I’,, , (4.46) 

(c) A = ah2 + hr, + (A, - CL), 

with the Hamiltonians H = (f (Ah-“), h”+l) respectively of the form 

(a) H = ($(Ah-1)3/z, h2), , f(x) = 3x3’2, 

(b) (i) H = (ln(Ahe2), h3), , f (cc) = In x, 

(ii) H = (&(Ah-2)z, h3), , f (4 = +xX2, 
(4.47) 

(c) H = (In(Ah-2), h3), , f (4 = W), 
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which drives the vector-fields X, of our abstract Lie algebra theorem (3.1) fbr 
the K, N a%xomposition (4.41). Morewer, A = [A, E + /?h], for the abwe 
choices of Hamiltombas are in fact a consequence of the standard Hamiltonian 
equations 

with the respective Hamiltoniuns (distinctly diflerent from (4.47)) 

(a) H = -&((h-‘A(h))“‘“, h), = 4 c &‘HJx, y), 

(b) (i) H = i(ln(he2A(h)), h), = $. c ailFd(x, y), 

(ii) H = $(i(h-2A(h))2, h), = &c ariF&, y), 
(4.48) 

(4 H = 4(ln(h-2A(h)), h), = 3 c 41G(x, Y), 

In fact we have the general formula for the three cases (see (2.25)) 

(4 -t(f (h-lA(h)), h), = He = f c /UC , rS = f’(a), 

(b) -Kf (h-2A(b)), h), = Fe = t c t’Vv 9 (4.49) 

(4 -Kf (h-2A(b)), h), = GB = +b 1 PJZ . 

Each of these three sets of functions form a complete set of commuting integrals 
in the standard (x, y) Hamiltonian structure. (Acts&y one must add C xi2 , 
2 yt, to the H, to generate a complete set in case (a)). These fun&ims and those 
of (4.47) are generated precisely by the coeficients of the hyperelliptic characteristic 
CurereP of Section 3: det(h-1 A - TX) = 0, det(h-2A - z) = 0, det((h2 - 1)-l 

A - 2) = 0 for cases (a), (b), and (c), respectively; they have the form (see (2.19), 
(2.20), and (2.21)) 

n-2 

(4 h2 = --17,ty, 4 = -(I x I2 I Y I2 - <x,Y>~) n (2 - 4/W, 
i=l 

n-1 

(b) h2 = -@JY, X) = -I x I2 fl (2 - pi)/+>, (4.50) 
i=l 

n-1 

(c) h2 - 1 = -Yz = ~(x,Y) . 11 (Z - vi)/a(z), 
i-l 

8 Note that for #(h) a rational function, the curve det(&h) - z) = 0 is merely a re- 
parametrization of the curve det(A - z) = 0. We have picked d(h) to desingularize the 

latter curve. 
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with (x, y) = CFI, xiyi , j x I2 = (x, x), a(z) = det(z - a) = n%(~ - oli), 
and the genera of the curves are n - 2, n - 1, n - 1, respectively. Finally the 
ui’s and aj’s are independent in (a), the p$, olj’s in (b), and the vi , olj’s in (c). 

Proof. The proof is a straightforward computation. Assume for the moment 
Eqs. (4.48), (4.49). We first do case (b). For Fe = iC/$Fi (see (4.48)), it is 
easy to check that Hamilton’s equations, f f  = azB = -I’x, j = -a,$* = 
-ry - px, imply, upon using the matrix identity V(x By) W = (Vx) @ 

WTY), 

this set of equations is equivalent to A = [A, B], A = mh2 + hI’,, - I’,, , 
B = r + /3h, using [I’, a] = [r,, , p]. 

