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Let differential operators

P d "+ ( t)(d "72+ +qa(x, 1) (0.1
= — S, —_ e " s S .

ax) T dx e
with holomorphic coefficients in xeC and t=(7,t,,..)eC™, flow
according to the isospectral equations

P
%—:[P’;/", P}, k=12, ., (0.2)
k

where P*” denotes the differential part of the k/nth power of P. They form
an infinite-dimensional isospectral manifold .# of differential operators.
Since the ¢, flow and x translation coincide, it is convenient to replace
throughout the variables (x, t) by t+ X, with x=(x, 0,0, ..). In this study
we address the following questions:

(i) What is the behavior of P near its blow-up locus ¢ =r*; that is,
how do the functions ¢,{x, ) blow-up near t*, and what does it depend on?

(i) How does one desingularize P near the blow-up locus ¢*? In
geometrical language, how does one complete the isospectral manifold .#?
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ISOSPECTRAL OPERATORS 141

For the KdV isospectral manifold (n =2), we can answer those questions
by elementary methods. Indeed it has been observed by many that the
solution to the KdV equations (' =6/8,)

6q8P pii2 d? d?
2 pY, =2 4 q(x )=+ 2logt), k=135, .
a1 on, - WP Pl P=yatabn n=yn+ e n)

blows up after a finite time ¢*, and that there the potential g behaves for
small x as

q(t* + x) = + higher order terms, j=2,3, .., (0.3)

](J— )
x*
as one checks by elementary computations.
The operator P can be transformed into a new one, P, by means of the
well-known Bicklund transformation. Recall the method: consider first an
eigenfunction ¥, going with a large but fixed eigenvalue z,

2

d
PWIE(EX'—z*i‘q) W,=Z]'[Il,

and associated linear operators

d d d

A1=Wlaql;l£zi;—v] and AT:————UI

dx
with v, = ¥{/¥,. Then P—:, admits the decomposition

d? d> ¥
P=-——stqe=—g——itz,=—ATA +:
dx? ta=ge v, +e
with g= —¥/¥, 4z, = —v), —vi+z,. The new linear operator P is now
defined by conjugation,
2 dz

P=A,PA '=—4 AT+, =—+1v|—vi4+z,=—5+§;
1 1 141 1= 2l 1 1 1= q
it induces a transformation

2

dx?

dZ
logr+2—

d?
gg=qg+20)=2— s

e log ¥, =

and, at the r-level

T =1¥; (0.4)
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since (P—z) A, ¥ =A,(P—z) ¥, =0, the function ¥ maps into ¥,:

lI[!
S Y’,EA,'!’z—'F‘ vy (0.5)

1

That is to say, the new function 7, i1s obtained by multiplying r with ¥,;
also, the new eigenfunction ¥, is a hnear combination of the old ¥ and ¥"'.

If ¢ behaves as (0.3), then the function v,, a solution of the Ricatti
equation v2+ v} + ¢ —z, =0, must behave as

py=24 ., with @—a—j(j—1)=0.
X

Picking the positive root o =j, we see that the transformation

(il .
Gg=q+2v)= U 5 )—2é+ higher order terms
X
—j(j+1
X

that is, the (integer) leading term j(j— 1) of —¢q is increased to (j+ 1) ;.
Picking the negative root a = —j+ 1, we see that

~ . Ju-=1) 2(—j+1)
Gg=q+2)=— 2 2 +

—(j—=1)}j—=2)
_ U x2] .

decreases the leading term of —g¢q to (j—1)j—2). Thus the Bicklund
transformation corresponding to the negative root has the effect of lower-
ing the leading term.

In particular, if g= —j(j—1)/x>+ ---, then the function § correspond-
ing to j— 1 transformations, with negative root is finite for x ~ 0. It is
now this simple idea which can be vastly generalized to general pseudo-
differential operators. This simple example contains much of the seeds
for the results in this paper.

Returning to the general KP case, it is more convenient to pose ques-
tions (i) and (ii) for the pseudo-differential operator L = P'* with

dx dx

Jji—1

L=24% aixn (i)’, (0.6)
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flowing according to

g—L—=[(L")+,L], k=1,2, .. (0.7)
ot
Again, since the ¢,-flow and x-translation coincide, it is convenient to
replace throughout the variables (x,?) by 7+ x, with x=(x,0,0,..).
According to Sato’s celebrated discovery [S1], L can be conjugated to
d/dx by means of the wave operator S:!

_s%st ith s= 3 2= _d_)”".
L=sgs™ wih s= 3 fr (dx . (08)

-~

that is, the solution L of (0.3) is expressible in terms of a single function
7(t), a solution of the KP hierarchy. It is also well-known [ DJKM ] that
the wave function ¥(¢, z), a solution of

4

LY =:¥ and
ot

=(L"), ¥, (0.9)

n

can be represented in terms of r (for large ze C) as follows:

-1
WY(t, z) = SeZl 17 = oZi 17/ E(—t—_—[—:“‘"l‘)E eZ 1 7y(t, 2),
(t)

s2 s}

ith S A e B 0.10
with [s1=(s 5.5 (0.10)
To the wave function ¥ one associates a plane, generated by all its partial
derivatives with regard to t,, 15, ... at r=0, viewed as functions of z (see
[S, S-W1]), which, upon using (0.9), can always be expressed in terms of
partial derivatives with regard to ¢#;:

Whenever (1) #0 (which is so for generic te C™), one shows, using the
7-function representation (0.10) of ¥ and the operator V =07/8x + z, that

W=s an{‘]’(t z)| —a—'l’(t z) —ai‘l’(t z)
- p s« Jit=0» atl y “ l=0’ 6[% 3 -

W'=e U ““WOo=span{yl(t, z), Vy(1, z), VAY(1, 2), ..}
=span{z*(1+O0(z ")), k=0,1,2,3,..} (0.11)

has a basis of all orders k=0, 1, 2, ..., since
VAt z) =41+ O(z~ 1))

VeI n = 3 p(1)2", pl —8) = pal —8/0t,. — HB/ot), —1(8/8t;), ).
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Let Gr be the infinite-dimensional Grassmannian consisting of all such
planes and their limits.

For the t*'s such that 7(¢*) =0, the plane W' still exists, although the
basis (0.11) ceases to exist, it will have some new basis ¢,, ¢,, ... behaving
as

@i(z)=2"(1+0(z""))

Sp <8 <5< - and s;=1ifor large i.

Thus to each plane W' one associates a finite sequence (partition) (see
[S-W] and [P-S])

V(W’)E(V0>v1>v2> >0>0> )1

where v;=1i—s;, which in turn defines a Young diagram, for explanations
see Appendix A. Thus the manifold Gr has a cellular decomposition into
so-called Birkhoff strata, all parametrized by Young diagrams, with a prin-
cipal stratum going with v(W')=0. Hence the Young diagram measures
how strongly 7(t) can vanish; it also measures the depth of the singularity
of the corresponding operator L, and the eigenfunction ¥, as t(t) appears
in the denominator of S and hence in the denominators of L and ¥ (see
(0.8)).

This paper deals with the process of desingularizing L and ¥. An essen-
tial ingredient in doing so is provided by the Bicklund transform and its
dual. Given an arbitrary, but fixed, z, € C near oo, they map a function t
into new z-functions (see Theorem 4.1):

T =X, z,) ()= e (e — [27']) = W(1, 2,) o(1)
and
=Xtz =e Tt 4 [271]) = ¥*e, z,) o),

with associated wave functions

Wi(t,2)= — LWt —[z7' ] 2) =2 Ay, PUL, 2)

P\ (t,5)= —— Pt +[z7'1,2)

“1

:"Z‘I’ll,:]) Y’(’ﬁ :)-

il

expressed in terms of the Biacklund-Darboux transformation

d
A=Ay, .,= P, ZI)E w1 z,))
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and its dual A=4 wir.z;y. @ kind of “inverse.” It also induces maps at the
level of L,

L—L =ALA™" and LwL,=4AL4d",
with
LY =z¥¢, ad L ¥ =:9,.

The Bicklund transforms above correspond geometrically to mapping the
linear space We Gr into new ones W, and W, € Gr satisfying

tWicW' and W' W

This statement is tantamount to the Fay identity for the z-function.
Compounding several Bicklund transformations for fixed but arbitrary
Z,, .., 25 Dear z = cc, we have the identity
Yt z) = 274 Pioinz) ' 4 v A win ¥(1, z)

_, Wronskian[ ¥(¢, z,), ..., ¥(1, z,), P(¢, 2)]
Wronskian[ (1, z,), ..., ¥(1, 2,)]

k k
=r1(—z,)v'(t~ [z,“],z>, with ¥, =V,

i=1 j=1

which is equivalent to higher Fay identities; see Lemma 5.1. Note that the
¥, (1, z) thus obtained is a wave function associated to a plane W, related
to the original plane W by the inclusion

KWL W

Similarly, compounding dual Béacklund transformations leads to the wave
function

Pult,2) =2 A g0 Aggr VUL 2) (0.12)
associated to the plane W, related to the original plane W by the inclusion
W Wi

In order to understand and state the main results of the paper, we need
to make a small excursion in the theory of symmetric functions. Given a
Young diagram v=(vo2v, = --- 2v,>0), the corresponding Schur poly-
nomial is defined as (see Footnote 1 for a definition of p,)

F(ty=det(p, ., (—D)ocici<n (t=1(t,, 15, ..)).

607:108:1-11
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We need the following facts: a first ingredient due to Sato [S] is that the
7-function admits a Fourier expansion in terms of Schur polynomials

w(t*+ 1) =3 L(WT)F (1),

over all Young diagrams v where W is the plane associated with * and
with Fourier coefficients

E(W™)=det proj(W' — H,=span{z' "%, i=0,1,2,..})
P

satisfying Pliicker relations. The latter implies that near a point ¢*, where
the Young diagram v* = v(W ") # 0, we have & (W) =0 for all v such that
v * v*; therefore, near the point *, 7(¢* +t) has the following Fourier
series:

W+ )=, (W) F o)+ Y E(WT)F(1), with &..(W")#£0.
?\’Tir:‘l

A second ingredient is that the Schur polynomial F, (¢t —[s]) (for nota-
tion, see (0.10)) admits the following Taylor series in s about s=0,

F(t—[sD=F(t)+ - +5p(=3) F.(t)+ - +5"p, (=) F,(2)

=Fv(t)+ +ska\(k)(r)+ T +SVOF\v\ﬁrsl row(t)’

where F,, is the skew Schur polynomial associated with the Young
diagram v\(k}); see Appendices A and B.

The main results in the paper can be summarized by the following three
theorems, to be found in Section 7.

THEOREM 0.1. At a point t* with t(t*)=0 and v(W" )= (vo= v, = ---),
construct planes W, W,, ... by means of successive (dual) Bdcklund trans-
forms (0.12), thus satisfying

- ¥ 4 -vo— | t vo—2 t t
Wiz Wcz® ch---cWW
with 1, associated with W,. Then

W) =1y(*)= - =1, (M)=0  and  7,(t*)#0,

vo

and

Young diagram (W)= Young diagram W' \(first k columns);
k
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the associated Schur polynomial determines the leading term of t,, with?
k
T t*+xy=a.xM Ty

Successive Backlund transforming gives the t-function a softer and softer
zero, according to a well-defined pattern, until it ultimately does not vanish
any more. Thus the successive Bicklund transforms enable one to “climb”
out of the singularity by knocking off each time the left-most column of the
Young diagram.

In the next theorem we indicate how certain differential polynomials
p«(—3), applied to 1, behave in the ¢, or x-direction near the point of
vanishing *.

