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Abstract. The invariant surfaces for the Kowalewski top, the Hénon-Heiles
system and the Manakov geodesic flow on SO(4) complete into Abelian
surfaces A, by adjoining, in each case, a divisor D of arithmetic genus 9; these
divisors belong to the same linear system on A and they each define a
polarization (2,4). Therefore there are rational maps transforming the
Kowalewski top and the Hénon-Heiles system into Manakov’s geodesic flow
on SO(4). This paper deals with the precise geometric relationship between
these three problems; it is based on the splitting of the 8-dimensional space of
sections of D (theta-functions) into an even and an odd part and also on a
normal form for the six quadrics describing A4, as embedded in P7. As a
byproduct, we get a 2-dimensional family of Lax pairs for both the Kowalewski
top and the Hénon-Heiles system.

1. Introduction

Integrable systems have been integrated classically in terms of quadratures,
usually through a sequence of very ingenious algebraic manipulations especially
tailored to the problem. More recently, it was realized that whenever a system
could be represented as a family of Lax pairs — often arising in the context of
coadjoint orbits of Kac-Moody Lie algebras — the system could be linearized on
the Jacobian of a spectral curve, defined by the characteristic polynomial of one of
the matrices in the Lax pair. However this approach has remained unsatisfactory;
indeed (i) finding such families of Lax pairs often requires just as much ingenuity
and luck as to actually solve the problem:; (ii) it often conceals the actual geometry
of the problem. Therefore we have engaged in a systematic approach towards
solving integrable systems, based on the Laurent solutions of the differential
equations [5]; This is done in the context of algebraically completely integrable
systems. The latter means: the system has polynomial invariants, in sufficient
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number, their (compact) invariant surfaces are real tori (by the Arnold-Liouville
theorem), the invariant surfaces viewed as complex manifolds extend to complex
algebraic tori, upon adjoining some divisor, and the phase variables are
meromorphic functions on those tori. The Laurent solutions to the differential
equations, depending on a sufficient number of parameters, provide the way to
complete the affine invariant surfaces to complex algebraic tori; and these
solutions, properly decoded, provide all the information about the tori and their
periods.

Two integrable Hamiltonian systems may look very different and yet be related
by some rational map, involving all the phase variables. It is hopeless to guess this
map by mere investigation of the differential equations, but the study of the nature
of the tori yields the key to whether the systems are rationally related and it
provides the explicit rational map. In this paper we show that three seemingly
unrelated problems — the Kowalewski top, the Hénon-Heiles system, and the
geodesic flow on SO(4) for the Manakov metric — are rationally related. Moreover
we give the precise rational map from one to another; it is closely tied up with the
beautiful geometry of line bundles on Abelian surfaces of polarization (2, 4). The
birational equivalence between those systems enables us to carry properties
from one system to another; in particular as a by-product we write down a
two-dimensional family of Lax pairs for the Kowalewski top and the Hénon-
Heiles problem. This two-dimensional family of Lax pairs leads to a spectral
surface, rather than a spectral curve. The nature of this surface will also be
discussed in this paper.

We give a brief description of the three problems:

I. Kowalewski’s top [21,22] rotates about a fixed point, its principal moments
of inertia A=diag(4, B, C) (with regard to the fixed point) satisfy the relation
A=B=2C and its center of mass belongs to the equatorial plane (4B plane)
through the fixed point. The motion is governed by the equations

m=mAim+yal, J=yAim, 0)

where m, [, and y denote respectively the angular momentum, the center of mass
and the unit vector in the direction of gravity, which after some rescaling and
normalization may be taken as [=(1,0,0) and Am=(m,/2,m,/2, m;). Besides the
two trivial invariants {m,y>=B, <y,7>=C, and the energy {im,m»/2+{Ly)
= A/2, the system has one other invariant, y, y, = D?, upon defining the change of

variables
my +im my —im
(xl,xz,x3,y1,,V2aJ’3):<< 1 2 2>’ < 1 2 2>’

ms, x%“(’h +1iy,), X%_(%—Wz),ys)a (1)

as S. Kowalewski shows in her famous 1889 Acta Mathematica paper. Through a
sequence of very clever algebraic manipulations, especially adapted to the
problem, she integrates the flow in terms of hyperelliptic quadratures, involving
the curve

H:y*=T(x)(x—D)(x+D), (2)
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where the cubic

A B*—
T(x)=det(M—xI)=x>— §x2+Cx+ B —AC

3 =(x—a;)(x—ay)(x—az) (3)

is the characteristic polynomial of the matrix

C-1 —B iC+1)
M=il -B 4 —iB |. 4)
i(C+1) —iB —(C—1)

For future use, we also introduce the orthogonal matrix U which diagonalizes M
(in terms of the spectrum ay, a,, a; of M) namely

UMUT =diag(a,, a,, a;). (5)

We now provide the geometric background to this problem. It was shown by
Lesfari [2] and Adler and van Moerbeke [ 5] that the affine surface defined by the 4
constants of motion of the Kowalewski top completes into an Abelian surface 4 by
adjoining a divisor D consisting of two isomorphic genus 3 curves D) and D®
intersecting in 4 points. Each D'is a double cover of an elliptic curve & ramified at 4
points: it defines a line bundle and a polarization (1, 2) on 4. Then 4 = C?/A4, where
the lattice A is generated by the period matrix

2 0 a b Imab>0
0 4 b ¢)° b ¢ '

The divisors 2D!, 2D? or D' + D? are all very ample and define polarizations
(2,4); the 8-dimensional space of sections (f-functions) of the corresponding line
bundle embeds the abelian surface 4 into IP”. For instance, setting D =D'?, the
space L(2D) is spanned by the following functions (in terms of (1)):

L2D)={x3—1, = 2x,i(x3 + 1), y,(x] = 1), = 2y,X1, iy,(x] +1),
—X3Xp+ Y3, Va(X1X3— y3)} - (6)

Also A is the dual of a Prym variety, namely 4 = Prym(D/&).
II. The Hénon-Heiles system

0H 0H
;= s p, = — 5 =1,2,
Gi=g =
with
H=0Q, =3} +y3)+xix,+2x3=4 0

is algebraically completely integrable with additional integral
2 22, X1
Q2=y1V2X1 —y1X2+X7X5+ ) =B

(see Bountis et al. [10]). The affine surface defined by the intersection {Q,=A}
n{Q,=B} completes into an Abelian surface, by adjoining a smooth genus 3
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hyperelliptic curve D; the latter is a double ramified cover of an elliptic curve &, but

also a double unramified cover of a genus 2 hyperelliptic curve
HyP=x(—4x*+2Cx+1), C=A4,4;3*,

on whose Jacobian the flow linearizes. The divisor D defines on A a polarization
(1,2). As before, the functions of

. i .
L(2D)= {1’ X15 x%, Xy, — 5(2x1x§+y1y2), —l(yf+xfx2), Y1ay2x1—2J’1x2}
(8)

embed A smoothly into IP7 with a polarization (2,4), and A=Prym(D/&)" is a
double unramified cover of Jac(#).
III. The geodesic flow on SO(4) for the Manakov metric is given by

(X +ah) = [X +oh, g—g +ﬁh], )
where
0 —X3 X3 X4
_ X3 0 —X; —Xs
X=Xy Cx, % 0 —x. €so(4),
X4 X5 X 0
O(:diag(ocl, ceny 064), ﬂ—_—dlag(ﬂb ""ﬁ4)’ (10)
BB
—1 B 2 i J
Q—Zlgi;jg‘tl”X”’ A o—ao;

The system has 4 invariants

2

Xz
0X)=Y —L =4, =123,

JEL OO
QuX)=)/detX =X,3X ,+ X351 X4+ X, X35=4,4,
and linearizes on the Jacobian of the spectral curve of (9), namely
P(z,h)y=det(X +ah—zI)=0.

(11)

4
The invariant surface (){Q;=4;} completes into an Abelian surface A by
1

adjoining a smooth curve € of genus 9, which is a 4-fold unramified cover of a
curve D of genus 3; the latter is a double ramified cover of an elliptic curve & and
therefore A =Prym(D/&). The functions of L(%)

L(%)= {xb s Xy 1 (003 — o) (0tg — 005) % X + (003 — 1) (oc4——ocl)x2x5}

embed A smoothly into IP” and the divisor & defines on A4 a polarization (2,4) (see
Haine [16]).
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To conclude, the invariant surfaces for these three problems complete into
Abelian surfaces by adjoining divisors; they each define a polarization (2, 4) and
they fortunately turn out to belong to the same linear system. Therefore there are
birational maps taking the Kowalewski top and the Hénon-Heiles problem to
Manakov’s geodesic flow on SO(4); to be precise, there is a one-dimensional family
of birational maps between the Kowalewski and Hénon-Heiles invariant tori and
those of the Manakov problem.

The aim of this paper is to provide an effective method to produce such
birational maps. They are given by identifying the three 8-dimensional spaces
L(2D%?), L(2D), and L(%) of Kowalewski, Hénon-Heiles, and Manakov; the space
of sections of the corresponding line bundles can be given a canonical basis
respecting the involutions on the Abelian surfaces. The exact map is then given by
identifying the bases of L(2D?), L(2D), and L(%) with the canonical basis.

To elaborate on the above procedure, consider a line bundle .# on the Abelian
surface defining a polarization (1, 2); for Kowalewski’s problem, pick D, or D,, and
for the Hénon-Heiles problem, D itself. Then for some origin on A and for the
natural reflection about this origin, the 8-dimensional space of sections of the line
bundle #®2 splits into two subspaces H* and H ™ of even and odd sections (theta
functions)

HY(#®*)=H*@®H ={0,,...,05}®1{0,,04} . (12)
They have the remarkable property that
{H",H™}C(H")®?, (13)

where {, } denotes the Wronskian {6,,6;} =6,X(0;)—0,X(0,) between two theta-
functions, with respect to an arbitrary holomorphic vector field X on 4. Then the
Abelian surface A embedded in IP7 can be described by 6 quadratic relations
between the O-functions, 3 of which involve even sections only and another 3
involving even and odd sections. However, the space of the three first quadrics
contains 4 collinear rank 3 quadrics. Therefore a canonical basis 8, can be picked,
up to a finite number of choices — such that the 6 quadrics have the form

3 3
Q1=;9i2=0) Q2=21:0i+3=0,
3

Q3= (:0;+7:+30:+3)7=0,  Q40,,...,0,)+65=0, (14)

1
050y, ...,06)+20,05=0, Q6(01,...,96)+0§=0.
Consider now the linear pencil of curves
1p=1{K0,+03=0}
on A4 and the corresponding affine surface .7, , = A\ %, ,; the latter is cut out by the

intersection of the 4 quadrics

3
ui=0, uf, =0, ;(“/i“i+?i+3ui+3)2=0’

~Mw
~PMw

15
0= (*Qu+K2Q s+ 12Q4) (K0, + 205) =0, (13
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expressed in terms of the affine variables
(Ugs Upy oy Ug)=(KO,+ 10g) " 1(KO;+ 104,01, ...,06), ug=1. (16)

As a consequence of (13), this surface .7, ; supports a closed system of quadratic
differential equations, depending linearly on k/1. We show that this system is
nothing but Manakov’s geodesic flow and that the affine surface .7, , is cut out by
the intersection of the 4 quadrics (11). The linear map u to the Manakov variables x
in (10) has the form

x; =)/ a; (u+bu;5),  Xies=)/a; (u;+b; us), (17)

where a and b7 are algebraic functions of the y; and /4, to be spelled out in
Sect. 3.