Taking /3 = cy-l, (Y respectively recovers cases (i), (ii). Comparing (4.44) 

with the above A = [A, B] proves the first statement of the theorem for case (b). 
To prove case (a), consider H = 3 C /3,H, (see (4.48)) and then Hamilton’s equa- 
tions with Hamiltonian He imply p,, = [TX,, q; hence we have A = [A, B], 
for A = oth + I’,, , B = r + ph. Now pick ,3 = 01r/~ to recover the first 
statement of the theorem with regard to case (a). For case (c), if G = 3 C lgYGY 
(see (4.48)), we have that 2 ,= a,G, , y  = -a,G, imply 

which is equivalent to A = [A, B], for A = ah2 + hT’,, + (drl - LX), B = 
r + /3h, and upon taking /3 = o~-r we recover case (c). We now verify (4.49), 
which implies (4.48). It suffices to prove the above for f  (x) = xk , by the same 
reasoning used to check (4.44). Note that for case (a), we need only look at the 
h-2 coefficient of ((h-lA(h)))“, while cases (b), ( c are straightforward generaliza- ) 
tions of case (a). 

We are now facing two distinct symplectic structures, the first deriving from 
the orbit method applied to Euclidean algebras and the second being the 
customary Darboux symplectic structure. From the general theory, all ex- 
pressions of the form (f(Ah-“), h”+l), are in involution with regard to the first 
symplectic structure. We now show that they also are with regard to the second 
one, i.e., 

By the preceding arguments, the flow ti = a,(He), j = -a,(H,) has also the 
Lax type A(h) = [A(h), B(h)]; consequently, any polynomial P(A(h), h) 
satisfies the same Lax flow; hence (d/dt) (trace (P(A(h), h)) z C kyhy = 0 
identically in h, implying C, = 0. But since He, appears among the expressions 
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c, for some appropriate choice of polynomiol P, we have that indeed 0 = 
I$ = (Hg , H,}. Since the latter holds identically in p and j3’, ‘we also have 
{H, , HJ = 0, 1 <j Q k < n, and likewise for the F<s and Gis. In the next 
section we shall see that this Darboux symplectic structure also derives from 
the orbit method, but for different groups. 

That the characteristic curves are given by (4.50) is an easy consequence of 
the following remark, due to J. Moser. 

Remark 1. Consider the rank 2 perturbation of 01, 

Using the above perturbation-type identity (z - L) = (x - a)(1 - R,P), 
R, = (2 - OL)-i, one computes 

det(z -L) 
det(z - a) 

= det(1- IV,), 

where 

(KG 4, Rx, Y’) 
K = [(&Y> 4, C&Y, Y’) I [ 

a, c 
= 

Q.(x), Q&, Y) IL I Qz(x, Y), Qz(r) , d 

(see Section 2 for notation), and so 

det(s -L) 
det(s - a) 

=l-trWz+detWz=l-~z(x,y), 

Ax, Y> = US&) + (b + 4 Qzh Y) + dQz(y) (4.53) 

- W - W(Q&) BAY) - Qz’(x> Y>>- 

Thus, to get (4.50a), set b = -c = h-1, a = d = 0. To get (4.50b), let 
a = -hP2, b = -c = h-r, d = 0, and for (4.5&z), set a = d = 0, b = 
(k - 1)-l, c = -(h + 1)-l, We expand upon Theorem 4.4 in a series of 
remarks and in Section 5. 

Mk 2. It is easy to see j&, y) = C(l;/(z - a,)), where Jj(y, x) = 
U-Q + (b + C) ~3~3 + dyj’ - (ad - bc) Hj(y, x), and we set 

One checks exactly as in Theorem (4.4) that f, = -(I& , pi = (I&, , 
iA1 ,..., n, implies the Lax equation of (4.9, A = [A, B], m’= 2, with 
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B = 6r + (v) ph, 6 = ad - bc, r = adBad;’ r,, . 

Putting ~1 = ((b - c)/2”(h2 - I) + 1 in det(Ap-l - z) = 0, the correspond- 
ing hyperelliptic curve reads 

- (A (G))” = (; - oz(4)(; - QdY)) - (qp + s&G Yg2. 

This clearly comprises the special cases (4.46). 

Remark 3. The Lax equations of (4.44)-(4.46), A = [A, B], imply Lax 
equations of the form t = [L, r], with L respectively set equal to 

(a) (I - P,)(I - Pv) a(1 - P,)(I - P,), P, = I x I-’ rzzF 

(b) (I- Pz)(a - rz/,P - PA r,, =Y Or, (4.54) 

(4 (1~ - pzy)(Ol + kr,,)v - pzv), pm = <x, r>-’ x 0 Y> 

and r = adsad,‘I’,, . 