THEOREM 0.2. At a point t* with t(t*)=0 and (W' )= (vo=2 v, = --),
we have the following estimates

Pl =) t(t* + D) =ceyx™ "k 4+ ... for 0<k < vy, withcc) #0,

=cpxMp Jor k=v,,

where the ¢} (0<k<v,) are numbers expressible in terms of the Young
diagram v and its dual %, by means of the following polynomial identity:
vo C; vo— 1 ) )
P()=) —fz(z—1)--c=vo+k+1)=[] (z=(vo+9,—i—1)),

k=0"0 i=0

with

|
v (_1yv—k
cr=(—1) det ((vi_k(sj_o—i+j)!>o<i.j<ﬂ>'

The next theorem tells us that ¥(z, ) multiplied with an appropriate fac-
tor (independent of z) tends to a finite limit, when ¢ — ¢* in the 7, -direction
and that this limit is—up to a multiplicative factor—a new wave function
evaluated at r=r*. In fact, this new wave function yields a new frame in
Gr with regard to which all the constituents of the limiting plane W' can
be expressed. Remember the expression (0.10) for ¥ = yeZ "~

* The dual Young diagram ¢ of v is the Young diagram obtained by flipping the Young
diagram around its diagonal; define

vo

i)
| EZ v,=z V.
1 1
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THEOREM 0.3. Consider a point t* where t(t*)=0, and W(W")=
(vo= v = ---); then the following limit exists and equals

.
lim y(r* + %, ) — )

< =z, (1%, z)e W
x=0 Pul —0) T(1* + %) ’

where P, (t,z) is obtained by compounding v, dual Bicklund transforms,
depending on parameters z,, ..., z, near z= . Note that the limit is inde-
pendent of the choice of z;.

We also describe in Theorem 7.5 how the whole basis of W*" can be
obtained as a limit of basis elements of W' for ¢t # r*.

The work in this paper was done in 1991, We did a similar study for the
Toda lattice (see [AHvM ]), where we show how to complete the isospec-
tral set of periodic Jacobi matrices; in the latter, the completion depends
heavily on the Birkhoff strata for a space of flags, rather than for the
Grassmannian. For lectures on these topics, see [VM].

CONTENTS

. Pseudo-differential operators, wave functions, and KP equations.

. The Fay identity for the r-function.

. Wave functions, infinite-dimensional Grassmannians, and loops.

. The Backlund-Darboux transformation and the inclusion W, c W.

. Bicklund transformations and the flag z*W, c --- czW, c W.

. Yound diagrams, Schur polynomials, and vanishing properties.

. Vanishing of t-function, regularization, and Birkhof strata.

Appendixes. A. Schur polynomials, Young diagrams, and differential operators. B. The
geometry of symmetric polynomials. C. Vandermonde determinants and Cauchy identities.

NN AW —

1. PSEUDO-DIFFERENTIAL OPERATORS, WAVE FUNCTIONS,
AND KP EQUATIONS

Consider the (formal) pseudo-differential operator?

d = d\’ d
L=E;+ ¥ aj(x;t,,tz,...)<2;> e;;+@-, (t,, 12,..)€C™

Jj=—1
with holomorphic coefficients in x, depending on e C™ and the natural set
of deformation equations for L given by®

oL
—=0L",, L], =12, .. 11
3 (L., L), n (LT)

*@ " is the space of strictly pseudo-differential operators and % * of space of differential
operators.
4{L"), means the differential part of L” and (L") _=L"—(L"},.
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It defines an infinite number of vector fields on d/dx+ 2, since
[(L"),,L]1=1—(L")_, L] € 2~; they commute, since they are equlvalent
to (0/0t,) L™ —(d/0t,,) L", —[L+ L™ 7. Note that, setting =14+ x with
x=(x,0,..),

a(x;t, 1y, . )=a,(t+xX)=a,l),
which is seen by identifying

= da,(d\’ OL d = da,(d\’
B2 (dx) 2, [L*’”‘[ZE L}‘,_Z\,EE(E)?)'

Equations (1.1) define the so-called KP hierarchy. The point of view in
this section is chiefly due to Sato [S1] and Date, Jimbo, Kashiwara, and
Miwa [ DJKM]. Equations (1.1) have a solution, if and only if there exists
a wave function

Yt z)= (Z w, (1) z"') eZi il zeC, large
0

=y(1,z) e "
satisfying
LY =:¥ (z=s5"1H

oy
ot

(12)

=(L"), ¥

n

This statement is also equivalent to the existence of two wave functions

=(Z wn(t)z~"> el 7 and W*=<Z w,‘,“(t):*")erzf ot
0 0
such that

§ (1, z) Y1, 2) do = (all zand '), (13)

the integral taken along a small contour around z = oo; see [Che]. Con-
versely, if (1.3) is satisfied, then ¥ is a wave function and ¥* is the wave
function of L7.

Then Sato [S2] showed the existence of a function (called a t-function)
which enabled him to represent ¥ in many different ways (see Appendix A
for notations),’

* Given seC, define [s] = (s, s%/2,5%3,5%4, .. e C™; p,(1,, ts, ..} is the elementary Schur
polynomial (A.1) and p,( +8) =p.( +3/3t,, + 1(8/0t,), + 3(8/815). ..).
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LU R g

Y(t,z)= 0
< p"(—g)’['(l) —n, ¥ i
= 7 e
L0
x -ty d\" .
— Z pn( )T( )(_) eZ/J:J
o (1) dx
= S(1) eX 47, (1.4)
where
& pn(—é)r(t)(d o
= —_— 1 1.5
Suy= ¥ == (4 (1.5)
with inverse
LS (AN pa@) ()
= — - 1.6
S0= 2 (dx) w0 (16)
Then also
YAt z)=(ST) e 0
_T(t+[271]) ;ij:l ’
= 0 e . (1.4%)
Therefore LY = z¥ can be expressed as
x gzt fizl d Fizt
LSeXi 17 = 78T 1% = § — oZ 47
dx
and thus L admits the representation
d n
L=S-ciS’l and thus L”=S<—> A (1.7)
dx dx

Moreover ¢¥/0t, = (L"), ¥ turns into
oS R d\"
Gmwn.s-s(4)

=((L"), —L")S, using (1.7)
=—(L")_S. (1.8)
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The representation (1.7) of L” also implies

n d " —1
pes(2)'s

=i&(_—;?l£(‘;ix)"""’f(f”, using (1.5)and (16),  (1.9)
iJ

and thus

-~ ) »_-.. _1

2 dx

i+j=n+1
Then, keeping track of the coefficients of (d/dx) ! in 85/t,= — (L") _S,
we get

d*t Jt Ot - 5
—_— e —— —— p— 6 . - —a =O’ = ’2’ -

(Tﬁtnazl am:,) Y Pl Tp(—0)t n=1273

v (L11)

or what is the same, using (A.6), the Hirota bilinear equations® for the
z-function

3D/ D,—p, (B)1o1=0, n=1273 .. (1.12)
The first non-trivial equation (for n=3) is the celebrated KP equation
(D¥+5D3—4D,Dy)r-1=0. (1.13)

Remark. It should be pointed out that the operator S(¢) is unique up
to multiplication by S,

S(t) ™~ S(t) S,, Se=1+Yb,D, b, constants.
1
It has the following effect on ¥ and r,

Y =SeX WSS et =8 (1 +Y bz "> e

1

= (l +Zb,z'i> 1 4
1
—e I iy

¢ Given a polynomial P, define

éd 18 120

yror=pP| — L 2 2
Ployzes P(0u1’26u2'30u3'

) {t+u)t{t—u)

u=0
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and
(1) (1) =1(1) eX 4

with b,=p,(—d,, —d,/2,..), i=1, 2, ... (for notation see Appendix A). This
operation has no effect on L:

L S(t) SyDS;'S(t) "' =S(1) DS(1) "' = L.

Since for an arbitrary polynomial P(¢)

8 0 P
PlL. 2 Neogmerzmap( L 2 Viog
(6[, ot )T tee (a:, a1, )T ¢

7 also satisfies the bilinear relations (1.12).

2. THE FAY IDENTITY FOR THE 7-FUNCTION

LemMa 2.1. The t-function satisfies the Fay identity
+(sg—s sy =s3) Tt + [l + s, 1) tle +[s2]+ [53])
+(so—s2)(s3—sy) t(t+ [so] + [5:1) et + [s3] + [5,])
+(so—s3)s, =)t +[so]+[s: (e +[5,]+[5.])=0, (2.1)
and a differential Fay identity’

{te =[5, tle—[s:)}
+ (s =sy Dt =8 D ele = [s:) —a8) (e =[] = [521)) =0.

(2.2)
It also satisfies generalized Fay identities®
n n n—1
T (t— Y [s,»]> A(Syy o 8,) (r <t—z [r,.]) Ary, rn)>
1 1
=det [r (t =N (r1+0r]- [sj])
1
XAy s iy Sy iy 1 oo r,,)] (2.3)
1<€ij<n
? Wronskian [ f,. .., f,]1=det((3/8x)'""' f)), ,_, .. {f. g} =Wronskian[g, f1=fg—fg"

8 -1 -1
A(sy, ., sn)=n|s1<isn (s; = ).
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and their differential version

Wronskian[ ¥(t, s, "), ..., ¥(t,5;")]

=X utsi ¥ s =[] —[s21— - —[s,])
7(t)

Ay o s,). (24)

Proof. 1Identity (2.1) is due to Sato and the proof is due to [DJKM]
and [Sh]. Putting (1.4) and (14') into the integral (1.3) and setting
s=z"" we find

$ r(t—(s])r(z'+[s])ez"'*""”"'§=o.
0

5=

Thus, upon changing variables, we have for all r and y
Loy s ds
f t—y—[shrt+y+[s]e i ;7——-0.
C

Then considering a special choice of 3 and a special shift of ¢

y=([so]l =[si]=[s21=[s:D2, 1> 14+ ([so] + [5:]1 + [52] + [53])/2

and using
exp <—Z (a/b)'/i) =1—a/b,
yield
__1__ (1 =50/s) o , fdﬁ
_zﬂijc(l — 50/ — 53/5)(1 — 54/5) t—y—[shHtit+y+[s]) e

= “sum of formal residues at s =5, 5,, 5;”

=(s,—5,) "' (5, —53) "' (s3—5;) " x {left hand side of (2.1)},

which establishes (2.1).

To prove (2.2}, differentiate (2.1) with respect to s,, set s, =5, =0, divide
the relation by s,s,, and then shift t ~r—[s5,]—[s,].

Finally, (2.3) and (2.4) are also consequences of (2.1); their proof is
postponed until Section 5.
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3. WAVE FUNCTIONS, INFINITE-DIMENSIONAL (GRASSMANNIANS, AND LOOPS

With Sato [S2], Segal and Wilson [ SW], and Pressley and Segal [ PS],
consider the space Gr of linear spaces W of formal power series in large
z=s5"" having the property that W possesses an algebraic basis,

W= {wo(z), wi(2), wy(2), ..} (3.1)

it means that the basis elements
)= 3y a,z’
i - x

have finite orders, which satisfy
So< 8 <5y < - and S,=n for large n.
Thus to each W we associate a “sequence of virtual genus zero”
LIW) = (50, 81, 53, --);

for more notation, see Appendix A. Of course, for a sequence ¥ =
(sOa S], -..), bOth

H, =span{l,z,z% 2% ..} and H, =span{z® ",z .} eGr (3.2)

The principal stratum is the set of linear spaces We Gr such that the
corresponding ;.= {0, 1,2, ..}. The lower strata correspond to other
sequences ¥ # {0,1,2, ..},

A wave function ¥ (see (1.2)) leads naturally to a family W' in Gr, as
follows. If z(0) # 0, then define the linear subspaces W of functions of z:

} (34)
t=0

Remembering that s is ¥ without the exponential, we now establish

2

)
WO = span {W{z,zn,:o,av«z,z) R

Y1, z)

LemMa 3.1. If 7(t) #£0, then viewing \ as functions of z, we have

WO=span{¥(t,z),all te C*}

o/
= span {(ﬁ) ¥(t,z),j=0,1,2,.. any teC“}
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and
Wi=e TWW°  (W°eprincipal stratum)
=span{y(t, z), Vy(t, 2), V(1 z), ..} (3.5)
and® W nH_=¢, where

V=-§—+z. (3.6)
ox

Proof. The differential equations

EL 20
5[:—(14 )+ql

imply

Wozspan{‘lf(t,z)l,:o, and all (¢, 15, ...) }

— partial derivatives of ¥(t, z)at =0
=span{¥(s,z),allte C*}, using Taylor’s theorem

eZ ", (8/0x)ex ), (82/0xP ) (eE T, ...
for fixed t e C* such that 7(¢) #0
{82 f,:‘d/, eX i Vlfl, oz 7 Vzlll, }
=span ,
for fixed r € C™ such that 7(¢) #0,

= eX "“span{y, Vi, V2, ...}

=span {

since
a food £l a Foat
—— (eT i) = o2 " zz//+—w>=ez"“ Vyr
Ox dx

and, in general

<__6_)’ (ez i,z’w) = eZ fiz Vr‘//
ox

Therefore, for all ¢
Wt — e-z t',-:’WO
= Span{lp(ta Z"), Vl//(t’ z ) Vzd](t’ Z), e },

2 -2

H_=span{z ', z7%z7° ..}
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establishing (3.5). The expansion (for k=0,1, 2, ...)

