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0 Introduction 

Sato's theory of infinite dimensional Grassmannians, has been applied to explain 
the geometry of the K-P equation ([S; DJKM]),  it has been used as a tool to study 
blow up behaviors and to regularize the solutions near the blow up [A-vM2]. The 
point is that realizing the K-P flow as a holomorphic flow of planes, enables one to 
follow what happens to the limiting planes as the equation in the original bad 
coordinates blows up. The blow-up behaviors are characterized by the various 
strata the orbit of planes visits in the Grassmannian. In this paper such ideas are 
applied to the N-periodic Toda flow (on periodic Jacobi matrices) which translates 
into a flow on the space of N-periodic flags of planes in the Grassmannians. Indeed 
here the N-periodic Toda flow amounts to N coupled KP equations with special 
interactions between time flows [U-T]. 

How such matrices blow up has been studied in [FI; F1-Ha; A-vM1] for 
arbitrary Lie algebras and Kac-Moody Lie algebras, whereas this paper focusses 
on regularizing the flow near the blow up locus; that is, on finding the boundary of 
isospectral sets. 

If N-periodic Jacobi matrices 

b2 a2 N N 

(o.1) L(~) = "'. "'. "'. , X b, = o, l-] a , ,  o ,  
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flow according to 

~L 
(0.2) c~tj [L, (LJ )* ] ,  j = 1, 2 . . . . .  N - 1 ,  

then the hyperelliptic curve (of genus 9 = N - 1) 

(O.3) 

X: {(z,,~)[0 = det(2I - L ( z ) ) -  R ( ) O - ( z  + Az-1) = 0 } 
= 2  N+I2; t  ~-2 + . . .  + ( - - 1 ) N I s - - ( z  + Az - I )  

is isospectral, i.e. the Ij and A = 1-I ~ ai are independent of t j; the eigenfunctionsfof 
L (see [vM] and [vM-Mu])  

f ( z ,  2 )L ( z )=  2f(z, )0 f = ( f o  = 1,fa . . . . .  f~-l) 

are meromorphic functions on the isospectral curve X, having two points P and 
Q covering 0% such that for some divisor D of order g 

(0.4) (fk)>= - k e  + k Q - D  and* (z)= - -NP + NQ.  

The set obtained by letting L(z) flow according to the vector fields (0.2) para- 
metrizes an affine part ~ x  of the hyperelliptic Jacobian Jx; in precise 
terms, if Oo = {P + y , ~ - i  xi, x~ generic} c Jr denotes the theta-divisor, and 
O, = 00 + r(Q - P) translates of O0 on Jx, then 

S 4 x = J x \ ( O o u O l w  . . .  w O N - l ) ,  

is parametrized by the isospectraI set** of N-periodic JacobJ matrices. If one 
approaches the O:s, several entries will blow up, while other will tend to zero. The 
chief question posed and resolved in this paper is the following: can the whole 
Jacobian Jx rather than an affine part of it be parametrized by isospectral matrices? 
That is, when the q-trajectories hit the O-divisor O1 or any of the translates, can 
the matrix L(z, t) be conjugated 

L~w = B-1LTB 

by means of a matrix B of polynomial entries in the a's and b's such that limt_~ t* 

L,,w exists and what is this limit? Thanks to Sato's Grassmannian technology, 
nicely explained in Pressley and Segal [P-S] and Segal and Wilson [S-W], the 
answer will turn out to be quite simple. 

We sketch the method: a flag of infinite-dimensional planes in Gr, is obtained 
by viewing L as an infinite N-periodic matrix. Indeed it is natural to consider the 
(N-periodic) infinite eigenfunction with Floquet multiplier z, i.e., 

(0.5) ( . . . .  f - 2 , f - t , f o , ~ , f z  . . . .  ) with f~+~ = zf~ ; 

* Fol lows from the est imates  

z = R(2)  + . .  �9 for 2 near  oo on the + sheet 

A 
ffi R(2 )  + " '" for 2 near Qo on the - sheet 

** Mainta ining  all eodt%ients of  the curve (0.3): A and all the coefficients of  R(2)  
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with divisor structure (0.4), where D > 0 is a divisor of order g which maps to 
a point in d x  c Jx; such a divisor will be called regular. Conversely a point in 
~r maps to a (regular) divisor of order g, to a unique set of functions (up to 
multiplicative constants) on X satisfying (fk) => - k P  + kQ - D and to a unique 
N-periodic matrix of the form (0.1). Consider now the N-periodic flag 

. . . c  kVk+l~ Wkc W k - l ~ . . .  wi thzWk= Wk+lv 

defined by 

(0.6) l.Vk(t) = g'o ( t ) 'span{ fk(t),fk+l(t),fk+ 2(t) . . . .  } 

viewed as functions of {-* = z -1IN defined on a circle Izl = 1 around P; the 
functions g,o(t, ~)fk(t, ~) are the wave functions associated with each Wk. The 
point of the latter is that then each Wk evolves in a simple way 

Wk(t) = e z'~-xt'a(O' l'Vk(0), 

where 2({) is the meromorphic function 2 expressed in the local coordinate ~: 

(0.7) 2(~) = ~ 1 - ~ ~-2 + . . . .  near P .  

The so-called loop 7- ( z )eLGLN(C)  encodes the entire information about the 
periodic flag* 

~:- (z) = [(q/o fo) ̂ , (~/o A) ^, . . . .  (~/o fN-a)^ ] ~N - ~ LGLN(IE); 

N-  is the subspace of matrices y- of holomorphic series in z-  1 with y-  (oo) upper 
triangular (with l's on the diagonal) and B + matrices of holomorphic series 7+ in 
z with y+ (0) lower triangular. The loop ~:-(z) moves according to the flu flow as 

(0.8) y- (tj) = y- (0). exp(t~L~(0, z))(mod B + ) 

and the matrix 

b-( t j )  =- ~2-(O)-ly-(tj) = (1 

d ~ 

k0 
* I + O ( z - ' ) e N -  

/ 1 

provides the concomitant factorization (Theorem 2.1) 

(0.9) exp(tjLJ(0, z)) = b-(t j )b+(t j) ,  with b+(t~)eB + . 

The matrix L blows up precisely when the divisor D(t) tends to 

D(I* )~Ny~Og~j~ jcg~ , J  c {0, 1 , . . . ,  N -  1} ; 

then instead of the flag W composed of subspaces Wk with basis given by functions 
with poles at P of order { k, k + 1, k + 2 . . . .  }, the bases of the W~ now have pole 
behavior at P very simply specified by J (see Lemmas 3.2 and 3.3 in w and we say 

* Given a holomorpMc series w(~) near P, define ~(z) - (w(~ w(1}(z), . . . .  w (N- 1)(z))r, where 
w ( O  - Y~o " - I  ~ w " ~ ( : ~  z = ~N 
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the flag W has left the main stratum. In addition (0.8) and (0.9) fail in a delightful 
way: the same holds, after throwing in an affine Weyl group element Ws 
(Theorem 3.1) 

and 

where 

7 - (0) exp(t* Li(O)) = y ~ ws (mod B + ),  

exp(t*LJ(O)) = b .  wsb +, b~ ~B + , 

ws = diag(z e~ . . . . .  z ~-~) x a permutation matrix 

with both the gieZ(ZE~ = 0) and the permutation matrix constructed from 
the sequence of leading ~-exponents of the algebraic basis for the 
f l a g . . ,  c Wk+l c Wk ~ Wk-I C . . . (Theorem 3.1). 

To construct the matrix mentioned earlier, we notice the following: one set of 
constituents of Wo(t) is given by (0.6), whereas another set is obtained by acting 
with V= d/ata - 2 on ~o( t ) ,  yielding two descriptions of Wo(t): 

(o.lo) Wo(t) = span{fro (t), ~bo(t)fl(t), ~ko(t) f2(t) . . . .  } 

= span{~o(t) ,  Vq, o (t), V2@o(t) , . . . } ,  V= c3/dt~ - ~. 

A well-known fact in Sato's theory is that the wave functions 
~ k ( t )  = @ff(t)j~(t) are ratios, whose denominator is the r-function, which van- 
ishes simply along O,. Therefore the first basis (0.10) of Wo(t) ceases to make sense 
when t - -* t*~O~oC~Oln . . . c~Osnr)~+l  because the fk's blow up, while 
~,ff remains finite and so the second basis remains finite. Therefore the trick is to 
find the map B from one basis to another which here turns out to be polynomial in 
the a's and b's; then as t ~ t* the matrix B - I L V B  tends to a finite limit, where the 
upper s + 1 by s + 1 block (which blew up in the matrix L T) gets replaced by its 
associated "companion matrix", the rest of the matrix being almost unchanged. 

A (s + 1)x(s  + 1) companion matrix has the form 

t I  ) - 1(2 ~) i'0 
".. 

0 

0 

*.~ 

1 0 

( - -  l ~S t (s} 
! ~ s + l "  

it can be interpreted as the sum of the negative simple roots of sr + 1, IE), with 
the invaxiant polynomials of sr + 1, ~)  along the first row. 

