PDE’s for the Dyson, Airy and Sine processes

Mark Adler*

1 Results

The Dyson Brownian motion (see [5])

(Al(t),...,)\n(t)) € R",

with transition density p(¢, u, A) satisfies the diffusion equation
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This describes n Brownian motions repelling each other, but held together
by the exponential term in ®()). The motion also corresponds to the motion
of the eigenvalues of an Hermitian matrix B = (B;;) evolving according to
the Ornstein-Uhlenbeck process
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with transition density (¢ = e )

1 1 Tr(B—cB)2
a=awnt A

The B;;’s denote the n? free real quantities in the Hermitian matrix B and
in particular the B;; are its diagonal elements; moreover, one may view B
as parametrizing initial data. In the limit ¢ — oo we find the stationary
distribution

P(t,B.B)= 27"

n
Ze "B = 27 AP (M) [ [ e M dXs
1
and taking this invariant measure as the initial condition, one finds for the
joint distribution (¢ = e~(f2=#))

dBd B, ~ oz T(B}—2¢B1 Ba+ BY)

P(B(tl) € dBl,B(tQ) € dBQ) == Zi] me s

and similarly for the joint distribution involving more times. This expression
is evaluated using the Harish-Chandra-Itzykson-Zuber formula.

The probability of the distribution of the eigenvalues for the GUE en-
semble is expressible as a Fredholm determinant involving the well-known
Hermite kernel [7]. P. Forrester, T. Nagao and G. Honner [7] showed that
the Dyson process goes with a so-called “extended Hermite kernel” which we
give, following K. Johansson [9], to wit the matrix kernel

Zeik(t’;t")@nfk(m)Sank(y), if t; > 1y
K (wy) =4 ' (1.1)
- Z ek(tjiti)@nfk(x)@nfk(y)a if ¢; < tj s
k=—oc
where
orla) = ¢ Pp(a), for k>0, with p(a) = ge
= 0, for k < 0;

pr(z) are the normalized Hermite polynomials. Then we have
P(all \i(t) € By, all \(ty) € Ey) =det (I — K™7), (1.2)
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with the matrix kernel

K () = (I ()KL )T, (0)) (1.3)

1<i,j<2
with Ig(z) the indicator function of FE.

The Airy process is defined by an appropriate rescaling of the largest
eigenvalue ), in the Dyson process

A(t) = lim V2n!/0 (An(n’]/?’t) - m) ,
n— 00

in the sense of convergence of distributions for a finite number of ’s. Prahofer

and Spohn [12] introduced this process in the context of polynuclear growth

models and showed it is a stationary process with continuous sample paths;

hence the probability P(A(t) < u) is actually independent of ¢ and given by

the Tracy-Widom distribution [14] Painlevé II equation,

Pl < w =P = e (~ [Tla - wiada) . 1)

u

with ¢(«) the solution of the Painlevé II equation,

e~ "ia
—2/mall for a " oc

V—a/2 for a N\, —oc.

Similarly the Sine process, introduced by Tracy-Widom [16], is an infinite
collection of non-colliding processes S;(t), obtained by rescaling the bulk of
the Dyson process, in the same way as the bulk of the spectrum of a large
Gaussian random matrix; namely

Si(t) == lim v2n

n—oc T

¢" = aq+2¢° with q(a) = (1.5)

Tt
An oy <2n> for — o0 <i < oo, (1.6)

in the sense of convergence of distributions for a finite number of ¢'s. Thus
by rescaling the extended kernel by

-
\/_nl/G,y V2n + \/_nl/ﬁ =37 (1.7)

Airy process: = = V2n +

and



2

S um vr_,_ T (1.8)
ine process : T = RTES b= :
P V2n Y V2n 2n
we are lead to the Airy and Sine kernels
/ e 2T Ai(u + 2)Ai(v + 2)dz,  if T > T
Kt/i‘tj (u,v) = 0 0 (1.9)
— T Ai(u + 2)Ai(v + 2)dz, if T < T,
1 " —22(1;—15)/2 :
— [ e Vi cosz(u —v)dz, if T, > 7
s 7r '
Ktjtj (u,v) = 1° (1.10)

[e.e]

a2 .

—— / e * T 2eosz(u — v)dz, if T <71,

p .
J T

Just as in the Dyson process, we find the joint probabilities for both the
Airy and Sine processes can be expressed in terms of a Fredholm determinant
involving the above kernels, to wit:

P(A(r) € Ff, A(m) € F§) = det(I — K*F)

P(all Si(my) € Ff, all So(1y) € F§) = det(I — K5), (1.11)
with the matrix kernels
KA’F(UJ U) = (IFZ(U)KTNV (U, U)]Fj(v))lgi’jgg

KS’F(U,, v) = (Ir(u) Ky, (u, 7))ij(7)))]9.,j§2.

