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Abstract

We provide a direct approach to the computing of scalar and matrix kernels,
respectively for the unitary ensembles on the one hand and the orthogonal and
symplectic ensembles on the other hand. This leads to correlation functions
and gap probabilities. In the classical cases (Hermite, Laguerre and Jacobi)
we express the matrix kernels for the orthogonal and symplectic ensemble in
terms of the scalar kernel for the unitary case, using the relation between the
classical orthogonal polynomials going with the unitary ensembles and the skew-
orthogonal polynomials going with the orthogonal and symplectic ensembles.

5.1 Introduction

In Chapter 4, it was shown that given a probability distribution function (pdf)
of the form

P
(β)
N (x1, . . . , xN ) = Z−1

N |∆N (x1, . . . , xN )|β
N∏
j=1

w(xj), β = 2, (5.1.1)
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for (x1, . . . , xN ) = RN , ∆N the Vandermonde determinant, w(x) a non-negative
weight function on R, then it can be rewritten

P
(2)
N (x1, . . . , xN ) =

1
N !

det[K(2)
N (xi, xj)]i≤i,j≤N

K
(2)
N (x, y) =

N−1∑
i=0

ϕi(x)ϕi(y), ϕi(x) = (w(x))
1
2 pi(x), (5.1.2)

with pi(x) being an i-th degree polynomial, orthonormal with respect to the
R-weight w(x), i.e.,∫

R
pi(x)pj(x)w(x) dx =

∫
R
ϕi(x)ϕj(x) dx = δij . (5.1.3)

It was mentioned in Chapter 4, that this example included many interesting
examples in random matrix theory and in particular N -by-N random Hermitian
matrices, and the set of random matrices handled by a pdf of the form (5.1.1)
are known as the unitary ensembles. It was also shown that as a consequence
of the reproducing property of the kernels, the n-point correlation function

Rn(x1, . . . , xn) :=
N !

(N − n)!

∫
. . .

∫
P

(2)
N (x1, . . . , xN ) dxn+1 . . . dxN

= det[K(2)
N (xi, xj)]1≤i,j≤n, (5.1.4)

which roughly speaking is the probability density that n of the eigenvalues,
irrespective of order, lie in infinitesimal neighborhoods of x1, . . . , xn. (Since it
integrates out to N !/(N − n)!, it is not a probability density.)

Now due to the Weyl integration formula [Hel62], [Hel84], when considering
the case of conjugation invariant pdf on the ensembles of real symmetric or
self-dual Hermitian quaternionic1 matrices, viewed as the tangent space at the
identity of the associated symmetric spaces, one finds formula (5.1.1) with β = 1
or 4, respectively, for the pdf.

In particular they also come up in the so-called chiral models in the physics
literature, in which case the weight w(x) contains the factor xa, see for example
[Sen98], [Ake05].

5.2 Direct approach to the kernel

In this section, we give a general method which generalizes the results of Chap-
ter 4 and works for all three cases β = 1, 2, 4; following the approach of Tracy-
Widom [Tra98], [Wid99]. We now state:

1The N -by-N matrices H with quaternionic elements qij are realized: H = [qij ]1≤i,j≤N ,

qij 7→
»

zij wij
−w̄ij z̄ij

–
, qji 7→

»
z̄ij −wij
w̄ij zij

–
, i ≤ j in which case the eigenvalues are doubly

degenerate [Meh04].
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Theorem 5.2.1 Consider the pdf of (5.1.1) for the cases β = 1, 2, 4. Then we
have for the expectation

E

 N∏
j=1

(1 + f(xj))

 =
∫
. . .

∫
P

(β)
N (x1, . . . , xN )

N∏
j=1

(1 + f(xj)) dxj

=

{
det(I +K

(β)
N f) β = 2,

(det(I +K
(β)
N f))

1
2 β = 1, 4,

(5.2.1)

where K(β)
N is for β = 2 an operator on L2(R) with kernel K(2)

N (x, y) and f is
the operator, multiplication by f , while for β = 1, 4, K(β)

N is a matrix kernel on
L2(R)⊕ L2(R). The kernels are specified below:

K
(2)
N (x, y) = S

(2)
N (x, y), β = 2 (5.2.2)

K
(β)
N (x, y) =

(
S

(β)
N (x, y) S

(β)
N D(x, y)