VALt =
0 . pl(_é)r —i
(o) LA
0 klk—1) & 7’
={ z* A1 -“,vk 2 _--—Z*l
-(A ket 2y D )(1 Ly )
:zk_r_zk—]_i_(pZ(_a)f_k(T_)>zk72+ (3.7)
T T T

shows at once that W'~ H_ = ¢, if 1(¢) #0; this establishes Lemma 3.1.

Remark. The statement of Lemma 3.1 is true only when 7(r) #0. At a
point f,, where 1(f,) =0, the definition W’'=e %' W° makes sense, but
the basis elements in (3.5) cease to make sense. This issue is addressed in
Section 7.

Now let Gr'”) = Gr be the subset of linear spaces W such that z"Wc W.
The corresponding sequences & (W) then satisfy & + nc .. We now state:

LEMMA 3.2. If the initial condition W°e Gr'™, then if (1) #0,

(1) 1(t) is independent of t,, t.,, .., after possible multiplication by
2 ¢rime
€ >

(1) L" is a differential operator and L"¥ =z"¥,
(iii) WYz"W'=span{y(t, z), Vy(t, 2), ... V'~ '0(1, 2) ).
Proof. Since by Lemma 3.1, ¥(s, z) and 0¥/ét,,e W° r=1,2, .., and

z"WO°< WP we have

ik 4
ot

Wos (L"), W —z"W=1——z"Y¥ (using (1.3))

m

¢ ; .
= ,\l// ceXH | since ¥ = 1 +0(z7").

Otrn

Since e W= W*and W'nH_=¢, (Lemma 3.1), we have

W 0 & p(=3)t(r)
o1, Ot )

mio ()

=0 and (L"), ¥=z"¥ for all r.

rn
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The first relation expresses the fact that =(f — [z~'])/z(¢) is independent of
all ¢,, and thus (i) holds, while (ii) follows from the second relation for
r=1 and L"¥ =:z""¥. Statement (iii) follows from z"W'< W' (3.5), and
the observation that V/y (j>0) are elements of order j.

COROLLARY 32. When Z*W°c W° then t(t+[—s])=1(t—[s]),
possibly after multiplication t© — teX ",

Proof. For n=2, 7 depends only on the odd variables ¢,, ¢, ¢, ... and
thus the result follows.

4. THE BACKLUND-DARBOUX TRANSFORMATION
AND THE INCLUSION W, c W

For a function &, consider the operator

d d @’ d
— P l=—_ 1 = =—
Ag o 7 v with v 3~
and
d
AL=—JX——U.

The Backlund transformation maps the pseudo-differential operator L into
a new pseudo-differential operator by conjugation,

LAL=A4,LAS", (4.0)
and the function ¥ into a new function ¥

~ 'FS
WnW:A¢W=¢i¢*‘W=L—¢—}, (4.1)
dx D

satisfying
IO =ApLAG ApW = ALV = Ayz¥W=zA,¥=:V.

But only when @ is itself a wave function do we have that 4, ¥ satisfies
the KP hierarchy, as we show later. Therefore we consider the Backlund
transformation

{¥(1,2), Y1, 2))}
Y, z,)

Ay, . ¥, z)= (4.1")
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We now state:

THEOREM 4.1. For W and W, e Gr, let ¥ and ¥, be the corresponding
wave functions and 1 and 1, the corresponding t-functions. Then if (1),
t,(1) #0, the following three statements are equivalent'®

(i) zWicw"
(i) z¥.(1,z) = (8/0x) ¥(t1, z) — a¥(L, z) for some function o= a(?).
(4.2)
(i) {t(t—[s]) v} +s (et = [sD) (1) —7,(t — [s]) 7(£)) = 0.
(4.3)
If any of these statements hold, then o= (log(z,/7))' =1\/1,—1'/1.

Given a generic W (and thus ¥, t, and L), a solution to these equivalent
problems is given by a new t-function, defined for arbitrary z, near z = 0,
by

T()=X(62) 1= P(1,2,) 1(1) = e (1 — [z, ']), (4.4)

the corresponding wave function

_er,Z‘tl(t_ [2 l])

z
(Ill(t)z)— Tl(t) =Z]A'I’(I.:1)IP(taz)=_<—Zl> W([-[Z;l}, Z),
(4.5)
and the pseudo-differential operator L,
LI(Z)EAW!.:UL(I)A;(II_:“
d
=S, ‘CKS;I (4.6)

with

S =

n

Pl =) Tt} (AN " d\!
0 7,(?) (dx) _A%':I)S<~CE> .

Conversely, given W, and an associated 1,, then a space We Gr such that
zW, = W is constructed by means of the new T-function

118

101/, g} =Wronskian[g, f1=/g—fg"
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()= X(1, zo) 1y =e TV, (14 [25']), zo€ C arbitrary, near z = o
and the corresponding wave function

ez,}sz([—[zil])_ ~

Y1, )= ) =zAy ¥t 2)

= ~f— Yi(r+[z0'], 2)
Zo

Remark 1. It must be pointed out that the pseudo-differential operator
L,, defined in (4.6), is insensitive to the exponential appearing in 71,,
according to the remark at the end of Section 1.

Remark 2. Only by analogy we consider the inverse Bicklund-
Darboux transformation X(z, z,) of X(t, z,). Strictly speaking the inverse
does not exist, as is seen from Corollary 4.2; indeed X(1, z,) X(¢, z,) blows
up when z4—z,.

COROLLARY 4.2. It holds that

t=X(s,55 ") X(t, 57 ")t

et = (1 — 5,1+ [50])
$;— 5o

51 w8t =sl) .
IR L R
0
where
* i - xod NI
X(t, 551, s, y=eXr il SRyt m L0 (vertex operator)

and the W' form the generators of a W-algebra (see [AvM]).

Proof of Theorem 4.1. First we show (i)=>(ii). Indeed zW| < W' and
Lemma 3.1 imply zy,(z, z) € W’; but order ziy,(1, z) = 1, and again accord-
ing to Lemma 3.1, the only functions of order <1 are linear combinations
of (1, z) and Vi (1, z). Therefore

le/l(t,Z)=VlJ/([,Z)—C¢(f) W(’, Z) (47)
and multiplying with ¢= " we get
@
2 (1 2) = 2= WUt 2) = (1) (1, 2. (4.8)

Compute « by equating the z° coefficient of both sides of (4.8).
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To show that (ii) = (1), observe that (Lemma 3.1)

a
0 ’ ” . s
W°=span{¥, ¥, t1’,...},( === )

and so (ii) yields
¥, =¥ —a¥PeW°
Then taking j derivatives of this relation with respect to x, one finds
Y=YV B I  B W
for some B, .., B, , depending on 7 only. Since all ¥“’e W", we also have
¥ e ws,
implying (1).
Finally, the equivalence (ii)<> (ii1) follows from a straightforward
computation: multiplying (ii) by e <" yields
(A of
e, 2) =Vy(e, z)+<—*—‘> Y1, z
T T

or using the t-function representation of ¥(t,z) (z=s5"")

- rl(t—[s])_(r’(t—[s])_r’(t)r(t—[s])ﬂ_1 r(t—[s]))

7){1) (1) (1) (1)
N (r’(t) 3 r’l(r)) (1 —[s])
() (1) ()

yielding (ii1).
We now turn to the solution to this problem: define for an arbitrary

point z; =5, in a neighborhood of cc the function

()= Fig(r—[z;']) = W1, 2) 1(1). (4.9)
We must show several facts

(a) 1t,(r) is a r-function, using the remark at the end of Section 1.

(b) Given z{t), we must show that 7,(¢) is a solution to (ui) for any
choice of small 5, € C. Indeed using

e—Z(A‘/ﬂi'/":l__.:_‘ (4.11)
21
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in the second equality, we compute
{tt~[sD), ru(D} + s~ (2t = [sD 7,(1) — 1,1 = [5]) (1))

=1(t—(s])eZ"¥ir(t —[5,])
—t(t=[sPs 't~ [s1 D+ 7' (1 = [5,])) €=
+s57 (e =[s]) t(t—[s5,]) eZ "
st w1 —[s]—[s,]) =m0

=Rt —[s]) et =[5 D —t(t—[s] Tt [5,])
+s =s Y= [sD et =[5, D -yt = [s] =[5, D))

=0,

i

using in the last line the differential Fay identity (2.2), with (s,, s,) replaced
by (s, 5,). This establishes (4.4) as a solution to (iii).

(¢) Defining

i1, 2) EeZ'if'Tl(t;Ef)—l])
we check that

Ag, P8 2)=2¥,(1, 2). (4.12)
Indeed

{W(1, 2), Y(1,2))}
Y(1,z))
= yl’(t, :)—ﬂW(f, Z)s

=¥ :z)— <Iog %’(%)), ¥(t, z)

A'I’(t‘ :|)W(ta Z) =

=¥t z).

The third equality follows from the simple computation

_W'(tv:])_ - '
B= W1, z,) =(log ¥(¢, z,))

_ zmmu—anO'

_<loge (1)

—(10 M)—a
%) T

607/108/1-12
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and the fourth equality in (4.12) follows at once from the fact that z and
7, satisfy (1), combined with (iii) < (i1).
(d) Finally, using (4.11), we compute (setting s=z"'and s, =z, ")

g Tt —[s])

o with 7,(¢)=e=""17(t —[5,])

Yt s y=eX"

i

= =l nis pTtu—siys'y

~ 3 s} T(t_[sl]_[s])
tt—[s,])

—e "Z(’ts/sn‘/iezm /)i (6= /i) 57 (t—[s,]-[s])

t—[s,])

= _i _‘_g_‘ - Zuﬁs’l/i),‘-*'f_(t__[_i_]_:m
_(1 s,><‘ s> ) [ ])

=2 W1—[5,],9)
5

establishing (4.5). Relations (4.6) then follow from (4.1), (4.2), (4.3) and
(4.5), ending the first part of Theorem 4.1.

We now turn to the converse: given W, and t,, construct WozW,
and 7. From the above we know that zW, = W is equivalent to the identity
(iii) between t-functions. Therefore it suffices to prove (s=z"", so=2,")

{#e=[sD 00} +s G = [sD (D) =741 = [s]) &1)) =0
for
ft)=e TW0T (14 [5,]).
Indeed
Hr—[s])=e T (1 [s]+ [50])
= e F (= (5] D))
and thus

{fe—[s1) (O} + s EF = [s]) ti(t) — 7, (1 = [s]) (1))

=- s—o—se*Z r,/‘sb[(f'l(t— [s)+[soD ti(t) =yt —[s]+ [so]) Th(t))
[

+ (s =5 Nyt =[s]+ [so ) ty() — T (e + [s5o]) Tyt —[s])]
=0'

using the differential Fay identity (2.2) with s, ~v s, s, ~ s, and 1~ 1+ 5,.
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Also,

Pt s—')zez:f/f_f(_t_:Ls_]_)

#(1)

= X tifs'p =X ti= /i) 5q T 1i/sy t(t=[s]+[s0])
T {t+ [50])

So oZ s ty{t—[s]1+[50])

So— S 71+ [s0])
=(1g Sz Dt =[s1+[50])
§/8—5o 7,(t+ [s6])

= ( _‘52> pZ (it sy s~ 7t + [s0] — [s])
s T,(t+[50])

= =29+ 5] 57, (413)

ending the proof of Theorem 4.1.

