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Abstract. The invariant surfaces for the Kowalewski top, the Henon-Heiles
system and the Manakov geodesic flow on S0(4) complete into Abelian
surfaces A, by adjoining, in each case, a divisor D of arithmetic genus 9; these
divisors belong to the same linear system on A and they each define a
polarization (2,4). Therefore there are rational maps transforming the
Kowalewski top and the Henon-Heiles system into Manakov's geodesic flow
on S0(4). This paper deals with the precise geometric relationship between
these three problems; it is based on the splitting of the 8-dimensional space of
sections of D (theta-functions) into an even and an odd part and also on a
normal form for the six quadrics describing A, as embedded in IP7. As a
byproduct, we get a 2-dimensional family of Lax pairs for both the Kowalewski
top and the Henon-Heiles system.

1. Introduction

Integrable systems have been integrated classically in terms of quadratures,
usually through a sequence of very ingenious algebraic manipulations especially
tailored to the problem. More recently, it was realized that whenever a system
could be represented as a family of Lax pairs - often arising in the context of
coadjoint orbits of Kac-Moody Lie algebras - the system could be linearized on
the Jacobian of a spectral curve, defined by the characteristic polynomial of one of
the matrices in the Lax pair. However this approach has remained unsatisfactory;
indeed (i) finding such families of Lax pairs often requires just as much ingenuity
and luck as to actually solve the problem; (ii) it often conceals the actual geometry
of the problem. Therefore we have engaged in a systematic approach towards
solving integrable systems, based on the Laurent solutions of the differential
equations [5]; This is done in the context of algebraically completely integrable
systems. The latter means: the system has polynomial invariants, in sufficient

r The support of a National Science Foundation grant # 84-03136 is gratefully acknowledged



660 M. Adler and P. van Moerbeke

number, their (compact) invariant surfaces are real tori (by the Arnold-Liouville
theorem), the invariant surfaces viewed as complex manifolds extend to complex
algebraic tori, upon adjoining some divisor, and the phase variables are
meromorphic functions on those tori. The Laurent solutions to the differential
equations, depending on a sufficient number of parameters, provide the way to
complete the affine invariant surfaces to complex algebraic tori; and these
solutions, properly decoded, provide all the information about the tori and their
periods.

Two integrable Hamiltonian systems may look very different and yet be related
by some rational map, involving all the phase variables. It is hopeless to guess this
map by mere investigation of the differential equations, but the study of the nature
of the tori yields the key to whether the systems are rationally related and it
provides the explicit rational map. In this paper we show that three seemingly
unrelated problems - the Kowalewski top, the Henon-Heiles system, and the
geodesic flow on S0(4) for the Manakov metric - are rationally related. Moreover
we give the precise rational map from one to another; it is closely tied up with the
beautiful geometry of line bundles on Abelian surfaces of polarization (2, 4). The
birational equivalence between those systems enables us to carry properties
from one system to another; in particular as a by-product we write down a
two-dimensional family of Lax pairs for the Kowalewski top and the Henon-
Heiles problem. This two-dimensional family of Lax pairs leads to a spectral
surface, rather than a spectral curve. The nature of this surface will also be
discussed in this paper.

We give a brief description of the three problems:
I. Kowalewski's top [21, 22] rotates about a fixed point, its principal moments

of inertia λ = diag(A,B, C) (with regard to the fixed point) satisfy the relation
A = B = 2C and its center of mass belongs to the equatorial plane (AB plane)
through the fixed point. The motion is governed by the equations

m = m Λ λm + γ Λ / , γ = γ Λ λm , (0)

where m, /, and γ denote respectively the angular momentum, the center of mass
and the unit vector in the direction of gravity, which after some rescaling and
normalization may be taken as / = (1,0,0) and λm = (mί/29m2/2,m3). Besides the
two trivial invariants <w,y> = £, <y,y> = C, and the energy </lm,m>/2 + </,7>
= A/2, the system has one other invariant, yvy2 = D2, upon defining the change of
variables

/ Λ
(Xl ,X 2 ,*3,J>l ,J>2, ) '3 )-

(i)
as S. Kowalewski shows in her famous 1889 Acta Mathematica paper. Through a
sequence of very clever algebraic manipulations, especially adapted to the
problem, she integrates the flow in terms of hyperelliptic quadratures, involving
the curve

(2)
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where the cubic

A B2 — AC
T(x) = det(M - xl) = x3--x2 + Cx + - - - =(x-aί)(x- α2) (x - α3) (3)

is the characteristic polynomial of the matrix

i(C+l)
(4)

/ C-l -B i(C+l)

-B A -IB

\i(C + l) -ϊB -(C-l)

For future use, we also introduce the orthogonal matrix U which diagonalizes M
(in terms of the spectrum α l 5 a2, <33 of M) namely

UMUτ = diag(aί,a29a3). (5)

We now provide the geometric background to this problem. It was shown by
Lesfari [2] and Adler and van Moerbeke [5] that the affme surface defined by the 4
constants of motion of the Kowalewski top completes into an Abelian surface A by
adjoining a divisor D consisting of two isomorphic genus 3 curves D(1) and D(2)

intersecting in 4 points. Each Dl is a double cover of an elliptic curve & ramified at 4
points: it defines a line bundle and a polarization (1,2) on A. Then A = (C2//l, where
the lattice A is generated by the period matrix

2 Q a

0 4 b

The divisors 2D1, 2D2 or D1 +D2 are all very ample and define polarizations
(2,4); the 8-dimensional space of sections (θ-functions) of the corresponding line
bundle embeds the abelian surface A into P7. For instance, setting D = D(2\ the
space L(2D) is spanned by the following functions (in terms of (1)):

Also A is the dual of a Prym variety, namely A = Prym(D/$}.
II. The Henon-Heiles system

dH dH
*i=^—> Λ = ~~τ~' i = l 9 2 ,

3yt Sxt

with

A (7)

is algebraically completely integrable with additional integral

(see Bounds et al. [10]). The affine surface defined by the intersection {Qι=A}
n{62 = ̂ } completes into an Abelian surface, by adjoining a smooth genus 3
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hyperelliptic curve D; the latter is a double ramified cover of an elliptic curve S, but
also a double unramified cover of a genus 2 hyperelliptic curve

on whose Jacobian the flow linearizes. The divisor D defines on A a polarization
(1,2). As before, the functions of

-i(yl + xl*2), yι,y 2*1-^1*2

(8)

embed A smoothly into F7 with a polarization (2,4), and A = Prym(D/$y is a
double unramified cover of Jac(J f).

III. The geodesic flow on S0(4) for the Manakov metric is given by

where

U X3 X2 }

3 1 5

~*

v

6Sθ(4),

α = diag(αι,...,α4),

(9)

(10)

The system has 4 invariants

= Σ — α
(11)

and linearizes on the Jacobian of the spectral curve of (9), namely

P(z, Λ) - dεt(X + α/z - z/) - 0 .

4

The invariant surface f } { Q i = Al} completes into an Abelian surface A by
i

adjoining a smooth curve ^ of genus 9, which is a 4-fold unramified cover of a
curve D of genus 3; the latter is a double ramified cover of an elliptic curve $ and
therefore A = Prym(D/<$). The functions of

embed ^4 smoothly into P7 and the divisor ̂  defines on ^4 a polarization (2, 4) (see
Maine [16]).



Kowalewski and Henon-Heiles Motions 663

To conclude, the invariant surfaces for these three problems complete into
Abelian surfaces by adjoining divisors; they each define a polarization (2, 4) and
they fortunately turn out to belong to the same linear system. Therefore there are
birational maps taking the Kowalewski top and the Henon-Heiles problem to
Manakov's geodesic flow on SO(4); to be precise, there is a one-dimensional family
of birational maps between the Kowalewski and Henon-Heiles invariant tori and
those of the Manakov problem.

The aim of this paper is to provide an effective method to produce such
birational maps. They are given by identifying the three 8-dimensional spaces
L(2D(2)), L(2D), and L(#) of Kowalewski, Henon-Heiles, and Manakov; the space
of sections of the corresponding line bundles can be given a canonical basis
respecting the involutions on the Abelian surfaces. The exact map is then given by
identifying the bases of L(2D(2)), L(2D), and L(^) with the canonical basis.

