Contents

Integrable Systems, Random Matrices and Random Processes

Mark Adler ... ... 1
1 Matrix Integrals and Solitons ............ ... .. 4
1.1 Random matrix ensembles .......... ... ... ... . 4
1.2 Large n—limits......... i 7
1.3 KP hierarchy ... ... ... 9
1.4 Vertex operators, soliton formulas and Fredholm determinants. 11
1.5 Virasoro relations satisfied by the Fredholm determinant . ... .. 14
1.6 Differential equations for the probability in scaling limits .. ... 16
2 Recursion Relations for Unitary Integrals.............. ... ... ... 21
2.1 Results concerning unitary integrals........................ 21
2.2 Examples from combinatorics ............... .. .. ... ... ..., 25
2.3 Bi-orthogonal polynomials on the circle and the Toeplitz lattice 28
2.4 Virasoro constraints and difference relations................. 30
2.5 Singularity confinement of recursion relations................ 33
3 Coupled Random Matrices and the 2-Toda Lattice ............... 37
3.1 Main results for coupled random matrices................... 37
3.2  Link with the 2-Toda hierarchy ........................... 39
3.3 L — U decomposition of the moment matrix, bi-orthogonal
polynomials and 2-Toda wave operators .................... 41
3.4 Bilinear identities and 7-function PDE’s .......... ... .. ... .. 44
3.5 Virasoro constraints for the 7-functions .................. ... 47
3.6 Consequences of the Virasoro relations ..................... 49
3.7 Final equations .. ..........o it 51
4 Dyson Brownian Motion and the Airy Process ................... 53
41 PrOCESSES . oottt e 53
4.2 PDE’s and asymptotics for the processes.................... 59
4.3 Proof of theresults ....... ... .. . i i 62
5 The Pearcey Distribution........... .. .. . .. . . . . 70
5.1 GUE with an external source and Brownian motion .......... 70

5.2 MOPS and a Riemann-Hilbert problem .................... 73



VI Contents
5.3 Results concerning universal behavior .................... .. 75
5.4 3-KP deformation of the random matrix problem ............ 79
5.5 Virasoro constraints for the integrable deformations .......... 84
5.6 A PDE for the Gaussian ensemble with external source and
the Pearcey PDE . ... .. .. . 88
A Hirota Symbol Residue Identity ........... ... ... ... ... ... ... 92

References .. ... 93



Integrable Systems, Random Matrices and
Random Processes

Mark Adler

Department of Mathematics, Brandeis University, Waltham, MA 02454, USA,
adler@brandeis.edu

Introduction

Random matrix theory, began in the 1950’s, when E. Wigner [58] proposed
that the local statistical behavior of scattering resonance levels for neutrons
of heavy nucleii could be modeled by the statistical behavior of eigenvalues
of a large random matrix, provided the ensemble had orthogonal, unitary
or symplectic invariance. The approach was developed by many others, like
Dyson [30, 31], Gaudin [34] and Mehta, as documented in Mehta’s [44] fa-
mous treatise. The field experienced a revival in the 1980’s due to the work
of M. Jimbo, T. Miwa, Y. Mori, and M. Sato [36, 37], showing the Fredholm
determinant involving the sine kernel, which had appeared in random ma-
trix theory for large matrices, satisfied the fifth Painlevé transcendent; thus
linking random matrix theory to integrable mathematics. Tracy and Widom
soon applied their ideas, using more efficient function-theoretic methods, to
the largest eigenvalues of unitary, orthogonal and symplectic matrices in the
limit of large matrices, with suitable rescaling. This lead to the Tracy—Widom
distributions for the 3 cases and the modern revival of random matrix theory
(RMT) was off and running.

This article will focus on integrable techniques in RMT, applying Virasoro
gauge transformations and integrable equation (like the KP) techniques for
finding Painlevé — like ODE’s or PDE’s for probabilities that are expressible
as Fredholm determinants coming up in random matrix theory and random
processes, both for finite and large n—limit cases. The basic idea is simple —
just deform the probability of interest by some time parameters, so that, at
least as a function of these new time parameters, it satisfies some integrable
equations. Since in RMT you are usually dealing with matrix integrals, roughly
speaking, it is usually fairly obvious which parameters to “turn on,” although
it always requires an argument to show you have produced “7—functions” of an
integrable system. Fortunately, to show a system is integrable, you ultimately
only have to check bilinear identities and we shall present very general methods



2 Mark Adler

to accomplish this. Indeed, the bilinear identities are the actual source of a
sequence of integrable PDE’s for the 7-functions.