IS
(β)
N (x, y)− δβ,1ε(x− y) S

(β)
N (y, x)

)
, β = 1, 4

(5.2.3)

with

S
(2)
N (x, y) =

N−1∑
i,j=0

ϕi(x)µ(2)
ij ϕj(y), (5.2.4)

ϕi(x) = (w(x))1/2pi(x), the pi(x) any polynomials of degree i, with the symmet-
ric matrix µ(2) given by

[(µ(2))−1]ij =
∫

R
ϕi(x)ϕj(x) dx =: 〈ϕi, ϕj〉(2), (5.2.5)

and (for N even)

S
(1)
N (x, y) = −

N−1∑
i,j=0

ϕi(x)µ(1)
ij εϕj(y), (5.2.6)

IS
(1)
N (x, y) = −

N−1∑
i,j=0

εϕi(x)µ(1)
ij εϕj(y) = εS

(1)
N (x, y),

S
(1)
N D(x, y) =

N−1∑
i,j=0

ϕi(x)µ(1)
ij ϕj(y) = − ∂

∂y
S

(1)
N (x, y),

with ϕi(x) = w(x)pi(x), the pi(x) being any polynomials of degree i, ε(x) =
1
2sgn(x), ε = the integral operator with kernel ε(x− y) and the skew-symmetric
matrix µ(1) is given by

[(µ(1))−1]ij =
∫∫

ε(x− y)ϕi(x)ϕj(y) dxdy =: 〈ϕiϕj〉(1), (5.2.7)
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and finally (f ′(x) = d
dxf(x))

2S(4)
N (x, y) =

2N−1∑
i,j=0

ϕ′i(x)µ(4)
i ϕj(y), (5.2.8)

2IS(4)
N (x, y) =

2N−1∑
i,j=0

ϕi(x)µ(4)
i,j ϕj(y) =

∫ x

y
S

(4)
N (v, y) dv,

2S(4)
N D(x, y) = −

2N−1∑
i,j=0

ϕ′i(x)µ(4)
i,j ϕ

′
j(y) = − ∂

∂y
S

(4)
N (x, y),

with ϕi(x) = (w(x))1/2pi(x), where the pi(x) are arbitrary polynomials of degree
i and µ(4) is the skew-symmetric matrix given by

[(µ(4))−1] =
1
2

∫
(ϕi(x)ϕ′j(x)− ϕ′i(x)ϕj(x)) dx =: 〈ϕiϕj〉(4). (5.2.9)

Remark 1. Note by the definition of µ(2) (5.2.5), we have the following
reproducing property:

〈S(2)
N (x, ·), ϕk〉 ≡ ϕk(x), 0 ≤ k ≤ N − 1,

which, given its degree modulo (w(x)w(y))1/2, uniquely characterizes S(2)
N (x, y)

as the Christelhoff-Darboux kernel of 〈 , 〉2, i.e.,

S
(2)
N (x, y) =

N−1∑
i=0

ϕi(x)ϕj(y), 〈ϕi, ϕj〉(2) = δij .

In other words, the kernel is insensitive to the choice of µ(2), so we may as well
take µ(2) = IN .

Similarly, we have for β = 1, the reproducing property

〈S(1)
N D(x, ·), ϕk〉(1) = ϕk(x), 0 ≤ k ≤ N − 1,

which now forces S
(1)
N D(x, y) to be the Christelhoff-Darboux kernel for the

skew-symmetric inner product 〈 , 〉(1) namely2

S
(1)
N D(x, y) =

N−1∑
i=0

(ϕ2i(y)ϕ2i+1(x)− ϕ2i(x)ϕ2i+1(y)), 〈ϕi, ϕj〉(1) = Jij ,

2J = JN = IN ⊗
»

0 1
−1 0

–
= the 2N -by-N symplectic matrix, while the ϕ2i+1 is well

defined module ϕ2i+1 7→ ϕ2i+1+γiϕ2i

δi
, ϕ2i 7→ δiϕ2i.
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and again the kernel is insensitive to the choice of µ(1), so we may as well set
µ(1) = JN .