The proof of Corollary 4.2 is a straightforward computation, analogous
to (4.13).

COROLLARY 4.3. If both spaces W{ and W satisfy z*W,= W,, then the
inclusions

tWic Wy Wic W
are equivalent.

Proof. zW,c W, is equivalent to the bilinear relation (ii) in
Theorem 4.1, ie.,

{rolt —[s]), Ti(D)} + 5 (rolt = [5]) 7,(2) — 7,0t — [s]) To(1))
= B(1y, 7,)=0.

By Corollary 3.2, (¢t —[s])=1t(t+ [ —s]); then setting first s —s and
next ¢ t—[s], one finds

{zolt), (1 = [sD} —s Hrolt) T, (1 =[s]D) —1,() 7ot = [s]))
= —B(1,,15)=0,

implying upon using (iii) again that zWjc W7.
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5. BACKLUND TRANSFORMATIONS AND THE FLAG W, c ... czW , c W

Applying the results of the previous section to each of the inclusions in
the flag z*W, < ... c Wi < W', we find the wave functions

W e W ¥ (t,z)=z""4y, ., W1, 2)

i

W W ¥yt z)=z2""4y,, ., ¥t 2)

Wee Wi Wl 2)=z2""4y, ¥t 2)

Then compounding these Bicklund transformations, we find that for an
arbitrary choice of z,, ..., z; near z = oo, the function ¥, given by

Yt ) =:z""4 Yrotlnzx) "0 AWNI. ::)A e, :1le(t’ z)
is the wave function of a plane W, such that z*W, < W. We first state
LemMMaA 5.1

:klpk(l’ ) EAV’I(—I“. E AY’I(I‘ :z)A ‘I’(I.ZHW( 1,2)

Wronskian[ ¥(t, 2,), .., ¥(t, z,), ¥(1, 2)]
Wronskian[ (1, z,), ... P(t, 2} ]

[l

>

(=z)Wr—[z7"1—[z7"]— - — [z =) (5.1)

3

This lemma, a consequence of Theorem 4.1, then leads to a proof of the
higher Fay identities and to a generalization of Theorem 4.1:

THEOREM 5.1.  For generic t, the following two statements are equivalent
(i) *fWwicw!

(1) M9t 2) = o () Wit )+ o () V(L 2) 4 - +ag(t) VAy(u, 2),
for some functions «;(t), with Y(t,z) and Y, (t,z) the wave functions
associated with W' and W|.

If these statements hold, then

Pj(—5)7k+ i ij(—g)fkh{-,

Tk Tx

=

Jj=0,1, ..k (5.2)

i=1
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with the h! defined as

By= SV k= =Y RO =12, )
1

with

T (i) A (IE T
' 0y j Ox 4
jHi=i

O<j<i+k—m
Given W, the wave function of the generic W, such that z*W < W' is given
by

Yt z) = z7*4 Vet z) " AS"((:’. :z)A Wit :qu(t’ z)
_ Wronskian[ ¥(1, z,), ..., ¥(1, ), W(1, z)]

z Wronskian[ ¥(t, z,), ... ¥(t,z,)] (5.3)

COROLLARY 5.1. The t-functions t and t, associated with *W,c W
satisfy for k= 1,2 the differential equation (s=:"")

k—1

Y s e (@)t —[s]) e Til)

{=0

+s Mt =[s]D ) =—t(t) 1t~ [51)) =0, (5.4)
or equivalently (using the notation p(1)=p,( +0) 1)

k=1:(p (Dt —tp, () +{(p, ()1, —p, (1) 1)) =0,all r 20
k=2:(p; DT —1p o(02)) +(p, (TN =P, (0)T3)
+p, (P (Nt —p, (Tt +p (T py (72)=0, all r>0.
{(5.5)
Remark. For k=3, the equations relating r and 7, are more com-
plicated.

Proof of Lemma 5.1. In view of the expressions in Lemma 5.1, we
introduce the notation

W, = Wronskian[ ¥(¢, z,), ..., ¥(1,z,)],
W,(x) = Wronskian[ ¥(¢, z,). ..., ¥(t, z,), x ]



166 ADLER AND VAN MOERBEKE

with the latter a linear differential operator of order &; define inductively

lI/k(t’‘-:)E‘-"_k‘/‘i‘l’lc—l(l.:k)'”A*I’(l.:l).{l(t’::):zi’A5”k~|lr.:k)'1lk7I(t’:) (56)
Yot z)= WL, 2) '
and
- W AP,z -
Pt n=: D gy = w2, (5.7)
13
observe that
- W,
Pl s ) =204, ;H (5.8)
&

The proof proceeds in two steps (see Adler and Moser [ AM]):
(a) An identity of Jacobi

{#:( 1), ﬂ’);+1} =W (X)W

To check this fact, observe that the left hand side is a linear differential
operator of order k+1, acting on y, which vanishes for y=¥(1, z)),
¥(t, z,), .., W(t,z,) and also for y=%¥(t,z,,,). Since the functions
Y(t, z,), ..., W(t, 2, , ) are typically linearly independent, the left hand side
must be a multiple of #; , ,(x); then one checks that the highest coefficients
of both sides agree.

(b) The Crum identity

Ay - A = k"‘),

where

d
A=Ay =¥t z)—

dx Pz =

We first check (b) for k=1,

AlXZA'I’olI. :1JX
=AV’(1.:|)X
— {Xy qj(ts zl)}
¥(t, z,)

#1(x)
———W,
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and then inductively (using the identity {af, ag}=a’{f, g}), assuming
Crum’s identity for £,

A A A=A (A A)) 1
= AT using Crum’s identity for k

¥, W, W, -
== 4 £ k(AX) by definition of 4, , |
Wy dx Wi, W

1
= {#:(x), Wi
{ k(x)a k+1}w;+lmﬂ,;
,ﬂ/‘ . .
_ ks () using Jacobi’s identity,
Wi

completing the induction and thus the proof of (b).

(c) Plt, 2) = ¥ul1, 2).

Indeed, since

we have
_ W, (P(t .
Y’l(t,z)=z"—l(—(—’—zlz, using (5.7)
¥,
=z""4,%¥(, 2), using (b)

Polt.z1) W( t, Z)a by deﬁnitioﬂ

=z '4
=ZilA'1’(l.:|)ql(ta Z) = Wl(ts Z)
and so, by induction,

‘ﬁk(t’ Z)= Wk(ts Z),
which leads at once to equality £ in Lemma 5.1. The second equality,
follows at once by induction using relation (4.5) of Theorem 4.1, thus
ending the proof of Lemma 5.1.

Proof of Lemma 2.1 (higher Fay identities). From Lemma 5.1, the
definition of ¥,, and relation (4.5), it follows that (s;,=z,"")
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W
sk l;,:' =¥t 500, using (5.8)

=sk+1AWk;|lr,s[l)‘{lk—l(t’ sl:+ll)’ usmg(56)

s .

= _ "s“ e (t—[sedosc i using (4.5)
k

Skt 1 i sy 5| T (=[] —[8641))

+1

Sk T 1(t—[54])

CSkwnfy Sk z:,.y,;;]rk-l(f—[sk]"[skﬂ])
<l >€ T (2 —[5:]) ’ (39)

Sk Sk
using (4.11). From (4.4) in Theorem 4.1, it follows that

() =eZ", (t—[s5]1),  j=1,2,.. with1o(1) = 7(1),

and by induction

o= s L] =] = =G T (1=

i<i<j<! i
therefore

T (=[5 —[s041])
T _((t—[s5:])

P T E R et =8 ] =[s2] = - —[se1])

tt—[si]=[s2]— - —[s]D)
=<1_sk_+1)(1_g,g)__'(l_sM)ru—[sl]— = [5])
5 S Sk 1 tt—[s]— - —[s:])

(5.10)
Hence (5.9) and (5.10) combined yield

k Frer_ o« u —1 1 z:,skj,’(’_[sl]_"'—[Sk+l])
et Ty *SHI,UI Wici=s; e e—[si1= - —[s])

We conclude that

Wronskian[ ¥(t, 5, '), ..., P(t, s, ")]
=¥,

) (@)
’”’n-l W]
T G 0 ] N [

-1
—_ (sfl_sfl)e):li(sl + o s, ,
I—[ t 7 T(t)

1<j<i<n
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yielding the result (2.4) of Lemma 2.1. Now using the rule
Wronskian[a,, .., a,] - (Wronskian[b,, .., b,])"*!
=det(Wronskian[b,, ... b,_,,a;,0,, 1, .. b, 1)1 <, j<n>
and setting
a;=¥(1,s "), b, =¥,

lead to the result (2.3) of Lemma 2.1.

Proof of Theorem 5.1. We first show (i)=>(ii). Indeed, z*W < W’
together with Lemma 3.1 implies z¥¢,(t,5)e W', since ¥y (t, z)=
=% 4+ 0(z* "), this function must be, for generic ¢, a linear combination of
functions of order <k in W’ leading to (ii). To verify (ii) = (i), it suffices
to prove z*W) < W°, with

W°=span{¥'/(t,2),j=0,1, .., for all te C*}
and
W?=span{¥(t,z),j=0,1, .., forallte C*},
by virtue of (3.5). First,
2Pt z)=eX "Rt 2
=X "o ) Ylt, 2)+ - + oo VEP(1, 2)) using (ii)
=a, () P, 2)+ - +ay(t) PR, z)e WP
and subsequently taking j derivatives in x of the equality above leads to
K, ) =B () V(L 2) + -+ Bo(t) PE(1, ) e WO,
yielding (ii) => (1).
That ¥,.(t, z) obtained by Backlund transforming ¥ exactly k times
provides a solution to (i) and (i1) follows immediately from the introduc-
tion to this section, which together with Lemma 5.1 ends the proof of

Theorem 5.1, except for expression (5.2), which we now prove.
The form of the a,’s is given as follows: on the one hand (s=z"")

.7 Gt £ Pul —0) TlD) ,

512
W0 AT o) (5.12)
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and on the other hand, in view of the formula

0 TSN oy’
Vr= . —1 — j—rf{ 2
G ) =50 (&)

and upon multiplying with s* =z %, (ii) becomes

r=0 j=0
* R (Y & =)
a0y (7)s (%) /
rgo g ng J ox /go T
: PN kvj—r+t o\ (p(=0)t
_ank,(z)ogsr(j)s (5;) (-—-—1 ) (513)
0gi€ o

Comparing both expressions (5.12) and (5.13) for ¢, we find

Pl —0) Ti(1) r i S p(—8) T
Em 7,(1) _k+_j;+l=makr(t)<j><ax) ( T )

O0</j<r<k
0</

m k—m+i\f 8\ [p(—=03)1
oo T (T E) (M)

JHi=i
O<j<it+hk-m

=, (1) + 0 (1) [+, ()L + o Fage) [0,

yielding a linear system of equations in ay, ..., 2,

— (m) (m) ()
Em=0, t 0, 1 T 0,2 2 + "'+a0fm

— ) (m—1})
gm—l_am~l+am72 }m + - +a0fmmfl

which can be solved inductively to yield (5.2)

Oy =&+ & 1(— STV + & o(=S37 + 1" V™)
8 A ST ST ST ST ST

ending the proof of Theorem 5.1.
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Proof of Corollary 5.1. For k=1, the proof of (54) was given in
Theorem 4.1; for k=2, we compute the coefficients (1) in (i) by
expanding relation (i) in powers of z ™'

:sz(t‘ :) — (pzv(l'z)_ﬁ’:_gglt_)_{_.zt_"_ (;)2) l/l(f, :)

T, 1T, T T

+<_52+’?) Vi1, ) + Ve, 2).