Secondly, because we are dealing with matrix integrals, we may change co-
ordinates without changing the value of the integral (gauge invariance), lead-
ing to the matrix integrals being annihilated by partial differential operators
in the artificially introduced time and the basic parameters of the problem
— so-called Virasoro identities. Indeed, because the most useful coordinate
changes are often “S'-like” and because the tangent space of Diff(S!) at the
identity is the Virasoro Lie algebra (see [41]), the family of annihilating oper-
ators tends to be a subalgebra of the Virasoro Lie algebra. Integrable systems
possess vertex algebras which infinitesimally deform them and the Virasoro
algebras, as they explicitly appear, turn out to be generated by these vertex
algebras. Thus while other gauge transformation are very useful in RMT, the
Virasoro generating ones tend to mesh well with the integrable systems. Fi-
nally, the PDE’s of integrable systems, upon feeding in the Virasoro relations,
lead, upon setting the artificially introduced times to zero, to Painlevé-like
ODE or PDE for the matrix integrables and hence for the probabilities, but
in the original parameters of the problem! Sometimes we may have to intro-
duce “extra parameters,” so that the Virasoro relations close up, which we
then have to eliminate by some simple means, like compatibility of mixed
partial derivatives.

In RMT, one is particularly interested in large n (scaled) limits, i.e. cen-
tral limit type results, usually called universality results; moreover, one is
interested in getting Painlevé type relations for the probabilities in these lim-
iting relations, which amounts to getting Painlevé type ODE’s or PDE’s for
Fredholm determinants involving limiting kernels, analogous to the sine ker-
nel previously mentioned. These relations are analogous to the heat equation
for the Gaussian kernel in the central limit theorem (CLT), certainly a re-
vealing relation. There are two obvious ways to derive such a relation; either,
get a relation at each finite step for a particularly “computable or integrable”
sequence of distributions (like the binomial) approaching the Gaussian, via
the CLT, and then take a limit of the relation, or directly derive the heat
equation for the actual limiting distribution. In RMT, the same can be said,
and the integrable system step and Virasoro step mentioned previously are
thus applied directly to the “integrable” finite approximations of the limiting
case, which just involve matrix integrals. After deriving an equation at the
finite n—step, we must ensure that estimates justify passage to the limit, which
ultimately involves estimates of the convergence of the kernel of a Fredholm
determinant. If instead we decide to directly work with the limiting case with-
out passing through a limit, it is more subtle to add time parameters to get
integrability and to derive Virasoro relations, as we do not have the crutch of
finite matrix integrals. Nonetheless, working with the limiting case is usually
quite insightful, and we include one such example in this article to illustrate
how the limiting cases in RMT faithfully remember their finite — n matrix
integral ancestry.
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In Section 1 we discuss random matrix ensembles and limiting distributions
and how they directly link up with KP theory and its vertex operator, leading
to PDE’s for the limiting distribution. This is the only case where we work only
with the limiting distribution. In Section 2 we derive recursion relations in n
for n-unitary integrals which include many combinatoric generating functions.
The methods involve bi-orthogonal polynomials on the circle and we need to
introduce the integrable “Toeplitz Lattice,” an invariant subsystem of the
semi-infinite 2-Toda lattice of Uéno—Takasaki [55]. In Section 3 we study
the coupled random matrix problem, involving bi-orthogonal polynomials for
a nonsymmetric R? measure, and this system involves the 2-Toda lattice,
which leads to a beautiful PDE for the joint statistics of the ensemble. In
Section 4 we study Dyson Brownian motion and 2 associated limiting processes
— the Airy and Sine processes gotten by edge and bulk scaling. Using the
PDE of Section 3, we derive PDE’s for the Dyson process and then the 2
limiting processes, by taking a limit of the Dyson case, and then we derive
for the Airy process asymptotic long time results. In Section 5 we study the
Pearcey process, a limiting process gotten from the GUE with an external
source or alternately described by the large n behavior of 2n-non-intersecting
Brownian motions starting at * = 0 at time ¢ = 0, with n conditioned to
go to ++/n, and the other n conditioned to go to —\/n at ¢ = 1, and we
observe how the motions diverge at ¢ = % at ¢ = 0, with a microscope of
resolving power n~ /4. The integrable system involved in the finite n problem
is the 3-KP system and now instead of bi-orthogonal polynomials, multiple
orthogonal polynomials (MOPS) are involved. We connect the 3-KP system
and the associated Riemann—Hilbert (RH) problem and the MOP’s.