Returning to Kowalewski’s problem, the next step is to identify the space L(2D)
with the space (12) given by its canonical basis. The affine invariant surface ./
defined by the 4 constants of motion, given in I, have the following involution, in
terms of the variables defined in (1) (not to be confused with the Manakov
x;-variables):

T:(xlax27x37yl,y27y3)_’(xl9x2> — X3, V1, V25 ’__V3), (18)

which amounts to a reflection about some appropriately chosen origin on o/. A
different choice of origin would lead to a different involution. .o/ has also a second
involution

O-:(xl’xbx3>y17y25y3)_)(x2:x13 —X3,V2, V15 —y3) (19)

Then the map from the functions (6) in L(2D) to the u; variables is given by

Uy —(x3—1)\ | Uy [ —(xi—1) |
(uz =U 2X2 )7, Us =U( 2X1 2—— (20)
us, \—i(x3+1) b \Ug —i(x?+41) P

g

where U is the orthogonal matrix defined in (5) and where
P=K(y3—X2X3) = Ay,(y3—x1X3), p’=A—y3+x;x3)—Kky(—y3+x,x3).

Thus the combination of the maps (17) and (120) yields the one-dimensional family
of linear maps (depending on the parameter x/4) to the Manakov problem, thus
mapping the affine surface .« of Kowalewski to the surface .7, , of Manakov. For
the Hénon-Heiles problem one proceeds in a similar fashion.

Substituting the combined maps (17) and (20) in the Lax pair (9) leads to a two-
dimensional family of Lax pairs,

A(k,hy=[A(k,h), B(k,h)], A,Beso(d), k=x/2,
depending linearly on & and algebraically on k. The spectral surface defined by
P(k, h, z)=det(A(k,h)—zI)=0

is some appropriate projection of the invariant tori A. We conjecture it is an
expression for the dual A" of the tori 4. For six special values of k = /4, the spectral
curve P(k, h, z)=0 (k fixed) is hyperelliptic and, in particular for k=0 or oo, the Lax
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pair takes on the particularly nice form
(M+1)((v—1")®@w—17) + h(v+0°) + Th?)’
=[(M+D((v—v")®@w—0")+h(v+v°Y +Ih?), (M +D((v+v°Y +Ih)], (21)
where M is the matrix (4), o the involution (19),
v=—((x3—1), —=2x,, (x3+1))/2p, Pp=—y,V3—X,X3+X,X3V2+ V3,

and where " denotes the customary map

0 —¢ b
“R3-s50(3):(a,b,c)~| ¢ 0 — a) . (22)
—b a 0

Another Lax pair expressed in sl(6) coordinates, reads as follows:

( ) (ﬂ—l)h)'_[( ) (N—I)h>
(N—Dh o ) |\(N—=Dh 0 )’

<(M+1)(u—v<’y 2T(—DIh )J 23
2T(—)Ih  —(M+D)w—v°)) |’

where M is the matrix (4), where T'(x) is the cubic (3) and where

T(—1)+A—C+2 2B iT(—1)
N= 2B —A+C 0 ); (24)
L iT(—1) 0 —T(—1)—A—C—2,

observe that

301 1 1 1
UN-DHUT=2T(—1 I-2di
W=Dy ( )[;ai-H 1ag(czl—l—i’az+l’a3+1>]

in terms of the spectrum a; and the diagonalizing map U of M.

During the last ten years, there have been several attempts in constructing
meaningful Lax pairs for the Kowalewski top, notably among them the
constructions of Perelomov [31] and another one by Buys [11]. In each of the
cases there failed to be families of Lax pairs. Applying the methods (Theorems 1
and 2) presented in this paper to the divisor DY) + D@ (see description 1. above of
Kowalewski’s problem) with a reflection about a different origin, Haine and
Horozov [17] have obtained for the Kowalewski top a different Lax pair from the
ones in this paper. Also Fairbanks [13] has shown that every integrable system
which can be solved by hyperelliptic quadratures admits a 2x2 Lax pair
representation; this result is implicitly contained in the work of Adams et al. [1]
and based on the Moser [26] and Mumford [27] description of hyperelliptic
Jacobians. Meanwhile, R. Donagi has announced the result that every algebrai-
cally completely integrable system can — in principle — be represented as a
g-dimensional family of Lax pairs, where g is the dimension of the invariant tori.
Also, recently we have received a provocative preprint by Newel et al., [28], who
have obtained a Lax pair for the Hénon-Heiles system.
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2. Line Bundles on Abelian Surfaces Defining a Polarization (2.4)

Consider a line bundle . on an Abelian surface A defining a polarization (1, 2) and
its square £ ®? defining a polarization (2,4). The 8-dimensional space of sections
(theta functions) of #®2 splits into subspaces of even and odd sections for some
reflection about the origin. The Wronskian (with regard to any holomorphic
vector field on A4) of even and odd sections can be expressed quadratically in terms
of even sections. Between the 8§ sections forming a basis of H(£®?), there are 6
quadratic relations, three of which depend on the even sections only. It is
particularly convenient to use the set of quadrics in (3) introduced by Kotter
[19,20] and studied by us in [4]. They have the remarkable property that both the
3 3

affine surfaces () {®;=0}n{®,=0, 0,+0} and ) {@,;=0}n{P,=0, 0340} com-
1 1
plete into Abelian surfaces by adjoining 8-fold unramified covers of the hyperellip-
4
tic genus 2 curve y*=x[](x—b,), where the quantities b; appear in the quadrics
1

below; these curves will play a crucial role in the sequel. Throughout this paper,
V(Qy, ..., Q,)=TP"~ ! denotes the projective linear span of the quadrics Q4 ..., Q,.
Some of the ideas in this section have been inspired by Barth’s beautiful paper [7]
on Abelian surfaces of type (1, 2), by Haine’s[ 16] realization of these surfaces as the
intersection of 6 quadrics and by our study of quadrics containing curves of rank 4
quadrics [4].

Theorem 1. Consider an Abelian surface® A, and a line bundle ¥, defining a
polarization (1, 2) on A. For some origin on A, the 8-dimensional space of sections of
the line bundle £ ®? splits into an even and odd subspace for the reflection © about
that origin

HY(Z®Y)=H*®H ={0,,....0,}®{0,04). (1)

Letting X denote any holomorphic vector field on A, the sections 0 satisfy the
following relationship in terms of the Wronkians {0,,0;}=0,X0,—0,X0; of two

ti :
sections {H+,H_}C(H+)®2~ (2)

Moreover A, as embedded in P7 by the sections 0,, is described by the following 6
quadrics®:

3
451(9):29?, P,(60)= 29,+3,

3
OO =43 (B b 0+ B} F b 0y
§9+aﬁf

P,(0)=4% +03 ©)

302—02,, 0,0
5(0 _42 b b:3+ ;48

00—t bbab,e bbb,
1 4

! Not containing an elliptic curve
2 Note ¢, — P, =05 — P



Kowalewski and Hénon-Heiles Motions 667

or alternatively by the following quadrics:
3
oy =307,
1
2 2
Py = Z 07+ 3,

‘15%"22( a(‘92+91+ 3)+(di+1)0,0;43),

3)
:t=2;(‘ai9i2+9i0i+3)+9'72,
3
¢/5=2Zai0i0i+3 + 0505,
¢/6—2Z( a0} 3+ 00,43+ 03,
where 0, and 0 relate to 6, and 04 as follows:
/ / 0/ 0
0,= " Bopyr =Tl @
The parameters a,, b, and d; are related as follows:
d,=a,a;—aza, —aa, and cyclic permutation, )

b, a—1 T(—1
p=t ”4=\/—(T<1T)’ T(9 = (x—a,) (v — ) (x— ).

The quadrics @', ', and D% are in the linear span of @, ®,, and @5. The set of
quadrics @ has the following involutions:

T (04, ...,05)N(0,...,06, —0,,—0g): all ®; stay.

a: (04,...,08)(04,05,04,0,,0,,05,0, —0g): &P, & >d7,
D,, D, D stays.

D, >d], D, P

(6)
>{<D4H<D6, @ stays.

01:(0;40;15,0,—0,,5,0,,04)

0,01,
N <(—ll7171'—)’ (01+ 6i+3) i 08‘/—4’W

Notice ¢, is based on replacing ®,,®, by ®3,®P;, suggesting two additional
involutions: namely g, and g5, which are based on the interchanges ®,®3 and
D, >P5.

The projective linear span V(®,, ..., D) of the quadrics (3) contains a surface of
rank 4 quadrics, itself given by the intersection of 4 dependent cones K; (rank3
quadrics ) in IP°. This surface is precisely the Kummer surface KmA” associated with
the dual A" of A. The linear span of the first three quadrics @, ®,, @5 depends on
even sections 04, ..., 0 only and it contains four rank 3 quadrics @, ®,, P37, and d3,
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which can thus be viewed as points on A”; their intersection defines the Kummer
surface KmA.