To elaborate on the above procedure, consider a line bundle 5f on the Abelian
surface defining a polarization (1, 2); for Kowalewski's problem, pick D1 or D2, and
for the Henon-Heiles problem, D itself. Then for some origin on A and for the
natural reflection about this origin, the 8-dimensional space of sections of the line
bundle ^®2 splits into two subspaces H + and H~ of even and odd sections (theta
functions)

Θ8}. (12)

They have the remarkable property that

(13)

where {,} denotes the Wronskian {0^0^ = 0^(0^-0^(0^ between two t beta-
functions, with respect to an arbitrary holomorphic vector field X on A. Then the
Abelian surface A embedded in P7 can be described by 6 quadratic relations
between the θ-functions, 3 of which involve even sections only and another 3
involving even and odd sections. However, the space of the three first quadrics
contains 4 collinear rank 3 quadrics. Therefore a canonical basis θί can be picked,
up to a finite number of choices - such that the 6 quadrics have the form

Q4(θ1,...,θ6)+Θ2=o, (14)

Consider now the linear pencil of curves

on A and the corresponding affϊne surface s/κjλ = A\^κ/λ; the latter is cut out by the
intersection of the 4 quadrics

Σ«ι=o, Σ",2

+3=o,
1 1 1

+ λ2Q6) (κθΊ + λθs) -
 2 = 0 ,
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expressed in terms of the affine variables

As a consequence of (13), this surface stfκjλ supports a closed system of quadratic
differential equations, depending linearly on κ/λ. We show that this system is
nothing but Manakov's geodesic flow and that the affine surface jtfκ/λ is cut out by
the intersection of the 4 quadrics (1 1). The linear map u to the Manakov variables x
in (10) has the form

where af and bf are algebraic functions of the y f and κ/λ, to be spelled out in
Sect. 3.

Returning to Kowalewski's problem, the next step is to identify the space L(2D]
with the space (12) given by its canonical basis. The affine invariant surface j/
defined by the 4 constants of motion, given in I, have the following involution, in
terms of the variables defined in (1) (not to be confused with the Manakov
xrvariables):

which amounts to a reflection about some appropriately chosen origin on stf. A
different choice of origin would lead to a different involution. <$/ has also a second
involution

σ:(xl9x29x39yl9y29y3)^(x29xl9 -X39y29yί9 -J>3)

Then the map from the functions (6) in L(2D) to the ut variables is given by

(*!-l)\ i / « 4 \ /-(*?-W i

2x2 -, u5 = U 2x, — , (20)

where (7 is the orthogonal matrix defined in (5) and where

P = κ(y3-x2x3)-λy2(y3-xίx3)9 pσ = λ(-

Thus the combination of the maps (17) and (120) yields the one-dimensional family
of linear maps (depending on the parameter κ/λ) to the Manakov problem, thus
mapping the affine surface j/ of Kowalewski to the surface jtfκ/λ of Manakov. For
the Henon-Heiles problem one proceeds in a similar fashion.

Substituting the combined maps (17) and (20) in the Lax pair (9) leads to a two-
dimensional family of Lax pairs,

A(k, h) = {_A(k9 h\ B(k, hj] , A, Be so(4) , k = κ/λ ,

depending linearly on h and algebraically on k. The spectral surface defined by

P(k, h, z) = det (A(k9 h) - zl) = 0

is some appropriate projection of the invariant tori A. We conjecture it is an
expression for the dual A* of the tori A. For six special values of k = κ/λ9 the spectral
curve P(fe, /z, z) = 0 (k fixed) is hyperelliptic and, in particular for k = 0 or oo, the Lax
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pair takes on the particularly nice form

(v - vσ)®(v - vσ) + h(υ + vσγ + Ih2)'

ϊ)((v-vσ)®(v-vσ) + h(v + vσT + Ih2l(M + I)((v + vσγ + (21)

where M is the matrix (4), σ the involution (19),

and where A denotes the customary map

10 -c b\
A:R3-+so(3):(αΛφ> c 0 -a\. (22)

\-b a 0 /

Another Lax pair expressed in sl(6) coordinates, reads as follows:

ύ (β-I)h\_[( ΰ (N-I)h
(N-I)h vσ )~[\(N-I)h vσ

-vσ)Λ 2Γ(-1)/Λ

V 2Γ(-l)/h -( σ '

where M is the matrix (4), where T(x) is the cubic (3) and where

2£

N =

observe that

2B -A + C 0 ); (24)

(-l) 0 -T(-ί)-A-C-2l

= 2T(-l)[z^T/-2d1ag(^T,fl-LT,^)]

in terms of the spectrum at and the diagonalizing map U of M.
During the last ten years, there have been several attempts in constructing

meaningful Lax pairs for the Kowalewski top, notably among them the
constructions of Perelomov [31] and another one by Buys [11]. In each of the
cases there failed to be families of Lax pairs. Applying the methods (Theorems 1
and 2) presented in this paper to the divisor D(1) + D(2) (see description I. above of
Kowalewski's problem) with a reflection about a different origin, Haine and
Horozov [17] have obtained for the Kowalewski top a different Lax pair from the
ones in this paper. Also Fairbanks [13] has shown that every integrable system
which can be solved by hyperelliptic quadratures admits a 2 x 2 Lax pair
representation; this result is implicitly contained in the work of Adams et al. [1]
and based on the Moser [26] and Mumford [27] description of hyperelliptic
Jacobians. Meanwhile, R. Donagi has announced the result that every algebrai-
cally completely integrable system can - in principle - be represented as a
g-dimensional family of Lax pairs, where g is the dimension of the invariant tori.
Also, recently we have received a provocative preprint by Newel et al., [28], who
have obtained a Lax pair for the Henon-Heiles system.
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2. Line Bundles on Abelian Surfaces Defining a Polarization (2.4)

Consider a line bundle <g on an Abelian surface A defining a polarization (1,2) and
its square J^7®2 defining a polarization (2,4). The 8-dimensional space of sections
(theta functions) of ^®2 splits into subspaces of even and odd sections for some
reflection about the origin. The Wronskian (with regard to any holomorphic
vector field on A) of even and odd sections can be expressed quadratically in terms
of even sections. Between the 8 sections forming a basis of #°(j£?®2), there are 6
quadratic relations, three of which depend on the even sections only. It is
particularly convenient to use the set of quadrics in (3) introduced by Kδtter
[19, 20] and studied by us in [4]. They have the remarkable property that both the

3 3

affine surfaces p){φ. = 0}n{Φ4 = 0, # 7 ΦO} and p){φ. = 0}n{Φ6 = 0, # 8ΦO} com-
i i

plete into Abelian surfaces by adjoining 8-fold unramified covers of the hyperellip-
4

tic genus 2 curve y2 = x γ\ (x — b^ where the quantities bt appear in the quadrics
i

below; these curves will play a crucial role in the sequel. Throughout this paper,
F(βι, ...,6Π) = PW~ 1 denotes the projective linear span of the quadrics Qι,...,Qn.
Some of the ideas in this section have been inspired by Earth's beautiful paper [7]
on Abelian surfaces of type (1,2), by Haine's[16] realization of these surfaces as the
intersection of 6 quadrics and by our study of quadrics containing curves of rank 4
quadrics [4].

Theorem 1. Consider an Abelian surface1 A, and a line bundle JSf, defining a
polarization (1,2) on A. For some origin on A, the ^-dimensional space of sections of
the line bundle <£®2 splits into an even and odd sub space for the reflection τ about
that origin

Θ8}. (1)

Letting X denote any holomorphic vector field on A, the sections θ satisfy the
following relationship in terms of the Wronkians {θi,θj\ = θjXθί — OiXOj of two

SeCti°nS: {H\H-}C(H^. (2)

Moreover A, as embedded in P7 by the sections Ob is described by the following 6
quadrics2 :

φ,(0)=Σ0?, Φ2(0)=Σ0?+3,1 1

1

Φ4(g)=φiΓ^ +0? (3)

3 n2 Ω2 Ω ί

Φm=L^^^

i bi-b4 o4

2

b.

^^(θi-θ^)

i fe»-

1 Not containing an elliptic curve
2 Note Φl — Φ2 = Φι — Φ^
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or alternatively by the following quadrics:

Σ^+1

2 Σ (

£
1

where Θ'Ί and θ's relate to Θ7 and Θ8 as follows:

4 -4 , -8 4

The parameters ai9 bb and di are related as follows:

d1=a2a3 — a3aί~ala2 and cyclic permutation,

(4)

The quadrics Φ'l5 Φ'2, αnrf Φ'3 αrg m ί/zβ linear span of Φ l 5 Φ2, β^rf Φ3. T/z^ 5 ί̂ o/

quadrics Φ has the following involutions:

τ: (Θl9...9θ8)n(θl9...9θ69 -07,-08): all Φ, stay.

σ: (θl9...9θs)r>,(θ49θ59θ69θl9029θ39θΊ9-θs): Φ^Φ2, Φ3

+^Φ3" ,

Φ4, Φ5, Φ6 sίαj s .