The results above seem to have a natural generalization to the Toda flows 
associated with the extended Dynkin diagrams. As explained in [A-vM1], these 
flows are linear on a complex torus (Abelian variety with a certain polarization) 
and the isospectral "Jacobi" matrices parametrize an attine part, obtained by 
removing from the torus a number of divisors, one for each dot in the Dynkin 
diagram (only for sr are they all translates of each other). The intersection 
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pattern between several divisors is governed by the form of the corresponding 
sub-Dynkin diagram. Therefore it seems natural that an appropriate conjugation 
of the matrix L T tends to a limit, where the submatrix which blew up gets replaced 
by the "companion" matrix associated with that sub-Dynkin diagram. 

When t*e  01, t*q~ 6)~(i :~ 1), then guessing the matrix B for which the limit 
exists is quite easy, in view of the Painlev6 analysis for the Toda lattice. Indeed in 
[FI-Ha] and [A-vM1] it is shown that 

1 1 1 
(0.11) a l =  (tl t*) 2 + ' ' "  b l =  + . . .  b 2 = ~ +  . . .  

- -  /:1 - -  t ~  /71 - -  t ~  

ao  = ~( t~  - t ~ )  + . . .  a :  = / ~ ( t l  - t•) + . . . .  , / ~ ,  0 

with all the other entries ai and b~ bounded near t*. Then conjugating L T by the 
matrix 

B = 

0 1 )  
1 - b l  O 

O I 

leads to 

B - i L T B  = 

1 0 

a2 - -a2bi  

0 0 

0 0 

0 z 

1 0 

0 ... 

0 atcbi z -  ~ 

0 aNz- 1 

b3 

a3 b4 1 0 
"~ 

~  

O . 

f /N-  1 

1 

bN 

where I (i t) and I (z 1}, defined by 

d e t ( 2 I - ( b l l  bzal)) = 2 z - ( b l + b z ) A + b l b z - a i = ) ' 2 - l ~ ' 2 + I ~ l )  

are invariant polynomials of s#(2, C). 
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Then letting tl ~ t~, the matrix above tends to a finite limit, as is seen from the 
leading behaviors (0.11) 

/ I?' 
1 0 

0 

lim B - 1 L r  B = 

0 

0 

0 

0 

�9 �9 

t0 0 
0 z 

! 

1 0 �9 0 - u z  -1  \ 

\ 0 0 ... 0 0 

b3 1 

a3 b4 1 0 

0 

a N -  1 

1/ 
bN 

When t* belongs to the intersection of O with more and more translates, the 
form of B gets considerably more complicated; but thanks to the Grassmannian 
point of view, the answer will be quite simple�9 

1 The periodic Toda flag 

The object of this section is to associate with L ( z )  a N-periodic flag of subspaces 
belonging to some infinite dimensional Grassmannian. The construction is based 
on the (unique) existence of functions fk such that 

( fk) = - D + Dk - kP  + kQ , 

as long as D = ~ ~ xt ~ d (regular divisor); regularity is equivalent to the conditions 

d i m L ( D - k Q + ( k - 1 ) P ) = 0 ,  a l l k e Z ;  

in fact, N consecutive conditions will suffice, since - N P  + N Q  = (z). 
In particular, a regular divisor is non special* and does not contain P. As 

already pointed out in the introduction, we pick the local parameter ~- t = z-  lm 
around P leading to the expansion (0.7) of 2 in terms of ~, which converges for Ill 
big enough, so that ~ defines an isomorphism from some closed neighborhood X e  
of P in X to some disk { [~1 ~ R} on the Riemann sphere�9 We denote by XQ, the 
complement of the interior of Xp: thus the dosed sets X e  and XQ cover X, and we 
call S 1 their intersection. Let 

H = L z ( S  l, IE) = H+ ~ H -  

with H+ = {1, ~, ~ 2 , . . . }  and H -  = {+-1,+-2 . . . .  }, and let 

Gr(H) = {closed W c  HI W is "comparable in size with H + ' }  

* D is non special if and only if dim L(D) = 1. For hypereUiptic X, this is equivalent to x + ixeD 
for x~X.  
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be the Grassmannian of H (see I-P-S, Chap. 7] for the precise definition). Let L be 
a holomorphic line bundle on X and let q~ be a trivialization of L over Xp. We use 
~o to identify sections of L over Xv  with complex valued functions. To the quintuple 
(X, L, P, (,  r Segal and Wilson [S-W] associate the following space We Gr(H): 

W(X,  L, P, ~, ~o) = the closure of the space of analytic functions on S 1 

that extend to holomorphic sections of L over X e . 

In the sequel, since X, P and ~ will be fixed as above, we shall shorten this notation 
by W(L, ~o). 

If we denote by pr: W--* H + the orthogonal projection of W on H + along H _ ,  
then 

(1.1) virtual dimension of W -  dim ker pr - dim coker pr 

= z ( L ) -  1 ,  

where z(L) = dim H~ L) -- dim H 1 (X, L) denotes the Euler characteristic. In 
our case, for each k e 7z, we pick 

(1.2) Lk = [D -- kQ] , 

0 to be the line bundle associated with the divisor D - kQ. Since D = ~ i=  1 xi is 
regular, it is easy to check that thefk's (0.4) are unique and, what is the same, that Lk 
has a unique meromorphic section s (up to a constant) such that (s) + kQ > O. The 
divisor of this section is (s) = D - kQ, and it therefore defines a trivialization ~0k of 
L k o v e r  the complement of {xi, Q }, and in particular over Xe since P r D. We define 

(1.3) Wk = W(LR, q~k). 

From (1.1) we have that virtual dimension of W is - k. 
For W e G r ( H ) ,  an element we W which can be written as 

w = as(S + a s - l (  s-x + . . . ,  as 4= 0 ,  

is called an element of order s. The elements of finite order form a dense subspace of 
W which is denoted by W alg. In our case, 

= ~analytic functions on S t which extend to meromorphic } 
(1.4) W~, lg (sections of [ D -  kQ] which are holomorphic on X \ { P }  

meromorphic functions f on X such that 

l ( f )  + O - kQ > 0 on X \ { P }  J 
= Uj~zL(D -- kQ + jP)  

= span of { fk , jk+l , fa+2 , . . .  }- 

In (1.4), the second equality comes from the fact that the choice of the trivialization 
~0k of [D -- kQ] described above amounts to write any meromorphic section u of 
[D - kQ] which is holomorphic on X \ { P }  as 

u(x) = f ( x ) s ( x ) ,  near P ,  
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with s the unique meromorphic section of [O - kQ] such that (s) + kQ > O, so 
that in fact 

( f ) + D - k Q = ( u ) - ( s ) + D - k Q = ( u ) > O  on X \ { P } .  

It follows from (1.4) and (0.5) that the sequence of subspaces of H 

{ ~ } k ~ z =  . . -  ~ ~-,-~ ~ W ~  ~ _ ~  ~ . . .  

satisfies 
d i m W k / W k + l = l  and zWk= Wk+~. 

Such a sequence is naturally called a periodic flag. The set of those is a complex 
manifold, called the periodic flag manifold and is denoted by F~ (m. The periodic 
flag { W~}kez which we have associated to a periodic Jacobi matrix L(z), will be 
called the Toda flag associated with L(z). 

By formulas (1.2) and (1.3), we can associate a periodic flag { Wk}k~Z to any 
divisor D e Picg(X), not necessarily regular. However, when D is not regular - in 
particular when D is special or contains P - the trivialization cpk we described above 
will cease to make sense. Thus, to define { I'Vk}kEZ in this case, we will have to pick 
another trivialization of [D - kQ] about P, and there seems to be no canonical 
choice for such a trivialization. In other words, there seems to be no way of getting 
a well defined map from Jac X to the periodic flag manifold. 

For given We Gr, we define 

Sw - { seZ :  W contains an element of order s} . 

Sw is bounded from below, and contains all sufficiently large integers. Call the set 

Z,s = {WeGr (H) :  Sw = S} ,  

the stratum of Gr (H)  corresponding to S. The virtual cardinal of Sw is defined 
as the virtual dimension of IV. An indexing set S of virtual cardinal - k can be 
written as 

s = {s~,  s ~ + l ,  s~+2 . . . .  ) ,  

with Sk < S~ + 1 < Sk + 2 < �9 �9 �9 and sj = j for large j. The 2;s form a stratification of 
Gr(H).  

Assume that D is regular; then it follows from (1.4) that 

Wk~2;s~ and S k = { k , k + l , k + 2 , . . . } .  

When D is not  regular, as noticed earlier, the definition of the planes Wk depends on 
a choice of a trivialization of [D - kQ] about P. However, since a change of 
trivialization will amount to multiplying W~ by a non-zero holomorphic function 
c0 + cl ~- 1 + �9 �9 �9 (Co 4= 0), the sequence Sk will remain unchanged and is therefore 
intrinsically defined. So, for example, when D is regular, it follows from (1.4) that 
the sequence S~ is defined by the places where the function 

h(j) == dim L(D - kQ + jP) 

experiences a jump (by one). In Sect. 3, we will reduce the general case (D non 
regular), to a similar Riemann-Roch type computation (see formula (3.20), Sect. 3). 
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2 The Birkhoff factorization and the Toda flow 

In this section, we show how a Birkhoff factorization leads to the linearization of 
the Toda flows. 