L)
First expressing ¥ and ¢, in terms of v and 7, and expanding out V and

V2, the terms containing 77 all cancel and those containing 2 can be
eliminated by using the equation

(—zp(=O)+p( =N t(t~[z ']~ 0,
itself a consequence of

Ik 4 5 }
612( ,Zy=(L%), ¥(1,2)

dz
(d 5+ 2(log (1 ))’) Y(t, -

with

r—~[z7'])

o) = p Ni¥
Y, z)=e )

Equations (5.5) are obtained by expanding Eq. (5.4) in powers of z ', by
setting the coefficients of z " equal to zero and using the Taylor series
(A4).

6. YOUNG DIAGRAMS, SCHUR POLYNOMIALS, AND VANISHING PROPERTIES

This section of a combinatorial nature deals first with Taylor expanding
Schur polynomials F,(t+[s]), associated with a Young diagram v, in s
around s =0; for notations see Appendices A, B, and C. The point is that
their Taylor expansion terminates earlier than expected {at first sight) and
the Taylor coefficients are themselves Schur polynomials for skew-Young
diagrams. At the same time we give the precise leading behavior of
il —0) F, near t=0 in that direction. These results are instrumental for
Section 7.
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THEOREM 6.1. Given a partition v=(vo=v,=-.-v,20) and the
corresponding Schur polynomial F=F,, the following Taylor expansions
terminate at s* and s*, respectively,

F(t—[s]) =F(t)+sp,(—0) F(t) + --- +5"p,(—0) F(t)

Vo

=3 s Foi(1) (6.1)
i=0
and
F(t+[s])=F(1)+sp,(0) F(t) + -+ +5%p,(0) F(1)
= Z (=) For . al), (6.2)
i=0 N

i

with the highest degree terms

Fv\( vo) — F(v\ﬁrxl row) and Fv\l ..H= {v\ first colunin)*

——

%
Moreover
P —0) F(x,0,0, )=cx™ =% k<,
=0, k > v, (6.3)
where I{zle c; are numbers determined by the partition v via the polynomial
identity

vo v vg— I

P(z)= 3 (s o =[] (- —i—=1)) (6.4)

k=0 i=0

if £** denotes the number of standard tableaux of the skew Young diagram
v — it (see Appendix B), then

, S
=(—1)M *F %0
D T o
1
=(—1 '”""det[ - :l ) 6.5
( ) (vi_k6j0_1+j)! o<i </ ()
Also,'?
e 1 < r
4“:;—)':-7 z (—l)f( ,)P(r—j)EA'P(z)L:O for r=0,.,vo—1. (6.6}
chy rt = J

at z=0.

~
1N
S
P
(8]
(=%
@
=
=]
=
@
w
-
=
[
~
-
=
e
o
1
o
=]
[e]
o
<
=,
v
<
=1
=
o
35
=
o
1]
[}
=
»n
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Remark. In particular

C—:f=1’(0)
4]
%:—]'-“P(l)—P(O) (6.7)
€o
Soz2 L poy 21y + pOO)), ..
cy 2

COROLLARY 6.1. The vy roots vo+ 9, —i—1 (0<i<vy— 1) of the poly-
nomial P(z) coincide with the v, gaps ( = 1) in the sequence

Covg—vi+ 1l vg—vy+2,vg—vy+3, ...
and thus P(vo—v,+1i)#0 (i=0,1, 2, ..). Moreover

r P v .
det(y;)i=0.1,...r =[] —(‘—0“—“)—#0 (6.8)

. *
J=0w—vi+ 1, . vo—v+r (Vo—vi+l—l)!

i=

with

) i c :
y,,.sz(—1)'-'<,)(vo+i—j—1)i,ﬂ%*—’
!

Co

izl . ) (vo+i—j—1),_,fi
— 1y I+k _]_ ‘
“;EO‘ b PU=1=0 =5 0 (/>

where the summation ranges over max(0, j — v,) < /< min(j, j).

Proof of Theorem 6.1. For facts and notations concerning symmetric
polynomials, see Appendices 4 and B. To prove (6.1) and (6.2), set xo=s
and A=v in (B.13) and (B.14); note that the Taylor expansions of
F(t—[s]) and F,(t+[s]), as given by (A4), terminate at n=v, and
n = ¥, respectively.

Consider now the ring homomorphism &, which acts on the ring of sym-
metric functions on x,, x,, ... as follows (u, =3, x7):

0: {Ring of symmetric functions of x,, x,, ...} = C[u,]
with
u,)=u, and Ou,)=0, i>0
fixing xq =5 (6.9)
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Then on the one hand,

FU<—-s—u,,—s§,—s§, )
oo (-(n38) )

= Y O(S,ulxy,..))s* using (B.13)
k=0
Z e ui " using (B.23),
(vl e

and on the other hand,

PRI
Fv<—s—u,,—-3,~~3~,

=Fv(-u—'[s])|u:=ul= - =0

vo

=Y s*p(—3)F(—u,,0,0,.), by(61).

k=0
Therefore
Pl —0) F.( =1, 0,0, ..)
_fv\Uc) uM i
(v —
=u'1”'kdet<———l——,—> , by (B.19).
(Vi_kél'()—i+])! 0,j<i

leading to (6.3) with ¢ given by the first or the second expression (6.5).
Note that f“*'#0 for k <v,, because %' is the number of standard
tableaux of shape v/(k).

We now provide a first proof of (6.4), which is elementary and which
was supplied by Bruce Sagan. First, note that the right hand side of the
identity can be written in terms of the hook length. Thus setting b =
(—=1)""* ¢}, we must prove, in terms of a partition 4 =(4,, 4,,..), that

Al

b‘ﬂb R ) =3 (= 1F biz), (6.10)
0
with

1

bAz—'—“’“—:"‘T“j.
0 nall i h/'( 1, j)
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We prove the identity by induction on the number of columns, noting that
both sides are 1, if A has no columns. Assume the relation (6.10) valid for
the partition 4 and then add a column of height m to the left of the Young
diagram of A, forming a new partition ¢ with g, =4,+ 1.

Then

{hook lengths of 4}
= {hook lengths of A} U { k¥ |, =4, +m, hly |, =A, +m—1, ..}

Now multiply identity (6.10) (which is assumed true) by

%“-‘ (Z—m—}u])
b (A +m) A, +m—1)- -

(z—hY

to yield the identity

Hl
b IT (z—ht ;)

j=1
- (A4 —k)y—(m+k)
(Ay+m)Ay+m—1)--.
1 A

— _ 1Yk BA(( - - -
“Girmatm=1).-- kzo( DY bil(2)a w1 —(mAE)NZ) 5 k)

A
=Y (=1 biz)i_«
k=0

(b}, +(m+k)b})
(A, +m)(A,+m—1)--

(D)a+ - tk+ 1)

- Zj (_1)k+l
k=-—1

upon relabeling (with 6* | =0)

=S 1y bit(m+k=Dbi, |
k=0 (1 +m—1Npu,+m-—2)--- w1 —k
upon setting k + 1~ k
“i
=5 (=D*BM) ke 6.11)
k=0

The last equality is shown as follows: the determinants b; , , and b} can be
written as m x m determinants

. |
bt =det
k [(A,—k5,1+i+j)!lg,.vj<,,,

, 1
bt  =det| —m—— .
kel © li(/{,-‘(k"’1)5j1"f+j)!]1<i.j$n,
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Since these two matrices agree in all but the first column, b} , , + (m + k) b}
can be combined into one matrix which has the same last m — 1 columns
as the above two determinants. Therefore defining the columns

. _M;H_L]
L —k—i+ D,
and
r l n
Copp 1= _()»,'Jf'(m_i)_[)!:li:I’
we have

bi, +(m+kyby=det[c,, ¢y Cpy s Cp ]
Replacing the columns as follows,
oM E =c

Cos 1 %l =Cp_ylCn 11y I1=0,1,..,.m-=2

I I e
:[u,+(m—i)—1)!+(A,.+(m—i)—1+1)!],=,

_[ Atm—i+] ]”'

A+ m=n =1+ 10,

Since the numerator is independent of /, we divide the ith row of the new
matrix obtained by A, +m —i+ 1, yielding

b+ (m £ k) by -det[[#l—h}"' €20 € Cor o€
Hm (/1,+m—l+l)— (;\,—k—l'*'l]‘ i:" 29 439 %45 s b+ |

i=1

1
=det[ - }
(Al —(k+ D)0, —i+ M Licijemn
:b;:+l*

establishing the last equality in (6.11) and thus proving (6.4).

We now give a second, less elementary proof of (6.4), which is due to Tan
Goulden and based on the work of Andrews, Goulden, and Jackson
[AGIJ]. The starting point is, in the notation of Appendix C, the identity
(C9),

L, u'll_—_ Z (=1 )j(x'),,_j(n)/urllijei‘

Ji=0
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Then on the one hand, if the inner product is taken with S;, |i] =n,

(L.uf, 8> (= 1) (x)n—,(n),; (U ey, S5

(= 1) (x),_ (), £ (6.12)

T T

~.

the last equality follows from
<“’1M7jejs Sx>=<“||ilfjs(11psz> by (B.11)
=i, Sy =N using (C.3) and (C4).

On the other hand, compute

<L_‘u’,’,SA>=<LX Y f"S,,,SA> using (C.5)

) =n

= < Z SL.S,, SA> since L, is a linear operator

lul=n
=< Y f“qﬂ(x)Sﬂ,Sl> by (C.8)
lul=n

=2 S 9 (XS, S0 =Y 14q4x) b, =f"q,x) by (C2)
(6.13)

Coplparing {6.12) and (6.13), we now get an identity, upon setting
AN A

141 141

Y (=D 00— QAP =TT (x = A+ 1A =) (6.14)

k=0 i=1
If we set x =z + |1] — A, the left hand side equals
(4]

Y (=1 () i (AD, SR

k=0

(= D% ()i UAD SN since AN =0 for k> 2,

=

il
> >

o

(= DF (24 1A= A)) 15 & (1D £500

=
20
=

(-1 (2)a -k (1ADe SN0z + 14 ~ A - s

x
I
<

(since f*# = f*\ by (B.16)) (6.15)

607/108/1-13
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while the right hand side equals

LY .
FATT (= (A4 1A= )
i=1
14|
= 1] (2= + 4= )))
j—l
|4l

—fAH(- ’ll+)'_./)) r[ 3_()~|+ij”j))

J=A1+1
_fA H j’l+/l .] )( +|A' IA'—A]’
j=1
since 4,=0forj> 2, and f* = £, (6.16)

Substituting (6.15) and (6.16) into (6.14) and dividing both sides by
fi(z‘*' |A| _;H)m—;q
lead to
Al fi\ik) Ay .
Z (=D e UAD = —Z (z= (A +4,—))),
k=0 f J=1

thus providing a second proof of (64) and ending the proof of
Theorem 6.1.

Proof of Corollary 6.1. Typically the Young diagram (vo=v, 2= ---)
looks like

<>
<>
<>

v2 Vi vo— |
Vo
eI B
V‘ e vo__vl
Vy e J v —V,
and thus
P=1 for i=vy—1,..,v

=2 for i=v,—1,.,v,

=3 for i=v,—1, .., v,,etc.
2 3
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Therefore starting at i =v,— 1 and going down, the numbers v+ ¥, —i— |
have the values 1, 2, 3, ... up to the point where i=v; at i=v, —1 it skips
one, taking on the value vo—v, +2 and then grows linearly until i=v,,
where again v,+7¥,—i—1 skips one, taking on the value v,—v,+3,
proving the first part of the corollary.

As to proving (6.8), we proceed by induction: first observe that for r =0,
the determinant (6.8) equals yoo = P(0)=c!/cy” #0 (see (6.7)). Then one
first computes

)’ovol det(}".j)()sisl = )’&)] det (7’00 Yo,,)
JE(0, ). Yo Vg

1 /1) .
P —-1)/
“gml g, e ()
“o! ~1 _
+ZP —1—j>(“j )(—w)
l o . —1
“i e () -(52)))+ o)

1 ~1
P( —1)1( ) 6.17
=G ;Zo (1 =) ; (6.17)

and thus for g =v,—v, + 1, we have

Piyvg—v,+1)
' det <i< =2
y(]() (ylj)jo 0, V()1 vi+ 1 (Vo'— Vl)!

since P(k)=0, as long as 1 <k <vy;—v, + 1, leading to the conclusion

P(0) P(vy— 1
det(y;)i=o0n = ©) Plvg—v, + )-

J=0v—v +1 (vo—v)!