For the Sine process, F; and F, must be compact. Natural choices for
the F; are

F; = (u;,00)  for the Airy process

F; = (u;,v;)  for the Sine process.

Indeed, it turns out that when F; and F5 are the union of a finite number of
intervals, then all three Fredholm determinants going with the Dyson, Airy
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and Sine processes satisfy a third order partial differential equations in the
time t =ty — t; and the end points of the intervals making up E; and E.
In order to state the results, the disjoint union of intervals in R,

E] = U::] [(Lgi,],agi] and EQ = Uf:] [bgi,] s bgl] g R, (]_]_2)

and t =ty — t;, ¢ = e ! define an associated set of linear operators

2r
0 0
A = — +c —
21:3%' T 0b;
Ay = EQT: —+(’ Zb 1—(’2)2—('2
? — " Da, 781) ot
By = A B, = A, (1.13)
a+—b a+—b

We now state

Theorem 1.1 (Dyson process) Givent, < ty andt = ty—ty, the logarithm
of the joint distribution for the Dyson Brownian motion (A (1),..., \.(%)),

Gn(t;ay, ..., a9 by, ...y bag) :=log P(all N\i(t1) € Ey, all M\i(t2) € Fy) (1.14)

satisfies a third order non-linear PDE in the boundary points of Fi and F»,

which takes on the simple form, setting c = e ¢,

By A G, AsB,G,
= . 1.1
A] B] .A] Gn + 2nc B] .A] B] Gn + 2nc ( 5)

Similarly, the disjoint union of intervals in R

Fy = Ul [ugi—1, ug] and Fy := U]_{[ve;_1,v9] C R

and t =ty — t; define an associated set of linear operators
2r a
=2y F Zw g

, E, = Eq

uU—rv

We now state the analogous equations for the Airy and Sine processes.

(1.16)
L, =1L

u

uU—rv



Theorem 1.2 (Airy process) Given t; < ty and t = ty — t1, the joint

distribution for the Airy process A(t),
G(t;ur, ... Ugp; Uy, ..., 0ag) = log P (A(ty) € Fy, A(ty) € Fy),
satisfies a third order non-linear PDE ' in the u;, v; and t,

((Lu 4 L) LBy — LyEy) + 1*(Ly — LU)LUL,,>G
1

=s{w-me, L.+ Lye)

2 Lu+Ly

and in the case of

F, = —oo,y+x ,Fy = —oo,y_x ,
2 2

the Airy joint probability

H(t;z,y) :=log P <A(t1) < y;xaA(tQ) < - x) ;

satisfies the simple PDE in x,y and t*:

O*H 5 O 0 0*H 0*H 0’H 0°H
2t = t"— —x— — +88 — —
otoxdy ox dy 0x? oy? dxdy” 0y* |,

where moreover

li{‘rﬂlH(t;x,y) =log F (min(y;x, Y ; x)) :

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

Theorem 1.3 (Sine process) For t; < ty, and compact Fy and F, C R,

the log of the joint probability for the sine processes S;(t),

G(t;ur, ... Ug v, ..., Vag) = log P (all S;(t1) € FY, all Si(ty) € Fy),

(1.22)

lin terms of the Wronskian {f(y),9(y)}, := f'(v)g(y) — f(y)g'(y) and F is as in (1.4).
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satisfies the third order non-linear PDE,

(2E,L,+ (B, — E, —1)L,)G ’ (2E,L, + (E, — B, — 1)L,)G

! (Ly + L,)2G + 72 o (Ly + L,)2G + 72
(1.23)
which in the case of
Fy o= [y 4 w9, w1 — @] and Fy = [y1 + ya, y1 — 4o, (1.24)

the joint probability for the Sine process

H(t;z,y) = 10gP<S(t1) ¢ (w1 + 29, 11 — x2], S(t2) & [y1 + y2, y1 — UQ])
(1.25)
satisfies the PDE

P (2Ey%+(Enyx—1)%)H 9 (QEI%HEFEFU%)H

9, ((r,i—l-ai)QH—Fﬁz % (i+i>2H+7r2
T Y1

The PDE’s are an effective tool to easily compute large time asymptotics
for these processes upon an assumption on the interchange of sum and limits
which we now illustrate in the case of the Airy process.