Finally, we also have for β = 4 the reproducing property

〈IS(4)
N (x, ·), ϕk〉(4) = ϕk(x), 0 ≤ k ≤ 2N − 1,

which as before forces IS(4)
N (x, y) to be the Christelhoff-Darboux kernel for the

skew-symmetric inner product 〈 , 〉(4), i.e.,

IS
(4)
N (x, y) =

2N−1∑
i=0

(ϕ2i(y)ϕ2i+1(x)− ϕ2i(x)ϕ2i+1(y)), 〈ϕi, ϕj〉(4) = Jij .

Thus in all three cases, β = 1, 2, 4, the Christelhoff-Darboux kernel of the
inner product matrix µ(β), completely determines the kernel K(β)

N (x, y), and in
fact for the “classical” cases, it is easily determined. In particular the K(β)

N (x, y)
are insensitive to the choice of the polynomials pi(x) and for the classical cases
we shall see they are all closely related to the β = 2 kernel.

We shall now sketch a proof of this theorem, following [Tra98], first providing
a necessary lemma, of de Bruijn, found in [deB55].

Lemma 5.2.1 We have the following three identities involving N -fold integrals
with determinental entries

∫
·· ·
∫

det[ϕi(xj)]1≤i,j≤N det[ψi(xj)]1≤i,j≤N dx1 . . . dxN

= N ! det[
∫
ϕi(x)ϕj(x) dx]1≤i,j≤N

∫
·· ·
∫

x1≤x2≤...≤xN
det[ϕi(xj)]1≤i,j≤N dx1 . . . dxN

= Pf [
∫∫

sgn(y − x)ϕi(x)ϕj(y) dydx]1≤i,j≤N

∫
·· ·
∫

det[(ϕi(xj), ψi(xj))]1≤i≤2N
1≤j≤N

dx1 . . . dxN

= (2N)!Pf [
∫

(ϕi(x)ψj(x)− ϕj(x)ψi(x)) dx]i≤i,j≤2N

where PfA = (detA)1/2, for A a skew-symmetric matrix, and the second iden-
tity requires N to be even.

Sketch of Proof of Theorem 5.2.1: We first do the β = 2 case, the other
cases being technically more complicated but conceptually no different. From
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(5.1.1) and Lemma 5.2.1,

E

 N∏
j=1

(1 + f(xj))


=
∫
· · ·
∫

det[xi−1
j ]i≤i,j≤N det[xi−1

j w(xj)(1 + f(xj))]1≤i,j≤N dx1 . . . dxN

= det
[∫

xi+jw(x)(1 + f(x)) dx
]

0≤i,j≤N−1

(after replacing xi(w(x))1/2 7→ ϕi(x) = pi(x)(w(x))1/2, the pi(x) being arbitrary
polynomials of degree i)

= CN det[
∫
ϕi(x)ϕj(x)(1 + f(x)) dx]0≤i,j≤N−1

= C ′N det

[
δij +

∫ N−1∑
k=0

µ
(2)
ik ϕk(x)ϕj(x)f(x) dx

]
0≤i,j≤N−1

(C ′N = 1, since the L.H.S. = 1 when f = 0)

= det(I +K
(2)
N f).

In the last step, we applied the fundamental identity det(I+AB) = det(I+BA)
for arbitrary Hilbert-Schmidt operators, true as long as the products make
sense. Indeed, set A : L2(R) 7→ RN , B : RN 7→ L2(R), with

A(i, x) =
N−1∑
k=0

µ
(2)
ik ϕk(x), B(x, j) = ϕj(x)f(x)

i.e.,

Ah(x) =

(∫ N−1∑
k=0

µ
(2)
ik ϕk(x)h(x) dx

)N−1

i=0

, B(v) =
N−1∑
j=0

vjϕj(x)f(x)

so

AB(i, j) =
∫ N−1∑

k=0

µ
(2)
ik ϕk(x)ϕj(x) dx

BA(x, y) =
N−1∑
i,j=0

ϕi(x)µ(2)
ij ϕj(y) = K

(2)
N (x, y),

yielding the β = 2 case.
Now consider the β = 4 case, and observe the crucial identity

∆4
N (x) = det[(xij , (x

i
j)
′)]0≤i≤2N−1

1≤j≤N
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(a consequence of L’Hôpital’s rule), but replacing in the above xi 7→ pi(x), the
pi(x) being arbitrary polynomials of degree i, in which case ∆N (x) 7→ constant
∆N (x). Then find using (5.1.1) for β = 4 and Lemma 5.2.1, upon setting
ϕi(x) = (w(x))1/2pi(x), that(