Case (4.54b) is due to J. Moser and we sketch a proof which generalizes 
to the other cases. In (4.46b), substituting h ---t ih, and keeping h real, 
A = -d2 + ir,& - Y,, is self-adjoint. We claim that for h small, -A has 
the orthogonal decomposition 

-A = h @ e/j v I2 @ h2(L + O(h)), 

with X = j x j2 + h2 1 y  I2 + O(h3) (the large eigenvalue for h + 0) and v  = 
x + iyh + O(h2), the corresponding eigenvector. This claim follows immediately 
from the observation h2( - A + hv @ C/I v 1”) = 01 - y @ y + x @ s + s’ @ 
x + O(h), for some S, s’, upon projecting each side of the above formula onto 
the orthogonal complement of vu. By the decomposition for A, when it undergoes 
an isospectral deformation generated by r + /3h, so does its summands, in 
particular L + O(h); and letting h -0 we have the remark for case (b). Cases 
(a) and (c) are treated similarly; case (c) involves non-self-adjoint matrices. 
The conceptual point to bear in mind is that these matrices are descendants 
of the matrices (4.46). The isospectral flow (4.54b) has a particularly pretty 
geometrical interpretation: Charsle’s theorem on tangents to confocal quadrics 
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and M. Reid’s description of hyperelliptic Jacobeans are a consequence of this 
theory (via a result of Kniirrer [30]); see Moser [7j and our subsequent paper. 

Remark 4. For the system of Rosochatius discussed in [a, namely the 
motion of a particle constrained to lie on the sphere 1 x 1 = 1 in Rn under 
the influence of a potential 

one has the differential equations 

~=-uu,--Ax, x = 1 k 12 - (U, , x). 

This implies the quation A = [A, 231, with 

A = oJ12 + v, + &?.c,3c) - r,, , i= d2, 

B = ph + adaad;1(r3Ef + id,,,,,) - iD, 

where c/x is the vector with components cj/Xj ; here A,,,,, = x @ c/x + 
c/x @ x, the second matrix in B is defined as having no diagonal component, 
and the third D = diag(Dr ,..., D,), 

05 = c ( fg(+++)xk2. 
k#i 3 

For the particular flow above we take fi = 0~. But, since in general we have 
aa in (4.49b), p =~‘(oL), 

---f<fW24hN, 6, 

EE Fv = ij ((/3x, x) + 2 (s)[(xiy, - xjygy - y - q] 1 

(modulo a constant factor -2 & ([Gs, - /?,)I(% - a,)] c&; it makes sense to 
study the differential equations 

which lead to A = [A, B] for the general B = B(/?) given. Since we may write 

Ah” = a + h-lx @ (-h-lx + y + k/x) + (-y + k/x) @ h-4, 

we can use Remark 1 to compute the hyperelliptic curve 

ha(det(Ah-2 - z)) = ha - 2sh + t = 0, 

607/38/3-6 
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t = Q&4 + (Q&4 Qz(r> - Qz2b Y>) + (Q&> Q&/4 - Qa% c/d), 
s = iQ&, c/x>, 

which is thus equivalent to the irrationality y2 = (s2 - t) u(z)s, i.e., 

y2 = 442[Qz2(x, Y) - Q&>U + Q.(Y) + QzW>>l. 
The L matrix of Remark 3 is computed in the usual fashion to be 

which is Hermitian for X, y, c, 01 real. The linearization of these flows will not be 
discussed in paper II, as it proceeds exactly as in cases (4.46). 