We consider the group L GLN(C) of loops associated with GLN(ff~) and the 
subgroups 

B + = {  b ~ 1 7 6 1 7 6 1 7 6 1 7 6  } w i t h  7 + (0) lower triangular 

and 

= ~boundary values of ?- :  {Izl > 1} ~GL~v(r holomorphic~ 
N-  (wi th  7-(oo) upper triangular, with l's on the diagonal . J 

As in the finite-dimensional situation, there is a natural isomorphism between the 
periodic flag manifold F :  tm and the complex homogeneous space L GLN(C)/B+; 
to the N-periodic flag { Wk}k~Z (zWk = Wk+u), we associate the loop of columns 

where 

7(z) = [~0,  ~1 . . . . .  ~ N - 1 ] ,  

wk(~) = ~~ + ~ l w l k ( z )  + . . .  + U - l w N - l , k ( z ) ;  z = ~u 

is a function spanning Wk/Wk +1 and where 

~k(z) = (Wok . . . .  , Wu-l,k) v ~L2(S 1, CN). 

Since one can replace Wk ~ ~j>=kajkWj, akk * 0 (k = O, 1 . . . .  , N - 1), changing 
the coset representative for wk, has the effect of multiplying 7(z) to the right by 
an element of B +. So the above map is only defined rood B +. One shows that it 
is an isomorphism. The inverse map sends 7modB + to the periodic flag 
{ W~}k~Z = {7" ~kH+ }k~Z where 7' W means {7~, w ~ W}. 

In the next section, we will explain how to pick a natural coset representative 
for 7mod B +. For the purpose of this section, it will be enough to understand the 
procedure for a "generic" flag. Let 

Zi, = {{ Wk}k~z~F:(N): Wk n ~kH- = {0}, Vk~Z} 

= {{ Wk}kez~F:m): Wk~{k,k+ 1 , k + 2  . . . .  }, V k ~ Z }  . 

2~ d is an open dense subset of F: (m, which is called the big stratum. Indeed since 
Wk is transverse to (kH- and virt dim Wk = -  k, the orthogonal projection 
Wk ~ (kH+ is an isomorphism. Let Wk be the unique element in Wk, which projects 
to (k. Since Wk+l c~ (k+lH_ = {0}, Wkr Wk+l. We shall denote by 7-(z) the loop 
corresponding to this particular choice of Wk'S and it is easy to check that 
7-(z) e N -  = L GLN(~). We now formulate Theorem 1. 

Theorem 2.1. Let { Wk }k~Z be the Toda flao associated with the Jacobi matrix L(z), 
and for 2 = 2(() defined in (0.7) let 

{ Wk(t)}k~Z = {e '~{~)~ Wk}k~Z, j some positive integer. 
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Then the factorization 

(2.1) exp(tL(z) j) = b- (t)b + (t)- l; b-(t)~ N- ,  b + (t)e B + , 

can be performed if and only if{ Wk(t) }ksZe Zia, and 

(2.2) b-(t) = y - ( O ) - ' y - ( t ) ,  

where* 

(2.3) y - ( t )  = [~,o(t) A, ~ i-(t) A . . . . .  qJ~_ l(t)A] EN - 

is the unique loop in N-  associated with the flag such that 

{y- (t). ~kH+ )g~z = ( Wdt)}k~Z �9 

Then the loop 7-(t)flows according to 

7-(t) = 7-(O)exp(tU(z)) (modB +) 

and 

L(t,z) = b• L(z)b• 

solves the j~ Toda flow 

and 

(2.4) 

where 

L(t)" = EL(t), (L(t)J) • ] 

qJ:~(t)" = r177177 

~• = (~(t) .... , ~-l(t)) and ~/+(t)= e-t~'~;(t). 
Proof of Theorem 2.1. It will be broken into several steps. 

Step 1. The Baker vector and the loop. 

Introduce Baker functions for the planes Wk(t)provided { Wk(t)}k~Ze Ztd (which is 
always the case if t is small enough, since { Wk}k~Z~Xid)- Let r () (in short 
r  be the unique element in et~aW'k which projects onto Q under the ortho- 
gonal projection e 'zJ Wk ~ Q H , .  Define 

t~ ~ (t) = e-'~J ~ ~ (t)e Wk . 

By the periodicity of { Wk}kzZ, #~+N(t) = ZOk ~ (t) and all the information is con- 
tained in the Baker vector 

r  = ,P• = (r ( ) , . . . ,  ~/~_~(t, ~)) 

and thus 

?-(t, z ) =  E~o(t), . . . .  q~;_~(t)3. 
Notice that, from the uniqueness of r  and from (1.4) we have 

r +(0) = f =  (J~ = 1,fl . . . . .  A - l ) ,  

* ~,~-(t, () is the Baker function of W~; i.e. the unique function in e tu Wk which projects onto ~k 
under the orthogonal projection e~Wk-, ~hH+ 



Limit matrices for the Toda flow 11 

where we think of the f fs  as functions of ( via fk(() =J~(2((), (N). 
We also define the Baker matrices 

(2.5) ~" • i t)/ j  [ ~ , f ( t ,  ' = O) ~ ) ] O ~ _ i , j ~ N - 1  , 

where o) denotes s o m e  N th root of unity, r 4= 1. Thus the i th line of ~(0) corre- 
sponds to the (normalized) left eigenvector of L(z) with eigenvalue 2i = 2(o9i(). 
One easily checks that 

(2.6) 7t-(t) = A (~)7- ( t ) ,  

where 

Z ] ( ( )  = [ ( ( . O i ~ ) ] ] O < i , j < N _  1 . 

In the appendix the Baker functions qJ~+(t) (resp. ~Of(t)) are built explicitly 
from the function theory on the Riemann surface X; their analytic extension to 
X is meromorphic on X \ { P }  (resp. X\{Q}),  with an essential singularity at 
P (resp. Q). 

Step 2. Let tecE be such that the factorization (2.1) can be done. Then 

(a) { Wk(t)}k~Z~Z'id. 
(b) ~ •  ~P(0)b+-(t). 

The Birkhoff factorization theorem implies that a matrix Laurent series 
M(z, z -1) can always be factorized (see [P-S], Theorem 8.7): 

(2.7) M(z , z  - 1 ) = n - w b  +, n - e N - , b + e B  + 

w = diag(z e~ . . . . .  ze N ,) (permutat ion 
- " \  matrix J '  

~ ' ieZ.  

The generic case is w = I and if M(z, z- t) = M(z, z - t ,  t) depends on t analytically, 
so will n-  = n-( t )  and b + = b+(t). 

Since 

(2.8) ~P(O)L(z) = A~P(0) 

with A = diag(,~((), 2(o9~) . . . . .  2(~oN- t ~)) and 

(2.9) exp(tL(z) j) = b-( t )b  + (t)- 1 

we obtain upon exponentiating (2.8) and substituting (2.9) that 

tP(O)b- (t) = exp( tA ~) g-' (0) b + (t) 

which is equivalent to the first row 

(2.10) f (  ~)b- (t) = eta'f(()b + (t) . 

The k t~ component of the left hand side of (2.10) looks like 

k - I  

[ f ( r  ~, Cekf~(()+fk(r 
~ =  --o0 

= (~(1 + o ( ( - 1 ) )  
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while 

therefore 

and so 

[f(()b+(t)]k = ~ dtkf~(~)~ ~ (see (1.4)) ; 
t ' = k  

M. Adler et al. 

e ta ~W~e taJWk+l~  . . . ,  the plane etaJWk contains elements of order 
k, k + 1 . . . . .  If e r~j Wk would contain some element of order s < k, then we would 
have that virt dim e ~zj Wk > - k, which is impossible, since virt dim Wk = -- k and 
e ~xj Wk belongs to the same connected component of Gr(H) as W~. Thus e tz Wk is 
transverse to ~ n _ ,  establishing part (a), and so [ f ( ( ) b - ( t ) ] ~  = ~bf (t, ~), estab- 
lishing part (b). 

Step 3. The loop 7-(t)  and the faetorization of exp (tL(z)J). 

Whenever the factorization (2.1) is possible, we have 

(2.11) b-  (t) = 7~(0) - ~ ~ -  (t) by step 2(b) 

= ~- (O) - IA -~A~- (Q  by (2.6) 

= ~ - ( 0 ) - ~ r - ( t ) .  

We can think of formula (2.11) as telling us via (2.1) that, for small t, 

(2.12) 7 - (O , z ) exp ( tL ( z ) i )mo d B  + = ( t h e  loo;,zassociated wi th)  
Wk}k~Z m~ " 

By continuity, it must hold for all t e C. In particular, if { e'Zl'Vk } k~Z s Sid, we can 
pick a unique coset representative for the fight hand side of (2.12) in N- ,  and the 
factorization can be done and so formula (2.1 t) holds. 

Step 4. The solution of the Toda equations. 