The proof for general r then proceeds by induction, establishing
Corollary 6.1.

7. VANISHING OF 1-FUNCTION, REGULARIZATION, AND BIRKHOFF STRATA

In this section, the actual core of the paper, we examine the behavior of
the r-function at a point ¢* of vanishing, in terms of the Young diagram
associated with the plane W". For instance, we give precise estimates of 7
and p,(—J) for all k> 1.
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The plane W' is said to have a Young diagram v(W'")=v, when
W =span{z' "(1+0(z""), i=0,1,2, .}
For future use, we define
H,=span{z'"" i=0,1,2,..}.

Successive Biacklund transforms form a “ladder” enabling one to “climb
out” of the singularity by each time knocking out the leftmost column of
the Young diagram, until exhaustion. The final wave function thus
obtained is—roughly speaking—the limit of the old ¥, after multiplication
by an appropriate z-independent function. Although the plane W' tends to
W, the basis of W' “goes to hell”; only certain definite linear combina-
tions in W' tend to functions in W', A precise result is given in the final
theorem of this section.

THeoREM 7.1.  For the family W'e Gr, of linear spaces associated with
the KP flow, consider a Bicklund generated> W' e Gr, such that zW'< W',
Let t* be a point where ©(t*)=0 such that W' has Young diagram v. Then
the following two statements hold:

(i) If the Young diagram about W' is v, then for small s the Young
diagram about W' * U1 js (v\ first column).

(ii) If the Young diagram about W is v, then the Young diagram
about W™ is (v\ first column).

Proof. In general, from (A.11), it follows that

(t*+1) qu W) F,(1), (7.1)

where W' is the plane associated with #* and
¢, =det proj(W" —H,)

are the Pliicker coordinates of the plane W' (Sato [S1]). But since W'
has Young diagram v, we have &,(W'")#0 and &,(W')=0 for all v such
that!'* uv, therefore

X +1)= Y CAWTYF (1)

‘u>\‘
=E(WT)F()+ Y, EAWT)F (1) with E(W7)#0,  (7.2)
lu|>|\i
HZV

3 A plane W/ such that zW' < W/, generated by a dual Bicklund transform.
Buzviff g, 2 v,
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i, the term of minimal degree, where degree ([],t*)=Y,ik,, in the
expansion of t(¢* +¢) is the Schur polynomial going with the stratum of ¢*.
In other words, the Schur polynomial of minimal degree in the (unique)
expansion for 7(t* + t) determines the stratum of W™,

Given the neighborhood * + [s] + ¢ of t* + [ s], consider the expansion
of 7 in Schur polynomials about ¢* and subsequently the Taylor expansion
(6.2) of F (t+[s]) about 1:

(t*+[s]+1)

=S FALs1+0+ 3 ) FUls]+1)

HiZ v
ful > vl

=év(,*) (Fv(t)—SFv\(l)(t)+32Fv\(ll)(t)+ +(—s)00F(v\ﬁ[stcolumn)(l)

+ Z éﬂ(t*)(py(t)+ +(—S)[20 Fly\ﬁrslco]umn)(t))' (73)

la) > (v}

In this sum, the polynomial of smallest degree is given by F,\fre column) s
except possibly for those u’s such that

U=v with |u|>|v] and (v\first column) = (g \first column);
but then g, > ¥, and the coefficient of F,\ e columa) 18 given by
SN =8P+ & (1*)(—s)  with L (¢%)#0.

This expression is #0 for s sufficiently small and thus the polynomial of
smallest degree remains F establishing (1).

{v\first column)*

Part (ii) follows at once from (1) and from the result in Theorem 4.1:
namely the z-function going with the Bicklund generated W{ such that
W' W) is given by

() =e T 7(t+[s]) (s=z7Y

and, since the exponential does not matter here, the stratum of W{' 1S
totally governed by the behavior of z((¢* + [s]) +¢) around * + [s].

THEOREM 7.2. Consider the Bdcklund generated flag
Wz Wi ... cW

Yo

such that at a specific point t*, the plane W{ lies in the stratum

UWS) =(vo2v Z2v,2 ) (74)
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then,
Young diagram (W;‘) = Young diagram (W'"") — first j columns. (7.5)
In particular, if 1, denotes the t-function associated with W, then
(*)=1(t*)=--- =1, _,(t*)=0 and T,(t*)#0.  (7.6)

Proof. This statement follows readily from Theorem 7.1, which applied
to the flag

Wy W,

leads to the statement (7.5) for j=1, and so on inductively. Since going
from W, to W,,, amounts to removing the leftmost column of the Young
diagram and since the Young diagram associated with W has exactly v,
columns, there will be a non-trivial Young diagram associated with each
W, Wi, .., Wi._ and at W the stratum will have an empty Young
diagram, ie., W belongs to the principal cell, which implies (7.6).

The estimate (7.7) in Theorem 7.3 below generalizes the one found
by Segal and Wilson [SW] for k=0; see also a footnote by Laumon
in [SW].

THEOREM 7.3. Define t =t* such that t1(t*)=0 and such that the plane
W' belongs to the stratum v=(vo=v,> ---). Then the expressions
below behave as follows near t* in the x direction (consider an increment
x=(x,0,0,..)):

Pl =) t(t* + Xy =cel xR 4 for 0<k<vg,
=cpxMo4 for k>v,
pu(@) (¥ + %) =celx K4 Jor 0<k<7,,
=cpx-4 ... for k>9,, (7.7)

where ¢ =E(W™)#0 and where the ¢} (0<k<v,) and ¢, (0<k<¥,) are
given by Theorem 6.1:

Mk fv/(k)
c;,=(—1""F ——=30, 0<k<gy
=D T 0
and
) - fm\uk)
a1yl 0 0<k<i, 78
A (TR Y : "o

Remark. Observe that the ratios of ¢, for 0 <k < v, are independent of
t*, whereas beyond v, the ¢; will depend on r*, as appears from the proof.
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Proof. As in (7.2) (the summations are over g with fixed v),

A+ =C(WF+ 3 CUWT)F()  with (W) #0.

aluzv
[l > [v(

Applying p( —3) to t(t* +t), and then setting t=x=(x,0,0, ...}, we have

Pl =0V T(t* + X) =&, pl —OVF5)+ Y &, pul —8) F (%)

PES
el > 1v)

(1) for0<k<v,

(*) v v —k Mol —k
=&,e1x + Y ,ckx
n=zv
1] > |vi

M=k 4 higher order terms, with ¢, ¢} #0.

= {yerx

To prove equality (), note that in the first and the subsequent terms, we
have v, <y, and thus &k <. Hence in all terms, p,( —0) F,(x) is estimated
by (6.3) of Theorem 6.1 with ¢} given by (6.5).

(1) fork>v, (let m=k —v,)

m—1

= Z( Y éypk(—é)F,,(X))wL Y & —8) F (%)
i=0 Mpuj=|v|+i [y =1v| +m
uzv HzZv

. ( 3 éﬂpk(—é)Fu<f))

i=m+1 Jal = vl + ¥
H2v
2 Y Ep-DFMH+ Y ( Y é,.pk(—E)Fy(f))
|ul:|>v|v+m i=m+1 |ﬂ|”=>lv‘|'+i

=’ constant x (8/0x)* x"™*™ 4+ higher order terms in x
= constant x x'"!'*™ =" 4 higher order terms (since k = v, + m)

= constant x x"™ ~* + higher order terms.

Equality (*) holds because |u|<|v|+m—1 and pg=v imply p,<
vo+m—1<v,+m=k and thus using (6.3) for such u:

Pl =8) F(%)=0.
Equality (**) follows from the fact that on the one hand (see (A.2))

_n dgth s_ L[ oy,
pk(’)"ﬁ‘*‘"' and thus 2l — )_H ~% + g
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on the other hand for g such that |u|=|v|+m
F(X)=c (—x)"=c,(—x)"*", ¢, #0.

Finally, p,( —5) F,(x) with |u| > |v] + m will produce higher powers of x,
thus proving the first half of (7.7). As to the second, it follows in the same
way from Theorem 6.1.

COROLLARY 7.3. At a point t* where V(W' ) =v we have the estimate

ot )
ét—(t"‘+f)=cb2x‘“""‘+ for 1<k <min(v,, $y),
k

where ¢ =& (W™ ) #0 is independent of k and where
by = coefficient of t,.t\"' =% in F (1).

Proof. Using the KP equation (see (1.11)) and the estimates (7.7), we

have
(CAMLDY (5 )

* 4+ 2
T(t +X) 4 i+j=k+1
Ljz0
k-1 (CiC) —k
=x ¥ (=)' ==+ 0(x7%)
i+j=k+1 COCO
i,jz0

for 1<k<min(vy, Vy)—1.

Integrating and using the estimate (7.7) for 7 yield (¢ =c})

0
a—;(r*+f)=cb2x'“""+O(x'""k*'),
vy —1
with b;=—(—ci/3- Y (=l)iete,
P+ =k
Lz

where the leading coefficient &, is a number expressible purely in terms of
the Young diagram v, except for the constant ¢, independent of k.

The Schur polynomial F, is also a solution, although very special, of the
KP equation, such that at /* =0, the corresponding W' is in the stratum v.
Therefore, it must satisfy the same estimate as above, that is,

OF,
0t

() =byx™

showing that b} is the coefficient of 7, ~* in F(1).
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THEOREM 74. Consider a point t*, where t(t*)=0, and with W' € Gr
belonging to the stratum v=(vo=v, > ---}; then the following limit exists
and equals,

T(t* + %)

W_.,—W) * . (h
vo(_—a) T(t*+x) lllv()t ’“‘)e w D (79)

lim0 Y(t* +x,z)

where (using the notation Zz EZ,,,H(, of Theorem4.1)

L Zk)

Y.(tz =*""’A A --E_.l Y(t, z), 21,22, ., 2, arbitrary

-1 Yo

is the wave function of a plane W... generated by v, successive inverse
Biicklund transformations, thus satisfying

DWW,

Remark. Observe that by Theorem 7.2, W  belongs to the principal
stratum and that ¥, (¢, z) is finite in a neighborhood of r*.

Proof of Theorem 74. Using the estimates in Theorem 7.3, the

following expression tends to a non-zero holomorphic limit when x — 0;

indeed if we set k=v, and s=z"",

.- 1 (t* + X)

s e+ 9

_t(t*+x—[s])

T (=3 1t + %)

= o p,(—0) Tt + %) 5/
—0) t(t* + %)

kP =0ttt + X)

p,(—a)r (t*+x)
= J+ + A AR, — s/
,gopk(—a (t* + X) = %,pk —0) ol t*+x)

x" ¥, + O(x))
xM=k(c, + O(x))

ko xM (e + O(x)) =
= s/ 45+
,;o xM=*(c, + O(x)) j=;+,
with ¢, #0

k—1
=Y xk=/ <&+ 0(x)> si+st+ Y (-c;j--é- O(x)) s/
=0 Ci Ci

i>k

j

r—'O + Z

j>k

In order to identify this limit, we first construct W} € Gr and the associated
wave functions ¥, via k=v, (dual) Biacklund transforms, such that
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*W'< W!. Then from Theorem 5.1(ii), we have upon division by
o (1* + X)

Y(t* +x,z) - ay_(t* + X) _
K (1 )+ Vi, (t* + X,z
a(t* + %) Vilt®+ %, 2) + 2 (1* + %) Vault® 4%, 2)
ag(t*+x) _, . -
PR L z). 7.1
+ +ak(t*+f)v Yel(1* + X, (7.10)

By (5.2) and estimate (7.7) in Theorem 7.3, estimate

e pA=de+%) L (0 et 4 %)
T+ x) = T(t* + X) ,_Z, Wil +5)) o(t* + X)
ex™M g c;_pxM-U=h
=4 A (e* ot
coxM + .. +,;] Wl 4 X)) cox™M 4 ...