Now we consider the Lagrange top, as studied by Ratiu and van Moerbeke 
[26]; see also Ratiu [25] for n-dimensional generalizations. Formulas (2.13) 
and (2.15) are equivalent to 

1 (Y + la + h2(4Pd)) = [Y + ml + h2(4/dLgE), fJ + (/A$)4 (4.55) 

Recall from (2.12) that Q, A!I, y and 2 are the anti-symmetric matrices correspond- 
ing in that order to the angular velocity Sz = (p, q, r), angular momentum 
&I = (I,$, I,q, 1ar), coordinates y = (n , y2 , ya) and the spatial z-axis, and 
the center of gravity 2 = z,(O, 0, l), ex p ressed in the body coordinates. Rescale 
by replacing CLgz, by x0 . As was pointed out before, the fact that the leading 
term in y + hM + h21iZ is not diagonal is unimportant. In view of (4.42), 
we may rewrite 

A = A, + A,h + Sh + ah2, (4.56) 

with& = y, A, = I,(p, q, 0), 6 = 1&O, 0, l), cv = I1zt,(O, 0, l), and 

Q + %(O, 0, l)h = ((P, 43 0) + %(O, 0, 114 + y(O, 0, 1) 

= I;l(Ah-I)+ + [r( 1 - ~~31~‘)(l~xo)-‘](Ah-“), 

= (I,-l/2)[V(A2, h-l + Y(1 -I&l) z;1h-2)1]+ 

and thus we have: 

THEOREM 4.5. The Lagrange top equations (2.13), and (2.15) correspond to a 
speci$c$ow on the Eticlidean orbit (4.42) with m = 2, 01, 6, A, and A, defined as 
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above and its vector-field is a linear combination of the type occurring in (4.43): 

A = [A, [V(A2, ah-l + bhb2);1+], 

a = q;‘, b = $r1;%;‘(1 - 1&l). 

Note we have implicitly used the fact that Y is an orbit invariant. 

Remark 5. Theorem 3.1 was employed by Adler [5] in studying the generaliz- 
ed Korteveg-de Vries equation of Gel’fand and Dikii as follows: one takes 
L=(A=x:_ m.3G~ a# I ai(x) a real periodic tt x n, P[O, l] matrix func- 
tion, iV < co, arbitrary}, where the multiplication in L comes from pseudo- 
differential operator theory, with tr A = $ sp(a-,) dx, (A, B) = tr A . B, 
K = KL = {A = xi>,, aie 1 ai as above}, N = NL = {A = &O aiF 1 etc.}. 
Therefore K are the differential operators, N the formal Volterra integral 
operators. Note that 2 (Eq. (3.1)) is a subalgebra of L identified with the 
constant coefficient operators, which gives rise to our application of Theorem 3.1. 
We also wish to remark that the special cases (4.46) do not seem to relate well to 
any special feature of 9, but just correspond to very great degeneracy in (4.44). 

5. INTEGRABILITY AND THE CLASSICAL GROUPS 

It is natural to view Eqs. (4.44) for the cases (4.46a), (4&b), and (4.46~) 
as respectively occurring on the co-adjoint orbits of U(n), U(n) @ S (where S 
are the symmetric matrices), and GZ(n), and in fact, the integrability of these 
systems in the orbit symplectic structure follows from a generalization of a 
simple argument of Mischenko and Fomenko [9]. The orbit symplectic structures 
are shown to be the standard Darboux symplectic structures on Rsn modulo 
some simple reduction. In addition, the classical spinning top equations (under 
gravity) are naturally viewed as occurring in the orbit of U(n, R) @) u(tt, R). 
We shall first discuss the symplectic structure associated with (4.46). 

As a preliminary remark, useful in the future, consider A, antisymmetric 
and the following function &,(A,) with /I = f’(a) as in (4.44): 

&(A,) = ((f (Ah-l), h), = Q tr(4, . adBadil 4) 

= - C (A& e , 
i-3 5 

and define VH by dH = Tr(VH . dA,), with VH skew-symmetric; then 
Vffs = adsad;’ A, . Equation (4.44) with m = 1, A, skew-symmetric is thus 
equivalent to 

A, = [A,, Vffsl, (5.2) 
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which may be interpreted as a Hamiltonian equation (with Hamiltonian I?@) 
on the co-adjoint orbit of the orthogonal group. This was done by Dikii [lo]. 
If we set a: = J2, p = J”, then (5.1) is the Kth Mischenko integral [IO], and 
(5.2) its associated Hamiltonian flow. This motivates what follows. 