Finally, we show that the solution of the Birkhoff factorization problem (2.1) is 
equivalent to the solution of the Toda flows. Let us denote by ~ - and ~ +, the Lie 
algebras of N -  and B +. For L(z )~  Lo ex ( r  (the loop algebra of gCN(IE)), we will 
write 

(2.13) L(z)  = L ( z ) -  - L(z )  + = n~r-L(z) + ns+L(z) 

where re jr- (resp. n~+) denote the projections onto X -  (resp. :~ +). Since 

L(t, z) =- b - ( t ) -  I L ( z ) b -  (t) = b + ( t ) -  1 exp( - tL(z)J)L(z)exp( tL(z)~)b + (t) 

= b+(t)-~L(z)b+(t) ,  

L( t )  must have the form of a periodic Jacobi matrix. Then straightforward 
differentiation leads to 

L(t)" = [L(t), b e ( t)-  1 b �9 ( t ) ]  . 

[ f ( ( ) b - ( t ) ] k ~ e  '~JWk (of order k) 

it must be ~/-(t, ~) if (a) holds. In particular, since 
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Now, by differentiating (2.1) we get 

(2.14) L ( z ) J e x p ( t L ( z ) Q  = b - ( t ) ' b + ( t )  -1 - b - ( t ) b + ( t ) - l b + ( t ) ' b + ( t ) - I  . 

Upon substituting b -  ( t ) L ( t ) J b -  ( t ) -  1 for L ( z )  j and b - ( t )b  + ( t ) -  1 for e x p ( t L ( z )  j)  
in the left hand side of (2.14), we find after some simplification 

L ( t )  j = b - ( t ) - ~ b - ( t )  �9 - b + ( t ) - l b + ( t ) "  , 

which, using our  convention (2.13), shows that  

(2.15) (L( t )~)  • = b +-(t)-l b +-(t)" 

as desired. 

Step 5. For  the jth Toda  flow, we have 

(2.16) ~ •  = 7t~( t ) (LJ)+-( t ) .  

Indeed, by step 2(b), we have 

7J+ (t) = ~(O)b:~(t) , 

which, by formula (2.15), implies 

~ -+( t )  = 7a(O)b +-(t)(LJ)+ (t)  = tP•  + (t)  , 

as desired. 

3 Strata and limit loops for non regular divisors 

Let* 

Wk(t) = exp ( t l 2  + " "  + to2~ t = (q . . . . .  tg), 

where { Wk}kEZ denotes the Toda  flag associated with some periodic Jacobi matrix 
L(z ) ,  or  equivalently associated with a regular divisor D. From the previous 
section, it follows that 

(3.1) { W k ( t ) } k ~ Z ~ Z i d ~ e x p ( Z j ~ l t y L ( z )  ~) = b - ( t ) b + ( t )  -1 

with b - ( t ) ~ N - ,  b + ( t ) ~ B  + , 

r L ( t ,  z)  = b + ( t ) - l  L ( z ) b  + (t)  

with L( t ,  z)  the Jacobi matrix obtained by following the various Toda  flows during 
times tl . . . .  , tg. 

Let fk(t) be the left eigenvectors of L( t ,  z)  normalized byfo  = 1, such that  

(3.2) (fk(t)) = - D ( t )  + Dk(t)  -- k P  + kQ , 

* In Sect. 2, t refers to t ~ II2, whereas in this section t ~ C ~ 
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with D ( t )  a regular divisor of  degree 0. Since (by (A.11))fk(t) = qj ~- (t) $ f f ( t ) '  we have 

W~,t'(t) = {~, / ( t ) ,  ~b~+t(t) . . . .  }, f rom (2.3), 

= ~ o ( t ) W ~ l * ( E D ( t )  - kQ],  q~k(t)), f rom (1.4), 

with tpk(t) the tfivialization of [D( t )  - kQ] defined in (1.3). In  this section, we will 
see what  happens  when D ( t )  fails to be regular, that  is when 

D ( t ) ~ O o W 0 1  u . . .  ~ ON-a ,  with 

(3.3) Ok = O0 + k (Q - P )  

= {DldegD = a and  L ( D  - kQ + (k - 1)P)  4: 0} 

= DID~ ~ x ~ + k Q - ( k - 1 ) P  . 

t 

Precisely when D ( t ) ~ O ~ ,  do we have ~ - ( t ) - o e  (by (A.6')  since 
~D(0 0~ ~ = - (At + ~ + K), with K the vector  of  Riemann constants),  and the factor-  
ization (3.1) breaks down. The  flag { Wk(t ) )k~Z will then fail to be in the big s t ra tum 
Z~d, or  equivalently 

(3.4) exp(Z3__> 1 t j L (  z) j)  = b -  ( t )wb + ( t ) -  1 , 

with 

w = diag(z l~ . . .  , z I ~- 1). (pe rmuta t ion  matrix),  l~ ~ Z, Zl~ = 0 ,  

some affine Weyl  group element of  LGLN(II3). 
We need to characterize the flag when it fails to  be in the big s t ra tum [P-S, 

Chap.  8], in order  to state the ma in  result. Let  { Wk}k~Z be a periodic flag. Each Wk 
belongs to some s t ra tum Zs~ of the Grassmannian ,  and S k \ S k u  ~ has exactly one 
element, say rtk. n = {nk} is a permuta t ion  of 7Z with the proper ty  rCk+N = rtk + N. 
For  each 0 < k < N - 1, we choose a vector  Vk ~ H spanning Wk/Wk+ ~, which is of 
order :Zk, that  is 

v~ = ~ + * ~ - I  + . . . .  

Write now 

~ o  = N l o  + Zo . . . . .  ~ - 1  = Nix-1 + zN-1 

(3.5) I k ~ Z, T-,l k = 0; {'c i } a pe rmuta t ion  of { 0, 1 . . . . .  N - 1 } . 

Then the loop 

~,(z) = E~o(z )  . . . . .  ~ N - i t z ) ]  

associated with the flag { Wk}kE z is such tha t  

(3.6) 7(z) = 7-  ( z ) w ,  

where ~ - ( z ) e N -  and w is the affine Weyl group  element having the co lumn 
representation: 

(3.7) w = [zl~ zhe~, ,  . . . , z tN- le~,,_ 1] , 

el = (0, . . . .  1 . . . . .  0) r . 
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In particular denote by wj, 0 < j __< N - 1, the Weyl reflections through the affine 
simple roots of LGLN(tE): 

(3.8) wj  = 

W 0 -~- 

(1 "'" 1 

1 "'~ 1 

Z - 1  

I 
1 "'. 

0 th r o w  

j th row 

1 J (N - -  1) th row 

Equivalent to the factorization (3.1) breaking down and becoming (3.4) when 
one leaves the big stratum is that  the formula of Theorem 2.1 (see (2.1), (2.2) and 
(2.3)) 

7(0 -- 7-(0) exp (2"j_~ L tjLJ(z)) = ? - ( t ) (mod  B+), y- ( t )  ~ N -  , 

where ? (t) denotes the loop of the flag { Wk(t)}k~z, becomes by virtue of  continuity 
and (3.6) 

(3.9) 7(t*) - 7 - (0 )exp  (Z j~ I  t*Li(z)) = 7 .  w(mod B+), 7 .  (t) ~ N -  . 

We can now state the following complementary result to Theorem 2.1. 

Theorem 3.1. Assume that when t ~ t*, the divisor D(t*) fails to be regular, that is 
there exists J ~ { 0 ,  1 . . . . .  N - 1} such that 

D(t*) ~ 0 0 j  0 05. 
j~J j~J 

Then, the loop y(z, t*) of the flag {Wk(t*)}k~Z satisfies 

(3.10) y(z, t*) -- ~-(0)exp(2~i~ 1 t*L(z) ~) = y . ( z )ws(mod  B + ) ,  

with 

ws = the longest affine Weft group element generated by the w'js, j e J. 

Moreover, we have the following formula for the limit loop 7 .  (z) ~ N - .  For each 
0 <<_ k <_ N - 1, let us write k = r + l. with r the biggest integer such that r ~ k and 
r rood N (~ J, and let 

g~(O --- ~,(OqP; (t*, O ,  

then we can pick 

(3.11) v . t z )  = [0o, 01 . . . .  , 0 N - l ]  �9 
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Example. Let J = {0, 1, 2, N - 1}. Then 

~.(z) = [,~z~ :2(t*)^, ,~3~: 2(t*)^, ,~4~ :2(t*)^, ~ (t*) ̂ , . . . .  ~;-2(t*) ^, , ~ , ; - : ( t * )  ^ 3 .  

To prove the theorem, we must first establish three lemmas. 

L e m m a  3.1. Let  D be a positive divisor of  deoree # on X such that 

(i) L ( D - k Q + ( k - 1 ) P ) = # O ,  l _ < k _ < s ,  

= 0 ,  k = 0 ,  

then 

D = s Q +  Z ,  

with S a positive divisor o f  deoree g - s. 
(ii) I f  in addition L(D - kQ + (k - 1)P) = 0, k = s + 1, then 

(3.12) Z ~ P ,  Q, x + ix, for  any x ~ X ; 

also 

(3.13) dim L ( S  + (s - k)Q) = 1,  

and 

(3.14) d i m L ( Z + ( s - k ) Q + s P ) = s - k + l ,  O < _ k < _ s .  