Proof. First observe that dim H°(#) =2 and thus || is a one-dimensional pencil of
curves; let D, be a generic curve among them. Barth [ 7] proves that the base locus
of |.&| consists of four distinct points e, ..., e4, such that D, +¢;~ D,. Moreover the
general D, €|.%|is smooth and has genus 3. Then there exists an origin on 4 and a
reflection 7 having as fixed points (half-periods) the 4 points e,,...,e, and 12
additional points e, ..., e, Then according to Barth, for all De|.#|, tD=D and
(for D smooth) D/z is an elliptic curve & on the Kummer surface 4/z, showing that
Dis a double cover of an elliptic curve. Then the line bundle #®? is very ample and
there is a basis of even sections 0, ...,0, and odd sections -, 05 such that A4 (as
embedded into IP7 by these sections) is given by the 6 quadrics

Qi=(vi+v; (07 £03)—203£03)+(v;—v; 1) (03£605) =0,

i=1,2 associated with +
Q3=2((v3+v3 10,04 —20,05+(v;—v5 10505 =0,
Qu==(v; +v,) (0 +03) + (v, —v,) (03 +03)— 205+ 203 =0, (7
Q5=2v4(0,0,+050,)—20,05+20,04,
Qe=(v; =) (07 +03) +(v; +v,) (03 +03) — 203+ 205 =0;

the first three depend on even sections only and the three remaining ones depend
also on the odd sections 6, and 6.
Any linear combination of the Q,’s has the block form

3

XO+...+WO=Y (0,07 +20; 14300, 3+ 0. 307, 3)

1

+(0765+20, 40,05+ 9503), ®)

revealing the existence of 4 involutions. The locus of points p=(X, ..., W)eP5,
such that (8) is a rank 4 quadric is given by the intersection of the four quadratic
cones

Ki={l’|5i5i+3_5i2,i+3= }» K,= {p|5758_6$,8=0} i=1,2,3,

each having rank 3; the explicit expressions for the cones are the following

?}[(V1ivfl)XJrvl(UJrW)]Z—[(Vzivz_l)YJrvz(U—W)]2
3

—[(vs£viHZ +v3V]*=0,
K, 4(X + Y+ U)X — Y+ U)—(2Z + V)> =0,
K, 4UW—V?=0.

4
By straightforward computation we have K, — K; =K, —K, and therefore ") K;
1
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defines a surface, which Barth identifies with the Kummer surface KmA” of the dual
A" of the Abelian surface A:

4
V(Qis...,Qs)~P° D KmA = O K;=surface of rank 4 quadrics.

Taking into account the linear relation between the cones K, the hyperplane
section

KmA n{I2U —K*W=0}=K,nK,n{U=K?2, V=2KL, W=12}

is an elliptic curve, which can be viewed as the curve of rank 4 quadrics in the linear
span of the quadrics.

01,0,,03, QK/L=K2Q4+ 2KLQs+ Q.

According to Theorem 6 of [3], if the span of 4 quadrics of the block form (8)
contains a (nondegenerate) elliptic curve of rank 4 quadrics, then it contains a new
basis, which after a block-preserving change of variables, has the following form

B(0), ,(0), B(6), Dy, = K7Dy + 26Aby Dy + 20 )

in terms of the basis (4), for an appropriate choice of x and 4. To show that the
spaces spanned by the two sets of 6 quadrics (7) and (3) match, we observe that @,
&,, and @, are in the span of Q,, 0,, 05 and the rest of the argument proceeds by
picking three distinct values of K/L. This shows the basis (7) can be replaced by the

@’s of (3).
To see that the spans of the quadrics @, ..., @, and @1, ..., @ are the same, we
check
¢, =9,
¢2=
1
= + )P +(r F 4)P, + 29"
03 = AL NP +(rF 55
’ ’ b4 ’ ’ ’
¢4:@1+@2+E(@4—2¢5+¢6)>
— /_ 7 ¢/
Bo= 0}~ 0+ [ (P, ),
= / @, + 205+ Dy),
D=0+ 0+ (Pt 20 )
where

r=2a, +a,+as—a,a,a;), A*=4T()T(-1).

To do this identification, the b, must be related to the g; by the fractional linear map

z—1
zmz+—1b4. (10)
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It is trivial to check from the equations ¢=0 that the maps 1,0,0, are
involutions on A. The involution g, is obtained by changing variables 6,~0; such
that @,, @3 get mapped to @,, @5 . This is achieved by letting @,, @3 play the role
of @, and @, and &,, @5 play the role of @3, @5 ; this leads to a new set of quadrics
&y, ..., Pg, having the same form, but with new b; expressed in terms of the old b;s as
follows:

1—-bl2 .
(b;)l/zzm, l=1,2,3.
The involution g5 is similar to g,.

In order to establish the Wronskian relationship, observe that the affine surface

o,,; can be viewed as the intersection of 4 quadrics:

3
e E1‘1\‘{7697 + Mg = 0} = O {‘Di(“) = 0}m{¢x//’t(u) =0}, (11)
expressed in the affine coordinates
(U tyy -..r i) = (107 + 20g) " (k07 + 104,01, ..., 06),  uy+0, (12)

where @, ; has been defined in (9). These four quadrics are those obtained in [4,
Sect. 5]; there we exhibit two quadratic commuting vector fields u;=f(u, /1)
defined on o7, ;:

Uy [ Agsugls J3UizUs — AylisUg)
i Aactalie AqhyUg — A3lizliy
L:‘s — /154“5?4 —(4/b,) /:2“2?44—11“#5
iy Aglialig — AslizlUs AaaUslly,
Us Dqizliy — AUl AisUqls
g, \sttyls — Aqliply Ayrtigty

and (13)
iy | Aesuzty Asuzts — AjuaUg
U5 Asuzuy — AguigUe Ayttt
Uy | | Agusug— Agusty b A sUsly
i, | * Jiglallg — AsUzUs —(4/bs) MyalgUs ’
s AsqUiqli Aquigtig — Ayusuy
\1’26/ AUty / Ayt _2/3“4“5/

where 4;;=7;—/; and ;= A;— /), with

P 1 5 1 p 1 , 1
e At LA A )

and (b}, b5, b5,b,)=(by, by, bs,b;). These vector fields on o7, , extend to holo-
morphic vector fields X on T?2. Therefore substituting (12) for u; in 4; = f{(u, /1),
we find

{0, K05+ 204} (K054 205) "2 =f(04, ..., 06, 1c, 2) (KO, + 205) "2,
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where the f; denote quadratic polynomials of 04, ..., 0 depending on x/A. Picking
(rc, )=(1,0) and (0, 1), we find

{0,0,} =f(01,....,05,1,0) and {0,605} =1(0,,...,0,,0,1),

which leads to the inclusion (2).

The part of Theorem 1 concerning the surface of rank 4 quadrics is straightfor-
ward by using the fact that the Q; and the @, span the same space of quadrics, and
that V(Q,, ..., Q) has been shown to contain a surface of rank 4 quadrics. Finally,
the statements concerning the Kummer surfaces are proven in Barth [7].

3. Removing from A the Zero Locus of Odd Sections and Manakov’s Geodesic Flow

Whatever the k=k//, the affine surface .«7, defined in (2.11) supports commuting
vector fields having a striking form and, in some new coordinates, .27, can be
viewed as the intersection of the four quadratic invariants of Manakov’s geodesic
flow on SO(4). Therefore any holomorphic vector field on A4 restricted to .7, can be
realized as a Manakov geodesic flow and thus it can be represented as a Lax pair,
which becomes particularly simple when k=0 and oo. The techniques and
arguments in this section rely heavily on our work about the intersection of
quadrics [4]. The Kotter quadrics, introduced in Sect. 2 play an important role in
the sense that .7, and ., both complete to an Abelian surface by adjoining an 8
fold unramified cover of a hyperelliptic curve, whereas the general affine part .27, is
obtained by some kind of “interpolation” process. Throughout this paper given
any vector ueIR®, set u'=(uy, u,, us) and u” =(uy, us, ug); also given a and xeR”,
we define a-x=(a,x,,...,a,x,)eR".

Theorem 2. 1. The family of divisors €, on A,
€ ={Kkb,+10,=0}nA, k=xK/i,

forms a linear pencil of (generically ) smooth curves having as base points the 16 half-
periods ey, ...,e,¢ and having genus9. They are 4—1 unramified covers of genus3
curves Dy CA", via the isogeny ¢:A—A". Moreover through the projection
A" KmA’, the curves Dy, are 2—1 ramified covers of the elliptic curves &, ramified
at 4 half-periods ¢(e;)=e; (i=1,...,4) on A". The spaces

r—myt_ 0,
L#)=L"®L —{ul,...,u6}(—B{1,——}{97_‘_&98 , 1)

(Ugs Uy s thg) = (KO0, + 20g) " (k05 + 204,04, ...,06), uy=+0.

where

For convenience, define
K =HKby* +ib7 %) and XN =H—xbi*+Ib;1?). (2)

such that k0,4 A0g=x'0",+ 2’03 in the notation of (2.4).
II. For every k=1x/A, define the affine surface <7,

A =A\C,= 6 {®(u)=0}

A Pu) = (k2D + 2k b, D5 + 12 Dg) (0) (KO, 4+ A05) "> =0} . (3)
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The holomorphic vector fields on A, restricted to </, take on the form

.7 ’ ’ ’ aH+ / 4 aHﬁ
W=u A <(K +2) pw +(x' =1 Ew >>

OH™ 0H~ @
u =u /\((K +/1)W_(K _i) 6u//>’

Picking S e Fu )
Hi-:$b411 Z i i+3

+1 10
i=1bi _b4

(essentially @, and ®@,) in (4) yields the vector field® ( particularly distinguished in

view of Theorem3):  u_ 0\ (a-(K'u'—Au")—x'u"),

(5)
W'=u"Aa-(Au" —x'u)—Au).
whereas another vector field is given by picking
_ Tus)® | (uytug)® | (uFuy)’
H* = Tp=! (uy L us 3T Ug 1+ Uy 6
Phi (e )

remembering the relationship (2.5) between the parameters a; and b; appearing in the
quadrics ® and @'. For k=0 o0r 2=0, the flow (5) takes on the following simple form

k=0 (k'=4) A=0(k'=—-1")
W+u)y=W—u)A((a+1)- W —u")| W —u")=W+u")A((a—1)- W +u"))
W—uy=W+uYA((a+1)- @ —u")) | +u")Y=Ww—u)A((@a—1) (' +u").

III. Another description for <, is given by the Manakov quadrics, namely

4
deH{QiZO,xOZI}a (8)
1
where 2 2 2
Q="+ o A,
0y —0y O —Oy 0 —0,
2 2 2
X X x
Q=———+—2—+ 2 —4yx3,
Oy —0y O, —0, Oy —0y
2 2 2
X7 X3 X6 2
Q3= + + —A3X0,

Oy —0,  O3—0y  O3—0y
— 2
Q4 =X1X4+X;X5+X3%6 — A4 X5

for some appropriate values of o; and A; (given below) depending on the b; and k*.
The surface of, supports commuting vector fields having the Lax form

(X +ah)y=[X +ah, 2- X +Ph], zijzii“%, )
i
with X € so(4) parametrized by (1.10). The linear map urx connecting the two
descriptions (3) and (8) is given by

xi=l/a; W +b i 3), Xiva=|/a; (ui+biu;3). (10)

3For a,beR", a-b=(a;b,,...,a,b,)eR"
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In (8), (9), and (10), the o, A;, ait, b7 are functions of the b; and k=x/A, to wit:
c(i:(bétk_bik_l)(b4k'—bi_1k—1)> a4=0’ i:1>233,
3
Ai:;'fj_zfio Ay= (0 —3) (a3 — ) (o — ) (k> —b3k?),

3 3
By=YuA;, By=) oo, +0_1)4;,
1

By=o,0,05(4;, + A, +A43), By=A4,,
a;—o;=(b;—b;) (by—by), Ti=byb; '—b) (0;— o) (ajak)l/za

1 1 1
+
=— +
“ HZ(b1’b27b3) <0€:§/2H2(b2,b3,b1) B aé/zHZ(b&bl’bZ))’

ar =1 g (11)

Oy — 03
bf =H—1(H1(b1, b,, b3)i|/ oy03),
Hi(by,by,b3)=(bs+by—by—by)k™ ' +(by ' +by ' —by ' —by bk,
Hz(b1ab2,b3)=(b4+b1_bz_b3)k_1
— (b7 by —by —b3 W3k +2by(b, — b1 Y,

4 4
H(by, by, by)=2(k ™ —b3k?) +k~ " Y by — kb3 Y b ",
1 1

and cyclic permutations. The indices i,j, k in o;—o; and t; denote cyclic permutations
of 1,2,3.