E

(
N∏
i=1

(1 + f(xi))

))2

= CN det
[∫

1
2

(ϕi(x)ϕ′j(x)− ϕ′i(x)ϕj(x))(1 + f(x)) dx
]

0≤i,j≤2N−1

= C ′N det
[
δij +

∫
(ϕ̃i(x)ϕ′j(x)− ϕ̃′i(x)ϕj(x))

f(x)
2

dx

]
0≤i,j≤2N−1(

ϕ̃i(x) =
2N−1∑
k=0

µ
(4)
ik ϕk(x) C ′N = 1 by setting f = 0

)
= det(I +K

(4)
N f),

once again using det(I +AB) = det(I +BA). Indeed, set

A : L2(R)⊕ L2(R) 7→ R2N , B : R2N 7→ L2(R)⊕ L2(R)

with

A(i, x) =
f(x)

2
(ϕ̃i(x),−ϕ̃′i(x)), B(x, i) =

(
ϕ′i(x)
ϕi(x)

)
, 0 ≤ i ≤ 2N − 1,

and so

A(h1, h2) =
1
2

(∫
f(x)ϕ̃i(x)h1(x) dx, −

∫
f(x)ϕ̃′i(x)h2(x) dx

)2N−1

i=0

,

B(v0, . . . , v2N−1)T =
2N−1∑
i=0

vi

(
ϕ′i(x)
ϕi(x)

)
,

hence

AB(i, j) =
∫
f(x)

2
(ϕ̃i(x),−ϕ̃′i(x))

(
ϕ′j(x)
ϕj(x)

)
dx

=
∫
f(x)

2
(ϕ̃i(x)ϕ′j(x)− ϕ̃′i(x)ϕj(x)) dx,

while

BA(x, y) =
2N−1∑
i=0

B(x, i)A(i, y)

=
1
2


2N−1∑
i=0

ϕ′i(x)ϕ̃i(y), −
2N−1∑
i=0

ϕ′i(x)ϕ̃′i(y)

2N−1∑
i=0

ϕi(x)ϕ̃i(y), −
2N−1∑
i=0

ϕi(x)ϕ̃′i(y)

 f(y),
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yielding the β = 4 case.
Finally consider the β = 1 case, with N even, and so from (5.1.1) and

Lemma 5.2.1, findE

 N∏
j=1

(1 + f(xj))

2

= (N !)2
∫
· · ·
∫

x1≤...≤xN

∏
i<j

(xj − xi)
N∏
j=1

(w(xj)(1 + f(xj)) dx1 . . . dxN

= CN

∫
· · ·
∫

det[pi−1(xj)w(xj)(1 + f(xj)]1≤i,j≤N dx1 . . . dxN

= C ′N det
[∫∫

ε(x− y)ϕi(x)ϕj(y)(1 + f(x))(1 + f(y)) dxdy
]

0≤i,j≤N−1

(setting ϕi(x) = w(x)pi(x), pi(x) an arbitrary polynomial of degree i, ϕ̃i(x) =∑N−1
j=0 µ

(1)
ij ϕj(x))

= det
[
δij +

∫
(fϕ̃iεϕj − fϕjεϕ̃i − fϕjε(fϕ̃i)) dx

]
0≤i,j≤N−1

(remember εf =
∫
ε(x− y)f(y) dy = 1

2

∫
sgn(x− y)f(y) dy)

= det(I +K
(1)
N f),

once again using det(I +AB) = det(I +BA). Indeed set

A : L2(R)⊕ L2(R) 7→ RN , B : RN 7→ L2(R)⊕ L2(R)

with

A(i, x) = f(−εϕ̃i − ε(fϕ̃i), ϕ̃i), B(x, i) =
(
ϕi
εϕi

)
and so

det(I+BA) = det

(
I +

N−1∑
i=0

B(x, i)A(i, y)

)

= det
(
I−
∑
ϕi ⊗ (fεϕ̃i+fε(fϕ̃i)),

∑
ϕi ⊗ fϕ̃i

−
∑
εϕi ⊗ (fεϕ̃i+fε(fϕ̃i)), I+

∑
εϕi ⊗ fϕ̃i

)