Proof. We first prove part (i). Since L(D -- P) = O, D is non special and does not 
contain P. The proof goes by induction on s. If s = 1, since L ( D -  Q)#= O, 
D ~ Q + z, and since D is non special D = Q + Z. By induction hypothesis, 

~--s+l 

O = ( s - 1 ) Q +  E xi .  
i = 1  

Since L(D - sQ + (s - 1)e) 4: 0, 

0 - 1  

o ~ s Q  - (s - 1 ) P  + ~ y i ,  

which implies that 
g - - s + l  g--1 

( s - I ) P - Q +  2 x,,-~ ~, y , ,  

and therefore 

d i m L  ( s - 1 ) P - Q +  ~ • = d i m f l  - ~ 
i = 1  i = l  

g - ~ + l  

= d i m  f ]  - 
i = l  

Let co e f l (  - x? g- '+l  ~i=~ x i - -  (s - 1)P), then 

O) = 

x i - ( s -  1 ) P + Q )  

x i - ( s -  1 ) P ) % 0 .  

(c2 ~  + (lower order terms)) d~., 
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with P ( 2 ) = R ( 2 ) 2 - - 4 A  (see (0.3)). We know that Pr Suppose 
g - s + l  . . . .  g - s + l  " - ~  

Q r ~ . x~. Since D Is non special, x + ~x r ~ . .  xi, and therefore the numer- 
. i . u  ~ = 1 ~.=1 . g - s + l  

ator of  03 must  have at least 9 - s + 1 zeroes, which is absurd, so Q ~ ~ i =  1 xi as 
desired, finishing the proof  of part  (i). 

I t  remains to establish (3.12), (3.13) and (3.14). We already know that 
D = sQ + 2;, and Z ~ P, x + ix. N o w  (ii) means that  L ( X  + sP - Q) -- 0, and thus 
Q eZ.  (3.13) and (3.14) are both easy applications of Riemann-Roch.  First, 

d i m L ( X + ( s - k ) Q ) = d i m ~ 2 ( - X - ( s - k ) Q ) - k +  1 .  

Let co ~ Q( - X - (s - k)Q), then 

co = (e2 0-(~-*+1) + (lower order terms)) d2 " 

Since the numera tor  must vanish at g - s points determined by X, we have 

dim ( 2 ( -  X -  (s - k)Q) = 9 -  (s - k) - (g - s) = k ,  

whence, dim L ( X  + (s - k)Q) = 1. Similarly, 

d i m L ( X + ( s - k ) Q + s P ) = d i m g 2 ( - X - ( s - k ) Q - s P ) + s - k +  1.  

Since s > s - k, co E O( - X - (s - k )Q - sP) can be written as 

03 = (c2O-~- 1 + (lower order terms)) d2 . 

Since the numera tor  has to vanish at 9 - s points, co -= O; this completes the proof  
of Lemma 3.1. 

Lemma 3.2. Assume that when t ~ t*, D( t*)  q~ 6)r, then 

(3.15) Wf+~(t*) = ~,~-(t*) W ~lg ([Dr(t*) - kQ],  ~Ok(t*)) 

= ~; - ( t* )  [.)j~z L ( D r ( t * ) -  kQ + j P ) ,  

and 

(3.16) Wr(t*) e Z~,.r+l.r+2 .... ~, 

with qJ7 (t*) having a pole o f  order r at P. 

P r o o f  Remember  from (3.2) that  O(t) ~ Dr(t) - rP + rQ, and so by (3.3) 

D(t*) r @,.*~ Dr(t*) r 6) o 

~*.Dr(t*) is non special and does not  contain P .  

Then for t 4: t*, we may  write (see (1.3) and (1.4)) 

.l ,  ~f ,+k(t)  fr+k+l(t)  } 
W~+k(t) = ~;-(t) ( f~(t) ' fr(t) '"  "" 

= ~;" (t) W' lg([D,( t )  -- kQ], ~Ok(t)), 



18 M. Adler et al. 

with Cpk(t) the trivialization of [D,(t) - kQ]  about  P, which is defined by the unique 
meromorphic  section s (up to a constant) of this line bundle such that  (s) + kQ > O. 
Since D,(t*) is non special and does not  contain P, it follows respectively that both 
~bT(t) and tPk(t) make still sense at the limit t = t*, so that (using (1.4)) we have 
shown (3.15). 

To  prove (3.16), from (3.15) deduce 

(3.17) W~'g(t*) = 0 7  (t*) UJ~* L(D,  (t*) + j P )  . 

Since dim L(D,( t*)  - P) = 0 and dim L(D,( t*)  + jP)  => j + 1, it follows that 

(3.18) d i m L ( D ~ ( t * ) + j P ) = j +  1, j = O ,  1 , 2 , . . . ;  

so by (3.17), if we set ~ equal to the order  of the pole of O~-(t*) at P, (3.17) yields 

(3.19) W~(t*) ~ E { 6 , ~ +  1 , ~ + 2 , 6 + 3  . . . .  } �9 

Since W,(t) has virtual dimension - r  for most  t, and since this dimension 
condition defines a connected set, W,(t*) also has virtual dimension - r, and so by 
(3.19), 6 must  be equal r, proving the lemma. 

Lemma 3.3. Assume that  when t --* t* 

D(t*) ~ 0 ~ , n 6)r+ 1 n . . . n 6)~+~ n tgc+~+ 1 �9 

Then, fo r  0 <_ k <_ s, W~+k(t*) ~ s with 

(3.20) Sr+k = {r , r  + 1 , . . . ,  r + s - -  k , r  + s + 1, r + s + 2 , . . . } .  

Moreover,  f o r  0 <_ k < s, 

(3.21) 2~-k~k; ((, t*) 

spans Wr+g(t*)/W~+k+ l(t*) . 

Proof. Since from (3.2) we have that D,(t) ~ D(t) - r(Q - P), it follows from (3.3) 
that 

D(t*) e O~ n Or+ l c~ . . . n Or +~ n {9~+~+ 1 r Dr(t*) ~ 0~o n 6) t n . . . n Os n 6)~+ t �9 

From Lemma 3.1, it follows that 

D,(t*) = sO, + ~, with Z a positive divisor of degree g - s ,  

such that P, Q, x + ix (E E , 

and from (3.15) we get 

(3.22) Wfll+$(t *) = @7 (t*)Uj~z L ( S  + (s - k)Q + j P )  . 

We now need to establish: 

dim L ( s  + (s - k)Q - P) = 0 (from (3.12) and (3.13)) 

dim L(T, + (s - k)Q) = 1 (from (3.13)) 

dim L ( ~  + (s - k)Q + P) = 2 

dim L(,Y, + (s - k)Q + (s - k - 1)P) = s - k 
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dim L(Z + (s - k)Q + (s - k)P) 

�9 l = s _ k + l  

dim L(Z  + (s -- k)Q + sP) (from (3.14)) 

d i m L ( Z + ( s - k ) Q + ( s +  1 ) P ) = s - k + 2  

: 

dim L(Z  + ( s -  k)Q + (s + j ) P )  = s -  k + j  + 1 

From (3.13), the fact that adding a pole can increase the dimension by at most one 
and the fact that 

(3.23) {1,2 . . . .  , , ~ } e L ( Z + ( s - k ) Q + j P ) ,  l < j < s - k ,  

we get that dim L(~, + (s -- k)Q + jP)  = j  + 1, 1 <=j <= s - k. From (3.14), it then 
follows that d i m L ( Z + ( s - k ) Q + j P ) = s - k + l ,  s - k < _ _ j < s .  Since, by 
Riemann-Roch, dim L(Z + (s - k)Q + (s + j ) P )  ~ s - k + j  + 1, and adding 
a pole can increase the dimension by at most one, it follows that 
dim L(~, + (s - k)Q + (s + j ) P )  = s - k + j  + 1,j > 1. Thus, we have shown that, 
for 0 _< k < s, the function h( j )  = dim L ( S  + (s - k)Q + j P )  experiences jumps at 

j = O ,  1 , 2 , . . . , s - k , s  + l , s  + 2 . . . . .  

while by Lemma 3.2, r has a pole of order r at P; so by formula (3.15), 
W~+k(t*) E Zsr+~, with Sr§ defined by (3.20). In fact, remembering (3.23), we have 
found an algebraic basis of VV~+k(t*), namely 

(3.24) W~l+gk(t*)=~kT(t*){1,.~,22, ):-k,~r-§ } O < k < s  
. . . .  ~ ' 7  ( t*)  . . . . . . .  ' 

which establishes (3.21), ending the proof of Lemma 3.3. 

Proof of  Theorem 3.1. We first deal with the case of an intersection of consecutive 
translates of the theta divisor, i.e. 

L ( D ( t * ) - k Q + ( k - 1 ) P ) : 4 = O f o r k = r +  1 . . . . .  r + s m o d N  

= 0 otherwise. 

By Lemma 3.2, when k :~ r + 1 . . . . .  r + s mod N, Wk(t*) e 2:S~ with 

(3.25) Sk = {k, k + 1, k + 2 . . . .  } .  