IV. The curves D, underlying €,, form a linear pencil |Dy| on A", which projects
down to a system of elliptic curves on KmA™ given by

E=KmA 22U —iPW=0}CV(®,, D, &, 0)=P>, k=x/i. (12)

Each &, is the locus of rank4 quadrics in the linear span V(®y,...,D,); in the
0Q,-coordinates, &, can be represented as follows:

3 3
&= {tZ g o,Q;—t ; oo — g 401 1)Q;

3 4
+°‘1°‘20‘321:Qi+ 21;[(t‘°‘i)1/2Q4

3
2‘12,(1/“ — o)t x;+ ]/(t — o) (E—og) X; 4 3)?
4
+x3(B,t? =Byt + B3 +2B, [ 1(t—o;)'?), te([?}
1
=double cover of P! ramified at the 4 points «,,a,, 3,0,

. 1
=double cover of IP! ramified at the 4 points bk + bk

(i=1,2,3,4), (13)
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with B; defined in (11). The curve Dy is a 2—1 cover of &, ramified at the points where
the ranks drops to 3; thus we have

4
D;:(wz—(Bltz—th+B3))2——4Bﬁ]:[(t——oci):0; (14)

the base points for this linear system Dy are precisely these 4-rank 3 quadrics.
Moreover the linear pencil |Dy| contains 6 smooth hyperelliptic curves, isomorphic
two by two; the first pair corresponding to k=0 and co, together with the two other
pairs, are given by the following equations:

4 4 4

y=I16"=b), y*=[1(>=b), y*=[1(x>—b)), (15)

1 1 1

each covering the elliptic curves
4 4 4
y2=l;[(x—bi), y2=1;[(x—b’), y2=lII(X~b§')~

The corresponding curves in the pencil |€,| on A can also be viewed as 81 unramified
covers of the genus?2 hyperelliptic curves*

4 4 4
y2=XEl(x—bi), y2=xl:[(x—b§), y2=x]11(x—b;/), (16)
where
1—pl2 i—pl2
b 1/2=—l’ b” 12__ U1 _ ]
( l) 1+bl]/2 ( l) i+b[1/25 l 13253

Then A” is a double unramified cover of 3 different hyperelliptic Jacobians,
corresponding to the three curves (16). For further use, also consider the curve Dy,
which is a double cover of

3
o@b“zlzy2=[1](x—ai2).

V. Finally upon setting v=1/h and u=z/h, the spectral curve going with the Lax
pair (9) reads as follows:

X, ={det(X +ah—zI)=0}
={Bﬁv4+(Blu2—Bzu+B3)vz+]f[(u—oc,.)=0}CA (17)
with B; given by (11). The curves X, sweep out the linear pencil of curves going with
the original line bundle ¥ of Theorem 1 and the following linear equivalence holds:
22, ~%. (18)

This induces a map from the pencil |Dy]| to the pencil |X\|, which maps the smooth
hyperelliptic curves to the singular curves and the singular to the smooth hyperelliptic
curves. The map |D,|~|Z,| is obtained by flipping around the covers, for some
appropriately chosen projection, as illustrated in Fig. 2.

4 3
*# Notice y>=x[](x—b,) is conformal to the curve z2=(x*—1)[](x —a,), using (2.5)
1 1
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D,
ramified at
ayy. ..,
Z(l
ramified at 4 roots of
Fig. 2 P!

4

(Bju’—Byu+B;)’ — 4B2 I (u-a)

M. Adier and P. van Moerbeke

Dy

ramified at 4 roots 4

of (B,u’— Byu + By)’— 4 B2 I (w-a)
“

ramified at

Aoy Oy
P!

Corollary 1. For k=0 (and similarly for A=0) the flow (5) admits the following
simple Lax pairs (remembering the map *: R?—s0(3), defined in (1.22)):

(1) (X+oah)y=[X+ah, Y+ph], X, Yeso4d)
with 0 —Us—Ug Up+us  —u; iy
P Uz +ug 0 —u;—uy; —uU,+us
—Uy—Us Uty 0 —uz+ug
U, —uy Uy —Us Uz —Ug 0
—u,+u
0 0 0o L
bl_b4
0 0 0 Uy tUs
Y: b2_—i_b4
—Uz+u
0 0 o 3¢
bs—b,
ul-‘u4 uz_us u3_u6 0
bl‘—b4 bz"‘b4 b3—b4

a=diag(h,,b,, bs,b,),

The corresponding spectral curves X and X ., are hyperelliptic of genus 2, namely

p=diag(0,0,0, —1).

4
y2=x[[(x—b,); the latter is isomorphic to y*=(x*—1)T(x).
1

(i) & Dh v
(@h a">=[<9h

with

o

ah\ (W Ihﬂ
0 ) \Ih —w

Uy —Uy Uy —Us Uz —Ug
b,—b, by—b, by—b,)’

(19)

D =%5b, +b,+b;—b,)[—diag(b,,b,,b3).
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The spectral curve going with this Lax pair is a cover of the spectral curve obtained
in (i).
(ii1)
(a+ 1) (W —u")@W —u")+ (@ + ")+ Ih?y
=[a+1) (W —u")@W —u")+ (@ +d"h+Ih?), (a+ 1)@ + 4"+ Ih)].

where the 3 x 3 matrix a+1 stands for diag(a;+1,a,+1,a5+1). Here also the
spectral curve is given by the hyperelliptic curve y* =(x*—1)T(x).

Proof of Theorem 3. The affine surface .«7,, k =«/4, is defined by the intersection of
the quadrics @, @,, @5, and @,. In (2.13), we gave a set of two commuting vector
fields on <7, ,; the first vector field has the form (5), whereas the second has the form
(4) with H* as in (6). For k=0 or A=0, the vector field (5) transforms into (7) by
making sums and differences of the Egs. (5). Having shown Part I we now proceed
to Part IIL

Since the linear span V(®,, ®,, @5, @,)=P? contains a non-degenerate curve of
rank 4 quadrics

E=ANPPU—PW=0}, k=x/A,

the space V can instead be spanned by @,, @,, #; and one other rank 4 quadric.
Thus in the variables u; they have the general form

3 3
legui27 Q2=;ui2+3’

3
Q3=;(?i“i+?’i+3ui+3)2+?o“é, (20)

3
Q=Y (0t + 0, 43U 3)* +Soud

1

with y,=0. By taking appropriate linear combinations, Q5 and Q, can be replaced
by new quadrics Q5 and Q, of the same form, but with y, =9, =0,7, =0, =0. This
new set Q,...,0, corresponds to 4 points on the curve &;,; this curve can be
viewed as the intersection of the three quadratic cones in IP3:

Kot it 3—pf i3 =(X +92 Y+ 0P UN(Y+923Z + 67, 3U)
—(ii+3Z+0;,:43U)*=0

expressed in the coordinates X, Y, Z, U for the basis Q, ..., @, of (20). The functions
w=u(X,Y,Z, U) can be viewed as meromorphic functions on &,.

Asexplained in [4], the curve &) contains 3 points p,=(X,, Y;, Z;, U;=1)leading
to three simultaneously diagonalized quadrics Q(p;)=X,;0,+ Y:.Q,+Z,05+ Q.:

2 2
0(p)=(py) <“1 + Fie (Pi)“4> + wa(p;) <u2 + fas (Pi)u5>
Hq 2%

2
+ u3(p) <u3 + %(Pi)%) +d;, (21)
3
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with
u u u u Iz n
—la P2)='ﬁ(l’3)’ ﬁ(l’s)zﬁ(l’ﬂ, =3¢ P1)=ﬂ(172)
Ky My Ha %) H3 U3
(22)
These three quadrics along with a fourth one
2 Hiiv3 Hiiv3
;ei (”i+ ; ‘ (pi+1)ui+3> <”i+ %(Pi)“us) +dy (23)

spans the linear space V(Q;, ..., Q,). The fact that the points p e &, implies that

.u’i,i+3(p): Hit+3 (p) (24)
Hi Hii+3

Therefore, using the relations (22) and (24), the quadrics (21) and (23) have the
following “simultaneously diagonalized” form:
Y2+ YY) —c(—U, VY7,
Y&+ Y7 —Y2—c(U, —V)Y$,
Y2+ Y- Y2 +c(U, V)Y,
aY, Y, +bY,Ys+cYyYs+dYy.

(25)

A minor rescaling of the Y;’s yields the 4 Manakov quadrics (8).
This program is carried out explicitly in [4]; namely the y; and J; have the
following form in terms of the b;, k=x// and the quantities defined in (12):

71=0,=0, 7,=0,=1,
2= Moy —ag)ary v =H1(b3,b1,b2)
* T Hby,baybs) 7 Holby,by,by)
(by—by)(by—b,)(b,—b; ")

O b —b)H by, by by)

1_a3<1 Hl(b2>b3sbl) Hl(bZ’b3ab1)2>
’HZ(b17b27b3)’HZ(b17b2’b3)2 ’

o
2 2\
(737365 76) p

1%
whereas the §; are obtained from the y; by performing the following involution:
(Vo> Yas V5> V3> V36> Ve D1s Doy B3) (S0, 5, 04, 03, 36, O, b, by, b3).