βΓ- & + 0i + 3, 0*-0ί + 3,07*08) "

Notice ρί is based on replacing Φ l 5 Φ2 fey Φ^ΦJ, suggesting two additional

involutions: namely ρ2 and ρ3, which are based on the interchanges Φ2<-»Φ3

f

77ιe projective linear span F(Φl5 . . ., Φ6) o/ ί/ze quadrics (3) contains a surface of

rank 4 quadrics, itself given by the intersection of 4 dependent cones Kt (rank 3

quadrics) in P5. TTu's surface is precisely the Kummer surface KmA* associated with

the dual A* of A. The linear span of the first three quadrics Φ1? Φ2, Φ^ depends on

even sections Θί9...9θ6 only and it contains four rank 3 quadrics Φ l 5 Φ2, Φ3

f , and Φ^,
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which can thus be viewed as points on A*; their intersection defines the Kummer
surface Km A.

Proof. First observe that dim H°(J£) = 2 and thus \^\ is a one-dimensional pencil of
curves; let D0 be a generic curve among them. Barth [7] proves that the base locus
of \<£\ consists of four distinct points eίy . . ., e4, such that D0 + et = D0. Moreover the
general D0 e \^C\ is smooth and has genus 3. Then there exists an origin on A and a
reflection τ having as fixed points (half-periods) the 4 points e l 5...,e 4 and 12
additional points es, ...,eί6. Then according to Barth, for all Dε\&\, τD = D and
(for D smooth) D/τ is an elliptic curve <ί on the Kummer surface A/τ, showing that
D is a double cover of an elliptic curve. Then the line bundle £?® 2 is very ample and
there is a basis of even sections Θ l 3 ...,Θ6 and odd sections ΘΊ,Θ8 such that A (as
embedded into P7 by these sections) is given by the 6 quadrics

ι = (Vf + vr ') (0? ± 05) - 2(^ ± 0i) + (vf - vr x) (θ§ ± θ§) = o ,
ί=l,2 associated with ±

= 2((v3 + v3- ̂ 0^4 - 2Θ2Θ5 + (v3 - v3-
 1)Θ3Θ6) = 0 ,

==(vι+v 2 )(θϊ + θi) + (v1-v2)(ejH-βi)-2θi + 2θ? = 0, (7)

Q5 = 2v3(θ,θ4 + Θ3Θ6) - 2Θ2Θ5

the first three depend on even sections only and the three remaining ones depend
also on the odd sections ΘΊ and θs.

Any linear combination of the Qf's has the block form

SθΊθs + δsθl), (8)

revealing the existence of 4 involutions. The locus of points p = ( X , . . . , PF)eP5,
such that (8) is a rank 4 quadric is given by the intersection of the four quadratic
cones

8-δ2

7ίS = 0} i=l ,2,3,

each having rank 3; the explicit expressions for the cones are the following

K2:4(X+Y+U)(X-Y+U)-(2Z+V)2 = Q,

K4:4UW-V2 = 0.
4

By straightforward computation we have Kl—K3 = K2 — K4 and therefore (°) Kt
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defines a surface, which Barth identifies with the Kummer surface Km A* of the dual
yΓ of the Abelian surface A :

4

V(Q i,..., Q6)-V5 D Km A* = ̂ ]Kt = surface of rank 4 quadrics.
i

Taking into account the linear relation between the cones Kb the hyperplane
section

KmA'n{L2U-K2W=Q}=KίnK2n{U = K2, V=2KL, W=L2}

is an elliptic curve, which can be viewed as the curve of rank 4 quadrics in the linear
span of the quadrics.

61,62, Q,,Qκ/L = K2Q4 + 2KLQ5 + L2Q6.

According to Theorem 6 of [3], if the span of 4 quadrics of the block form (8)
contains a (nondegenerate) elliptic curve of rank 4 quadrics, then it contains a new
basis, which after a block-preserving change of variables, has the following form

ΦM Φ2(θ), Φ3(θ), Φκlλ = κ2Φ4 + 2κλb4Φ5 + λ2Φ6 (9)

in terms of the basis (4), for an appropriate choice of K and λ. To show that the
spaces spanned by the two sets of 6 quadrics (7) and (3) match, we observe that Φ l 5

Φ2, and Φ3 are in the span of g l 5 Q2, Q3 and the rest of the argument proceeds by
picking three distinct values oΐK/L. This shows the basis (7) can be replaced by the
Φ's of (3).

To see that the spans of the quadrics Φ l 5 . . ., Φ6 and Φ'l5 . . ., Φ'6 are the same, we
check

' - ^ ( Φ ^16

= ΦΊ + Φ'2 + -TTΓ- (Φ'4 + 2Φ'5 + Φ'6) ,
lD0

where

To do this identification, the bt must be related to the α, by the fractional linear map
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It is trivial to check from the equations Φ —0 that the maps τ, σ, ρx are
involutions on A. The involution ρ2 is obtained by changing variables θ frvθ such
that Φ1? Φ^ get mapped to Φ2, Φ^. This is achieved by letting Φ1? Φ^ play the role
of Φl and Φ2 and Φ2, Φ^ play the role of Φ^, Φ^ this leads to a new set of quadrics
Φ 1 ? . . . , Φ6, having the same form, but with new b\ expressed in terms of the old bts as
follows:

\-b}>2

i=l,2,3.

The involution ρ3 is similar to ρ2.
In order to establish the Wronskian relationship, observe that the affine surface

s/κ/λ can be viewed as the intersection of 4 quadrics:

(11)

expressed in the affine coordinates

(12)

where Φκ/λ has been defined in (9). These four quadrics are those obtained in [4,
Sect. 5]; there we exhibit two quadratic commuting vector fields u^f^u.K/λ)
defined on j/^:

\

\ ^5

= K
λ54U5U4

λ6U2U6-λ5U3U5

λ4u3u4-λ6uίuj

-(λ/b4)

\λ5ulu5 λ4u2uj

and

Γ2

ώ3

U5

— K

A^H^UI A4u4ιiξ>

λ'4U5U4-λ'6U2U1

λ'54U4U3

-(λ/b4)

λ'46u2u4 I

where λtj = λt — λj and λ'^ = λ't — λ'p with

Λ=—Λ-Γ» '',= , I 1 , L Ίi + 3=

λ2ίu2uί

λ'2ΐuίu6

'Λ

(13)

and (bf

1,b
f

2,b'3,b'4) = (b4.>b2,b3,bl). These vector fields on j/κ/λ extend to holo-
morphic vector fields X on T2. Therefore substituting (12) for ut in ύ—f^u.K/λ),
we find
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where the ft denote quadratic polynomials of Θl9 . . ., Θ6 depending on κ/λ. Picking
(κ,λ) = (1,0) and (0,1), we find

{θi,θΊ}=ttθί9...9θ6,ί9Q) and {Θi9θs}=ftfl9...9θ6909l)9

which leads to the inclusion (2).
The part of Theorem 1 concerning the surface of rank 4 quadrics is straightfor-

ward by using the fact that the Qt and the Φt span the same space of quadrics, and
that V(Ql9 . . ., <26) has been shown to contain a surface of rank 4 quadrics. Finally,
the statements concerning the Kummer surfaces are proven in Barth [7].

3. Removing from A the Zero Locus of Odd Sections and Manakov's Geodesic Flow

Whatever the k = k/λ, the affine surface s$k defined in (2.11) supports commuting
vector fields having a striking form and, in some new coordinates, j/k can be
viewed as the intersection of the four quadratic invariants of Manakov's geodesic
flow on SO(4). Therefore any holomorphic vector field on A restricted to <s#k can be
realized as a Manakov geodesic flow and thus it can be represented as a Lax pair,
which becomes particularly simple when k = 0 and oo. The techniques and
arguments in this section rely heavily on our work about the intersection of
quadrics [4]. The Kόtter quadrics, introduced in Sect. 2 play an important role in
the sense that jtfQ and jtf^ both complete to an Abelian surface by adjoining an 8
fold unramified cover of a hyperelliptic curve, whereas the general affine part j/k is
obtained by some kind of "interpolation" process. Throughout this paper given
any vector weR 6, set u/ = (ul,u2,u3) and w" = (w4, u5,u6); also given a and x
we define a- x = (alx1,...,anxn)e]Rn.