We begin by discussing (4.46a). Consider the orthogonal group U(n), its 
Lie algebra u(n) paired with u(n)* via <K, , K,) = Tr(K, . KJ. The co-adjoint 
action of U(n) through K = x A y F x @ y - y @ x (= r,, of Section 4) E 
U(U)* has the form 

U(xAy)U-l= UXA uy=2/\p, Ux =ff, Uy =y,x,y~R”, 

sothatI3i;I=Ixj,I~/=IyI,and(f,9)=(x,y).Observethatxhy=x’hyf 
implies span(x, y) = range x A y = range x’ A y’ = span(x’, y’); in particular 
(x’, y’) = (ax + by, cx + dy) and so x’ A y’ = (ad - bc)x A y = x A y if 
and only if ad - bc = 1. Hence the set of all x A y is a quotient of ((x, y) 1 x, y E 
Iw” and linearly independent} by SZ(2). C onsequently the dimension of the 
space of matrices x A y with x, y E IF!? is 2% - 3. It is easy to see that, for an 
appropriate choice of the SZ(2) matrix, I x 1 = I and (x, y) = 0 can always 
be achieved; SZ(2) acts now on R!2n with I x 1 = 1 and (x, y} = 0 as follows: 

(x’, Y’) = (x cos v - Y/l Y I sin q, / y j x sin v + y cos p)). 

Let - denote the latter action. Then the orbit Ozy through x A y takes on the 
form 

o,, = (X’ A Y’ 1 1 X’ 1 = 1, (X’, Y’> = 0, 1 Y’ 1 = 1 Y I>/- 

and is 2n - 4 dimensional. 
On this orbit we have the natural orbit symplectic structure; given a function 

H defined on this orbit 9,, , it leads to the Hamiltonian vector-field and equation 

(X A y)’ = X,(X A y) = [X A y, VH], 

or what is the same thing 

3i”z-VH.x and y= -VH.y. (5.3) 

On the one hand 

dH = Tr(VH. d(x A y)) = -2(dx, (VH . y)) + 2(dy, (VH . x)), 

and on the other hand, since H can also be regarded as a function of x and y 

dH = <dx, Hz> + (4, H,); 
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by comparison H, = -2VH * y and H, = 2VH * x and so the orbit Hamilton 
flow (5.3) implies the flow 

We conclude that, up to a factor -4, the U(n)-symplectic structure coincides 
with the standard Darboux structure on IIF reduced by the N(2)-action above. 
Putting H = Z?,(x A y) = -2H,(x, y) (of the form (2.25)), we find the flow 
(2.26) as a consequence of (5.2). 

In order to recover the customary Darboux symplectic structure for the case 
(4&b), the role played by U(n) in the previous case will now be played by the 
semi-direct product G = U(n) @ S, where S denotes the set of symmetric 
matrices; let K denote the skew-symmetric matrices. Then G is a group with 
the composition rule (VI, S,) . (U, , S,) = (U,U, , S, + U,S,lF); its Lie 
algebra g = (K, S) has for Lie bracket’0 

and for pairing we take 

((h , 4, (A, , s-J> = tr((h + 4 * (h + ~2)) = tr(%.) + tr(wd 

The latter implies the bracket between g and g* (wg) is 

Since g* shall be identified with g via ( , ), if H is a function on g*, its gradient 
OH ~g admits an orthogonal decomposition VH = (V,H, V,H), since K 1 S. 
The Kostant-Kirillov Poisson bracket on g* is given by 

X,(F) = {F, H)@, 9 = ((k 9, F’H, W,) 
= (k, [V&f, V,Fl> + <s, ([V,H, VJ+“l + F’sH VA)), (5.4) 

and therefore, according to the usual recipe, the Hamiltonian vector-field applied 
to (K, s) ~g* satisfies the Lax equation 

(k s)’ = [(k, 4, (V&t V,H)],* = ([k V,Hl + [s, VsHl, [s, VA) 

breaking up into the equations 

k = P, V&l + [s, V&l and s = [s, V,H]. (5.5) 

I0 [, ] denotes the usual znatrix bracket. 
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Moreover if (k, s) = (x A y, --x ax), then these equations preserve their 
form. To see this, we compute the co-adjoint orbit of G through (k, s) = (X A y, 
--x @ x). The adjoint and co-adjoint actions of G on (k, s) have the following 
form: 

Ad(U, S)(k, s) = (UkU-l, UsU-l + [S, UkU-l]) 

and 

Ad*( U, S)(k, s) = (U-‘kU - U-l[S, s] U, U-‘sU). 