The linear change of variables u~Y [in terms of (20)] is given by (see [4])

Y=Y a (u+bu5),  Yis=)a; (u+b;us),
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where the coefficients a*, b, a, b, ¢, d, U, V are expressed in terms of the y and §’s
appearing in the quadrics (20); namely

ai = =936+ 036+ U, a; = *5§(V36+536)+ V, aj= '5§U“)’§V,
ay ——al( U) al—za;(—V)a aﬁ;-:a;(—U’V)’

biay =0,(—y36+U), bya; =y5(—=d36+V), bias=—y36V—0d36U
by =b{(=U), by =by(—=V), by=by(-U/V),

V=(iy;/05)W, V=(03/y,)W, w?= “7555?3"‘3’45 5 >
a:iy4545§, b= _Vsésyg’ c=W,
AU, V)=(036—V)yo— (36— U)do,
d=7363y5 105193036 —03736) " (920361 0336) (7303600 — 0373670) -

Combining these two sets of formulas, together with a minor rescaling yields the
formulas (11)in the statement of this theorem. This shows that the affine surface .«7,
can also be viewed as the intersection of the four quadrics (8). These quadrics
support commuting vector fields of the Lax type (9).

The computation presented above becomes invalid whenever the quantities in
(12) vanish or become infinity; i.e., this happens for the values of k and 4 for which
A, =B, =0. Then the curve X, in (17) becomes hyperelliptic. This proves Part I11.

We now sketch the verification of Parts I and IV. From the asymptotic analysis
of these differential equations in [5] the intersection of the four quadrics (8)
completes into an Abelian surface upon adding a curve %, of genus9, which is a
4-fold unramified cover of a curve D C A” of genus 3; the latter is a double cover of
the elliptic curve of rank 4 quadrics &, ramified at the 4 points corresponding to
the quadrics where the rank drops to 3.; an explicit representation of &, (due to
Haine [16]) in terms of the Manakov quadrics 0, ..., Q,, is given in (13). The linear
system |Dy| on A” contains 3 pairs of smooth hyperelliptic curves of genus 3, and 12
singular curves, as shown by Horozov-van Moerbeke [18]. There it was shown
that given a line bundle .# defining on A a polarization (1, 2) and given the linear
system |D| going with %, the Abelian surface 4 is a double unramified cover of the
Jacobian of the smooth hyperelliptic sections in D, whereas the Jacobians of the
singular sections (upon normalization) are double unramified covers of 4. The
representation (13) of &, as a curve of rank 4 quadrics in terms of the Manakov
quadrics follows from a straightforward computation. The curves & and &,-.
have the form announced in (15) because for those specific values of k=x«/A, the
points a;, defined in (12), can be moved to by, ...,b, and 0, a}, a3, a3 respectively.
The form of the spectral curve X is due to Haine [ 16] and comparing the formulas
for Dy, and X, confirms the diagram in Fig. 2. Except for Part V of the theorem (to
be shown in Sect. 5), this ends the proof of Theorem 2.

Proof of Corollary 1. The equations (7) for k=0 are readily reformulated in terms
of the Lax pair (up to some time rescaling)

(X +oh)= [X+och 9 +/3h]
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with
Xi=u,--|-ui+3, xi+3=ui_ui+3, i:1,2,3,

a=diag(b,, ....b,), p=diag(0,0,0, —1),

2 2 2
) X3 X3 X3
¢ 2{b1—b4+b2—b4+b3—b4}

1
= 3 (@ DX+ @+ Dxd+(ay+1)xD),
4

using the fractional linear relation (2.5) between a; and b, The statement
concerning the spectral curve 2 will be given in Sect. 5. The second Lax pair is
obtained by considering the representation of s/(4) as acting on A*C. In particular
skew-symmetric and diagonal matrices transform as follows:

/ All AIZ A13 A14
_AIZ A22 A23 A24
—AIS _A23 A33 A34
_A14 —A24 —A34 A44

0 A+ A3, Ajz—Azy| Azn+Ass 0 0
— Ay, — Az, 0 Ayz+ A, 0 Asz+ Ay, 0
—Aj3+ Ay —Ap—Ay 0 0 0 Ay +A4s
Ayy+Asz 0 0 0 A —Azy Az +Au|
0 Asz+ Ay, 0 —A,+ Az, 0 Ayz—Ay
0 0 Ay + Ay |—Az3— Ay — Ayt Ay, 0

Using this representation we immediately get the second Lax pair, after a slight
modification of « and f, so as to make « and f§ traceless. The third Lax pair is a
straightforward consequence of (7) for k=0, which is a variation on a Lax pair due
to Perelomov [30].

4. The Six Quadrics Associated with Kowalewski’s Top

In this section we show how to apply the theory developed in Sect. 2 to the specific
situation of Kowalewski’s top. Given a line bundle £ ®? and an origin, the splitting
of the space of sections into even and odd subspaces, with regard to the reflection 7,
can be found by picking a divisor D, in the linear system |.# ®2| which is defined by
an even or an odd section 8,. Then the space L(D,) is spanned by the functions
0,/0, -..,05/0,, and thus L(D) splits into a 6-dimensional and a 2-dimensional
space of even and odd functions, when 6 is even and the other way around when 6,,
is odd. By picking an appropriate basis of the function space L(D,), there must be 6
quadratic relations @ between the functions, exactly of the type (2.3) discussed in
Sect. 2. The salient features of the quadrics @ are the following: they all have the
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block form (2.8) and their linear span has 4 rank 3 quadrics depending only on even
functions when 6§, is even and only on odd functions when 6, is odd. The program
is thus as follows:
(i) find a divisor D, defined by either an even or an odd section.

(i) write the 6 quadratic relations between the functions of L(D,),

(iii) find a new basis of L(D,) and thus a change of variables transforming the 6
quadratic relations into relations of the type @ or @' in Sect. 2.

Besides T'(x)=det(M — xI) already defined in (1.3), we introduce the following
polynomials

R(x,y)= —x%y*+ Axy—B(x +y)+C,
R,(x,y)= — Ax*y*+2Bxy(x +y)— C(x + y)*+ AC— B?, (1)
P(X)=R(X, X), Q(x)=R1(x,y).

The polynomials T(x) and P(x) have the same invariants g, and g;.

As pointed out in Sect. 1, the invariant surface for the Kowalewski top
completes into an Abelian surface, by adjoining two isomorphic genus 3 curves D*
and D?, intersecting in four points, each given by

D' (U2 +1)2Z*—(U?+1)(Z*+P(Z)+ 1) +1=0. )
This is a double cover of the elliptic curve
E:W?*=((A—2)Z>—2BZ+C+1)((A+2)Z*>*—2BZ+C+1) 3)

ramified at the 4 points where U=0 covering the four roots of P(Z)=0. The Abelian
surface can be viewed as the dual of the Prym variety: A=Prym(D'/&)". The
divisors 2D*, 2D?* or D' + D? are all very ample and they all define polarizations
(2,4). The line bundle . going with D' has only even sections: the Riemann theta-
function and a theta function with characteristic. Therefore D' and thus 2D are
both cut out by even theta-functions. In the same way D! + D? is defined by an odd
theta function, but for a different reflection. As a consequence the program spelled
out above can be carried out for any of these three divisors. For the sake of this
exposition, take D=D?,

We first observe that the Kowalewski vector field in I. of Sect. 1, with the
change of coordinates (1.1), takes the form

XXy =Xx3%1— Y3, Y1=2X3)1,
Xy=—X3X;+)3, V2= —2X3),, “4)
X3=X3—x{+y1—y2,  Va=x:(X3—y))—X,(xF—y,).
A second flow commuting with the first is regulated by the equations
Xy x1=yi(—=x2x3+y3),  Yi=2y1(y3(x; +x3)—x1x,x3),
Xy =y(X1X3—Y3), Vo= —2y,(y3(x; +x3) — X1 X,X3),

X3=x3y; — X1y, y'3=x2y1(x§—yz)—xlyz(xf—yl).
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The Kowalewski constants of motion map into
0:1=(x +x2)2+x§_)’1—J’2=Aa
Qr=x1X5(x1 +X5) —y1 X, — YoX; +X3y3=B,
2.2 2 2 2_ (5)
Q3=x1x3+y3—y1x;—yx1=C,
Q4=)’1J’2=D2=1'
Define the vector field
Xx/z =(’<b}1/2/4) (X1 —X,)+(4by 1/2/4) (X1 +X)=x'X+1X, (6)

in terms of k, A or k', A’ related by (3.2). The affine invariant surface .o defined by
the four Kowalewski constants of motion (2) has the involution

T:(X1, X2, X3, V15 V2o V3) = (X1, X025 — X3, V15 V2, —V3) (7)

which maps the vector fields X; into — X, which thus amounts to a reflection
about some appropriately chosen origin on A. A different choice of origin would
lead to a different involution. .o/ also has a second involution

O-:(xlaxz’ X3, V15 V25 y3)—>(x2, X1, —X3: V2, V15 ’_J)3), (8)
which preserves the vector fields. We now state Theorem 3.

Theorem 3. The space L(2D) splits into two subspaces L™ and L~ of even and odd
functions for the t-involution

L2D)=L*®L"
:{Cla ”'aC6}®{€7, gs}
={1,X2, X3, ¥2, 2% 1, Y2XT} D {X 1 (x2), X 5(x2)} 5 &)
the involution o acts on the {; as follows:
0: 01004, GHols, (3006 (o006 (10)
Moreover we have the following Wronskian relations, analogous to (2.2):

(L*, L™} C(L")®2. 11)

Between these 8 variables {, ..., there are 6 quadratic relations ®;({), the first
three involving the even functions {,,...,{s only:

Py =0-04,
¢%=C§—C456=‘p7;
Py=—C(LT+ )+ B> = AO Lo~ A+ +2AC+ 1)L
+ 03+ 08+ AL+ 2B+ Lals) H(C =) (L6 +(500)
—2B((,6+{305)=P5, (12)
Dy = —CCf—Alﬁ+C§+2BC1C2+252C5—C3€4—51C6+C$,
45’5’:CQ’1C4+AC2C5—C3C6—B(C2C4+C1C5)+C7C8=45'5’”,
Pg=—CL— AL+ 5 +2BLls + 20,05 — (30— ({6 + 5 =01
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Define the map

{—¢ G+ ,
91:“1"12—3 + B —iy; 12 2, 05=_,,
{a—( {atl 1
— . + ,
9j+3=aj 42 6+ﬁjC5—le 42 6’ 98=é’83

given by the (complex ) orthogonal matrix U =(a}, ;,7;)j=1,2,3» which diagonalizes
the matrix M, defined in (1.4):

UM UT = diag(ah as, a3) 5
the characteristic polynomial of o being

B*— AC
7

A
T(x)=x3—§x2+Cx+

The map (13) transforms the space of quadrics @" into the quadrics @' (of
Theorem 1) and the Kowalewski vector field (4) into the vector field (discussed in
Theorem 2 ):

u/: u/ /\ (a . (K/ul—;vlu”)—’c/u”) ,
W'=u"n(a-(Au"—k'v)—u),

expressed inthe variables u; = (k0 + A0g) ™10, (1 i <L 6), with the a; being the roots of