Theorem 2. I. The family of divisors ^k on A,

Q}nA, k = κ/λ9

forms a linear pencil of (generically) smooth curves having as base points the 1 6 half-
periods e l 5 ...,e16 and having genus9. They are 4-1 unramified covers of genus 3
curves D^C^Γ, via the isogeny φ:A-^A". Moreover through the projection
A'-^KmA', the curves Dl are 2-1 ramified covers of the elliptic curves $k, ramified
at 4 half-periods φ(ei) = e] (/ = !,..., 4) on A'. The spaces

,..., , „ 9 (1)
where

For convenience, define

112) and λf =±(-κb1

4

/2 + λb^1/2). (2)

such that κθΊ + λθs = κ'θ'Ί + λfθ'8 in the notation of (2.4).
II. For every k = κ/λ, define the affine surface j/k,

(3)
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The holomorphic vector fields on A, restricted to jtfk, take on the form

= u'/\
Bu' v ' du' / '

(4)

ί/ί li /\ i i i v i 't. i _ i i v '" / Λ //

Picfcing V δu du

ττ + — 7 +1 ^ (W; + t/, + λ)
2

H± = +b^ X ^̂ — ^ ,

(essentially Φ6 and Φ4J m (4) yields the vector field3 (particularly distinguished in

view of Theorems): ώ-= „'Λ ( f l. ( κ V_A V )_κ V ),

ιΓ = ι/" Λ (a (λ'u" — κ'u') — λ'u').

whereas another vector field is given by picking

ι2±u5)
2 (u3±u6)

2 (uv+u4)
2

remembering the relationship (2.5) between the parameters ai and bt appearing in the
quadrics Φ and Φ'. For K = 0 or λ = 0, the flow (5) takes on the following simple form

(uf + u")'= (uf - u") /\((a+l) (uf- u"}}
(u' - u»γ=(u' + u") Λ ((α +1) - (u! - u"}} (u1 + u")'= (uf - u") Λ ((a -1) - (u' + u"}}.

(7)
III. Another description for stfk is given by the Manakov quadrics, namely

4

where

L -a 9

^2 ^2 V2
, 5 , 3 , 2
I I /12ΛΌ •>

2

f) - Xl

L/o —
α —

/or some appropriate values of oct and Ai (given below] depending on the b{ and k2.
The surface ^k supports commuting vector fields having the Lax form

i - - , ( 9 )
i ^j

with Xeso(4) parametrized by (1.10). The linear map ur\x connecting the two
descriptions (3) and (8) is given by

i + b:~ui + 3 ) . (10)

For Λ,fceR", a b = (a1bl9...,anbn)e'R.n
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In (8), (9), and (10), the αί5 Ab a f , bf are functions of the bt and k = κ/λ, to wit:

3 3

ΣMi> ^2=
1 1

α2-α3

+ -—,
~~ α2 H2(b39bl9b2)J'

(11)

1 1

and cyclic permutations. The indices ij, k in αt — α7 αnrf τ t denote cyclic permutations
o/l,2,3.

IV. 77z£ curves D\ underlying ^fe, /orm α linear pencil \D^\ on A*, which projects
down to a system of elliptic curves on KmA* given by

^=KmA^{λ2U-κ2W=Q}cV(Φί,Φ2,Φ + ,Φk) = lP3, k = κ/λ. (12)

Each $£ is the locus of rank 4 quadrics in the linear span F(Φl5 ..., Φk); m ί/zβ
Qi-coordinates, ̂  can be represented as follows:

ρί + 2
1 1

3

t-α,.)(ί- α») x j + 3)
2

= double cover of IP1 ramified at the 4 points α l 5oc 2,α 3 5α 4

= double cover of P1 ramified at the 4 points b f/c + — ,
U jΓv

(( = 1,2,3,4), (13)
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with Bt defined in (11). The curve D\ is a 2-1 cover of ^ramified at the points where
the ranks drops to 3; thus we have

oci) = 0; (14)
i

the base points for this linear system D*k are precisely these 4-rank3 quadrics.
Moreover the linear pencil \D*k\ contains 6 smooth hyperelliptic curves, isomorphic
two by two; the first pair corresponding tok = 0 and oo, together with the two other
pairs, are given by the following equations:

bΐ), (15)
1 1 1

each covering the elliptic curves

y2=U(x-bt),(x-bt), y2=Π(χ-b')9 j> 2=Π
1 1 1

The corresponding curves in the pencil \<£k\ on A can also be viewed as 8-1 unramified
covers of the genus 2 hyperelliptic curves4

b;), V2 = * Π (* - b ) , (16)
1 1

where

7 _ 1 9 1

'~1 > 2 > 3

Then A* is a double unramified cover of 3 different hyperelliptic Jacobians,
corresponding to the three curves (16). For further use, also consider the curve D*b- 1,
which is a double cover of

V. Finally upon setting v = ί/h and u = z/h, the spectral curve going with the Lax
pair (9) reads as follows:

2+Yl(u-ai) = Q}cA (17)
i

with Bt given by (11). The curves Σk sweep out the linear pencil of curves going with
the original line bundle JSf of Theorem i and the following linear equivalence holds:

2Σk~%. (18)

This induces a map from the pencil \D\\ to the pencil \Σk\, which maps the smooth
hyperelliptic curves to the singular curves and the singular to the smooth hyperelliptic
curves. The map \Dk\r*\Σk\ is obtained by flipping around the covers, for some
appropriately chosen projection, as illustrated in Fig. 2.

4 Notice j72 = χ[](χ — bι) is conformal to the curve z2 = (x2 — l)f](x — α,-), using (2.5)
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ramified at ramified at 4 roots
2- (u-α,)

ramified at 4 roots of 4

(B1u
2-B2u+B3)

2-4B4/7 (u-^)
ramified at

Fig. 2 IP1 IP

Corollary 1. For κ = 0 (and similarly for λ = 0) the flow (5) admits the following

simple Lax pairs (remembering the map A: 1R3—>so(3), defined in (1.22)):

(i)

with

(X + αΛ)' = [X + ah, Y+ βh] , X, YE so(4)

0 -M3-M6 u2 + t/5 -M! +

X=\
ί 3 +M 6 0

— u2 — u5 u1+u4 0

M 2 - W 5 W 3 -M 6

y=
0 0 0

bl—b4 b2 — b4 b^~b4

α = diag(fe 1,fe 2,fe 3,fe 4), jB = diag(0,0,0, -1).

corresponding spectral curves Σ0 and Σ^ are hyper elliptic of genus 2, namely

y = — bi); the latter is isomorphic to y2 = (x2 — l)T(x).

(ϋ) M7 @h\ Γ/ M'

^/z M" / ~ LV^Λ ώ " / ' V 7 / Z -w

w/ί/i
»1 — W4 W2

7 ' 7 7 ' 7 7 / »
>!—£4 02 — O4 D3 — b4/

(19)
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The spectral curve going with this Lax pair is a cover of the spectral curve obtained
in (i).

(iii)

(α + 1) ((u' - u")®(u' - u"} + (u' + ύ")h + Ih2)'

= [_(a + 1) ((uf - u"}®(u' - u") + (IT + ύ")h + 7/z2), (α + 1) (ff + ώ" + /Λ)] .

w/zere ί/ze 3 x 3 matrix a+\ stands for diag(α1 + l 5 α 2 + l 5 α 3 + l). //erg α/so t/ie
spectral curve is given by the hyperelliptic curve y2 = (x2 —

Proof of Theorem 3. The affine surface jz/k, k = κ/λ, is defined by the intersection of
the quadrics Φ l 5 Φ2, Φ3, and Φfc. In (2.13), we gave a set of two commuting vector
fields on ^/κ/λ; the first vector field has the form (5), whereas the second has the form
(4) with H± as in (6). For κ = 0 or /l = 0, the vector field (5) transforms into (7) by
making sums and differences of the Eqs. (5). Having shown Part II we now proceed
to Part III.

Since the linear span F(Φ1? Φ2, Φ3

f, Φk) = IP3 contains a non-degenerate curve of
rank 4 quadrics

the space V can instead be spanned by Φ l 5 Φ2, Φ^ and one other rank 4 quadric.
Thus in the variables ut they have the general form

1

3

Σ(7^ +7 ί +3^+3)2+yo^o ? (20)
1

3

0,4 = Σ to". + δf + 3 ut + 3)
1

with y0 = 0. By taking appropriate linear combinations, g3 and Q4 can be replaced
by new quadrics Q3 and Q4 of the same form, but wiihy1=δ2 = Q, y2 = δl=0. This
new set Qί9 ...,Q4 corresponds to 4 points on the curve ^/λ; this curve can be
viewed as the intersection of the three quadratic cones in IP3 :

expressed in the coordinates X, Y,Z, U for the basis β l 5 ...,Q4 of (20). The functions
μi = μ fpf, ̂  Z, L7^) can be viewed as meromorphic functions on Sk.

As explained in [4], the curve ̂ contains 3 points pt = (Xb Yb Zί5 Ut = 1) leading
to three simultaneously diagonalized quadrics Q(pi) = XiQι +

(21)
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with

μι μ1 μ2 μ2 μ3 μ3

(22)

These three quadrics along with a fourth one

d. (23)

spans the linear space F(Q1? ..., Q4). The fact that the points pε$κ/λ implies that

^±3(/7)=A±^). (24)
M +3

Therefore, using the relations (22) and (24), the quadrics (21) and (23) have the
following "simultaneously diagonalized" form:

-

A minor rescaling of the YJ's yields the 4 Manakov quadrics (8).
This program is carried out explicitly in [4]; namely the yt and <5f have the

following form in terms of the bb k = κ/λ and the quantities defined in (12):

4(α1-α3)α1

H2(b1,b2,b3)'

2 2
H1(b2,b3,b1) Hάbfrb^

whereas the ^j are obtained from the y t by performing the following involution:

(?o> 74> 75? 73? 736? 76> &ι ? ^2, ^3)^(^0, <55, <54, (53, (536, 56, ft2, b l 5 ft3).