The philosophy in writing this article, which is based on five lectures de-
livered at CRM, is to keep as much as possible the immediacy and flow of
the lecture format through minimal editing and so in particular, the five sec-
tions can read in any order. It should be mentioned that although the first
section introduces the basic structure of RMT and the KP equation, it in fact
deals with the most sophisticated example. The next point was to pick five
examples which maximized the diversity of techniques, both in applying Vira-
soro relations and using integrable systems. Indeed, this article provides a fair
but sketchy introduction to integrable systems, although in point of fact, the
only ones used in this particular article are invariant subsystems (reductions)
and lattices generated from the n-KP, for n = 1,2,3. The point being that
a lot of the skill is involved in picking precisely the right integrable system
to deploy. Fortunately, if some sort of orthogonal polynomials are involved,
this amounts to deforming the measure(s) intelligently. For further reading
see [1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
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1 Matrix Integrals and Solitons

1.1 Random matrix ensembles

Consider the probability ensemble over n x n Hermitian matrices

7trVOW)dA4
tr V(M) dM

Ssp(M)eE €

P(M € H(E)) = I

_Sp M7 eV dz
S M@ e VD dz;

(1)

with A(z) = [[i<s, (20 — 25) = det(z;*l)igi’ the Vandermonde and with V (x)
Jj<n j<n

a “nice” function so the integral makes sense, sp(M) means the spectrum of
M and F c R,

H,(E) = {M an Hermitian n x n matrix | sp(M) < E},
n
dM =[] dM;; [ | d Real M;; [ | d Tmag (M;;)
i=1 i<j i<j
the induced Haar measure on n x n Hermitian matrices, viewed as

T(SL(n, C)/SUm))|

I

and where we have used the Weyl integration formula [35] for

M = Udiag(zl,...,zn)le1 ,

AM = A% (1, z0) | | dzidUd
1
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In order to recast P(M) so that we may take a limit for large n and avoid
oo-fold integrals, we follow the reproducing method of Dyson [30, 31].
Let pr(z) be the monic orthogonal polynomials:

,[ pi(z)pj(z)efv(z) dz = h;d;; (2)
R
and remember

(det A)? = det(AAT) . (3)
Compute

A2(2) H eV 4z,
RVL 1

,[Rn det (pi—1(2)))1<i, det (pr—1(20))

1
Jjsn ¢

n
<k, H e V) dz
snoq

=n! H j pi(z)e V) dz  (orthogonality)

n—1
=n![]h, (4)
0
and so using (3) and (4), conclude

P(M € H,(E))

1 N = —Vi(z;
- WJ et (lepj—l(zk)l?j—l(%)> [Te V¢ dz

1<k, 1
<n

_ 1 det (Kn(Zk,Zg))lgh H dz; ,
1

B n! En L<n
with the Christoffel-Darboux kernel

Koy, 2) = i%(y)%(z) _ hhn (n(¥)Pn-1(2) = on(2)Pn-1(y)) 6

n—1 y—z

and
pi(x) = eV Py, () /\/hi
Thus by (2)

J%@%mm=%,
R

and so we have
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J K y7 Z u) dZ - Kn(yvu) )
J K, (z,2z)dz =n, (6)
R

— the reproducing property,
which yields the crucial property:

J’ det (Kn(Zi,Zj))lgiA’ dZmi1y---,dzn
n—m i<n
! = (n —m)ldet (K, (2,2;))1<i, - (7)

j<m

Replacing E™ — H]f dz;R"% in (1) and integrating out zx41,..., 2, via the
producing property yields:

“P (one eigenvalue in each [z;,z; +dz], i =1,...,k)

L det( zl,zj 1<i, H dz ,” (8)

- =

heuristically speaking. Setting

E = U dz = UE; ,

dz;eE

and using Poincaré’s formula

=Y P(E)= Y P(EinE))+ Y. P(E;nEjnEg)+-,

i<j i<j<k

yields the Fredholm determinant’

o8]
P(MeH,(E%)) = 1+Z(—)\)’“J < <det( (2, 2;)) 1<i, H dzl

<<z i<k

||
’»:.
>/
i
S
o~
~~
L

with kernel
Kf(ya Z) = Kn(ya Z)IE(Z)

and with Ig(z) the indicator function of the set E, and more generally see
(48],

. (=DF /o \F .
P (exactly k-eigenvalues € E) = n det(I — AK; )| . (10)

A=1

1 E° is the complement of E in R.
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1.2 Large n—limits

The Fredholm determinant formulas (9) and (10), enable one to take large n—
limits of the probabilities by taking large n—-limits of the kernels K, (y, z). The
first and most famous such law is for the Gaussian case V(x) = 22, although
it has been extended far beyond the Gaussian case [38, 29].