= det
((

I−
∑
ϕi ⊗ fεϕ̃i,

∑
ϕi ⊗ fϕ̃i

−
∑
εϕi ⊗ fεϕ̃i−εf, I +

∑
εϕi ⊗ fϕ̃i

)(
I 0
εf I

))

= det
(
I −

∑
ϕi ⊗ fεϕ̃i,

∑
ϕi ⊗ fϕ̃i

−
∑
εϕi ⊗ fεϕ̃i − εf, I +

∑
εϕi ⊗ fϕ̃i

)
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(using εT = −ε, detXY = detX · detY , det
(
I 0
εf I

)
= 1)

= det

I +

 −∑ϕi ⊗ εϕ̃i,
∑
ϕi ⊗ ϕ̃i

−
∑
εϕi ⊗ εϕ̃i − ε,

∑
εϕi ⊗ ϕ̃i

 f


= det(I +K

(1)
N f),

concluding the case β = 1 and the proof of Theorem 5.1.1.

Remark 2. The above methods also work for the circular ensembles, see
[Tra98].

Remark 3. For β = 2, we have shown

E

 N∏
j=1

(1 + f(xj))

 = det(I +K
(2)
N f). (5.2.10)

Setting f(x) =
∑n

r=1 zrδ(x− yr), we find

det(I +K
(2)
N f) = det[δij +K

(2)
N (yi, yj)zj ]1≤i,j≤n

and so it is easy to see from the definition (5.1.4) that

Rn(y1, . . . , yn) = coeffz1···znE

 N∏
j=1

(
1 +

n∑
r=1

zrδ(xj − yr)

)
= coeffz1···zn det[δij +K

(2)
N (yi, yj)zj ]1≤i,j≤n

= det[K(2)
N (yi, yj)]1≤i,j≤n, (5.2.11)

which we saw in Chapter 4. The probability that no eigenvalues lie in J ∈ R,
E(0; J) is clearly:3

E(0; J) = E

 N∏
j−i

(1− χJ(xj))

 = det(I −K(2)
N χJ), (5.2.12)

3χJ(x) is the indicator function for the set J .
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and more generally the probability of ni eigenvalues in Ji, 1 ≤ i ≤ m is given
by

E(n1, . . . , nm; J1, . . . , Jm) =
∫
· · ·
∫
P

(2)
N (x1, . . . , xN ) dx1 . . . dxN(

ni of xj ∈ Ji, 1≤i≤m
all other xj ∈ (∪mi=1 Ji)

c

)

= coeffQm
i=1(zi+1)ni

E

 N∏
j=1

((
1−

m∑
i=1

χJi(xj)

)
+

m∑
i=1

(zi + 1)χJi(xj)

)
=

1
n1! . . . nm!

∂
P
ni

∂zn1
1 . . . ∂znmm

det

(
I +K

(2)
N

m∑
i=1

ziχJi

)
|z1=...=zm=−1.

(5.2.13)

For β = 1 and 4, we have shown

E

 N∏
j=1

(1 + f(xj))

 = (det(I +K
(β)
N f))1/2, (5.2.14)

and so as before we have

Rn(y1, . . . , yn) = coeffz1···znE

 N∏
j=1

(
1 +

n∑
r=1

zrδ(xj − yr)

)
= coeffz1···zn(det[δij +K

(β)
N (yi, yj)zj ]1≤i,j≤n)

1
2 (5.2.15)

and that

E(0, J) = E

 N∏
j=1

(1− χJ(xj))

 = (det(I −K(β)
N χJ))

1
2 ,

while

E(n1, . . . , nm; J1, . . . , Jm) =
1

n1! . . . nm!
∂

P
ni

∂zn1
1 . . . ∂znmm

det

(
I +K

(β)
N

m∑
i=1

ziχJi

) 1
2

|z1=...zn=−1.