In particular 

Ad*(U, S)(x A y, -x @ x) = (U-lx A (U-ly - U-%5x), -U;’ @ U;‘) 

FE (2 A J’, - 2 @ a’). 

Furthermore observe that (x A y, -x ox) = (x’ A y’, -x’ @ x’) if and only 
if (x’, y’) = (-&x, fy + tx) with t E R. Hence for an appropriate choice of 
t E IR, the relation (x’ y’) = 0 can always be achieved. This combined with the 
Ad*-action above shows that the co-adjoint orbit of (x A y, -x @ x) under 
G has the form 

o,, = {(X’ A y’, -X’ OX’) with / x’ 1 = 1 x 1 and (x’, y’) = 0). 

Since (5.5) are equations on 8,, , they preserve the special form of (k, s). De- 
fining (V, W) = (V&Y, V,H) = VH, these equations reduce to 

it=-vx and j = -vy - wx. (5.6) 

Finally we show that the customary Darboux symplectic structure on the orbit 
0,. M T*S”-l is equivalent to the one defined by (5.4). The functions H = 
H(k, s) defined on this orbit can also be regarded as functions H = H(x, y). 
To see the relation between their gradients, we observe on the one hand that 

dH = (dx, Hx) -k (dy, Hy), (x3 Y) E %I * (5.7) 

and on the other hand that 

dH = ((dk 4, (V,H, V&W, k=xhy,s=-x@x, 

= {dx, (-2Vy - 2Wx)) + (dy, 2Vx). (5.8) 

Comparing (5.7) and (5.8), we find H, = -2Wx - 2Vy and H, = 2Vx; com- 
paring this with (5.6), we conclude that $ = - @!I, and y = -*Hz, establish- 
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ing the equivalence between the two symplectic structures, up to a factor -4. 
It is interesting to remark that the flow with Hamiltonian H(K, S) = &&(K) + 
Tr(fl * s) (see (5.1)) yields (4.51). If one evaluates (5.5) at a general point (not 
necessarily of the form (k, s) = (x A y, -x @ x)) with the same H(K, S) one 
finds (4.44) with A = a@ + Kh + S. This equation can be named, via Arnold’s 
procedure [l] as the equation of degenerate geodesic motion on T*G, with an 
additional linear forcing term -Tr@ * s). 

For case (4&c), the relevant group is the invertible matrices G, with Lie 
algebra 6 = g as before with the previous ( , ). Here of course the Lie bracket 
is the usual bracket 

so we may drop the subscript. From the above, the co-adjoint Poisson bracket is 

IF, H> = (k, [V,H,V,Fl + [VsH, VsFl) + (s> [v,H, VA+ FJsH, VIA), (5.9) 

and so Hamilton’s equations have the Lax form (k, s)’ = [(k, s), (V,H, V,H)] 
in g* (ml), i.e., 

S = is, V&l + [k V,Kl, k = [k, VA+ [s, V&l. (5.10) 

Note for H = G(k, s) = ifs(K) + Tr@ . s), (5.10) reduces to (4.52) at (k, s) = 
(x A Y, 4, and G(k s) b ecomes -4G,(y/2, x). Also note for H = G(k, s) in 
(5.10), we get a system equivalent to (4&l), with A = (049 + kk + s - a). 