Wigner’s semi-circle law:

The density of eigenvalues converges (see Fig. 1) in the sense of measure:

1
—2n —zdz, |z| <V2n,
T

K, (z,2)dz >
0, |z] > V2n

(11)

and so

Exp(# eigenvalues in E) = J K, (z,z2)dz.
E

This is a sort of Law of Large Numbers. Is there more refined universal be-
havior, a sort of Central Limit Theorem? The answer is as follows:

Bulk scaling limit:

The density of eigenvalues near z = 0 is v/2n/m and so m/v/2n = average
distance between eigenvalues. Magnifying at z = 0 with this rescaling

. Tr Ty ym sinm(z — y)
lim K, , d = d
2 (wn v2n> <v2n) m@—y)

= Ksin(xay) dy ) (12)

with

—2n Vv2n

Fig. 1.
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m
lim P [ exactly k eigenvalues € ——[—2a, 2a

n—ow
(_1)k 0 g [—2a,2a]
= det(I — AK: = . (13
k! a)\ ( sin )|>\=1 ( )
Moreover,
det(I — AKT-20200) _ o (T LB 4
0 X
with
d
(") 4 A f = )7 +2f = ) =0 (=)
and boundary condition:
2
f(x,)\);_—)m— ()\> 22— z~0.
7r 7r

The O.D.E. (14) is Painlevé V, and this is the celebrated result of Jimbo,
Miwa, Mori, and Sato [36, 37].

Edge scaling limit:

The density of eigenvalues near the edge, z = v/2n of the Wigner semi-circle
is \/2n'/6. Magnifying at the edge with the rescaling 1/\/§n1/6:

n_I,n/ "( 1/6° 1/6 nl/6
i 16V e s oV )

= Kairy(u,v)dv, (15)
with

° (16)

Setting Amax = V21 + u/~/2n'/°
lim P(x/2nY% (Apax — V21) < u)

o] .
= det(] — Kl[;fryf]) = exp (— J (a —u)g* () da)

u

— the Tracy—Widom distribution , (17)

with
q" = xg+2¢° (18)
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and boundary condition:

exp(—2/32/%)
2\ /mxl/4
Equation (18) is Painlevé II and (17) is due to Tracy—Widom [49].

g(w) ~

Hard edge scaling limit:
Consider the Laguerre ensemble of n x n Hermitian matrices:
eV dz = z”/Qe*Z/QI(Oy,,J)(z) dz . (20)

Note z = 0 is called the hard edge, while z = oo is called the soft edge.
The density of eigenvalues for large n has a limiting shape and the density of
eigenvalues near z = 0 is 4n. Rescaling the kernel with this magnification:

lim K (“ Y >d< Y ) = K, (u,v) dv = 1f s, (s5/u) T, (s3/0) ds dv

n—o 47’),7 % % 2 0

_ TANONBIL WD) = T (WONETL N 4 )
2(u —v)

yields the Bessel kernel, while one finds:

1
lim P i 1 —
Jim. <no eigenvalue € - [0, sc])
= det(I — K[**1) = exp (— f 1) du) ., (22)
0 u

with
(@f")? —dlaf = N+ (@ =) f = f)f' =0, (23)

and boundary condition:

1

f(iﬁ) _ Cyl,1+u<1 _ 2(2_;’_V)x+”.>’ c, = [22V+2F(1 +I/)F(2+I/)]_1 .

Equation (23) is Painlevé V and is due to Tracy—Widom [50].