Theorem 1.4 (Large time asymptotics for the Airy process) For
large t = ty — ty, the joint probability admits the following asymptotic se-
ries

t2 t4

P(A(L) < u, A(ts) < 0) = F(u) F(v) + T () @ )+ @, 1) <i> ,

in terms of the Tracy-Widom distribution (see (1.4), (1.5))
P =exo (= [ 6= witas).
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with,

([ow) ([re)

O(u,v) = Fyp(u)Fa(v) | + ¢*(u) (%QQ(“) - %(/:OquO‘)Q)

+/ da(2(v — a)¢® + ¢* — ¢*) / ¢*da
' ' (1.28)
Moreover, the covariance for large t =ty — t1 behaves as

E(A(t2) A(t)) — E(A(ts)) E(A(t)) = flz +ote . (129)

c:= 2// O (u,v)du dv.
R2

Section 2 of the present paper merely gives a sketch of the proof of these
results. For a complete and detailed account, see M. Adler and P. van Moer-
beke [1]. In a recent paper, Tracy and Widom [15] express the joint distribu-
tion for several times ¢, ..., t,,, in terms of an augmented system of auxiliary
variables, which satisfy an implicit closed system of non-linear PDE’s. See
also Craig Tracy’s paper in this edition. In [16], Tracy and Widom define
the Sine process and find an implicit PDE for this process, with methods
analogous to the Airy process. Their methods are function-theoretical and
the quantities involved seem quite different from ours; the connection be-
tween the two sets of results is not transparent. Later H. Widom gave a
rigorous proof to the expansion (1.28), based on the Fredholm determinant
(1.9) giving the joint distribution.

where



2 Sketch of Proofs

In this section we briefly sketch proofs of the results in the previous section,
referring the reader to [1] for the full story. The point being to say what
results really depend on, which requires discussions whose depth varies case
by case! Consider a product ensemble

(My, My) € H?2 :==H, x H,
of n x n Hermitian matrices, equipped with a Gaussian probability measure

e d My d M, e~ 3 M +M3—2eM M)

Y

with Haar measure given by
dM; = A (x) [ [ dwidl;, — j=1,2,
1

The disjoint union
E = El X EQ = U:Zl[agi,l, a27;] X U';Zl[bgifl, bQ,] C RQ

specifies linear operators

~ 1 2r 6 2s 8 ~ 2r 6 8
A1—62_1<21267%+621:a—%> AQ—jz_;ajaT“j—Ca
[;’1:./4] ) BQZAQ )

Using integrable systems and Virasoro theory, it is established in [1] that :

Theorem 2.1 Given the joint distribution

P,(E) := P(all(M-eigenvalues) € Ey, all(My-eigenvalues) € Ey), (2.1)

the function F,(c;ay, ..., as, by, ... bay) :=log P,(E) satisfies the non-linear
third-order partial differential equation:

- ByA,F, - A,B,F,

Ay—2n g2l (2.2)
B A F, + ¢ ABF, + ¢

c2-1 c2—-1




Remark: Note that both P,(E; x E3) and P,(E{ x EY) satisfy the same
equation.

Theorem 1.1 is easily derived from Theorem 2.1 via the identity (see (1.14)
and (2.1) for the definition of G,, and F},)

Gn(t, A1y ey Qg b]a HS) b?s)

Aoy bl st
( \/1—02 \/1—02/2 VE \/(1—c2)/2>’

where ¢ = et t = ty—t;, which just results from a simple change of variables
in the matrix integrals.

Theorem 1.2 is derived from Theorem 1.1 by first doing an asymptotic
analysis, upon substituting the Airy scaling (1.7) into (1.14) G,:

on /on U1
n( ]/3, +\/7n]/6 +\/_n1/6 v2n+m,...,

V2n +

fﬂ”“)
= H,(m;u,v) = G(1;u,v) + O(1/n'/%), for n — co. (2.3)
with, as in (1.17)
G(t,u,v) :=log P(A(r) € F1,A(1) € Fy),

which is derived by analyzing the limit of the extended Hermite kernel to the
Airy kernel. Then one observes upon making the following substitution in
the operators Ay, As, By, By,

a; = V2n+ ——bi— V2n+ ——

-
\/_nl/G \/_nl/G nl/3 (2.4)

and setting k := n'/6,
L:=L,+ L'ua E:=E, + E’"’ (25)

that for large k:
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2T 1

i ST
k? vt 2k4

_ 4
Ay = 2k (L o

4 1
(E—1+47°L,) — (B, — 1+ S7Lo) + O(ﬁ)>

By = Ai|u «— v, By = As|u <— v. (2.6)

Substituting all these asymptotics, (2.3)-(2.6), into the Wronskian form of
(1.15), to wit:

0 = {Bth H,, (B] AHy + 2]{664/#) }_A

_ {A281 H,, <A1 B\H, + 2]{6677/192) }

B

= 1671 kﬁ [((Lu + Lq;)(LuEv - L?;Eu) + TQ(LU - L'U)LULU) G

1 1
-3 {(Ly — L)G, (L + L,)*G}, L+ O(E)} ,

upon using the linearity of the Wronskian {X,Y} in the three arguments
and the following commutation relations

[Lu; E’u,] = Lu; [Lu; Ev] = [Lu; Lv] = [Lu; T] =0 and [Eu; T] =T,

including their dual relations by u < v; also {L*G,1};, 1, = {L(L, —
L,)G,1}r. Tt is also useful to note that the two Wronskians in the first
expression are dual to each other by u <+ v. The point of the computation is
to preserve the Wronskian structure up to the end. This yields the first part
of Theorem 1.2, the second part following from the first part by specialization.

Theorem 1.3 is derived from Theorem 1.1 in the style of Theorem 1.2, by
first doing an asymptotic analysis, upon substituting the bulk scaling (1.8)
into (1.14) G,:

G 7'. U “‘27"_ m Vag
AN RN AW A W

= H,(7;u,v) = G(t;u,v) + O(1/+/n), for n — oo, (2.7)

11



with, as in (1.22)

2 2
G(7,u,v) :=log P (all ﬁﬁSl(i;) € Iy, all \/§7r52(i22) € F;) :
7r ™
Then substitute
U; V; T
a; : ; t:=— (2.8)

Tovn T am T

into the operators Ay, Ay, By, By, and setting k = y/n compute

T 1
A= w(e fneo(L))

2T 1

Bl = Al‘ BQ == Bl‘ (29)

Finally, substituting all these asymptotics, (2.7)-(2.9) into the Wronskian
form of (1.15), yields after some effort:

u—v’ u—v’

0 = ({BQA] H,, B A H, + 2k*c ¥} 4, — {A,BH,, A B H, + 2/#57/’62}31)

- |
= 167k> [{(E —1)LG,, L*G, + 5}

Lu 7L1)

- {(Q(Eu — 1)L+ (E+1)L,)Gn, LG, + %}

L

~ ~ 1 1
+ {(2(E7, —-1)L+ (E+1)L,)G,, LG, + 5} +0 (Eﬂ :
L
which implies the first part of Theorem 1.3; the second parts following by
specialization.
In order to prove Theorem 1.4, we need to show first the following a prior:
asymptotic expansion:

- A
P(A(t) <u, A(t) <v) det (f - (Ktitj)lgz',m)
PA() w)P(A(R) <v) - det (1 - K, ) det (1- K,,)
fi(u,v)
= 14y

12



with ¢t =ty — 1, following Widom [17], and then assume the following plau-
sible conjecture:

lim f;(u,v) =0, for fixed v € R

U—00
lim fi(—z,z+2) =0, forfixedz € R (2.10)
zZ— 00

being essentially equivalent, respectively, to the following natural conditions:

lim P(A(t) <v ]| A0) <u) = 1

V— 00

lim P(A(t) <z+x ]| A0) < —2) = 1 (non-explosion). (2.11)

Z2—00

Remembering that P(A(t) < u) = F(u) and noting f;(u,v) = fi(v,u), the
result is proven by then substituting equation (2.10):

G(t;u,v) = H(t;u—v,u+v)=1log P(A(0) < u, A(t) < v)
h;(u,v
= log Fy(u) + log Fy(v) + ; (ti )
2
_ lOgFQ(U) + lOgFQ(U) + f] (“‘77)) + f2(ua 7)) fl (U, 7))/2 +...,

t t?

into the equation (1.21), now written in the ¢, u, v variables:

fﬁ(a_Q _ 8_2) — oG (282G + G — G +u—v— 72)
ot \ou?  Ov? ou20v \ Ov? oudv ou? /
B *G ( 82G+ 0’G B 0’G
ovZou \ Ou?  Oudv 0v?

*G 0 *G 0 0 0
Howan a0 a0) (3u t 3,6

—u+v—72>

yielding equations of the form

£h7 = fllﬂCtiOIl(hl, ce, hifl),

0 0 0?
L= (% a %) 0udv

13
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with null-space of the form ri(u) + r3(v) + ro(u + v). It is precisely the
conditions (2.11), (1.4) and (1.5) which enable us to kill off the unwanted
null-space and deduce the first part of Theorem 4, the second part being an
immediate consequence of the first part.
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