The linear change of variables ur\Y [in terms of (20)] is given by (see [4])
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where the coefficients a f , b f , a, b, c, d, U, V are expressed in terms of the y and δ's
appearing in the quadrics (20); namely

E7, aί = -δ2(y36 + δ36)+V, aϊ = -δ2U

-U), α2-=α2

+(-n, αj = α3

+(- C7, 7) ,

, & 2

+α 2

+=y 5(-<536+r), b + aί* = -y36V-δ36U ,

V=(iγ3/δs)W, V=(δ3/γ4)W, W2= -y2δ2y4

3

a = ίy4δ4δl, b=-y5δ5yl, c=W,

Combining these two sets of formulas, together with a minor rescaling yields the
formulas (1 1) in the statement of this theorem. This shows that the affine surface sίk

can also be viewed as the intersection of the four quadrics (8). These quadrics
support commuting vector fields of the Lax type (9).

The computation presented above becomes invalid whenever the quantities in
(12) vanish or become infinity; i.e., this happens for the values of K and λ for which
A4 = B4 = 0. Then the curve Σk in (17) becomes hyperelliptic. This proves Part III.

We now sketch the verification of Parts I and IV. From the asymptotic analysis
of these differential equations in [5] the intersection of the four quadrics (8)
completes into an Abelian surface upon adding a curve ^k of genus 9, which is a
4-fold unramified cover of a curve Dl C A' of genus 3 the latter is a double cover of
the elliptic curve of rank 4 quadrics <ίk, ramified at the 4 points corresponding to
the quadrics where the rank drops to 3.; an explicit representation of <^(due to
Haine [16]) in terms of the Manakov quadrics β l5 . . ., <24, is given in (13). The linear
system \Dl\ on A* contains 3 pairs of smooth hyperelliptic curves of genus 3, and 12
singular curves, as shown by Horozov-van Moerbeke [18]. There it was shown
that given a line bundle J5f defining on A a polarization (1, 2) and given the linear
system |D| going with JSf, the Abelian surface A is a double unramified cover of the
Jacobian of the smooth hyperelliptic sections in D, whereas the Jacobians of the
singular sections (upon normalization) are double unramified covers of A. The
representation (13) of <^as a curve of rank 4 quadrics in terms of the Manakov
quadrics follows from a straightforward computation. The curves ̂  and $£- 1
have the form announced in (15) because for those specific values of k = κ/λ, the
points αί5 defined in (12), can be moved to ftl5 ...,έ>4 and 0, a\, a\^ a\ respectively.
The form of the spectral curve Σk is due to Haine [16] and comparing the formulas
for Dl and Σk confirms the diagram in Fig. 2. Except for Part V of the theorem (to
be shown in Sect. 5), this ends the proof of Theorem 2.

Proof of Corollary 1. The equations (7) for k = 0 are readily reformulated in terms
of the Lax pair (up to some time rescaling)
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= ui-ui + 3, i=l,2,3,

j8 = diag(0,0,0,-l),

using the fractional linear relation (2.5) between at and fcf. The statement
concerning the spectral curve Σ will be given in Sect. 5. The second Lax pair is
obtained by considering the representation of s/(4) as acting on Λ2(C. In particular
skew-symmetric and diagonal matrices transform as follows:

A 12 ^-13 ^14

22
A 24

14 24 3

/ 0 A12 + A34

-Aί2-A34 0

-^13+^24 -^23-^14

A22 + A33 0

0 ^33+^!!

\ 0 0

A A
^13 ^24

^-23 +^14

0

0

0
A^+A22

^22 +^33

0 A,

0

0 Aί

-^12 + ^34

-A13-A24 -A

0

3 + ̂ 11

0

2-^34

0

^23+^14

0 \

0 \
xd -L A
^1 1 i ^»-22

^-13 +^24

A23-A14 I

Using this representation we immediately get the second Lax pair, after a slight
modification of α and β, so as to make α and β traceless. The third Lax pair is a
straightforward consequence of (7) for k = 0, which is a variation on a Lax pair due
to Perelomov [30].

4. The Six Quadrics Associated with Kowalewski's Top

In this section we show how to apply the theory developed in Sect. 2 to the specific
situation of Kowalewski's top. Given a line bundle & ® 2 and an origin, the splitting
of the space of sections into even and odd subspaces, with regard to the reflection τ,
can be found by picking a divisor D0 in the linear system \£f 02| which is defined by
an even or an odd section Θ0. Then the space L(D0) is spanned by the functions
ΘJΘo, ...,Θ8/00, and thus L(D) splits into a 6-dimensional and a 2-dimensional
space of even and odd functions, when Θ0 is even and the other way around when Θ0

is odd. By picking an appropriate basis of the function space L(D0), there must be 6
quadratic relations Φ between the functions, exactly of the type (2.3) discussed in
Sect. 2. The salient features of the quadrics Φ are the following: they all have the
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block form (2.8) and their linear span has 4 rank 3 quadrics depending only on even
functions when Θ0 is even and only on odd functions when Θ0 is odd. The program
is thus as follows:

(i) find a divisor D0 defined by either an even or an odd section.
(ii) write the 6 quadratic relations between the functions of L(D0),

(iii) find a new basis of L(D0) and thus a change of variables transforming the 6
quadratic relations into relations of the type Φ or Φ' in Sect. 2.

Besides T(x) = det(M — xl) already defined in (1.3), we introduce the following
polynomials

jR(x? y) = - X

2y2 + Axy - B(x + y) + C ,

Rl(χ,y)=-Ax2y2 + 2Bxy(x + y)-C(x + y)2 + AC-B2

9 (1)

P(x) = R(x9x)9 Q(x) = R1(x9y).

The polynomials T(x) and P(x) have the same invariants g2 and g3.
As pointed out in Sect. 1, the invariant surface for the Kowalewski top

completes into an Abelian surface, by adjoining two isomorphic genus 3 curves D1

and D2, intersecting in four points, each given by

(2)

This is a double cover of the elliptic curve

(3)

ramified at the 4 points where U= 0 covering the four roots of P(Z)=0. The Abelian
surface can be viewed as the dual of the Prym variety: A = Prym(Di/S>γ. The
divisors 2D1, 2D2 or D1 +D2 are all very ample and they all define polarizations
(2, 4). The line bundle 3? going with D1 has only even sections: the Riemann theta-
function and a theta function with characteristic. Therefore D1 and thus 2Dl are
both cut out by even theta-functions. In the same way D1 + D2 is defined by an odd
theta function, but for a different reflection. As a consequence the program spelled
out above can be carried out for any of these three divisors. For the sake of this
exposition, take D = D2.

We first observe that the Kowalewski vector field in I. of Sect. 1, with the
change of coordinates (1.1), takes the form

Xi : X! = x 3 Xi -j>3 , 3>! = 2x33;! ,

y2=-2x3y2> (4)

A second flow commuting with the first is regulated by the equations

J>3 =
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The Kowalewski constants of motion map into

2 --

Define the vector field

, ~ X2) + μ&4-
 1/2/4) (X, + X2) = κ'X,+ λ'X2 (6)

in terms of /c, λ or κ'9 λ' related by (3.2). The affine invariant surface jtf defined by
the four Kowalewski constants of motion (2) has the involution

τ:(xl9x29x39yί9y29y3)-+(xi9x29 -^JΊ^ -)>3)> (7)

which maps the vector fields Xt into —Xi9 which thus amounts to a reflection
about some appropriately chosen origin on A. A different choice of origin would
lead to a different involution, j/ also has a second involution

σ:(xl9x29x39yί9y29y3)->(x29xl9 -X39y29yl9 -y3), (8)

which preserves the vector fields. We now state Theorem 3.