1.3 KP hierarchy

We give a quick discussion of the KP hierarchy. A more detailed discussion
can be found in [28, 56]. Let L = L(x,t) be a pseudo-differential operator
and Ut (x,t,2) its eigenfunction (wave function). The KP hierarchy is an
isospectral deformation of L:2

2 W~ is the eigenfunction of L adjoint:= L7, (A) :=differential operator part of A.
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oL
— =[(L")4,L], L=D,+a 1(x,t)D;' +---, n=12,...,
Otn ; (24)
D, =—, t=(ti,tq,...
x amv ( 1,02, )
with ¥ parametrized by Sato’s 7-function and satisfying
UE(2,t,2) = et (@2 437 ti2") Tt T[]
’ 7(t)
= EEE D (1400(1/2), 2z - w (25)
and g+
Wt =L, S = (L)
o (26)
— _ 7T3— _ T\n —
A = LT, T = (),
with

e (2.

Consequently the 7-function satisfies the crucial formal residue identity.

Bilinear identity for T-function:

erZi“(ti—fi)ZiT(t — D7 + [z ) dz =0, Vvi,t'eC”, (27)
o0
which characterizes the KP 7-function. This is equivalent (see Appendix

for proof) to the following generating function of Hirota relations (a =
(a1, as,...) arbitrary):

8

55(—2a)s;41(0)eXim /Pty o 7(£) = 0, (28)
7=0
where 210 10 B
=22 -2 . - (=, = 2
O <8t1’26t2’36t3’ ) 0 (6t1’6t2’ > (29)
and
0 z :
et tiFi Z 5j(t)z’  (s;(t) elementary Schur polynomials) (30)
j=0
and
0 0 :
pO)f()og(t) :==p| 50,5~ |f(t+y)g(t—y))  (Hirota symbol). (31)
Yy 0Y2 y=0
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This yields the KP hierarchy

s o\ o0 0
equivalent to

o\* o\ | 02 ?
<(6tl> +3<é’t2> _46’t16t3>10gT+6<6’t%10g7> =0

(KP equation). (33)

The p-reduced KP corresponds to the reduction:

LP = DP 4 ... =diff. oper. = (LP),
and so
oL
=[(L*")+, L] =[L"",L] =0. (34)
Olpn
p=2: KdV
T=T(t1,t3,t5,...) (ignore tz, t4,...) (35)
Ut(z,t,2) = W(x,t,+2) . (36)

1.4 Vertex operators, soliton formulas and Fredholm determinants

Vertex operators in integrable systems generate the tangent space of solutions
and Darboux transformations; in other words, they yield the deformation
theory. We now present

KP - vertex operator:®

Xy, 2) = — EF—0 SP = gt (37)
=Y
and the “7-space” near 7 parametrized: 7 + X (¢,y, 2)7. Moreover

T+eX(t,y,2)T

is a 7-function, not just infinitesimally, so it satisfies the bilinear identity.
This vertex operator was used in [28] to generate solitons, but it also plays
a role in generating Kac-Moody Lie algebras [40]. The identities that follow
in Sections 1.4, 1.5, 1.6 were derived by Adler—Shiota—van Moerbeke in [16],
carefully and in great detail.

P X(ty,2)f(t) = (1/(z — y))eziﬁ(zi_yi)tif(t + [y 1= [27"), 2 # y and z, y are
large complex parameters, and how we expand the operator X shall depend on
the situation.
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Link with kernels:

We have the differential Fay Identity (Adler—van Moerbeke [1])

X (w20 = D7 )i (@.1.2) (3%)

where since D! is integration, the r.h.s. of (38) has the same structure as
the Airy and Bessel kernels of (16) and (21).
If |yil, |zi] < |Yit1ls|zie1l, 1 <i<n—1, then we have the Fay Identity:

det (D;l (g[/+(x,t7yi)LD_(x,t, z])))lil = det <T(1t)X(t,yi, zj)T(t))

1
= ;X(taylazl)'“X(taynvzn)T' (39)

Sl =
ININ
5 ~.

We also have the following
Vertex identities:

X(y,2)X(y,2) =0 andso e —14aX(y,z), (40)

and
[X(a,8), X(A, )] =0 if a#p B#A. (41)

In addition we have the expansion of the vertex operator along the diagonal:

_ 1 S (Z—y)k o —b—kyrr (k)
X(t,y,Z)— _ Z Z Y Wg )

=Y k=0 k! b=—0
Heisenberg: WY := 6% + (=)t (WO =36,0), (42)
Virasoro: w2 =2 Z itii + Z i + Z (it;) (jt4)
" . Otivn A 0Otiot; /
i,i+n=1 i+j=n i+j=—n
0
—(n+1) <at + (—n)tn)

and from the commutation relations:

[X(a, 8), X(\, )] = (=" (a, B, A) +nla, B, 1)) X (A, )
n(/\,,u, Z) = (5(/\7 z)e(:u*)\) 0/0z ’

S(\, 2) = %Z (i)e :

—0

conclude the vertex Lax equation:
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;Z (1Y (2)) = [;W[@,Y(z)]

> —pand p/?,

with
Y(2) = X(t,wz,w'2), w,w €§,,?

or a linear combination of such X (t,wz,w’z).
A Fredholm determinant style soliton formula:
A classical KP soliton formula [28] is as follows:

a; o k k
J 62;:1(27' —y; )tk .
1<,

1 n
T(t)=— e X Wiz) | oo =det (5»»—#—
®) 70 U ro=1 Y 25 —Yi i

ordered

We now relax the condition that 7y = 1 and setting |yi|, |2i| < |yiz+1], |zi+1],
1< i< n—1, compute using the Fay identity (39) and differential Fay (38):

@ = LQZT’ az‘X(yi,zl-)T(t)
() ()
[ —— eaz 3324 T(t)
7(t) H
ordered
1 n
- L+ a; X (yi,2i)) |7(t)
7(t) H ( )
ordered
1
= t T+ Z CMX(?J“ Zi)T + Z aian(yh Zz))((y‘77 ZJ)T
T( ) 1<i<n 1<i<j<n
+"'+Hai H X(yi,2) |7
! ordéred
,X(yiazi)T AX(y,i,z,-)q—
l T 1<i<j<n aiX(y’T’zi)T, an(yzfj)T

1<ig<n

X (yi, 25)T

+ ... +det (aj(leJ)>1<.
<i,

jsn

“Fredholm expansion” of determinant

X(yi, 2:)T
= det (61‘3‘ + aji(y; J) >1<i
j<n

4 ¢, the pth roots of unity.
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= det (&] + Cl]D (LPJF(x t yt)kl'/_(a:,t,yj)))KL .
j<n
Repla’Cing Yi = Wz, 25 — WIZZ‘7 a; = N0z

bh—
zi =a+ (i—1)dz, 5227(17 n — o0
n—1

yields the continuous (via the Riemann Integral).

Soliton Fredholm determinant:

7(t, E) — Le,ASEx(t,wz,w’z) 1 (t) = det(I — AkP)
7(t) 7(t)

with kernel

kP (y,z) = D;'

x

(LD_(t,wy)WJr(t,w’z))IE(z), E =a,b].
More generally, for p-reduced K-P, replace in (46)

X(t,y,2) = Y(t,y,2):= Z by X (t,wy,w'z) |

w,w'e€y
EE(y, 2 —>D12aw (z,t,wy) wa&p (x,t,w'2)[p(2)
wely, w’'eg,
with
Aoy .
Z =0 (soY(t,z, %) is pole free)
wEEp
and

X(t,wz,w'z) > Y(t,2,2) ==Y (z),

k
E— U[am;l,am] .

i=1

1.5 Virasoro relations satisfied by the Fredholm determinant

(46)

(47)

(48)

(49)

It is a marvelous fact that the soliton Fredholm determinant satisfies a Vira-
soro relation as a consequence of the vertex Lax-equation [16]; indeed, compute

0= Lb (;Zz“lY(z) - [;Wf),Y(z)]) dz

= bY (b) — Y (a) — [ w f Y(z ]

0 0
_ [ e+1 041 ”7(2)
_(b » " 7 [ E’DJY
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with ¢ a derivation and hence
de N =0,

or spelled out

1
(bul;b I a”l&% _ [2W£(2), ,])eASZY(Z) dz _ . (52)
Let 7 be a vacuum vector for p-KP:

wWr=cr, C=kp, k=-1,01,.... (53)

Remembering (46) with Y'(z) given by (50), and with 7(t) taken as a vacuum
vector, yields

1 “A[, Y (2)dz E
= = E = det(l — \k 4
0 Te T et( A" (54)

and setting £ = kp, k = —1,0,1,..., compute using, (52), (53) and (54):