One shows as before that the G co-adjoint orbit through (r,, , d,,) is sym- 
plectically equivalent to the standard (x, y) E Ran structure, reduced by the 
symplectic group action (x, y) ++ (ax, u-9) (again modulo a fact of -4). 
Indeed, observe that since i(d, f x A y) = x @ y, y @ x, respectively, 
(X A Y, h,) = (X’ A Y’, &~,c) P recisely if (x, y) is related to (x’, y’) via the 
action (x, y) + (ax, &y), with u E W\{O]. Thus the pairs of matrices of the 
above form are represented by pairs of the form (x, y), such that 1 x 1 = 1. 
Moreover, since the orbit O,, through (x A y, &,,) are matrices of the form 
U(2x @ y)U-l = 2(Ux) 0 ((U-y-y), with U E G only the spectral invariant 
(x, y) is preserved. This is just the determinant of x @ y restricted to being an 
operator with range and domain spanned by the range of x @ y, Hence the 
orbit 0, = ((CC A y, &,,)I 1 x 1 = 1, (x, y) = constant), a (2n - 2)dimensional 
variety. The computation of the symplectic structure proceeds as before, and 
thus U,, is the above-describted symplectic manifold. 

It is worthwhile to give yet another abstract proof of the integrability of 
these systems in the setting of the three Lie algebras we have just introduced. 
We first do the spinning top case. 

The co-adjoint orbit symplectic structure on (g&z))* is given by the Poisson 
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bracket {F, G}(A,) = (A, , [VF, VG]), for functions F, G on gZ(n)* (mgZ(n)), 
with A, the running variable on gZ(n), and as usual, dH = (VH, dA,) defining 
VH. Observe that if F(A,) and G(A,) are orbit invariants, i.e., [VF(A,), A,] = 0, 
etc., for G, then if Fh = F(A(h)), A(h) = ah + A,, etc., for G, {Fh , Gt} = 0 
is any identity in h, t. To see that, observe [VF(A), A] = 0, etc., for G, and so 
using the identity a(A, + &r) + b(A, + at) = A, for a = t(t - h)-l, b = 
h(h - t)-l, we compute {Fh , G,} = (aA + bA(t), [VF(A(h)), VG(A(t))]) = 
4[4h), VF(A(W, V&W) - WW), WW))], VWWI) = 0. Hence, 

(Fh , G,) = 0; i.e., Fh , G, are in involution. (5.11) 

This argument is due to Mischenko and Fomenko [9]. 
If F, G are of the form F = Ff’(A,) = tr A,,j, etc., for G, F(A,, + ha) = 

C cjlchk, and since from (5.1 I), (Ff’ , F,‘“‘} = 0 is an identity in h, t, we conclude 
@cilc , VC~,~,} = 0. If furthermore we are at a point A, such that A, + A,r = 0, 
i.e., A, is skew-symmetric, and j - k, j’ - k’ are even, then VC~,, VC~,~~ are 
also skew-symmetric. To see this, observe dFf’ = j((A, + ha)j-I, dA,), so 
VF;’ = j(Ao + har)j-l = C Vci,hk, but since for h pure imaginary, (A, + hol)j-l 
is Hermitian, or anti-Hermitian if j is even or odd respectively, identically 
in h, the observation follows. In fact in that case, Vcjk = VKcjk , which is the 
gradient of cik regarded as a function on K, the skew-symmetric matrices, by 
restriction; it being computed via the usual rule dH = (VH, dA,), VH + 
VHT = 0. From the above, 0 = {cjk , c,,,,}{A,,) = (A, , [Vcjk , VQ~,]) = 
<A, , [v&j, , v&k’]) = {cj, , Cj’k’} Ix. (A,,), and SO &‘k , cj’k’} I&%,) = 0, 
where the last bracket is just the co-adjoint orbit bracket for u(n). The algebra 
of functions formed by the coefficients of the Fj’s having the property that 
upon restriction to K, their gradients lie in K, form an involutive system of 
integrals on the co-adjoint ZY((n) orbits. The if,(K) of (5.1) are examples of 
such functions. 