From Lemma 3.3, we know that for 1 < k < s, 

(3.26) Sr+, = {r,r + l . . . . .  r + s - k , r  + s + l , r  + s + 2 . . . .  } ,  

and thus, from the periodicity condition Sk+N = N + Sk, we have determined all 
the sequences S k. Let n = {nk}k~Z (nk+N = 7~k JV N )  be the permutation obtained by 
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picking the unique element in SkkSk + 1. From (3.25) and (3.26), one easily checks 
that  n is given by 

�9 .. r - - 1  

�9 .. r - 1  

r r + l  ... r + ( s - - 1 )  r + s  

r + s  r + ( s - - 1 )  ..- r + l  r 

r + s + l  

r + s + l  

Thus the permutat ion n amounts  to reversing all the sequences 
{r, r + 1 . . . . .  r + s} mod  N, and  to leave the rest of the sequence unchanged,  i.e. it 
is the longest permutat ion generated by the elementary transpositions ((r, r + 1), 
(r + 1, r + 2) . . . . .  (r + s - 1, r + s)}. This precisely means that the corresponding 
affine Weyl group element via the procedure explained in (3.5) and (3.7) is the 
longest Weyl group element generated by the elementary reflections Wg~, with 
0 < j k  < N - 1  such that J k = k  m o d N ,  r + l < k _ < r + s .  For  instance if 
0 < r < r + s < N - 1, from (3.7) we compute  

.. i) 

and if for instance r = - 1, we find 

0 th r o w  

r th r o w  

(r + s) th row o)/ 
1 ( N -  1) th row 

7to = s -  2 , . . . ,  xs-2 = O, ~ s - 1  = - -  1, 
IJ 

( - 1 ) 2  + ( N  - 1) 

ns  = s , . . . ,  rcN_ 2 = N - 2 ,  rCN-I=S--I  + N  
rl 

I ' N +  ( s -  1) 

and  thus wj is given by 

Wj ~- 

\ 

0 

0 

g - 1  

"'" 1) 

o/ 

0 th r o w  

(s - 1) th row 

( N -  1) th row 
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Also it follows from Lemma 3.3, formula (3.21) and ZJWk = Wk+jN, that the 
1-dimensional space VVk (t*)/Wk + 1 (t*) is spanned by 

Svk=.~.'+~-~zJO~-(~,t*), if k = l  + j N ,  l ~ { r , r +  1 . . . . .  r + s }  
(3.27) 

vk = ~bk-(~, t*), if k mod N r  1 . . . . .  r + s }  , 

with Vk an element of order zc~. Check that (3.27) amounts to 

~(z)  - r~o,  ~ . . . . .  ~ _ , ]  = ~.(z)ws,  

with 7 ,  (z) defined as in (3.11) and ws the Weyl group element associated with {rig}, 
that we just have computed, and this with (3.9) yields (3.10). 

It remains to deal by concatenation with the general case 

L(D(t*) - kQ + (k - 1)P) 

0, f o r k m o d N e { r ,  + 1  . . . . .  ra + s ~ } w { r z + l  . . . . .  r 2 + s 2 } w . . .  

with r2 > rl + sl, �9 �9 �9 

= 0, otherwise 

It follows from (3.16) and (3.20) that the permutation n is given by 

. .  �9 r l  �9 �9 �9 r l  + s~  . . .  j . . . r 2 . . . r 2 + s 2 . . . 

�9 �9 �9 r l  + s l  �9 �9 �9 r l  �9 �9 �9 j . �9 �9 r 2  + s 2  �9 �9 �9 r 2  �9 �9 �9 

which corresponds again to the longest affine Weyl group element generated by the 
reflections wj such that D(t*) ~ 6)i, j ~ J. Again one finds (3.11) (and hence (3.10) via 
(3.9)), since by (3.21) again one proves a concatenated version of (3.27) which 
amounts to (3.11), thus concluding the proof. 

4 L i m i t  m a t r i c e s  

An important ingredient in this chapter is the existence of a pair of algebraic bases* 

rYe'S(t) = {~0o (t), 0i-(t), 0~ (t) . . . .  } 

8 
= {~0o(t),  voo(t), v2oo(t)  . . . .  }, v -  ,~t, "~' 

related to one another by means of a change of coordinates of the type 
k 

(4.1) O[(t) = Z 71k)(t) Vk- 'Oo( t )  �9 
, = 0  

Indeed, (4.1) defines a change of basis Bs(t) given by polynomials in (a, b) as follows: 

* In this section t denotes a vector, t = (t 1 . . . . .  to) 
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where 

~oj = ( - V y - J r  f o r  0 __<j =< s ,  

= ~ b f , f o r s + l < _ _ j _ ~ N -  1, 

(Pj+N =" Z(pj  , 

such that if 

(r D ( t * )  e O ~ o n  0 1  n .  . . n O s n  e ~ +  l n . . . n 0 ~ _  ~ , 

the operator L(t), expressed in this new basis, has a finite limit L(t*), when t --} t*, 
where the upper s + 1 by s + 1 square is a companion matrix conjugated to the 
Toda matrix L, 

( bl al 0 ) 

1 b 2 a 2 
(4.3) L, -= . . . ; 

�9 �9 a s 

0 1 bs+ 1 

the rest of the matrix is almost unchanged from the usual N-periodic Toda matrix 
(see Theorem 4.1, for precision). In general, the situation will be a concatenation of 
the above state of affairs, and we will just consider the case (4.2) for simplicity 
of notation. To prove Theorem 4.1, which is the main result, we embark upon a set 
of lemmas. 

d 
Lemma 4.1. W~J'(t)= {~6-(t), V~J~(t), V2~O-(t) . . . .  }, V= c~t--~- ~'" 

Proof. This fact is due to Sato IS] (see also [S-W]); by the definition of the Baker 
function of Wo(O) 

~ ( t ) = e x p ( -  ~ t j2J)~o( t )eWo(O),  f o r a l l t ,  

and thus 

(4.4) Oz tj 2 J)  . Wo(0) ~ ~--~ ~- ( t )  = exp ( -- ~ 1 V'~o(t) 

Therefore 

V~o( t )  ~ exp ( ~  tj~J) Wo(0) = Wo(t), 
j 1 

and since W r  (t) = ( - 2)1(1 + 0(2-  t)), these hmctions form an algebraic basis of 
wo(O. 

Lemma 4.2. I f  D(t*) ~ 0~o ta 01 r~ 02 c~. . . (a Os c~ 0~+1 r~. . . c~ OCs_ 1 

(4.5) 17'eft(t*) = ( -- 2)~r 0 =< l _-< s .  
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Proof From (2.16) and (A.11) compute 

0q, ;  
(4.6) - -  = - bk+l~b~ - r 

= - ,~qV + a ~ q d - 1 ,  

and setting k = 0, operating on both sides with exp(  Z t j2J)  (0~1)' and using 
\ j ~ l _  

(4.4), conclude 

(4.7) V'+1~9o = - ) , V ' ~ f f  + ~ (l .~(O-~-~ ' - j  
j = o k J / ~ O h ,  ] ao V J ~ 7 - t ,  

and since (see Lemma 4.5) ao(t) = c(tz - t'~y + �9 �9 �9 c 4: O, when t --* t*, we get 

V'+X~Oo(t * ) =  -2Vl~ko(t*),  0 < l < s - 1 ,  

proving the lemma. 

Lemma 4.3. I f  

(4 .8)  d e t ( a  - Lk) - 2 ~+1 - -  I ~ ) ~  ~ + I ~ ) 2  ~ - ~  + ' ' '  + ( - -  1 ) k + ~ ' ~ ) *  ak+ I , 

and I~o k~ = 1, l l  (k) = 0, I < 0 or 1 > k + 1, then 

I~ k) = 1~ ~-~) + b~+~l ~ - ~  - a~l{~_-z 2~, 1 < l < k + 1 1 - 1  - -  - -  

(4.9) 

and 

(4.10) 6I{ g~ _ , t~k-i) 
Or1 ak+lI~k--xl~ + "~176 

i(k-1) where J~k- 12) is t-  1 , but w~th all the indices shifted up one and I~ k~ has weight l, if all 
ai have weight 2 and all bi have weight 1. 

Proof Equation (4.9) is obtained by expanding det (2 - Lk) along the last column 
and using (4.3), To see (4.10) observe 

I~ k) = ~ bijb~ . . .  b i~ ( -  a j ~ ) ( -  aj~). . . ( -  a),) 

where 

and 

1 < i l  . . . . .  i r < k + l ;  l < j l  . . . . .  L < k ,  r + 2 s = l ,  

i t  . . . . .  / r , j l  . . . . .  . ~ , J l  + 1 . . . . .  js + 1 are all distinct 

and so I~ k) has weight l and 

I~l k) = bk+i /(k-1)t_l + bl "l-rtk-a)l + (terms which do not involve bl and b k + l )  . 

Since the I~ k) are first integrals of the finite Toda lattice going with Lk, the only 
0I~ k) 

terms which will survive in ~ are those which come from the periodic SL(N)  
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Toda lattice which differ from the equations of the finite SL(k + 1) Toda, i.e. 