While Rn(y1, . . . , yn) is much more complicated in the β = 1, 4 case, than the
β = 2 case, that is not true for the so-called cluster functions, see [Tra98].
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(2)
N ANDK

(1)
N ,K

(4)
N VIA SKEW-ORTHOGONAL POLYNOMIALS11

5.3 Relations between K
(2)
N and K

(1)
N , K

(4)
N via skew-

orthogonal polynomials

Theorem 5.2.1 describes the kernels in terms of

Ŝ
(β)
N (x, y) :=

σN−1∑
i,j=0

ϕi(x)µ(β)
ij ϕj(y),

with ϕi(x) = w(x)pi(x), β = 1, ϕi(x) = (w(x))
1
2 pi(x), β = 2, 4 while σ = 1,

β = 1, 2, and σ = 2, β = 4, with pi(x) arbitrary polynomials of degree i and

µ
(β)
ij given by [(µ(β))−1]ij = 〈ϕi, ϕj〉β,

with

〈f, g〉1 =
∫∫

ε(x− y)f(x)g(y) dxdy, 〈f, g〉4 =
∫

(f(x)g′(x)− f ′(x)g(x)) dx,

〈f, g〉2 =
∫
f(x)g(x) dx.

Note 〈 , 〉1 and 〈 , 〉4 are skew-symmetric inner products, while 〈 , 〉2 is a
symmetric inner product. In Remark 1, it was mentioned that the Ŝ(β)

N (x, y)
were insensitive to the choice of polynomials pi(x) and in all three cases the
ŜβN (x, y) is the Christelhoff-Darboux kernel corresponding to the inner product
〈 , 〉β. Thus the case β = 2 seems related to orthonormal polynomials, while
the cases β = 1 and 4, seem related to skew-orthonormal polynomials, due to
the canonical form of the Christelhoff-Darboux kernels in these two cases, i.e.,
upon picking µ(2) = IN , µ(1) = µ(4) = JN . If we do this, it turns out, at least
for the classical weights, the S(β)

N (x, y) for β = 1, 4 can be described using the
S

(2)
N ′ (x, y) for appropriate N ′, plus a rank 1 perturbation.

Before stating the fundamental theorem relating the orthonormal and skew-
orthonormal polynomials that enter into the Christelhoff-Darboux kernels
Ŝ

(β)
N (x, y), we need some preliminary observations. Indeed, given a weight
w2(x), perhaps with support on an interval I, it can be represented as w̃2(x)χI(x);
however, we shall suppress the χI(x) and the ∼, while still integrating over R
and making the assumption that w′2/w2 = −g/f , with g and f polynomials
with no common factor such that f(x)w2(x) vanishes at the endpoints of the
support interval I (in the limiting sense for endpoints at ±∞) and f > 0 in the
interior of I.

Then given the inner product:

(ϕ,ψ)2 =
∫

R
ϕ(x)ψ(x)w2(x) dx =

∫
I
ϕ(x)ψ(x)w2(x) dx,
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we have two natural operators (on the space of polynomials in x) going with
w2(x). The first being the operator multiplication by x, and the second the
first-order operator (see [Adl02])

n := f
d

dx
+ f ′ − g =

(
f

w2

) 1
2 d

dx
(fw2)

1
2 (5.3.1)

and we have

(xϕ, ψ)2 = (ϕ, xw)2, (nϕ, ψ)2 = (−ϕ, nψ)2,

i.e., x is a symmetric operator and n a skew-symmetric operator with respect
to ( , )2. The operator n is unique up to a constant, but we can rquire ±f
to be monic, making n unique. The existence of x forces a 3-term recursion
relation involving x on the orthonormal polynomials with respect to ( , )2,
and in the case of the classical weights, it forces a 3-term recursion relation
involving n. This follows from the fact that x and n, in the basis of orthonormal
polynomials, are represented respectively by a 3-band symmetric matrix L and
a 3-band skew-symmetric matrix N . In general N has 2d + 1 bands, with
d = max(degree f − 1, degree(f ′ − g)), giving rise to a 2d+ 1 skew-symmetric
recursion relation involving n.

Let us now define (χI(x) suppressed as usual):

w1(x) :=
(
w2(x)
f(x)

) 1
2

, w4(x) := w2(x)f(x), (5.3.2)

and the associated inner products:

(ϕ,ψ)1 :=
∫∫
R2

ϕ(x)ψ(y)ε(x− y)w1(x)w1(y) dxdy, (5.3.3)

(ϕ,ψ)4 :=
∫

R

1
2

(ϕ(x)ψ′(x)− ϕ′(x)ψ(x))w4(x) dx,

(ϕ,ψ)2 =
∫

R
ϕ(x)ψ(x)w2(x) dx.