This argument in fact generalizes to the other cases, which is computationally 
surprising. For the case of the semi-direct product, we first consider (5.4), 
and as a preliminary, as in the previous case, we work with GL(n) @ gZ(n), 
z?rrag~ning in the Poisson bracket (5.4) that (K, S) = (gZ(n), gZ(n)), with running 
variables (k, $). Then if F, G are the functions considered in the previous 
case, define Fh = F(A(h)), A(h) 3 ah2 + hk + s, etc., for G. Then V,F,(k, s) = 
hVF(A(k)), VsF,(k, s) = VF(A(h)), with VF the previously computed gZ(n) 
gradient, etc., for G. Using (5.4) and the above formula, we find (Fh , GJ 
(k, s) = <htk + (h + t)s, [VF(A(h)), VG(A(t))]), which by the previous 
argument equals zero, provided we can write htk + (h + t)s = a(mh2 + 
kh + s) + b(at2 + tk + s) for some a, b. Simply take n = t2(t - h)-l, b = 
h2(h - t)-l to satisfy the three identities. To get our commuting functions 
on U(n) @ (symmetric matrices) co-adjoint orbits, take in the algebra formed by 
the cik , those functions f such that (V,f, V,f) I0c.r) (skew-symmetric, 
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symmetric) = (skew-symmetric, symmetric). The F(k, s) = Z?,,(k) + Tr(/? * s) 
are an example of such functions. 

For the last case of the real invertible matrices, we again “imagine” in the 
Poisson bracket (5.9) that (K, S) = (gZ(n),gZ(n)). Working with the same 
functions F, G, define Fh EZ F(A(b)), A(h) = C& + kh + s - a, etc., for G. 
To show (Fh , G,} = 0, we proceed as in the previous case, requiring that 
R(ht + 1) + s(h + t) = aA + U(t), and so set a = (1 - ta)(Zr - t)-l, 
b = (1 - hs)(t - h)-1. The arguments then proceed as before. The Lie algebra 
generalization of this discussion just uses the symmetric decomposition. We 
note, for (k, s) = (X A y, A,,), that previous arguments now show that the 
G:s of (2.20) are in involution with respect to a reduced (x, y) Hamiltonian 
structure, and upon subjecting (x, y) to the previously mentioned SL(2) action, 
we see the same is true for the Ia’s of Remark 2, Section 4. 

To sum up, the Hamiltonian structures of (4&a), (4&b), and (4.46~) 
(in that order) in (x, y) coordinates, at the matrix level, are seen to correspond 
respectively to extremely low dimensional Kostant-Kirillov co-adjoint orbit 
structures on U(n), the semi-direct product of U(n) with the symmetric matrices, 
and the invertible matrices, and in fact, from the above, are specializations of 
integrable systems on more general co-adjoint orbits. 

We now discuss the spinning top (2.13) from this point of view. Equations 
(2.13) have the form 

J?l = [M, J-4 + [“/, 1’1, 9 = b, J-21, Mij = Ii&?+j 2 (5.12) 

with parameters Iij , 1’ = HZ. Glancing at (5.5), we see that if we regard 
(M, y) E u(3) @ u(3) = g = (u(3) @I u(3))* = g* as an element of the co- 
adjoint orbit of U(3) @I u(3) = G, then (5.12) is just an equation on the orbit 
of G, where (M, r) replace the previous running parameters (A, 3). 

To get (5.12) from (5.5), take as the Hamiltonian 

H = tr(+M . Q + I’ . y); 

thus V,H = 52, V,H = I’. Note the general Hamiltonian equations 

~2 = W, VA1 + [Y, V,f-fl, 9 = h V,Hl 

have the orbit invariants tr y . y, tr M . y, which physically correspond respec- 
tively to the invariance of the length of the z-axis, and the internal angular 
momentum along the a-axis-the direction of the gravitional force. Hence 
since g* has dimension 6, and since there are typically two orbit invariants, the 
orbit phase space has dimension 4; therefore, from the above point of view, 
one has always needed one integral in addition to the Hamiltonian H (and 
the orbit invariants) to solve the spinning top equations by quadrature, as in 
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the celebrated cases of Lagrange and S. Kovalevsky. These considerations can 
be generalized to the case n > 3. For more details, see Ratiu [25] and Ratiu 
and van Moerbeke [26]. 
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