(. b, = ao - al and bk+i = a k  - -  a k + l ,  = �9 

Therefore we get that 

I ,  = - + a o  

as claimed. 
The next lemma gives a precise description of the ?[k)(t) in (4.1): 

Lemma 4.4. For k >= O, we have 
k 

(4.11) ~b~(t) = ( -- 1) k ~ [I[ k-*) + aoF~_z]V ~-z ~'o(t),  
l = O  

where Fz- 2denotes some weight homogeneous polynomial in the a~s and b[s of  degree 
l -  2, F _ z = O , F _ l  =O, and Fo= 1. 

Proof. By multiplying (4.11) by e x p ( -  ~ j  ~ 1 t~kJ), it is equivalent (using 4.4) to 

establish the same identity with - replaced by + ,  and Vreplaced by '  = ~-77~" The 

proof is by induction on k. From (4.6) we have 

( 
which proves the case k = 1. Assuming we have shown (4.11) up to k, substitute it 
into (4.6): 

Otl ' 

and then use (4.10) 

to yield 

i : k -  1) ~ r ( k -  2) ~ ? ( k - 2 )  
---- - -  t*k * l -  1 + ~ 0  ' J l -  1 

k + l  

~hf+1 = ( - I) ~+I 
I=0 

{ (I[ '-1'  + bk+lI 'k-l '  a I 'k-2'' "~(_OO '] k+i - '  

+ ao((bk+, + bo - b, ) e , -3  + F,-2 + bat-3 + Jr 2)) J \ a t , /  
~o 

which, using (4.9), establishes the lemma. 

Lemma 4.5. I f  D ( t * )  e 0~o c~ 0 1  n {92 c~. ~ Os  c~ 0 c . . . �9 �9 ,+1 n n 0 ~ - 1 ,  then as 
t ~ t* in the q-direction 

fao( t )=c( t l  Tt~)* +" "', a ,+l - -_c( t l - t* )~  + . . . ,  

C C ~ 

�9 
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Ft a weight homogeneous polynomial of degree l, with c, c', c" 4:0 and d possibly zero. 

Proof. See [A-vM1,  Theorem 3.I]. 

Theorem 4.1. The change of basis r q) = B(a, b)- t r  

(4.12) r  = (~'o, ~i- . . . . .  r ~p = ((Po = ( - V Y r  

( P l  = ( - -  ~ 7 )  s -  1 i //O . . . . .  ~O s = i~ O , 

(~0s+ I = I / / ;+ 1,  f,0s+2 = I/Js'-+2 . . . .  ( P N - 1  = r  

given by (see Lemma 4.4, (4.11)) 

{ (4.13) B(a,b): r  ~ t = o ( - 1 ) ~ [ I ~ - t  ~ + aoF~-z-2] q)~-', O <_k < s , 
r qgk,s+ l < - k < N - 1  , 

is a polynomial map of the block form 

B(a, b) = t 
O 1 

1 * 

(3 

with polynomial inverse. Then expressing L in the new basis 

(4.14) Lr  r'~LTf = B - 1 L r  B 

yields in the limit, when t ~ t*, the finite basis 

(4.15) 

,p(t*) = (.~r (t*), ~.~-~ Off(t*) . . . . .  r  r ~(t*), O ; + 2 ( t * )  . . . . .  r 
and for Lr(t*) the finite limit matrix: 

For l < - s < N - 3 .  

(4.16) L r ( t * )  = 

rI~) 12(~) ( -- , ~ ,  (~) - -  . . . x !  z s +  1 

1 0 
(3 

(3 1 0 

1 
�9 

( -  1)~a~+ 1 -sr{~- x) 

0 

0 
g 

1 o . . .  o ( -  1) ~+' E ~;~-1, a,oS-,,~-~ I 
1=1 

b s +  2 1 

as+ 2 bs+ 3 1 �9 

O a ~ - 2  bN-1 1 
J 

- 1 bN ] a N  / 

�9 
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For s = N - 2, 

T * L s ( t )  = 

/ I~-2)  _ I(2N-2) 

1 0 

" . .  

1 +(--1)~-~2I:N-%g'-~-"Z-~! 
1=1 

0 

" '  O 

0 1 0 

... 

and for s = N - 1, 

LY(t*) = 

h ' c  1, 

I 

[(-  1)"-~ 
0 

aN-  i ]k~3 3) + Z-] 

M. Adler et al. 

�9 .. ( - -  1)/v -2 IkN_-~ 2) 

.. DN-2  Ir 1) A Z - I + Z + ( _ I ) N - 1 I ~ N - 1 ) \  --I(2 N-i) " (-- ' N-1 

0 
, (3  

C 1 0 

, ,  

with A = I-I a , a ~  )=  ao, I}S-1)aS-~)= lim,-,,'I[~-l) a~oS-l), etc" 
~=0 

Proof of  Theorem 4.1. First  observe  tha t  fo rmula  (4.11) ( L e m m a  4.4) leads at  once  
to the change  of  basis (4.13), while fo rmula  (4.15)is jus t  a consequence  o f  L e m m a  
4.2. Since ~ - L  = 2$, - ,  ~ L s  = 2tp, we have  

qiLj = A ~  

with (co is a N m roo t  of  unity)  ~(Ou = [ ~ j ( t , d ( ) ] o z l ,  j z s - 1  and  A = d i a g  
(,~(0 . . . . .  2 ( c d ( )  . . . .  ); so in pa r t i cu la r  L j ( t * ) =  ~ - l ( t * )A~( t* )  is finite, since 
�9 (t*) is finite. 

It  fol lows f rom L e m m a  4.4 appl ied  to k = s and  s - 1 tha t  

{4.17) ~k;-(t) = ~0  1 7 S r  + O~l I75-1  r  "/t" ' " " "{- ~Xs~//O , 

a n d  

(4.18) r  +i l l  V~-2qJff + " '  " + f l , - , r  �9 

Rewri t ing  (4.17) as 

I---1 
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and using 

we obtain 

202  = a~k;--i + b~+l ~b2- + 0~-+l , 

2(OtolTSt)o ) = a s l~ - i  + b~+lO2 + 02-+1 - ~ at2 W- tO f f  �9 1=1 
By substituting (4.17), (4.18) and (4.7) into this we find 

(4.19) 2 ( a o W ~ o ) =  a~ ~ f l z W - i - t ~ o  +b~+l ~tl7~-Z~o +02+1 
1 = 0  / = 0  

- - ~ l ( s - - l ) ( ~  :~-l-j 1}" 

We now compute  the limit of (4.19) when t--* t*. Since the first Toda  flow 
starting at a point  of the s tratum ~ enters the main stratum immediately (see 
Lemma 4.5), it makes good sense toapW~roach ~ ~,~ along the tl-direction. So all the 
limits below are taken in the tl-direction. Since from (4.11) one sees at is weight 
homogeneous  of degree l, it follows from Lemma 4.5 that  

lim at @-~ j ao = 0, for j ~ 1 . t-*t* 
Therefore, taking the limit for t ~ t* in (4.19) yields 

(4.20) t-t*lims176176 - t= ~1 a ~ k ~ ]  aojr 

with the convention that  fl_ t = 0 and a~+ 1 = 0. F rom the explicit formula for the 
a's and fl's (4.11) and Lemma 4.5, we have the estimates 

al \c3tiJ ao = ( - 1)' I[ ~- l) ao + O((t -- t*)~+:) , 

bs+lat = ( - 1)'b,+~ I['-~) + O((t - t*)~-l+l),  

a, f l , - i  = ( - 1) '-  lasl[~-~ 2~ + O((t - t*)~-t+l),  

o t t + l  = ( - 1 ) ~ l ~ - - i  1) + O ( ( t  - t * ) ~ - t + l ) .  

Therefore, using the definition of (o (4.12), ao = ( - 1) S, z~b-x = ~b~-l, and the 
above estimates, (4.20) becomes 

(4.21) ).~Oo(t*) = i ( - 1) l [bs+i l [  s- l )  -- afl[~--i 2) + l [ ~ l ) ]  (pl(t*) 
1 = 0  

+ + ( 1)s+ [ ( e " -I 
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Since ,~(t*) = 2~- '0o(t  *) for 0 -< l _< s (4.5), and ~0,(t*) = 0F(t*) for 
s + 1 <_l<_N-1 ,  by substituting (4.9) into (4.21) and ~b-L= 2r  and 
q'~7 (t*) = Zr (t*) = z%(t*), w e  f ind  

(4.22) 

s 
�9 ~,(po(t*) = ~ ( - -  1)t/'1~1 opt(t*) + ~o~+,(t*) 

- 1 ~+' i~s_ l )  0 ~-I +( ) , \~-~1] ao z- lcPN-l( t*) ,  

2q~t(t*) = q~l-~(t*), 1 <- 1 < s , 

2tp~+,(t*) = ( - 1ya~+~l~'-l)~%(t *) + b~+2cp~+l(t*) + ~%+2(t*) , 

2opt(t*) = at~-l( t*)  + b,+1~,(t*) + rp,+ l(t*), s + 2 < l < N - 2,  

2 r  = aN-1  q~N-2( t*)  + bNCPN-I( t*)  + Z~Ps(t*) �9 

Only the third equation needs explanation, and since $ - L  = 20- ,  it amounts 
to the assertion that 

Fmaas+l(t)$~-(t)=(-1)~(lima,+l(t)I~-l)(t))~o (t*), 
t-*t* \ t ~ t  * 

which follows from multiplying (4.1t) for k = s by as+l(t) and then using the 
estimates of Lemma 4.5 to compute the limit. Clearly (4.22) yields (4.16) and the 
other two cases follow in the same fashion, concluding the proof of Theorem 4.1. 