IL)Cj/CO + O(x)
S

s with ¢;/c,#0forj=0,1, .. k. (7.11)

The £\” in the identity above are polynomial expressions in ,(1* + x) and
its derivatives, which themselves remain finite, when x — 0, since 7,(¢*)#0
by Theorem 7.2. Therefore taking the limit x\0 in these expressions
does no harm. Therefore, for j=0, 1, ..., k — 1, the ratios

. * X . .
G HX) ke (fi+ 0(x))—»0 when x—0,
a(1¥ +X) ¢,

which applied to (7.10) leads to

Y(t*+x,z) . _
k * -
tlinob __mak(t* ) 31_{:10 Y(t* + %, z). (7.12)

The limit on the right hand side exists, since 7,(*)#0, according to
Theorem 7.2. Dividing (7.11) for j=k by
Pl —0) T(1* +X)
(t* + x)

leads to

o (t* + x)
(Pl —3) T(1* + X)/t(1* + %))

3 . Pi_i( =) t(t* + %)
]+,§h(l/lk“*+ %)) P v

=14+ O(x), again using the same estimates (7.7).  (7.13)
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Then multiplying the two expressions in (7.12) and (7.13) and taking the
limit when x — 0 yield

. _ t* + x) . _
lm z5y(r* z il =1 * z 7.14
fim Y(t* + X, )pk( 510t 1) Xlino‘l’k(t +x,z), (7.14)

ending the proof of Theorem 7.4.

COROLLARY 74. Let W' belong to the stratum v=(vo2v, 2 ---) for
some t =t*; for given We Gr, consider a space W, € Gr such that

W e W (7.15)

is generated by v, inverse Bicklund transforms A_, 1 <i<v,, with corre-
sponding wave function ¥, (t, z). Although W, and ¥, depend on the choice
of 21, . 2., the function ¥, (t, £}, evaluated at t = t*, is independent of that
choice.

Proof. This fact follows at once from Theorem 7.4, since according to
{(79), ¥, (t* z) is the limit of an expression which is independent of the
choice of W, and such that (7.15) holds.

It is instructive to give an independent proof for the case k= 1. Indeed
setting (sq, 81,52, 53) (0, 5,.5,5,) and t~t—[s], with s=z"! and
s;=z ', in the Fay identity (Lemma 2.1), one finds

sisa—)t(t—[s]+[s; D ez +[s.])
—sy(sy —s)t(t—[s]+[s;]) (e + [s,])
=s(s,—sy) (t) e+ [s,]+[s:1—[5])

Therefore upon multiplication by an exponential, we have

5 ez,./yt(t~[s]+[sl])= AP Z,‘/S.T(t—[S]‘*‘[Sz])
Sp—§ (t+[s:1) S;~5 (t+[s5:])

along the locus 1(t)=0. (7.16)

Using the third equality in (4.13), both sides of (7.16) are new wave
function ¥,(tr,z) and Y¥,(¢,z) associated with W, and W, such that
zWeac W, and zW < W,. Now (7.16) claims that both expressions are equal
along the locus {z(¢)=0}, establishing the announced independence.

In Theorem 7.4 we saw how to normalize the wave function y, so that
the limit exists when the plane W' tends to the limit W'"; the next theorem
reveals how the rest of the basis, properly normalized tends to a new basis
of W'
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THEOREM 7.5. Consider a family of planes W' such that W' belongs to
the stratum (W)= (vo=v, = --); that is,

W =span{o(t*, 2), ¢,(t*, z), ..}, (7.17)
with
@;(t*, z)=z%a, + O(1/z2)), with s,=j—v;;

the @;s are obtained as limits of basis elements of W' as follows: consider
a Bicklund generated plane W, with vo= —sg, thus satisfying z°W'c W{
with wave function W, ; then

, (t*+ %) _
t* z)=lim —y(t*+ X, z)=z""%, (t*, 2
oolr*, )= lim e U R 2) =2 (0 2)
. (t* + x) o -
At*, zy=lim — o, (t*+X)Vy(t*+ %, z
@ ) .Hopv,(—a)r(z*+x)0§$, ( ) Vig( )
with o, =1
=z~ Y B (t*) Vi, (1%, z),
1<i<s,— 50
F# 51— 30,52 804 s Sr L — 50

where the o’s are uniquely determined functions of t and the 5’s functions of
1*, with B, . ., a rational number (independent of t*) determined via the

Young diagram v by

l P(Sr_s[])
s =TT #0 when v, #0
P A7 TP(2) o (5, = sg— 1)
P(r—sg)
C(r—so— 1)V

Proof of Theorem 7.5. This proof is broken into several steps:

Step (a). The inclusion zW’c W, implies the first relation below by
Theorem 5.1(ii) and taking consecutive ¢,-derivatives of this relation, multi-
plied by eZ ", yields the subsequent relations (remember vy = —s,)

vo
Zm!//: Z avo*jvjl/jvo
j=0

i+ vy

2V =3 BV,
j=0
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with

mind i, j) l )
Bi= 3 (1>6’;’a,,0_”,, &4 =max(0, j ~ k). (7.18)

= &g

Step (b). We estimate f,(t*+x) as a function of x: according to
Theorem 5.1 (formula (5.2)) and Theorem 7.3, we have

( 6
a (=P vy PR (1)
O<r<y

and

-0 v 1

p'(—-)l=<~c—’;+0(x)>—,, 0<r<vyg= —s¢,¢,,cp #0;

T cy

but 7, #0 near t* by Theorem 7.2 and therefore 4/ (7, )= O(1). Com-

bining these facts we find

) cl . Jes+ Olx L )
af:l"‘vu—ju“**’f):( v071;14+2—1 ( )>'(Vo+"]"l).71(“l)'”

which substituted into (7.18) yields

(y,+ O(x}))
ﬁ‘jz _vao+i‘j
with
min(i, f) ) i Fod [
=3 (-1)'1(,>(Vo+i-j—1),,ﬂ-c—f+—. (7.19)
0

I=spq

For later use we make the crucial estimate of this theorem:

det[ﬂu]/eiﬂ) LB J,)=xiz;:0(m+i_m(det[y{i]OSiSr +O(X))

O<i<r Jefo i drd

= x”z,:glw)w‘i*]ﬂ([}oh gy + 0()()) (720)

Step (c). By Kramer’s rule, there exists a unique linear combina-
tion of the expressions {z*¢,z"Vy, .., z"V "'y} in step (a) missing
(VoL V7, ), 0<j,<r+ve+1, which then allows the following
estimates in x and s,
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Vil o, VY4 o da, (X + ) Y (t* + X, 2)

det[ﬁiijogisr+|
— Z*VO JE U I o e 1) Vﬂ‘// ! ([* + X’, z
det[f;Jo< i</ "

0. i} s =T .
ospu<r+vo+ ! je o i jr)
—v Uiireial iy +0(X)) _
Ospusr+ vb-+—l
using (7.20), (7.21)
where
Ve, (1 z)=z4(14+0(z ")) (using (3.7)) (7.22)

is a Laurent series in z~' with holomorphic coefficients in x, in the
neighborhood of r=r* Here one also uses Theorem 7.2, implying that

1,,(1*) #0.

Step (d). Realizing ¢, (t*, z)e W’ as a limit of elements in W'

The lowest order element (5= —v,) in W' was already obtained as a
limit in Theorem 7.5; we now proceed to the next order element ¢,(t*, z
having order s,: form a linear combination of (' = d/dx)

zvolll :a\-ow\-0+avo—lvl/lvo+ +IZ“0,‘“V“I/I\,0+ +aov"0l//‘,0
and
N = i+ (s + 2 ) Vi
+ -+ (xv()f;t#»l +a:'o —y)Vu‘ﬁvu
+ o oy +ag) de}vo + ocOV““ ]l)/vg

with precisely ¥, missing; this is given by Step (c) with r=0 and j, =0,

<Vw—gi(—’x//> (t*+x,z2)

vo+ 1 1 o o
=z% Z ——-det< :0 Vo pt ) )Vywvo(t*+j,z)
u=1 a"o yo avo—u+l+“vofu
W Loy + O
=X i‘lvo—tirﬁ("‘)Z‘““V“lﬁvo(t*Jrf,z)
X
p=1
vop+ 1 o ‘ o+ 1
=y (Z aujx'*voﬂz—l+_1)Z*vovuwvoz Y G,=G (a,€C)
p=1 Nj=0 u—1

(7.23)
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where
Vet 2y =z#(1 +0(z7"Y), (7.24)

with holomorphic coefficients in x; according to Corollary 6.1 (see also
(6.17))

y P Pvg—v,+1)
Fe=P(0)#£0, a,_, . 0= o.},+|= ((3 _;)' #0. (7.25)
0 0 17

Now if lim, _, , x*G exists, it belongs to W*", since Ge W', even after multi-
plication with a function of (x +1¢,,¢,,..). Now one checks, using (7.22)
and (7.23)

lim x™G(x, z) = im x"G(x, z)

x—0 x—0

=a,z " lIim Vy

x—0

=a,,z " (1 +0(:z"Y))e W™ using (7.24) and s, = v,.

If 5, > 55+ 1, it must be that a,, =0, because otherwise W** would contain
a function of order s,+ I, which is a contradiction. If s, =s,+1, ie,
vo—v; =0 then a,q # 0 by (7.25) and the proof is finished.

Assume now that we have shown that the coefficients

a0
ap az

a2 as dy

a1 .- dyo (7.26)
vanish; then the following limit exists and equals

lim x**G(x, z) =lim x* %G, + -+ + G, ,)(x, 2)

x—=0
=al_k:"'o Iim Vl//v0+ +ak+l,0:7% lim Vk+l!pvo
=allk:7vu+l(l+0(:_]))
+ - +ak+1,034v0+k+l(l+0(27|))€ w,

O0<k<vg—v,—1,
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implying in that order
Rpy1,0=0p 1 =04y 2= - =0y, =0,

or else we would have an element of W' of order k, s, <k <s,. So
inductively we show that the whole triangle (7.26) vanishes for
0<k<vy—v,—1; finally we set k=v,—v, and so form the well-defined
limit

lim x"G(x, z

=limx”’(G + .- +GVU_V|+1)(xs :)

=01y ? PHM VY, 4 a0z T Im YR Y
=al,vo—v1:7vo+l(1+0(27,))
ot a0z T+ O0(zT))e W (7.27)

with non-zero leading term

w—wi+ b _ 51

avo—v1+l 0oZ aV() vi+ 1, o<

by (7.25) and so the remaining coeflicients a,(t*) need not be zero. Instead
of multiplying (7.27) by x*' we could as well multiply the expression by

z'(t*+f) [
pu(— d) o(t* +X) ¢,

x"(1+ O(x)).

So, one sees that

v

0
ﬂl_[ t*)_;;— .o vo — v — j+l(t*)

vi

with 8, . _, , having the promised value in the statement of the theorem,
by Corollary 6.1.

In the next case one considers a linear combination of V3, Vy, and ¥
with ¢, and V' =%@, =V "1+l removed:

(VY +a, |V + o0 )(1* + X, 2)
- Z FOV() V1+l/1/r0vo V|+I+O(x)

27OV + X 2).

vo—p+2
I<u<v+2 X
pFE—v +1
Taking into account that W™ has no terms of orders z°*! z%+2  z=-!