T(x).
Conversely, there is a specific rotation U € SO(3),
Cl ;C3 /91 (4;(6 94
gz =U" 92 5 cs =U" ‘95 (13/)
At o \oi Gt 0.
and a map

{;=a0,+bOg, (3=—ab;+blg,
in terms of the theta functions 0 in [2.3], such that the variables

L & c7c4+zscl>
LG GE—00
G s C7C5+C8C2>
C4’€1’C1C5_CZ€4

are precisely the Kowalewski variables (x, X5, X3, V1, V2, V3)-

(xl’ x27x3)E (

(Y1, Y2, ¥3)= <

Proof. Applying the methods explained by Adler and van Moerbeke [ 5], one looks
for Laurent solutions of the differential equations (4) depending on

dim(phase space)—1=35
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free parameters. There are two distinct families of Laurent solutions, which upon
substituting into the constants of motion Q; and then upon setting the values of the
results obtained equal to 4, B, C, and D=1, lead to the following:

Laurent solutions D? Laurent solutions D*
U
x,=Z—tUZ>+ ..., x1=7+Z(U2+1)+...,
U 2 2
xo= -+ Z(UH D+ X,=Z—tUZ>+ ...,
1 1
xy= = HUZ+.., x3= = HUZ+ .,
t? 1 207
= pUZ=P2)+ ... y1=(U2+1)<t—2+—t +>
1 207 t?
Z Z
y3=?_U22+‘“, y3=—?+UZZ+,

with P(Z) defined by (1). The table above implies (x;)=—D' (i=1,2), (x;)
> —D'—D? (y;)22D*—D"), and (y,)22(D' —D?), (y5)= — D' —D?; therefore

all {;e L(D?), as defined in (9). For future use, one checks that along D?

U U? U . .
(1,02, 05, 85)= <1,T, ol t_2> +higher order terms in ¢,
(14)
U?+1 ) . :

(£4:C5, 06 (o) = t—z(l,Z,Z , —UZ)+ higher order terms in ¢.

To show that g, defined in (8), acts on the {; as announced in (10), take a point

p=1 0609, 08)=(1,x,, X3, Y2 Y2X1, Y2x1, X 1(x2), X 5(x,) e P7,
and observe that as a vector in IP7, using y,y, =1 and the form (4) of vector fields
X, and X ,:
! 2 G(p)=(1’xl’x%’ylaylxby1x§,>X1(x1)’XZ(XI))
=y2(1’xl’x%’ybylxbylx%’Xl(xl)a X,(x1))
=(C4,C5aCG,C1,C2>C3>Cs>57)5ﬂ?7-

Moreover the functions {,, ...,{s are even and (5, {5 odd for the involution .

An effective way to get quadratic relations between the {; is to use the Laurent
series (14) and to match poles. For instance, starting with the seed {2 having
Laurent series

, ZMU*+1)? (U24+1)(AZ*—-2BZ+C+1)—1
(6= — Q@ = t4 +

[the latter equality following from the curve relation (2)], and then using
appropriate products of the {; the t~*-term can be peeled off leaving a t~3
contribution and so on, leading to the quadratic relation @%; the same procedure
leads to the six quadrics @7, ..., @%. This is further simplified using the involution .

The Wronskian relations (11) follow at once from the Wronskian relations (2.2)
for the sections. In order to identify the Kowalewski vector field with (3.5), we must
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—in a first step — compute those Wronskians explicitly, namely

{(;,{;} =quadratic polynomial of ({y,...,{¢) i=1,...,6,
=178,
whatever be the vector fields X, or X,. Again the asymptotics is instrumental in
checking this fact. Indeed assuming {; and {; behave as ¢~ ?, the Wronskian {{;, {;}
behaves as t ~#; this term can be peeled off by subtracting appropriate products of
even function {4, ..., {, leaving a t 3 contribution, and so on. We thus obtain a
closed system of quadratic differential equations in the variables

(Wos Wiy ooy We) = (1C 4+ L) " (1L 4+ L5, Lys o L6)s
in particular the Kowalewski vector field (4) maps into

Wi =K' [2Wyws —w ws)—(Bwi — Aw;w, +2w,w3)]
+ A [Bwwys— Aw,ws+2w,we ],

Wy =K' [(W3wy—w we) —(Cwi +wi—Bww,)]
+A[Cw w, +wawe—Bw ws],

Wy =K'[2(Wsws—w,we) —(—2Bw3 +2Cw,w; — Bwsw, — Awsw,)] ,
+A[—2Bw,ws+2Cw,w, —Bwyw, + Awsws], (13

We=A[2(W;ws—w,w,)+ Aw,ws — 2wswe — Bw2]
+x'[Bw,w,— Aw,w, +2wsws ],

Ws=2A'[—Cwj+ Bwaws — W +(w;we —w3w,)]
+K'[Cwiws+wW3ws—Bwaw, ],

We=A'[2BW2—2Cw, w5+ Bw,wg— Awswg +2(wew, —w3ws)]
+K'[—2Bw,ws+2Cwsw; — Bwew; + Awegw, .

We now prove the map (13) transforms the quadrics @” into @', at first making
some preliminary observations.

Among the quadrics @] obtained in (12), the 3 quadrics @7, @3, and @} are
expressed in terms of even functions, two of which already have rank 3; however
the @ do not have the block form. In order to match @7 and @ to @} and @), and
in order to identify the involutions ¢ [defined by (10) and (8)], we require the
transformation {6 to have the form (13) with a 3 x3 (complex) orthogonal

matrix U=(;B57))i=1,2.3-
However, rather than work with the map (13), it is more convenient to consider the
map 0=l + Bl +7s, =123

0j+3=0‘}C4+ﬁ}C5+V%6, Jj=1,2,3,
defined by the matrix

’ VA VA a_l’y a+ly
U:(ocj,ﬁj,)’j)j=1,2,3=< 12 5B — J2 J) ’
j=1,2,3

We will see the quadrics @ assume the block form in the {-coordinates, provided
the o, §, and y are parametrized according to (13). Prior to proving this claim, we
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observe that the orthogonality of U implies the following relations for U’:

(i) BiBj+ 1 — 2054 1 — 2¥i0tj+ 1 =0,
0 Bl (% 4 1),
Pivi+1 Vi Vi+1
(i) B —20y=1,
(iii) (0‘}’ ﬁ;: 7;')= i(o‘;‘— 1.3;'+ 1 ‘a}+ 1;33'— 1 2(“;‘— 1?;'+ 1 _7;'— 1a}+ 1)

“/}+ 1/3}— 1 _.B;'+ 1?}— 1>

)
i Y1 V2 Y2 V3 Y3 M1

Statements (i) and (ii) follow from the orthonormality of the rows of U, whereas (iii)
expresses the fact that U~ !'=UT and (iv) follows from (i)
In order to prove the exact form of the map (12), we substitute it, using U’, into
1 ..., Pg; @ and @} are as in (2.3'), while the quadrics @4, @}, %, and &g have the
block form in the #-variables if and only if

)-:u
S
Il

(iv)

—4 /A
A C

of AC =0 and 4 E =0, (16)
2B B

with E=B?— AC; the 3 x 4 matrices .o/ and % read as follows:
,,Q/=(oz;-oc}+1 ﬁ;ﬁ;+ 1 V}V}+1 ﬁ;)’}+ 1 +ﬂ}+ 17;‘),':1,2,3 >
@=(“}“}+ 1 ﬂ;ﬂﬁ 1 V}?}H }“}H +°‘}ﬁ;‘+ 1)j= 1,2,3-

Solving the first linear system of equations for 4, B, C, we find (all products and
sums are taken cyclically from 1 to 3)

4 .
A =i Y. o4 172, upon using formula (iii) for ¥}
i

/a2

2 D L .
= — (507 — a1 P17, using (iii) for B}, §,
IIy;
2 L, . .,
=17y52a,-vj+1v,~+2, using (iii) for o, 75
o
=2y} (17)
4]
_ 2
Hy;-
using (iii) for j=3 and (i) for j=1

4

=—171%, using (iii)

Jj
(X/ <x/ 1/2 (X/ a/l
(2 2] (22
i 72 72 73

’

B= (o371 —15) (o572 — 02 75)

12 (g o\ 1/2
<~,3+—,1> , using (iv); (18)
73 M1
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i ’ 12 : ’
C Zajaj+ 1Vj+ 2.Bj+2 , using (iii) for y,75,75

1
Iy}
1 i '/ / ! / ’ ’ ’ ’ 7
=w<§ﬂ1ﬁz(“2ﬂ1 —“1ﬂ2)+°‘1°‘z)’3> )
J
using (ii) for % and (iii) for §7, B

=}:% :,j“ , using (i) for 5 and (iii) for o, (19)
j rj+1
yielding nY
E=B?—AC=—2[] 2.
Vj
Using the above results, the second linear system (16) for 4, B, C, E is automatically
satisfied. From the above formulas, the 4, B, C, and E are symmetric polynomials
in the a;=«//y), and hence the a; are the roots of Kowalewski’s polynomial T(x).
Using (iv), ('), and (ii), the entries «, §, and y of U can be parametrized as
follows:

Uz(ajaﬁjayj)j=1,2,3

— (a _1)< a2+a3 >1/2 o <(a1 +az)(a1 +a3)>1/2
B ! 2(a; —ay)(a;—as) (ay—ay)(a; —as)

. a,+a, 172
@+ 1)<2(a1 —a,)(a, _‘13)>

and cyclic permutations

One then checks that UT diag(a, a,,a;)U is a (symmetric) matrix of symmetric
polynomials of the a,, and thus expressible as polynomials of 4, B, C, E. Using the
exact expressions (17), (18), and (19), one then concludes

UT diag(ala az, a3)U =M 5

with o defined in (1.4).

Finally using this change of variables {6, and after some effort the quadrics
@] take on the form (12) and Kowalewski’s vector field (4) takes the form (3.5), with
a; being the roots of Kowalewski’s polynomial.

To prove the converse, whatever be the rotation U7 in (13'), the new space of
sections ({;, ..., {g) behaves as follows with regard to the involutions ¢ and <,

T:(Cl’ ceey CS)Q(CD “eey CG) _C7> _CS)
0:(C1, ""CS)N(C43 CSa C6>C15 CZ)CS’ _C8> _C7)
In view of the rotation U, the sections {; satisfy
G-04=0 and (3-{{=0.