Appendix  

In this appendix we construct (Proposition A) the Baker functions 0~ (x, t) using 
tools of algebraic geometry, thus globalizing these constructions and interpreting 
both b ~ (z, t) of Theorem 2.1. First we need a technical lemma. From (0.7) deduce 
(~-, = z -  I/N) 

(A.1) , ~ , J = ~ J - I ' r  n e a r  P .  

Let (Ai, Bt) be a canonical homology basis on X, and let us denote by vj(j >_ 1) the 
differentials of the second kind with unique pole of orderj  + 1 at P, normalized as 

vj = d((~) + (holomorphic)d(-1, 

with zero A-periods. Similarly, we denote by rD(j _~ t) the differentials of the second 
kind with unique pole of order j + l at P, normalized as 

r/1 = d(2 J) + (holomorphic)d2-1, 

with zero A-periods. Clearly, 

(A.2) 

Lemma A. Near P, 

~lj = v~ + c ~ - z , j D - 2  + �9 " " +  c ~ , j v ~  . 

xg) 
(A.3) [. vj = ~ + 0 (~-  ~), modulo periods, 

Q 
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and 

xO,) 

(A.4) ~ q5 = 2 j - Coj + O(2-1), modulo periods. 
Q 

Proof. Let us denote by ,4, the interior of the canonical polygon obtained by 
dissecting our Riemann surface X along the canonical cycles (A~, Bg. On A, the 
function ~o(x) = ~ v j  is single valued and near P, 

1 
~0(x) = -~ + dj + O(s), s = ~ -  ~ 

We want to show that dj = O. Let coQe denote 
third kind with a simple pole at Q with residue 
- 1, and zero A-periods. One knows that 

. ,  E(x, 
coqv = a log E(x, 

where E(x,y)  denotes the prime form of 
(z )= - N P  + NQ, 

the normalized differential of the 
1, a simple pole at P with residue 

Q) 
p ) '  

X (see 

(A.5) z = constant L~-~, P)_I ' 

and therefore 

[Mu, p. 3.212]). Since 

1 ds 
w Q v - - ~ d l o g z -  , n e a r P .  

S 

By integrating (POQe over the boundary of A, we obtain 

aA i Ai  Bi i B~ Ai  

On the other hand, evaluating this integral by residues yields 

S ~0mQv = 2 ~ x / -  1 Resv(~otoev), since ResQ(~ocoQe) = 0 
0A 

= - 2 7 r x / -  ld j ,  

which establishes (A.3). From this formula and (A.2), it follows now that 

x(,t) 

~ j =  U +  Cj-2,jU -z +"  "" + Cl, A + O ( ( - q  
Q 

= 2 j - Coi + 0 ( , 1 . - 1 ) ,  

which establishes (A.4). 
Let t = (tl, t2 . . . .  )T, with almost all t~'s equal to zero. 

Proposition A. Let D = ~'g. . xi be a reoular divisor on X.  There exist uniquely 
determined functions ~b~ (x~t),'k ~ Z, such that 
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(i) As a function of x, for each t small enough, ~bf (x, t) is a meromorphic function 
on X \{P} satisfying 

(~b~-(x, t))lx\lel + D -- kQ >= O, 

(ii) Around P, ~ [  (x, t) admits the following expansion 

(A.6) d / ~ ( x , t ) = e x p ( - - ~ t ; 2 J ) 2 k ( l + O ( 2 - 1 ) ) .  

Sketch of the proof. We first prove the existence of Ok (X, t). Let co = (~ol . . . . .  mg)T 
be a normalized basis of holomorphic differentials on X, such that ~A, o~; = 60, and 
let A = (a~j) be a ~/x oo matrix with entries aq ~ C defined by 

COl = (a~ + a i 2 , ~  - ~  -q-  ai3;t -2 + �9 " �9 )d2 -~, near P .  

Let O(z) = O(z, 0), with g2~; = J~j o), be the Riemann theta function for X, and 
define the function 

-?t,!,7, exp - t, oj L (P,x)_I 
Q x 

(A.6') v v Q x 

O(At + + k 5,o)O(  + 
P P 

where ~ = - ~ a  [ x'to - K, with K the vector of Riemann constants relative to 
�9 - a i  = 1 J P  . . . .  x . 

the Abel map based at P, and the path of mtegratlon m the integral I .  co is defined 
Q X , x x r . 

to be ~v co + Sot o, with Joe; taken along the same path as J'or/j. Using the 
quasi-periodicity properties-of the prime form and the theta funetiSn, and the fact 
that Se t / i = -  2 n x / - l a ~ ; ,  one easily checks that qJ~(x,t) is a single valued 
function on X. From Riemann's theorem and the definition of the prime form, it 
satisfies requirement (i) of the proposition. By Lemma A and formula (A.4), it also 
satisfies condition (ii), up to a (time independent) non-zero constant. The unique- 
ness of ~k~ (x, t) follows easily from the regularity of D. This concludes the proof of 
the proposition. 

Let 

{ ~k~-(x, t ) =  eXP(xj_~l tJ2J) ~k~ (x, t) 
(A.7) 

~k~(X, t)= ~kk~(X,t, O, 0 . . . .  ), t small enough . 

By definition, ~b~ (x, t) is meromcrphic on U + = X\{P} ,  with an essential singular- 
ity at P (where z = oo ) and a zero of order k at Q. From (A.7), (i) and (ii), it follows 
that ~h~-(x, t) is meromorphic on U -  = Xk{Q},  with an essential singularity at 
Q (where z-  1 = 0o ) and a pole of order k at P. Since ( is a local coordinate about 
Q, and (-1 is a local coordinate about  P, we can therefore write 

tp2 (x, t) = ~k(. + O(()), near Q , 
(A,8) / ~f (x , t )  (k(1 + O((-x)), near P . 
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We now introduce the pair of loops 

~• t) = [r (z, t), 4;,~ (z, t) . . . . .  ~5~-1 (~, t ) ]  

with ?-+ based on the expansions (A.8) of ~• at Q, P respectively 

4,~ (x, t) = ~~ vgk(z, t) + ~ h ( z ,  t) + . . .  + ~ " - '  v~-a,k(z, t) ; 

clearly ?- was introduced in Sect. 2, but not ? + (, .) 
-(z, t) = " ' .  + O(z-  1) 

0 1 

and 

31 

and 

= T • 1 7 7  0) ~+(0) -1 ~• 

= b• t) -a L(z,  0)b• (z, t) 

d + 
-~ b (z, t) = b + (z, t) L + (z, t) . 

l, o)  
i +(z, t) = " .  + O(z ) .  

Proposition B. For t ~ C small enough, the solution o f  the factor izat ion problem (2.1) 
o f  Theorem 2.1 is given by 

(A.9) b -+ (z, t) = ~ • (z, 0)-1~ • (z, t ) .  

Sketch o f  the proof. It suffices to show that if we define b • (z, t) by formula (A.9), 
then b - (z, t) b + (z, t)- 1 satisfies the differential equation of the exponential: 

(A.10) d b - ( z ,  Ob+(z , t ) - I  = L ( z , O ) b - ( z , t ) b + ( z , t )  -~ = b - ( z , t ) b + ( z , t ) - l L ( z , O ) .  
dt 

Let 0• t ) =  (Og(x,  t) . . . .  , O ~ - l ( x ,  t)) +. One shows (see [-vM-Mu]) that there 
exists a uniquely determined Jacobi matrix M(z ,  t) = L(z,  0 -c such that 

M(z(x ) ,  t)~h• t) = 2(x)~k• (x, t) 
(A.11) ~)• t) = M + ( z ( x ) ) ~ •  t) . 

Again one defines the Baker matrix ~'• as in (2.5) and recalls (2.6) 
T•  = A?+(z, t) from which it follows that 

b• t) ---- V• 0 ) - l ~ ( z ,  t) = 7 ' • 1 7 7  

and then the pair (A.11) may be respectively recast as: 

L(z,  t) = T + ( t ) - l A g t + ( t )  
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From these two last equations, it follows immediately that (A.10) is satisfied, which 
establishes the proposition. 

Corollary. The solution of the Toda lattice equations (0.2) ( j  = 1) amounts to the 
solution of thefactorization problem (2.1) and is provided by 

(A.12) L (z, t) = b • (z, t )-  1 L (z, 0) b • (z, t ) .  

Remark. The solution of the higher Toda  flows (0.2) L(z, t)" = [L(z, t), LS(z, t) • is 
given by the same formula as (A.12), where now b+-(z, t) solve the factorization 
problem 

exp(tLJ(z)) = b-  (z, t)b + (z, t)- 1 . 

The solution of  this factorization problem is again provided by formula (A.9), where 
now ~kk + (x, t) = r  (x, 0 . . . .  ,0 ,  ts = t, 0 . . . .  ) and ~s  (x, t) = exp(tlS(x))O~ (x, t). 
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