Theorem 3. The space L(2D] splits into two sub spaces L+ and LΓ of even and odd
functions for the τ-involution

= {1, x29 xl y29 y2x^ y2x
2,} Θ {Xι(x2\ X2(x2}} (9)

the involution σ acts on the ζt as follows:

σ : Cι^C4> C2<-<5> C3^C6? C7^C8 (10)

Moreover we have the following Wronskian relations, analogous to (2.2):

® 2 . (11)

Between these 8 variables C 1 ? ...,C8 there are 6 quadratic relations Φ"(ζ)9 the first
three involving the even functions ζ ί 9 ...9ζ6 only:

(12)
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Define the map
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(13)

gii ew fey ί/ze (complex) orthogonal matrix
the matrix M, defined in (1.4):

= (α7 , /?7 , y/)/=ι ,2,3? which diagonalizes

ί/ze characteristic polynomial of a being

77ze map (13) transforms the space of quadrίcs Φ" into the quadrics Φ' (of
Theorem 1) and the Kowalewski vector field (4) into the vector field (discussed in
Theorem 2) :

ύ'= u' Λ (a - (κ'u' — λ'u"} — κ'u"} ,

ύ" - u" Λ (a (λ'u" - κ'u'} - λ'u'} ,

expressed in the variables u( = (κθΊ + λθ8) ~ 1 θt (1 ̂  ί ̂  6), wiί/i ί/ίβ af fe^mg ί/ze roots of
T(x).

Conversely, there is a specific rotation U eS0(3),

b l S3 \

2

• b 1 b 3 ι

/*.

= l/Γ 02

\β

1 0 / \"3

'

/ b4 bo

/ 9

C5

\ «- 0

= [/τ U

and a map
ζΊ = a

in terms of the theta functions θ in [2.3], such that the variables

(x x x]=(^^^(Xί9X2>
x3)- \ > >

(13')

αr^ precisely the Kowalewski variables (x 1,x2,x3,y\9y2, y3).

Proo/ Applying the methods explained by Adler and van Moerbeke [5], one looks
for Laurent solutions of the differential equations (4) depending on

dim (phase space)— 1 = 5
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free parameters. There are two distinct families of Laurent solutions, which upon
substituting into the constants of motion Qt and then upon setting the values of the
results obtained equal to A, B, C, and D = 1, lead to the following:

Laurent solutions D2 Laurent solutions D1

~

x3=--6 t t

y2=-2(U2Z2-P(Z))+...,

with P(Z) defined by (1). The table above implies (x^-D1 (i=l,2), (x3)
^-Dl-D2, (y1)^2(D2-D1), and (y2)^2(Dί-D2)9 (y3)^ -D1-D2; therefore
all ζiEL(D2\ as defined in (9). For future use, one checks that along D2

(Ci9£2? £3^7) = ( 1,—?^~> —2") + higher order terms in ί,

u2 t (14)

(C4, ζs, C6, C8)
= —72— (1, Z, Z2, - t/Z) + higher order terms in t.

To show that σ, defined in (8), acts on the ζt as announced in (10), take a point

γ\ (f f f Y \ (Λ γ -y-2 ,. -. -, ^ 2 ~y ί-. \ T/" /-, \\ ._ ID/
r — \^1? * * 5 ^ 6 ' i ' 7 ' ^ 8 / — V ' 2' 2' ^2' ^ 2 1 ? ^ 2 1 ? ^^ 1 v 2/? ^^ 2\ 2// '

and observe that as a vector in P7, using y±y2 = \ and the form (4) of vector fields
X1 andX2: σ(p) = (l,x l 5xί,y

Moreover the functions ζ l 3 . . ., C6 are even and £7, C8 odd for the involution τ.
An effective way to get quadratic relations between the ζt is to use the Laurent

series (14) and to match poles. For instance, starting with the seed £§ having
Laurent series

Z4(£/2 + l)2 (C/2

4 -.. . ...

[the latter equality following from the curve relation (2)], and then using
appropriate products of the ζi9 the ί~4-term can be peeled off leaving a ί~3

contribution and so on, leading to the quadratic relation Φ^ the same procedure
leads to the six quadrics Φ'[, . . ., Φ"6. This is further simplified using the involution σ.

The Wronskian relations (1 1) follow at once from the Wronskian relations (2.2)
for the sections. In order to identify the Kowalewski vector field with (3.5), we must
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- in a first step - compute those Wronskians explicitly, namely

{ζi9 ζj} = quadratic polynomial of (ζί9 . . ., ζ6) ί = 1, . . ., 6 ,

7 = 7,8,
whatever be the vector Fields Xv or X2. Again the asymptotics is instrumental in
checking this fact. Indeed assuming ζt and ζj behave as ί~2, the Wronskian {ζb ζj}
behaves as ί~4; this term can be peeled off by subtracting appropriate products of
even function £15 ...,C6, leaving a ί~3 contribution, and so on. We thus obtain a
closed system of quadratic differential equations in the variables

(w0,Wl,...,W6) = (κfζΊ + λ'ζ8Γ
ί(κ'ζΊ + λ'ζ8,ζ1,...,ζ6)',

in particular the Kowalewski vector field (4) maps into

WJL = κ;'[2(w2w4 — wl w5) — (Bwl — A\v1 w2 + 2w2w3)]

W2

 = K'[(W3W4 — wi W6) ~~ (Cwf + W3 ~~ #W! W2)]

+ Λ/[Cw1w4 + w3w6 — Bw^s] ,

W 3 — K'[2(W3W5 — W 2 W 6 ) — ( — 2BW2 + 2C\V 2W 1 — βw^i — v4w3W2)]

+ λ'\_ — 2Bw2w5 + 2Cw2w4 — 5w3 w4 + ̂ 4w3w5] ,

w4 = Λ/[2(w! w5 — w2w4) + ̂ w4w5 — 2w5 w6 — 5w4]

+ jc'I^BwjL w4 — ^4w4w2 + 2w5w3] ,

V V 5 = λ'[_ — Cw4 + 5\V4W5 — Wg + (Wi W 6 — W3W4)]

— 2Cw4w5 + βw4w6 — v4w5 w6 + 2(w6w2 — w3w5)]

+ /C'[ — 2B\V2W5 + 2CW5W! — 5W 6W! + ,4W6W2] .

We now prove the map (13) transforms the quadrics Φ" into Φ', at first making
some preliminary observations.

Among the quadrics Φ'[ obtained in (12), the 3 quadrics Φ'[, Φ2, and Φ3 are
expressed in terms of even functions, two of which already have rank 3 however
the Φ ' do not have the block form. In order to match Φ'[ and Φ2 to Φ\ and Φ2, and
in order to identify the involutions σ [defined by (10) and (8)], we require the
transformation ζr^θ to have the form (13) with a 3x3 (complex) orthogonal

matrix Γ7-ίW R >»\
U — (<Zj9pj,yj)j= 1 , 2 , 3

However, rather than work with the map (1 3), it is more convenient to consider the

7 =1,2,3

defined by the matrix

j = l , 2 , 3

We will see the quadrics Φ' assume the block form in the (-coordinates, provided
the α, β, and γ are parametrized according to (13). Prior to proving this claim, we
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observe that the orthogonality of U implies the following relations for Uf:

(i) ftft+1-2αy+1-2yχ+1=0,

(i)'

(ii)

(iii) 'j_ 1; 2(α}_ t}/.+ t -y}_ tα}

7s 73 7Ί

Statements (i) and (ii) follow from the orthonormality of the rows of U, whereas (iii)
expresses the fact that U~1 = UT and (ίv) follows from (i)'.

In order to prove the exact form of the map (12), we substitute it, using Uf, into
Φ'ί,..., Φ£; Φ'[ and Φ"2 are as in (2.3')» while the quadrics ΦίJ, Φ'^9 Φ'^9 and Φ£ have the
block form in the θ-variables if and only if

4C
= 0 and = 0, (16)

with EΞΞ#2-,4C; the 3 x 4 matrices ^/ and & read as follows:

d-(α}α}+! j8}j8}+! y>}+! j8>}+! + β'j+ !?}),.= i, 2 .3,

Solving the first linear system of equations for A, B, C, we find (all products and
sums are taken cyclically from 1 to 3)

4
A = —- ΣαX+ ι7j+ 2 > upon using formula (iii) for 7}

= fj-r^β^Yi — tt'iβ'iYi)5 using (iii) for /?' l5β'2

= ι=r;Σ(χ'jyfj+ιyfj+2> using (iii) for α'3,/3

(17)

using (iii) for j - 3 and (i) for ;'= 1

= -irA using (iii)

1/2
3

+ ' usms(lv);
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c = ̂ y Σ αX'+ 1?}+ 2$2+ 2 , using (iii) for y'l9 γ'2, y'3

,

using (ii) for /J'3
2 and (iii) for β\,β2

= Σ^τ^τ±λ> using (i) for β'ιβr2 and (iii) for α/3 ,

• IΛ 7 j'77'+1

yielding

Using the above results, the second linear system (1 6) for A, B, C, £ is automatically

satisfied. From the above formulas, the A, B, C, and E are symmetric polynomials

in the α,- = (x.j/yfp and hence the α,- are the roots of Kowalewski's polynomial T(x).
Using (iv), (i'), and (ii), the entries α, /?, and 7 of U can be parametrized as

follows:

(

 /2

1 1
! - α2) (fll - α3

and cyclic permutations

One then checks that Uτ diag(aί,a2, a^U is a (symmetric) matrix of symmetric
polynomials of the at, and thus expressible as polynomials of A, B, C, E. Using the
exact expressions (17), (18), and (19), one then concludes

t/Γdiag(fl1,α2,£i3)t7=M,

with α defined in (1.4).
Finally using this change of variables C—>θ, and after some effort the quadrics

Φ" take on the form (12) and Kowalewski's vector field (4) takes the form (3.5), with
at being the roots of Kowalewski's polynomial.