Since {; =0 implies {3=0 and since {, =0 implies {2=0, the theta functions {,
and {5 define the following divisors D; and D; on A, all having genus 3:

(C1)=2D2a (C4):2D1, ((:2)=D2+D2_, (C5)=D1+D1_~
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Therefore the functions

x1=05/0e, =00, =0/, y.=0/0,
satisfy
(x1)=D; =Dy, (x3)=D; —D,, y,=2D,—-2D,, y,=2D,—2D,,
regardless of the rotation U in (13’). These functions, together with

$ola+Gsly {ols+0s8,
X;3=-——>—" and =--2 202
Lls—lala PN
transform according to (7) and (8), with regard to the involutions t and o. It is
only after picking U, a, and b as in (13) and (2.4) that x; and y, satisfy the
inequalities

(x3)2—D;—D, and (y;)=z—D,—D,

and the set (x;, x,, X3, 1, V2, V3) satisfies the Kowalewski system of differential
equations, completing the proof of Theorem 3.

5. A Two-Dimensional Family of Lax Pairs and the Spectral Surface

This section deals with the two-dimensional family of Lax pairs associated with the
affine surfaces .o, = A\%,, k e IP', obtained by removing the genus 9 curves %, from
A. Referring to Fig. 1 in Sect. 3, the curves %, are 4-1 covers of genus 3 curves Dy,
via theisogeny ¢ : A— A". As shown in Theorem 2, for each value of k=k/A e P!, we
have a Manakov problem associated to .27, a one-dimensional family of Lax
equations (3.9) and associated spectral curves X,. It turns out the linear system
|Dy]C A" and the family X, are intimately related as follows:

Theorem 4. The spectral curves X, sweep out the linear pencil |D,|C A generated by
the curve D =D'® obtained in Theorem 3. This induces an algebraic map between the
linear pencils |Dy| C A” and |D,| C A, which takes the smooth hyperelliptic sections in
|Dy| to the singular sections in |D,| and the singular sections to the smooth
hyperelliptic sections. Moreover, the curve D% gets mapped to D®=D_ in |D,|.
When k=x/1=0, the Kowalewski flow has the simple Lax pair representations (1.21)
and (1.23) announced in the introduction.

Proof. At first we give a description of the linear pencil |D,|=|D®|C A. In terms of
the Kowalewski coordinates x,, x,, and z; =x3;x, —y; and the polynomials
P,Q, R, R, defined in (4.1), the Abelian surface A, suitably projected, is given by the
equation

V(X1 X2, 21) = 21P(x;) +23((x; — x5)* = R? = P(x;)P(x,)) + R*P(x,) =0, (1)

and the Kummer surface KmA, by the equation ¥(x,,x,,u,)=0, as shown by
Horozov and van Moerbeke [18]. Each curve D, = {x, =«}, obtained by setting
x,=ain Eq. (1), is a double cover of the elliptic curve defined by the radical of (1):

& w? = (R (xy, ) — (x; —2)* —2R(x,, ®))
X (Ry(xy,0)—(x; —)* +2R(xy, 0)) (2
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ramified at the 4 points, where z; =0, hence P(x,)=0, corresponding to 4 half
periods on A. Moreover there are 12 values of «, given by the 12 zeroes of the
polynomial

P(o) [PX(o) (C+1)*+ A(B*— AC)) + P(2)Q(2) (AC — B*— A)+ Q*(«)] =0,

where the curve @(x,,a,z3) becomes a hyperelliptic curve of genus?2 with one
normal crossing; each singular curve passes through one of the 12 remaining half-
periods, with the singularity being at the half-period. The hyperelliptic curves
corresponding to the 4 roots of P(a)=0 are given by

y2=(x2_1)(x_a1)(x_a2)(x_a3) (3)
(Kowalewski’s hyperelliptic curve).

An explicit but tedious computation shows that the spectral curve X, given by
Eq. (3.17) with o; and f; defined in (3.11) belongs to the linear system |D,| on A4,
whatever be keIP'. Rather than giving this computation, we shall present two
illustrations of this result.

Case 1. k=x/i=b;'; then D;_~X,_.=D_C|D,|.
Putting this value of x/4 into the expressions (3.11), we get the Manakov
quadrics (3.8) with

(o0y, 005, 003, 004) =(a, + a3, a3+ ay,a; +a,,0),
3
(B1s B2 B3, Ba)= <rf(r%+r§), r%(r%-l—rf), r%(’%‘*"%% _"1"2"3;"1')’

ri2=ai—1+ai+ls
2ry—ry—r3)
(ry—r)(r3—ry)(ry+rs)

A, =2C+1),

A= (CH1+rryr3(ry—ry—13)),

A, and A, being defined by cyclic permutations; the linear change of variable
urvx, defined in (3.10), reads as follows:

X;=2/ 11 +ri- )i rimy —a)u; 14 5),

2r?

13

Xiy3= ———
l/ri(ri+1+ri—1)

(=risariog—a)u;+u; 4 3).

In the Lax pair

(X +ah)= [X+ah,g—g +[3h],
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the diagonal matrices o and f are given by (4) and

Q=3[rirors(rixi+7,x3+73x3)
Frara(rir3+ry(rs+r) (r3 +ro))xd
131y (rar +73(ry 1) (7 +13))x3
Fryrp(rsry 1y (ry ) (ry+r))XE].
Given these data, one computes the spectral curve X, using the formula

(3.17), first in terms of symmetric polynomials of the r;, and then after a fractional
linear transformation in u and a rescaling of v, one finds

2
szl:v4+2<u2— <A— gﬁ1>u-C)vz

+(u* +24u> —(2C — A?)u? = 2AC —2B*u + C?); (5)

it is a double cover of the elliptic curve

2
éab;1:w2=u<u2+<A—CB;1>u+1> (6)

ramified at the 4 points where the quartic polynomial

u*+24u® —(2C— A*u? —2(AC—2B*u+C? (7
vanishes. The fractional linear map

x(o+B)—1

x(2—A) (C+1)(Q+B)*1+17 92:2T(1) (8)

u=D

maps the cubic (6) to the quartic

&, wr=[(1+C)(A—2)x2—2Bx+1][(1 — CO)(A+2)x>—2Bx+1],  (9)

i.e., the curve &, given in (2), with afco.

In realizing a double ramified cover of an elliptic curve branched at 4 points —
the elliptic curve given by a definite projection — one still has the freedom to
translate the four points on the elliptic curve, without modifying the double cover.
We shall show that such a translation transforms (5) to D .. Euler (see [18]) has
given us an explicit recipe for translating an elliptic curve u? = F(x) to the same
elliptic curve v* = F(y). The relationship between (x, u) and (y,v) is given by

1 1
y= m(—ﬁ(XHSWL V== @(@(yH&f(y)X),
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where o/ and % are appropriately chosen polynomials and where
n? =4 —g,{—gs,

g, and g, being the invariants of the polynomial F.
In view of Euler’s method (used here, rather than his exact formulae), consider
the symmetric polynomial

Dx,y)=x*y’[(4— A% (C+ 1)l —4B*] + 2B(AL 4+ 2)xy(x +y)

2 <£2— 2 £—1>—(€2+A§+1)(x2+ 2
S Y
2B
ot

=A(Y)X* +2BAy)x+C L))
=AAX)y* +2BAx)y+C(x)=0;

with discriminant
1
(#= A€ ()=~ o (A-D(C+1)y>~2By+1)
X ((A+2)(C+1)y*—2By+1)

2 B2
xé<€ +<A—C+1>§+1>.

The map (x, u)~(y,v) given by

B+ B —AC
N o

X

(10)

corresponds to a translation on the elliptic curve &, determined by the point £ on

the isomorphic curve
B2
2_ 2 o
n —é(é +<A C+1>§+1>.

Considering the translation corresponding to the point { = —1, and evaluating
(10) at that point leads to the map

o —BOECH) 2T W) n

A (y)
with w given by (9), with x replaced by y. Combining the two transformations (8)
and (11) and rationalizing the denominator in w]/2T(1) leads to
o A(C+1)y*—=2By+1+w|/2T(1)
a 2AC+1)y? ’

to be applied to the expression (5) for 2,... Using this transformation and
rationalizing once more, we see the quartic (7) in u maps to the quartic P(y(C +1)).

(12)
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This shows the map (11) transforms the elliptic curve (6) and the 4 roots of the
quartic (7), to the curve &,, and the 4 roots of P(x); therefore X, =D,,.
Case 2. k=x/A=0; then

Dy~2y,=D, C|D,| with P(x)=0 (singular sections),

and k'/A’=1; in this instance the entire procedure simplifies considerably.
Indeed, the affine surface .2/, is given by the intersection of the four quadrics @,, @,,
@3, and @, in (2.3). By taking simple linear combinations, this intersection is seen
to be defined by the 4 Manakov quadrics, the map (3.10) reduces to

Xi=Ui+Uis,  Xez3=U—u;3  (i=1,2,3);
we have o;=b; and

0ix)=2 kli (b;—by~" (bi(bi —by) (D, + D))

k*i

- b; 2
—(bi—by) (@3 +P3)+2 Zfll(bj—ba‘%)

3
4b.T1(b,—b
_ xi2—1 + xi2+1 + xi2+3 " 11:[(’( +
bi—biyy  bi—biy  bi—by by ]l (b;i—b)’

E*i
0u(x)=P; — P, =X X4+ X,X5+ X3X .

One then computes the quantities (see 3.11)

13

3
B;=0, i=1,3,4, and B,=—b,[[(b;—b,),
1
which give at once the hyperelliptic spectral curve
4 4
Zovt=u[](w—a)=u[](—b);
1 1

it is conformal to Kowalewski’s hyperelliptic curve w? = (x*—1)T(x), by means of
the fractional linear map (2.5) between a; and b;.