This brings us to following theorem, whose proof4 is found in [Adl02]; relating
the above inner products, and in the classical cases, relating the skew-symmetric
orthonormal polynomials going with ( , )1 and ( , )4 with the orthonormal
polynomials going with ( , )2. This theorem generalizes work of [Bre91].

Theorem 5.3.1 Given the three weights wβ(x) of (5.3.2) and inner products
( , )β of (5.3.3), and the operator n of (5.3.1), then all the inner products are
determined by w2(x) and n as follows:

4In fact in [Adl02], in sections 6 and 7, (5.3.5) is proven along the way in getting a different
choice of skew-orthonormal polynomials. There is a small error in the β = 4 case.
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(ϕ, n−1ψ)2 = (ϕ,ψ)1, (ϕ, nψ)2 = (ϕ,ψ)4. (5.3.4)

The mapping of orthonormal polynomials pi(x) with respect to ( , )2 into
a specific set of skew-orthonormal polynomials qi(x) with respect to ( , )β,
β = 1, 4 is given by, in the three classical cases:

q2n = p2n, q2n+1 = c2np2n+1 − c2n−1p2n−1, β = 1, (5.3.5)

q2n = p2n +
n−1∑
`=0

n∏
k=`+1

(
c2k−1

c2k−2

)
p2`, q2n+1 =

p2n+1

c2n
, β = 4,

with the ck’s defined by the operator n as follows

npk = ck−1pk−1 − ckpk+1, n = f
d

dx
+
f ′ − g

2
,

w′2
w2

= −f
′

g
, (5.3.6)

with f and g polynomials having no common root.

Remark 4. In the three classical cases of Hermite, Laguerre and Jacobi one
finds for the orthonormal polynomials pk(x) that5

xpk = ak−1pk−1 + bkpk + akpk+1, npk = ck−1pk−1 − ckpk+1, (5.3.7)

with

Hermite: w2(x) = e−x
2
, f = 1, an−1 =

√
n/2, bn = 0, cn = an, (5.3.8)

Laguerre: w2(x) = e−xxαχ[0,∞)(x), f = x,

an+1 =
√
n(n+ α), bn = 2n+ α+ 1, cn =

an
2
,

Jacobi: w2(x) = (1− x)α(1 + x)βχ[−1,1](x), f = 1− x2,

an−1 =
(

4n(n+ α+ β)(n+ α)(n+ β)
(2n+ α+ β)2(2n+ α+ β + 1)(2n+ α+ β − 1)

) 1
2

,

bn =
α2 − β2

(2n+ α+ β)(2n+ α+ β + 2)
, cn = an

(
α+ β

2
+ n+ 1

)
.

Sketch of Proof of Theorem 5.3.1: Formula (5.3.4) is a consequence of(
d

dx

)−1

ϕ(x) =
∫

R
ε(x− y)ϕ(y) dy,

d

dx
ϕ(x) =

∫
R
δ′(x− y)ϕ(y) dy.

5Here we include χ rather than suppressing it.
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The map O which takes p := (pi(x))i≥0 into q := (qi(x))i≥0, i.e., q = Op,
with O a lower triangular semi-infinite matrix is given respectively for the cases
β = 1, 4 by performing the skew-Borel decomposition

−N−1 = O−1J∞(O−1)T , β = 1, −N = O−1J∞(O−1)T , β = 4, (5.3.9)

with N the skew-symmetric 3-band semi-infinite matrix, which expresses the
operator n in the orthonormal basis {pk} (given in (5.3.6) and (5.3.7) in terms
of the ck, k ≥ 0) and J∞ is the semi-infinite symplectic matrix, I∞ ⊗

[
0 1
−1 0

]
.

One makes use of the non-uniqueness of the skew-orthonormal polynomials

(q2n, q2n+1) 7→
(
δnq2n,

1
δn

(q2n+1 + γnq2n)
)
,

to maximize the simplicity of the transformation p 7→ q.
For general m semi-infinite and skew-symmetric, one performs the “skew-

Borel decomposition”, m = O−1J∞(O−1)T , for O lower triangular, by forming
the skew-orthogonormal polynomials (hi(z))i≥0 going with the skew-symmetric
inner product defined by 〈zi, zj〉 = mij , i, j ≥ 0 and setting

O: O(1, z, z2 . . . , )T = (h0(z), h1(z), . . . , )T .