To prove the converse, whatever be the rotation Uτ in (13'), the new space of
sections (d, ...,C8) behaves as follows with regard to the involutions σ and τ,

τ : (C1? . . ., CsMCi, . ., C6> - C7> - is)

σ : (d, . . , C8MC4> C5> £6> £ι» ̂  C3 ? - C8 ? - C?) -
In view of the rotation L7, the sections ζt satisfy

C^-CiCa-O and C§-ζ4C6 = 0.

Since Cι=0 implies Cz = ̂  and since C4 = 0 implies Cs=0 ? the theta functions ζ2

and C5 define the following divisors Dt and Df~ on ^4, all having genus 3:
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Therefore the functions

x^Cs/C^ -X 2 -C 2 /Ci, )ΊΞίι/ί4> ^2-C4/Ci,

satisfy

(x1) = DΓ-Dι, (x2) = D^-D2, y1=2D2-2Dί, y2 = 2D1-2D2,

regardless of the rotation U in (13'). These functions, together with

ι d _ C 7 C 5 + C8C2
^3 ~

transform according to (7) and (8), with regard to the involutions τ and σ. It is
only after picking U, α, and b as in (13) and (2.4) that x3 and y3 satisfy the
inequalities

(x3)^-Dl-D2 and (y3)^-D,-D2

and the set (xi jXiJ^jJ ' i jJ^J 'a) satisfies the Kowalewski system of differential
equations, completing the proof of Theorem 3.

5. A Two-Dimensional Family of Lax Pairs and the Spectral Surface

This section deals with the two-dimensional family of Lax pairs associated with the
affϊne surfaces jtfk = A\$k, k e P1, obtained by removing the genus 9 curves %>k from
A. Referring to Fig. 1 in Sect. 3, the curves ^fe are 4-1 covers of genus 3 curves D ,̂
via the isogeny φ : A -+A*. As shown in Theorem 2, for each value of k = κ/λ e P1, we
have a Manakov problem associated to jtfk, a one-dimensional family of Lax
equations (3.9) and associated spectral curves Σk. It turns out the linear system
\D~l\C A* and the family Σk are intimately related as follows:

Theorem 4. The spectral curves Σk sweep out the linear pencil \Da\cA generated by
the curve D = D(2) obtained in Theorem 3. This induces an algebraic map between the
linear pencils \D*k\ CA* and \DΛ\ CA, which takes the smooth hyper elliptic sections in
\Dl\ to the singular sections in \Da and the singular sections to the smooth
hyper elliptic sections. Moreover, the curve D\ -i gets mapped to D(2^ = D^ in \Da\.
When k = κ/λ = 0, the Kowalewski flow has the simple Lax pair representations (1 .21)
and (1.23) announced in the introduction.

Proof. At first we give a description of the linear pencil DΛ\ = \D(2}\ CA. In terms of
the Kowalewski coordinates x1? x2, and z1=x3x1— y3 and the polynomials
P, Q,R,Rί defined in (4.1), the Abelian surface A, suitably projected, is given by the
equation

Ψ(xl9x29zl) = 2*P(x2) + zl((xι-xtf (1)

and the Kummer surface KmA, by the equation !F(x l Jx 2 5M 1) = 05 as shown by
Horozov and van Moerbeke [18]. Each curve Da = {x2 = tt}, obtained by setting
x2 = α in Eq. (1), is a double cover of the elliptic curve defined by the radical of (1):

(2)
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ramified at the 4 points, where z1=0, hence P(x1) = 0, corresponding to 4 half
periods on A. Moreover there are 12 values of α, given by the 12 zeroes of the
polynomial

P(α) [P2(α) ((C + 1)2 + A(B2 -AQ) + P(α)Q(α) (4C - £2 - 4) + β2(α)] = 0 ,

where the curve Φ(xl9a9zl) becomes a hyperelliptic curve of genus 2 with one
normal crossing; each singular curve passes through one of the 12 remaining half-
periods, with the singularity being at the half-period. The hyperelliptic curves
corresponding to the 4 roots of P(α) = 0 are given by

3

(Kowalewski's hyperelliptic curve) .

An explicit but tedious computation shows that the spectral curve Σk given by
Eq. (3.17) with α f and βt defined in (3.11) belongs to the linear system \DΛ on A,
whatever be fceP1. Rather than giving this computation, we shall present two
illustrations of this result.

Case i. k = κ/λ = bϊ1; then Dl-ίr^Σb-ί=D00C\Da .
Putting this value of κ/λ into the expressions (3.11), we get the Manakov

quadrics (3.8) with

(<%!, α2, α3, α4) - (a2 + α3, α3 + al9 a1 + a2, 0) ,

A2 and A3 being defined by cyclic permutations; the linear change of variable
i/rvx, defined in (3.10), reads as follows:

2r2

In the Lax pair

=\ χ + oιh9^
i 3x
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the diagonal matrices α and β are given by (4) and

6 =il>ι>V3(rι*? + r2x
2 + r3x

2)

r2 + r3(r ! + r2) (rx

+ r3) (r2 + rjjxg] .

Given these data, one computes the spectral curve Σb-ι using the formula
(3.17), first in terms of symmetric polynomials of the ri9 and then after a fractional
linear transformation in u and a rescaling of v, one finds

^ + 2Au3-(2C-A2)u2-2(AC-2B2)u + C2); (5)

it is a double cover of the elliptic curve

(6)

ramified at the 4 points where the quartic polynomial

u4 + 2^w3 - (1C - A2)u2 -2(AC- 2B2)u + C2 (7)

vanishes. The fractional linear map

maps the cubic (6) to the quartic

, (9)

i.e., the curve SΛ given in (2), with α|oo.
In realizing a double ramified cover of an elliptic curve branched at 4 points -

the elliptic curve given by a definite projection - one still has the freedom to
translate the four points on the elliptic curve, without modifying the double cover.
We shall show that such a translation transforms (5) to D^. Euler (see [18]) has
given us an explicit recipe for translating an elliptic curve u2 = F(x) to the same
elliptic curve υ2 = F(y). The relationship between (x, u) and (y, v) is given by
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where s$ and ̂  are appropriately chosen polynomials and where

g2 and g3 being the invariants of the polynomial F.
In view of Euler's method (used here, rather than his exact formulae), consider

the symmetric polynomial

/

+ 2xy( ξ2-
\

C+l

(};)

ξ(x) = 0

with discriminant

C+l

The map (x, u)r\(y, v) given by

B2

'ζ

corresponds to a translation on the elliptic curve S^ determined by the point ξ on
the isomorphic curve

Considering the translation corresponding to the point ξ= — 1, and evaluating
(10) at that point leads to the map

with w given by (9), with x replaced by y. Combining the two transformations (8)

and (11) and rationalizing the denominator in w]/2T(l) leads to

ίl2)

to be applied to the expression (5) for Σb-ι. Using this transformation and
rationalizing once more, we see the quartic (7) in u maps to the quartic P(y(C + 1)).
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This shows the map (11) transforms the elliptic curve (6) and the 4 roots of the
quartic (7), to the curve δ^ and the 4 roots of P(x); therefore Σb-,=D(X).

Case 2. k = κ/λ = 0; then

Λ\ with ί>(«) = 0 (singular sections),

and κ'/Λ/ = l; in this instance the entire procedure simplifies considerably.
Indeed, the affine surface j/0 is given by the intersection of the four quadrics Φi9Φ2,
Φ^, and Φ6 in (2.3). By taking simple linear combinations, this intersection is seen
to be defined by the 4 Manakov quadrics, the map (3.10) reduces to

we have αt = bt and

Λ ΐ - l . Λ i+l , Λi + 3 ,
~Γ 1 - ^ -- Γ ~ - : -- Γ -

bt-bί+l bl-bt.1 bt-b4 ^ i ~ k
fcφi

Q4(x) = Φ1-Φ2 = x1χ4 + χ2χ5 + χ3χβ .

One then computes the quantities (see 3.11)

5-0, i=l,3,4, and B2=-b4ΐl(bi-b4),
i

which give at once the hyperelliptic spectral curve

4 4

ΣQ:v2 = uγ[(u-oci) = uγi(u-bί);
1 1

it is conformal to Kowalewski's hyperelliptic curve w2 = (x2 — l)T(x), by means of
the fractional linear map (2.5) between αf and fef.