2,277 and that o,y i 1w—vs2#0 (by Corollary61) one
proves that @,(r*,z) has the promised form (in general we remove
Ve, j=0,1,.,r, from VA, j=0,1,..r) and so it goes, by induc-
tion, ending the proof of Theorem 7.5.
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APPENDIX A: SCHUR POLYNOMIALS, YOUNG DIAGRAMS,
AND DIFFERENTIAL OPERATORS

The elementary Schur polynomials p,(z) are defined by

X

exp Y t;z/ Z Pt tsy

1 1
=l+llz+(Etf—f-tz):2+<gt‘;‘+tlt2+t3>:3+ o (AD)
with
4
P,.(t)—'-, R (A2)

The polynomials p,(t) also appear in the context of symmetric polyno-
mials; this is discussed in Appendix B. The p,’s yield differential operators

g 190 190
pA0)= pn(at 330350 n) (A3)
which arise naturally in the Taylor expansion
s2 s3
fustsh=s(nesnedney.)
=3 p£0) (1) 5" (A4)
n=90
For an arbitrary polynomial p, define the Hirota operation
(0) fog()= (j— 2 )f(t+ ) g(t— )| (A5)
p =p ayl’ ayz, Y Y r=0 .
The identity
Y (PO~ ) =p.i() fog (A6)
i+j=n+1
iLjz0

holds; it follows from expanding f(¢+ [s]) g(t—[s]) in a Taylor series in
two different ways: at first, by expanding each of the terms (using (A.4))

e+ shat=1=( % @0 £ o ~1e0)

i=0 =0

=Zf<2(m®mmuawﬂ
nz=0 i+j=n

if20

607:/108;1-14
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and at second, by expanding the product as a function of s:

fu+[sDglt—[s1)= Y s'p.3)f-g  using(A4)and (AS).

nz0
Let & = (s, 5,,..) be a “sequence of virtual genus zero,” ie., a strictly
increasing sequence. of integers s, <s, <s, <s;< ---, such that s5;,=7 for
large enough i/ We refer to it as a sequence. Such a sequence defines a
partition

(Vg, Vi, V2,.-,0,0,0, ...), oz, v = - 20 (A7)

of decreasing integers v,=i—s,, all equal to 0 from a certain point on.
A partition (v, v,, ...) defines a Young diagram; a dual or transpose Young
diagram (obtained by flipping the previous one along its diagonal) defines
a transpose partition {?,, #,, ...) and a conjugate sequence ¥,

L 1

v=(6,3,2,2,1) i=(54,2,1,1,1)

which is also a sequence of virtual genus zero. We also define the length of
a sequence or partition

(A.8)
KFy=101=30,=3 (i—=5)=U%).
To a partition v={(v,,..,v,), one associates a polynomial of

homogeneous degree |v|, called the Schur polynomial F, constructed in
terms of a matrix of size n+ 1,

Fvu---u,,,(t)Edet(pv,—i+j(_t))Oéi,jgn; (Ag)

the p, (k>0) are the elementary Schur polynomials, defined above, and
p.=0 for k<0, and p,=1. Also (as follows from (B.4) and (B9) in
Appendix B);

Fo olt)=(=D)MF, (-1 (A.10)
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Finally, any f(1)e C[[t,, 1, ...]] admits a Fourier expansion in terms of
Schur polynomials (see (C.1) and (C.2))

fin=Y ¢, F (1) (A.11)
with regard to the inner product (C.1) with (F,, F,> =4,,, so that
e=F(=0)flico=<Fo /).

APPENDIX B: THE GEOMETRY OF SYMMETRIC POLYNOMIALS

Given a set of finite (N) or infinite (N = o¢) variables x = (x,, x,, x5, ..),
the symmetric functions

Ec)=]] 1+x2)= ) elx) =
izl r=0
Hoy=JT(1—-xz2)"'= 3 h(x)z’ (B.1)
izl rz0
P(z)= Z (1—xz)"'= Z u(x)yz="
i1 r=0
define symmetric polynomials
e(x)= Y Xi Xy X,
hix)= 3 xix%.. (B.2)
Ti=r
ulx)=>y x’.

Each set defines an algebraic basis for the ring of symmetric polynomials
in the variables x,, x,, ... Note that

log Hz)= —Y log(l —x,z)=Y ¥ o= = u(x) (B.3)
and thus, taking the exponential and using formula (A.15), we have

~
Y h(x)z"=H(z)=exp ¥ l%)% Y pd—0z.  (B4)

r=0 {21 rz0

which implies
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upon setting
u;(x) _ X

= -4 = —

/ /

A basis for the symmetric polynomials viewed as a vector space is given
by the Schur polynomials §;. Indeed given a partition

A=(Ayy oy 44), MZAz 2,
define

Six)y=det(h;, ., (X)) i1<ij<s
=det(py iy ()i <ij<is using (B.5)
= F,(t), using (A.9). (B.6)

Moreover, for two partitions A and g such that 1>y (4,2, for all i),
define the skew-Schur polynomial

S,{\y(x)Edet(ha,-y,71+j(x))l\<\i.jsl
=det(p,1‘,/‘17,-+j( _t))l <hLj<l

=F, (1) (B.7)

Consider now the involution w on the ring R(4) of Schur polynomials,
defined by

w(hn)zen and w(en)zhn (BS)

and so

Hz)=]](1=x,2) ' =Y h(x) " ~E(z)=H (—=z)
i 0

=H(1 +x;2)=7y e,(x)z". (B9)
i 0

Using this involution (see [ McD, p. 15]), we have
det(hi,—i+j(x))l <ijs! & det(ei,-i+j(x))l <ij<!

from which (A.10) follows.
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Both S, and S,,, have a combinatorial interpretation via the so-called
Young diagrams associated to the partition. For example,

partition (4,3,3,2,1) «

-

while, given two partitions A and u such that 4 c 4, the skew-partition A\
has the skew-diagram A —u (viewed set-theoretically). For example,

2
B2 1N22)

\

Indeed a tableau of shape i (or A\u) is an array a; of positive numbers
( <N, if there are N variables) placed in the Young (skew) diagram which
are non-decreasing in going to the right along the rows and increasing
down the columns. Consider the associated monomials [] x, going with
the tableau. For instance,

“12

1
20123 ~ x3xixix,
4
1 |
7/7 2 ~ XIX, X,
A
4]

Then we have the important identities

§;= ) [1x.,

{aj) 1ableaux of i (B 10)

Si\ﬂ:' Z H.Xau.

{a;} tableau of ANy
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In particular, the symmetric polynomials e; and #; are themselves Schur
polynomials (associated with dual Young diagrams):

;=S 1.1 and hi=S5 (B.11)

/

As an application of (B.10), consider symmetric polynomials S(x,, x;, ...)
depending on an additional variable x,. Then in terms of the ¢, defined in
(B.5), we have

1 , Xh
- x'==2_y B.12
li?() r’ l ! ( )
and
Fi(—[xo]+1)=8,(x0, X1, X2, ), using (B.6),

Ao
=), x5S, h(xys X, ) (see below)
j=0

A
=Y x{F; (1), using (B.7). (B.13)
i=0

The second equality follows from (B.10). Indeed, when x} appears in the
Schur polynomial, you will have 0’s in the first j blocks in the first row and
1,2,3,..’s in the remaining blocks of the tableau; ie., for the Young
diagram 4\(;) you will have an arbitrary tableau. The highest order term
in x, has degree 4;, because at most you can have O0’s in the first row of
the tableau.

Filx)d+ D) =(—D" Fi{(—[x]—1), using (A.10),

=(=1)""Y x(Fi ) (—1) using (B.13) with 1 — ¢,
i=0
=(—=D" Y xi(=1)* 7 Fya..n(t),  using (A.10),
j=0 -
Ag
=Y (—x0) Faa..n(1), (B.14)

0 e
/ i

A standard tableau of 4 is a tableau in which the entries 1,2, 3,.., n=|4| =
Y 4, all appear precisely once. Then

f*={# of standard tableaux of shape 4}

= coefficient of x;x,---x,in S, (B.15)
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and similarly
f*\=1{# of standard tableaux of skew-shape A\u}
= coefficient of x, x, - - x,, in S\ ,, with n = |A\p| = [4] — |ul. (B.16)
Given the (i, j)th box in a Young diagram, define the hook length h*(i, j)
as the length of the hook formed by drawing a horizontal line emanating

from the center of the box to the right and a vertical line emanating from
the center of the box to the bottom of the diagram, i.e.,

R J) = (A= G— D)+ (4= G—1)—1
=A+A—i—j+l (B.17)

We now have the identities.

o Al! [ 1 ]
(1) f[ff=———-F—=|A|'det| —— B.18)
vs ITawi, Al . (A, — i+ (
and
(i) M= (A= |u))! det [—“—1-—:| (B.19)
(Ai—p—i+j)

The first equality in (i) follows from [ McD, p.9, Ex. 1], whereas the
second equality in (1) and (ii) can be shown as follows:
Consider the same ring homomorphism as in section 6,
0: {Ring of symmetric function} —» C[u, ]

such that

Ou)=u, and u,)=0, i>1.
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Consider now an arbitrary symmetric polynomial f of degree n; it must be
expressible as

fxy=cuy+ Y e J]u

er, n) i
51 #n

=cn! x;x,- - x, + other terms.

Therefore
)= gz' (coefficient of x; x,--- x,,) {B.20)
and thus, in particular,
()(e,,):f)(h,,):—j. (B.21)

Applying (B.20) to the Schur polynomial f=S;(x) and using (B.15), we
find

14l

uy
S =S
=0(det[h,,_;, ;1) using the definition of S
=det[(h;, ., )], since # is a homomorphism
phim i
= det [m:’ , using (B.21)
1
= !} det [m] by homogeneity (B.22)
and, similarly
141 =l
i\p “i =0(S.
=~

=0det[h; _,, ;]
=det[O(h, —p,—i+))]

uli‘/‘/_ i+j
e [._lw_,_,
(Ai—p;— i+ )

1
=yl =
det[(l,»—ll;—l"*'j)!:" (B.23)
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APPENDIX C: VANDERMONDE DETERMINANTS AND CAUCHY IDENTITIES

First, define the symmetric inner product [McD, p.34] between
symmetric functions of x, by expressing them in terms of the symmetric
functions u,(x)=7), x7 and computing

bl
i8> = Sl glu) =f(5u—, 2 ) g(u) it

Juy

u=0

which has the Schur polynomials as an orthonormal basis
(85,,8,>=3,, (C.2)
and which satisfies [McD, p. 43, Ex. 3] for any symmetric function ¢
<8, 8,00 =L8; 07 (C.3)

In particular

a m
{ul, @)= (5;—) ®

=m! - coefficient of 47" in ¢

u=0

= coefficient of x, x,--- x,, in @
and so by (B.16) and (C.3) conclude that
Cu =10 Sy =14 (C4)

Furthermore, as the Schur polynomials form a basis for the vector space of
symmetric functions, we have

¢ =249, S:> S;
and setting ¢ = u* and applying (C.4) with u =0, conclude that

ui=Y f*S;. (C.5)
Al =k
We also introduce the generalized Vandermonde determinants

a; ()= sgn(w) [] yi,=det(y¥)icijens (C.6)

we.S, i=1
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with y=(y,, .., »,), and %, the permutation group on n letters. Setting
o=n—1,n-2,.,1,0)

as(y)= ] (y;—y,)=Vandermonde determinant

l<i<j<n
and clearly az(y) divides a,(y), with
Si(y)=a;.,s/a; ((A+0);=2,+3)). (C7)

As an application of these ideas, consider a differential operator in y,
depending on the parameter x:

0
x—zﬂ( )

H (A, +n—i)). (C.8)

and the polynomial

We show the S;(y) form an orthonormal set of eigenvectors of L.
with eigenvalues ¢,(x). Indeed, using (C.6) with A+d=(4,+n—1, ..,
Ai+n—i..)

L.S;(y)=L. (M)

1. é
= X—V,y7—]a, )

as kl_I| ( Yk 6.1"/() +0( )
Iy <x—yk—a-> Y. sgn(w) H yiggn=o

aék:l ayk wWe Sy i=1

1 ¢ :
—— JAt 1)

a, w; gn(“)’];-[l ( .}n(l)a‘“l,))}n(n
= q,(\') Z sgn(w H Vﬁl(ﬁn o

we .Sy i=1
_ a4 s(¥)
=g, (x) ————==¢,(x) S;(»),
as(y)

yielding (C.8).
Now there is a classical result of Cauchy,

Z S}.(yl 3 =vey yn) S).(M”] 3 ey M"m) = n l—I (l _yj‘vk)i >
A

j=1 k=1
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and in Andrews, Goulden, and Jackson [ AGJ], this result is generalized in
a straightforward way. A special case of their generalization of Cauchy’s
identity (namely Corollary 4.5 in [AGJ]) reads

n

Loui=Y (=1)/(x),_,(n),u} e, (C9)
j=0
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