This is fully explained in [Adl99] and is an immediate generalization of m
symmetric case (see [Adl97]). In [Adl99] the recipe for the hi(z) is given, to
wit:

h2n(z) =
1

(Pf(m2n)Pf(m2n+2))
1
2

Pf



1
z
...

m2n+1

z2n

−1,−z, . . . , ,−z2n 0



h2n+1(z) =
1

(Pf(m2n)Pf(m2n+2))
1
2

Pf



1 m0,2n+1

z m1,2n+1
...

...
m2n

z2n−1 m2n−1,2n+1

−1,−z, . . . , −z2n−1 0 −z2n+1

−m0,2n+1, . . . ,−m2n−1,2n+1 z2n+1 0


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with mk := (mij)0≤i,j≤k−1 and Pf(A) = (detA)
1
2 for A a skew-symmetric

matrix.

Remark 5. In the nonclassical case, one still has the same recipe for O,
(5.3.9), but in general N will have 2d+ 1 bands, d > 1, and so O will increase
in complexity with increasing d > 1.

We can apply Theorem 5.3.1 to compute Ŝ(β)
N (x, y) and hence S(β)

N (x, y) for
β = 1, 4 by setting µ(β)

ij = Jij , so that (up to the weight factor) the ϕi(x) are
skew-orthogonal polynomials. This leads to the following theorem, found in
[Adl00].

Theorem 5.3.2 In the case of the three classical weights of Remark 4, the
β = 1, 4 kernel is given in terms of the β = 2 kernel as follows:

S
(1)
N (x, y) =

(
f(y)
f(x)

) 1
2

S
(2)
N−1(x, y) + cN−2

ϕ
(2)
N−1(x)

(f(x))
1
2

ε

(
ϕ

(2)
N−2

(f)
1
2

)
(y), N even

(5.3.10)

S
(4)
N (x, y) =

(
f(y)
f(x)

) 1
2

S
(2)
2N (x, y)− c2N−1

ϕ
(2)
2N (x)

(f(x))
1
2

∫ ∞
y

ϕ
(2)
2N−1(t)

(f(t))
1
2

dt, (5.3.11)

where ϕ(2)
k = (w2)

1
2 pk, with pk and S(2)

k (x, y) being the usual orthonormal poly-
nomials and Christelhoff-Darboux kernel with respect to the weight w2. Given
the weight w(x) appearing in P

(β)
N (x1, . . . , xn), β = 1, 4, (5.1.1), pick w2(x)

such that

w(x) =
(
w2(x)
f(x)

) 1
2

, β = 1 and w(x) = w2(x)f(x), β = 4, (5.3.12)

with
w′2(x)
w2(x)

= − g(x)
f(x)

, f(x) = 1, x, 1− x2,

respectively for the Hermite, Laguerre and Jacobi cases of Remark 4. The ck
are defined by

npk = ck−1pk−1 − ckpk+1, n = f
d

dx
+
f ′ − g

2
,

and are given explicitly in Remark 4.

Remark 6. In the special case of the Gaussian potential, w2(x) = e−x
2
, [Tra98]

showed that S(β)
N (x, y) also have the above representation:

S
(1)
N (x, y) = S

(2)
N (x, y) +

(
N

2

) 1
2

ϕN−1(x)εϕN (y),
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2S(4)
N (x, y) = S

(2)
2N+1(x, y) +

(
N +

1
2

) 1
2

ϕ2N (x)εϕ2N+1(y),

but in order to obtain one formula for all three classical cases we need the above
theorem. Indeed, the above formula and different formulas for the Laguerre
case due to [For99] are found in [Adl00], section 4, and shown to agree with the
theorem at the end of the paper.

Sketch of Proof of Theorem 5.3.2. The proof uses (5.3.5), which is a
consequence of (5.3.12). Set µ(β)

ij = Jij , β = 1, 4 in (5.2.6) and (5.2.8), and then

substitute in S
(β)
N (x, y), β = 1, 4 respectively that

εϕk(v) =
1

w(v)
〈δ(x− v), qk〉1, , ϕk = wqk,

εϕ′k(v) =
1

(w(v)
1
2

〈δ(x− v), qk〉4, , ϕk = w
1
2 qk,

δ(x− y) =
∞∑
n=0

ϕ(2)
n (x)ϕ(2)

n (y).

Then using both (5.3.5) and the inverse map, finally yields the theorem.
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