Next we study the associated Lax pairs, using the following property of the
isomorphism A:R3->so(3) defined in (1.22), namely

if l/eS0(3) and xeR 3 , then (Ux)Λ= UxUT.

In view of the map of Theorem 3 and the involution σ [see (1.19)]

u' = Uv, u" = Uvσ,

where / / 2

and

J_

2p
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Ih\Ί

- w/J

we conjugate the second Lax pair (ii) in Corollary 1 (Sect. 3),

3>h ύ") ~ \\βh ύ")' \Ih

with the rotation U of Sect. 4, yielding first

uτ o\ίύ' m\(υ o\_fuτύ'u
0 υτ)\3>h ώ " / l θ u)~\UTS>Uh Uτύ"U)

(UτuffTj

ύ 0\ 2, / 0 I - f f

0 ϋσ)+Ί \I-N 0

where N is the matrix (1.24) and A2 = 4T(l)T(-l). The only difficulty of the
computation lies in the last equality, namely in computing that

UT@U=^(I-N). (13)

To do this, one first observes that the entries of the diagonal matrix 2 equal
(cyclically)

,, ,
= -2bA V Γ r , 02 =

,2_T(-ί)

Next one observes that conjugating 2 (in terms of at) by the matrix U [as given
explicitly in (4.20)] yields a matrix of symmetric polynomials in the roots at of
Kowalewski's cubic, which is thus expressible in terms of A, B, C, modulo a factor
Δ defined above. Then using the exact expressions (4.17), (4.18), (4.19) of A, B, C in
terms of the at leads to the desired result (13).

The other matrix in the Lax pair (ii) must be conjugated by U as well; namely

Uτ 0 \ / w Ih\fU 0\_/( l/ r w) A Ih

0 Uτ)\Ih - w / V O Uj~~\ Ih -(C7Γw)'

Using the definition (3.19) of w, the matrix

M=UT diag(α1? α2, a3)U

and the fractional linear relation (2.5) between a and fo, we find
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Appropriately rescaling h and t yields

ϋ (W-/)ΛY_ |Y ϋ (N-I)h\

(N-I)h vσ )~\_\(N-I)h vσ )'

f(M + I)(v-vσγ 2T(-ί)h

( 2T(-\)h -(

We finally deal with the Lax pair (iii) (in Corollary 1). In view of the transformation
u' — Uv and u" = Uvσ, we multiply the Lax pair (iii) to the left by Uτ and to the right
by 17, we use the properties N(x®y)M = (Nx)®(Mτy) and UvUτ = (Uv)Λ and we
take into account the matrix M + /= Uτdiag(aί + l,a2 + l-,a3 + \}U; this leads to

(α + /) ((υ - vσ)®(v - vσ) + h(v + vσ) + Ih2)'

= [(α + /) ((t; - vσ)®(v - vσ) + h(v + v*} + Ih2\ (α + /) ((ΰ + ύσ) + /Λ)] ,

ending the proof of Theorem 4.

6. Going from Henon-Heiles to Manakov

In this section we show how a linear map transforms the Henon-Heiles system to
the Manakov problem. As a reminder from Sect. 1, the Henon-Heiles system

. _dH . _ dH 4

with

has another constant of motion

The flow (1) has Laurent solutions

Z2ί2 Z4ί4 2Zt/ί5 Fί6 Z3C/ί7

(2)
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with yt = Xi. Substituting the solutions (4) into Ql=Aί and Q2 = A29 and equating
the ί° terms yields

140Z6 + 63F-

Eliminating V from these equations, leads to the following hyperelliptic curve of
genus 3,

(3)

It is a double ramified cover of the elliptic curve

(4)

ramified at the four points covering Y= 0 and oo and a 2-1 unramified cover of the
genus 2 hyperelliptic curve

. (5)

From the theory developed by Adler and van Moerbeke [5] the afίΐne surface
2

Π {Qi = Ai} completes into an Abelian surface A = Prym(D/$')\ parametrized by
i

ϊ *, after adjoining the divisor D. The latter defines on A a polarization (1, 2).
Moreover D is one of the 6 smooth hyperelliptic curves in the linear system |D|, and
therefore A is a double unramified cover of Jac(Jf) (see Horozov and Moerbeke
[18]). Also the differentials dtv and dt29 going respectively with the flows generated
by H = Qί and Q2 become, upon restriction to D, the (odd) Prym differentials,
which descend to the differentials on Jf . Indeed, using the Laurent solutions, one
checks:

__ Z2dZ _YdY _ dZ _ dY
dt,\D- —^ - —, dt2\D- — - —.

The divisor 2D defines a (2, 4)-polarization on A and the functions of L(2D)
embed T2 into IP7. For this problem, the τ-involution reads

τ:(xl9x29yl9y2)r\(xl9x29 -yί9 -y2)

and, from the Laurent solutions (2), one checks

- < l , x l 9 x f 9 i x 2 9 — i

Indeed, by means of (2), compute

/ 2Z 4Z2 — 2Z\
{^^2^1,^}= n9—9-^-9—^—\ + higher order terms in ί,

/ i iU 4iZ4 4Z3\
{C4, C5, C6> C8} = - 72-' ~ 72-' ~i2-» ̂ ^ + higher order terms in ί .

\ Γ Γ Γ Γ /
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Using these Laurent solutions, we get 6 quadratic relations in the variables
d, ...,£8, namely, after rescaling A± and A2 into ic and — 1:

Φ6 = 4iC1ζ4-2i

Defining the affine variables

leads to the closed system of differential equations

- w3 w4) + λ( - 2\Vι + W3/2) ,

vv3 — 2iκ\vί w5 + A(2ίcw1w2 — iw2w6 — 2w4w6) ,

w4= — 2κ:w2w6 + 2A( — 2/w1w2 + w3w5),

w5 = κ( — 2w1w4 + iw3w6) + λi( — cw1 vv6 + cw3 w4 — 2w4

vv6 = 2κw3w5 + 2/l(cw2w3 — 2w2w4 + zw5 w6) .

As in the Kowalewski problem we now perform a rotation so as to get Φ" into
the block form; define for j= 1, 2, 3:

ηj+^Λj^-^+βjζs-iyj1*^, η8=(-2icΓi/2ζa,

where

0 1 0

•3/21/2 0 -i/2\/2

-ί/2j/2 0 3/21/2
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is a (complex) orthogonal matrix. In these new coordinates, the Φ' have the
following form:

2 2 2
-

The final step is to transform these quadrics to the quadrics (2.3'), which is
done as follows: the rank 4 quadrics in the projective linear span V(Φ'[, ...9Φβ)
(XΦ'[ + . . . + WΦl] ~ P5 are given by the intersection of the 4 quadratic cones Kb

cZ W\2

K2:(X+Y-V)(Y+Z-U)-- --- =0,
2 c

(6)
cZ W\2

~ + — \ =0,

V2

K4:UW-—-=Q.

Since

4
5the locus P) Kt defines a surface in P5. In order to make the identification with the

i
quadrics Φ [see (2.3)], we search for the rank 3 quadrics, besides Φ'ί, in the space of

4

quadrics Φ'ί, Φ"2, Φ"^ (depending on even sections only), i.e., the quadrics Φ" e f| Kt

n{l/= F= W=0}. From (6), they turn out to have the form x

these quadrics have rank 3 if and only if

7l(t;) = t;3-t;+^-=(t;-t;1)(t;-t;2)(t;-t;3) = 0, (7)

yielding the 4 rank 3 quadrics Φ^, Φ^2, Φ^3, Φ^ = Φ'[. They are related by the linear
relation

1

by means of the Jacobi trick.
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Therefore, comparing the sets of quadrics Φ^ and Φ, we make the following
identification:

Φ4(0) = - ΦZ3(ι/)/7>3),

suggesting the change of variables

5,6 (8)

2l/_

where

2i 2i
,-]

c2-2

the derivative T' of the polynomial (7) being evaluated atv = v1. One then identifies
XtΦl + YtΦ2 + + W;Φ'& expressed in the ^-coordinates, with Φ4,Φ5,Φ6

evaluated at η7 = η8 = 0', this yields a highly overdetermined linear system in the
Xt,..., Wt, which is easily solved. In turn, this yields the linear map (8) between ηΊ,
η8 and ΘΊ, Θ8.
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To summarize, we find the following transformation:

01=*!,

(9)

Define, as before

with 0t given by (9). Then this map combined with the transformation ur^x, given
by (3.10) [in terms of the parameters bt found in (3.11)] provides the linear map
from the Henon-Heiles to the Manakov problem. In particular, setting
/c = 0, leads to the Lax pairs of Corollary 1 (Sect. 3), with u—
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