Next we study the associated Lax pairs, using the following property of the
isomorphism *:IR3—s0(3) defined in (1.22), namely

if UeSOB) and xeR3, then (Ux)\'=UXUT.
In view of the map of Theorem 3 and the involution o [see (1.19)]

”

u=Uv, u'=Uv,

where —(3—1) 1
v= 2x, —
and —i(x3+1)

p=X(x2)+X5(x2)= —y,y3—X,X3+ X1 X3Y2+ 3,
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we conjugate the second Lax pair (ii) in Corollary 1 (Sect. 3),

o gh\ _[[(4& Zh w o Ih
gh o) |[\oh o) \Uh —w

with the rotation U of Sect. 4, yielding first

ut o\/4& @h\(U 0\ [(U™WU U"2Uh
o UT/\gn " )\0 U) \UT9Uhr UTW"U
_(UTWy U'9Uh
~\uTqUuh (U™

_ﬁ0+2h<0 I—-N
“\0 ) A" \U=N 0 )

where N is the matrix (1.24) and 42=4T(1)T(—1). The only difficulty of the
computation lies in the last equality, namely in computing that
2
UT@U=Z(I—N). (13)
To do this, one first observes that the entries of the diagonal matrix 2 equal

(cyclically)
by+by—b;—by=(by—by)+(by—bs)—(b; —b,)

1 1 1
=-2b —
4<a2+1 * as+1 a1+1)
31 2 T(—1)
= — 2 _ 2 = —
b4<;ai+1 a;+ 1>’ ba T(1)
Next one observes that conjugating & (in terms of a;) by the matrix U [as given
explicitly in (4.20)] yields a matrix of symmetric polynomials in the roots a; of
Kowalewski’s cubic, which is thus expressible in terms of A4, B, C, modulo a factor
A defined above. Then using the exact expressions (4.17), (4.18), (4.19) of A, B, C in
terms of the q; leads to the desired result (13).
The other matrix in the Lax pair (ii) must be conjugated by U as well; namely

(UT o)(w 1h><U 0>_<(UTW)A Ih >
0 U™ /\uh —w/\0o U/ \ Ik —(UTw)" )"

Using the definition (3.19) of w, the matrix
M =UT"diag(a,,a,,a;)U

and the fractional linear relation (2.5) between a and b, we find

1 1 o[
T, 71T A _
U'w=U dlag(bl——b4’bz—b4’b3—b4>(u2 Us

3 6

1 .
=—_——UTdiag(a, +1,a,+1,a;+1)U(v—1°)

1
= —E(M—H)(v—v ).
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Appropriately rescaling h and ¢t yields

( b (N—I)h)_[( ) (N—I)h)
(N—Dh ¢ ) |\(N=Dh ¢ )’

<(M+1).(u—u“)* 2T(—1)h >]
2T(—Dh  —(M+D—v)) |

We finally deal with the Lax pair (iii) (in Corollary 1). In view of the transformation
w' = Uvand u” = Uv°, we multiply the Lax pair (iii) to the left by U” and to the right
by U, we use the properties N(x® y)M =(Nx)®(M*y) and UpUT =(Uv)" and we
take into account the matrix M +I=UTdiag(a, +1,a, + 1, a5+ 1) U; this leads to

(o + 1) (0 —v°) @ (v —v7) + (D + 6°) + Th?)
= [+ 1) (v — ") ® (v —17) + h(D + %)+ Ih?), (o + I) (B + %) + Th)] ,

ending the proof of Theorem 4.

6. Going from Hénon-Heiles to Manakov

In this section we show how a linear map transforms the Hénon-Heiles system to
the Manakov problem. As a reminder from Sect. 1, the Hénon-Heiles system

oH oH
.-= ..=— ’~_—— 4
%= gy WE g I=h2y)eRY, (1)

with
H=0Q,=3yi+y3)+xix,+2x3 =4, =ic

has another constant of motion

4

X
Q,=Y1V2X, —yiX, +x7x3 + Zl =4,=—1.

The flow (1) has Laurent solutions

273 U 4zt 72Ut £\°
— -1 = 2 43 =" == _ 6 =
X =t <2Z+ Y 5 5 Z(27V+6Z)<3) +>
vt —14 Z%t? N Z%* N YAUS N v Z3Ud
2 3 3 9 6 9

8
—%(12622V+27U2+1028)<§> +> 2
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with y;=X;. Substituting the solutions (4) into Q, = A4, and Q, = A4,, and equating
the t° terms yields
140Z°+63V—274,=0,
17228 +126VZ*— 27U +274,=0.

Eliminating V from these equations, leads to the following hyperelliptic curve of
genus 3,

D:U*=—4Z8+24,Z*+ A,. (3)
It is a double ramified cover of the elliptic curve

E:V2=—4Y*+24,Y+A4,, )
ramified at the four points covering Y=0and oo and a 2-1 unramified cover of the

genus 2 hyperelliptic curve
Howr=Y(—4Y*+24,Y+4,). 5)

From the theory developed by Adler and van Moerbeke [5] the affine surface
2
N {Q;=A;} completes into an Abelian surface A =Prym(D/&), parametrized by
1

A3*A [, after adjoining the divisor D. The latter defines on 4 a polarization (1,2).
Moreover D is one of the 6 smooth hyperelliptic curves in the linear system |D], and
therefore A4 is a double unramified cover of Jac(s#) (see Horozov and Moerbeke
[18]). Also the differentials dt, and dt,, going respectively with the flows generated
by H=Q, and Q, become, upon restriction to D, the (odd) Prym differentials,
which descend to the differentials on /. Indeed, using the Laurent solutions, one

hecks:
enects zdz_vay . _dz_dy
u oo ow> PP U we
The divisor 2D defines a (2, 4)-polarization on A and the functions of L(2D)
embed T2 into IP”. For this problem, the t-involution reads

dty|p=

T(X1, X2, Vi V)X 1, X0y — Vi, —V2)

and, from the Laurent solutions (2), one checks
L2D)=L"®L ={{,.... s} ®{(5, (s}
= {l,xl,x,?, ix,, — %(2x1x§+y1y2), —i(yf+xfx2)}
D{X (1) =y 1) Xa(xy) =X, —2p1x,} .

Indeed, by means of (2), compute

27 47* 27

oo o lob= (1,_, -

2 > + higher order terms in ¢,

i iU 4iZ* 4273 . .
({00506 )= (— th, — 1—2, lt—z, t_2> +higher order terms in t.
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Using these Laurent solutions, we get 6 quadratic relations in the variables
{4, ...,{g, namely, after rescaling 4, and A, into ic and —1:

P} =03-(,03=0,

2
Py =—{3-2il,{s— % +al6=0,
@y = — 40— 40— 2+ 2c((304+(1le) =0,
. 2
o= — é(zci+2(:§+ C;) +(5=0,

2
@5=203 4200+ 5+ =0,
D=4l {4 —2ic(3+il3{6+(5=0.
Defining the affine variables

(Wos Wiy ooy We) = (17 4 L) ™ (L5 + ALg, i, -0 L)
leads to the closed system of differential equations

Wy = —2ikw,w, + AW, w3 + 2iw, ws),

Wy =iK(WWe —Wawa)+ A —2wi +w3/2),

Wi =2ikw w5+ A2icw, W, —iw,we — 2w, W),

Wa= —2KkW,We + 2A(—2iw, w, + wiws),

Ws=K(— 2w Wy +3wawg) + Ai( — cw we + cwywy — 2w3 +w2/2),
We=2KkW3Ws+ 2UcW, W3 —2W, W, + iWsW).

As in the Kowalewski problem we now perform a rotation so as to get ®” into
the block form; define for j=1,2,3:

{—¢ 4 +C .
m=oy g B =it =i
{—¢ L+ o
Nj+3=%; 42 6+ﬂj€5“l7’j 42 6’ ng=(—2ic) 120,
where
0 1 0

U=(; B;7)=|—3/2/2 0 —i/2)/2
—i2/2 0 3722
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is a (complex) orthogonal matrix. In these new coordinates, the @; have the
following form:
P =ni+n3+n3,
@4 =2in 1,05 +N05 =13+ 03,
@gz’?42t+’7§+c’72’75_'12+c’73’76,
y=—ni—n3+ns+n3,
5= —iny Ny —n3+ 03+ 113,

w2 2 2 2
6=’71_E772’75+ 2’73’76+’78'

The final step is to transform these quadrics to the quadrics (2.3'), which is
done as follows: the rank 4 quadrics in the projective linear span V(®7, ..., D%)
{X®|+...+ W} ~TP° are given by the intersection of the 4 quadratic cones K,

Ki:(X+W)(Z-U)+ <Y— g)z =0,

KZ:(X+Y—V)(Y+Z—U)—<%—¥>2=0,
i ©)
Ky:(X—Y+V)(Y—Z+U)— (52-Z~+¥> -0,
Kuw—"" 2o,
4
Since 2K, +K,—K;—2K,=0,

4
the locus () K; defines a surface in P°. In order to make the identification with the
1
quadrics @ [see (2.3)], we search for the rank 3 quadrics, besides @7, in the space of

quadrics @7, @3, @4 (depending on even sections only), i.e., the quadrics " € ﬂ K;
N{U=V= W 0}. From (6), they turn out to have the form

) =02 —v P, — D}
=(vn; —ing)* +(Wo— 15—+ 1)k —cn,ns)
+ (w413 —(0— 15 —cnste)s

these quadrics have rank 3 if and only if

=(0—v,)(v—0,) (v—0;3)=0, ()

c
TW)=v3—v+ —
v)=v>—v+ 1

yielding the 4 rank 3 quadrics @ , @, , @, , @ = ®}. They are related by the linear
relation

3
2P,/ T'(v)— @5 =0,
1

by means of the Jacobi trick.
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Therefore, comparing the sets of quadrics @; and @, we make the following
identification:

P,(0)=D5m),  PA0)=D;,()/T'(vy),
D3 (0)=D;,(0)/T'(va),  Py6)=—P(n)/T'(v3),

suggesting the change of variables

9i=ni (l=1s2’3)a 94:T(U1)_1/2(U1’71—i’74),

95,6=T(U1)_1/2(|/ v1(vy F Dz +1)/v, £176), (8)
V. V_
07=I/U+(’77+§UL7’8)a 98=VU—<ﬂ7+§T”8>’
4 _

where

p— it Te)"™
T TE)™

2i 2i
(115 1, #3)=(l’2_01)<1s? /v +1(vs + 1)>;[/ Uy — 1(“3_1)),

bo=bibbs, i=1,2,3,

(b b (v, +)/T)?

(b3'—bi")

(I =biN(—v, FYT)

(bfl—b+l(m+1/—)2
(

(b1 =bi (=10

\(bfl—bfl)<—1i§]/—7—(01+1)T’>
\

the derivative T” of the polynomial (7) being evaluated at v=1v,. One then identifies
X1+ Y05+ ...+ Wdg, expressed in the n-coordinates, with @, D, D,
evaluated at #,=#4=0; this yields a highly overdetermined linear system in the
X, ..., W, which is easily solved. In turn, this yields the linear map (8) between ¥,
ng and 0, 0.
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To summarize, we find the following transformation:
0,=x,,
0,=(1/)/D(~1+4x}),

03=—(i/)/2)(1 +4x3),
0,= T_I/Z(U1x1 “%(2x1x§+y1y2))’ ©)

05,6= —i|/ T/2(|/ v (0, F1) (1 +%X%)
— /v £ 106, =37 +x3x,)),
07,5=1U+/2()) —icy, —(V3/2)) —ic U ;) (y2x; —2y1X5)).

Define, as before
u;= 0
T KO, + 204

with 6, given by (9). Then this map combined with the transformation uvx, given
by (3.10) [in terms of the parameters b; found in (3.11)] provides the linear map
from the Hénon-Heiles to the Manakov problem. In particular, setting
k=0, leads to the Lax pairs of Corollary 1 (Sect. 3), with u;=0,/0.

Acknowledgements. We would like to thank A. Mayer, T. Matsusaka, and T. Parker for helpful
conversations.
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