0= (b£+1 % +a£+1 i _ 1W£(2)) e*/\SZ Y (z) dZT+€7>\SZ Y (z)dz (;WZ@)T)

da 2
= (b“_l;b + al+1§ _ %(Wé(z) _ CIZ)) <6—ASZY(Z) dzT)
a
410 1 0 1) E
=(b % +a P §(Wé —cg) ) (T (t) det(I — AE™)) . (55)
More generally: setting
k
[a,b] — EYP .= U[azi—l,azi] ;
i=1

k
b“lé i a“li N 221 a“li := By(a)
ob L

deduce

(B’“p(“) - W - >> (r(t) det(T — kF*")) = 0.

with
WEr(t) = epr(t), k=1, (56)

Since changing integration variables in a Fredholm determinant leaves the
determinant invariant, change variables:

z—o 2P =) a;—>ad =A4;, and



16 Mark Adler
k
EYr L F = U[A2i—17A2i] )
=1

and "y
oy s ' LE "(/\1/27’)\/1/;0)
B2 2) = KRN = e o 12 (57)

yielding
det( — pK®) = det(I — pk®")

_ S Y@y

T T(t) (58)
and so (56) yields the p reduced Virasoro relation:
(Bi(A) = 3(W2) — exp)) (7(2) det(I — pKF)) =0, (59)

with
WEr(t) = epr(t), k=1,
1.6 Differential equations for the probability in scaling limits

Now we shall derive differential equations for the limiting probabilities dis-
cussed in Section 1.2 using the integrable tools previously developed.

Airy edge limit:
Remembering the edge limit for Hermitian eigenvalues of (15) and (16):

lim P(ﬁnl/les()\max -V 277’) € EC) = det(‘[ - Kfiry) (60)

n—w
with .
KAiry(uv'U) = J AZ(SC + U)Al(.’t + 'U) dx ,
0

1 o0 3
A;i(u) = ;Jo cos (7; + xu) du .
Consider the KdV reduction

t = (t1,0,t3,0,t5,. ..
p:2, (1 3 5 ) (62)
to = (0,0,2/3,0,0,...)

(61)

with initial conditions:
U(x,tg, 2) = 2/m2A(x + (—2)?)
= e (14 0(1/2)) (63)

(D2 — 2)W(x,tg,2) = 2°W(x,tg, 2) .
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Under the KP (KdV) flow:

r = afoto) = a(e.0) = Sin(r(0)
W(z,ty) — W(x, 1) = e*# 1 iz T(t;([:)‘l]) | (64)

T(to) — 7(t) .

where 7(t) turns out to be the well-known Konsevich integral [16, 18], sat-
isfying a vacuum condition as a consequence of Grassmannian invariance, to
wit:

Kontsevich integral:

SH dX e~ Tr(X°/3+X%2)

N

|y aXe O (63)

Zdiag: t, =——TrZ™" + Z0,3 .
n 3

T(t) = th_,x

Vacuum condition:
Wir = —Lopr, kx=-1. (66)

Grassmannian invariance condition:

J
W := spang {(6633) U(x,to, z)

r

7.7:071727"'}3

x=0
\22W e W (KdV), AW c W, (67)
1 /0 1
=—(—+22)-—, AW =2V :
\ 22(82 + z) R (0,20,2) = 2°¥(0, ¢, 2)
We have the initial kernel:
KEON) = 20 NN (2, to, VN d
to( ) )_ 2)\1/4>\,1/4 0 (I, 0, — ) (l‘, 0, ) X

— 2nlp(\) f Ay 4+ M)A+ N da
0
L2b KE(N) . (68)
Conditions on 7(t, E):

7(t, E) = 7(t) det (1 - 217TK5> (by (58))

=7(to)det(I — Kiyy) att =ty (by (68)), (69)
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which satisfies (33) and (35):

0 4 62 62 2
(%) _46t16t3 10g7+6<8t%10g7) =0 (KdV), (70)

and by (59), (42) and (62) we find for 7(¢, E)

Virasoro constraints:

(71)

Replace t-derivatives of T(t, E) at to with A derivatives in KdV:

oT 02 0? 10
Bor=—, B r=- 7. . B Bor=|-—t-a ...
T =%t 7T T g2 BT (atlatg 3 atl)T’ ’

att =1y, (72)
yielding
Theorem 1.1 (Adler—Shiota—van Moerbeke [16]).
R := B_log lim P(V2n"/%(Amax — \2n) € E°) = B_1logdet(I — KX,,,)
) T(to, E)

7(to)
= B_1log7(to, F)

= B,l log

satisfies

(B3, —4(By— 3))R+6(B_1R)* =0. (73)
Setting E = (a, ) yields:

R"” —4aR' +2R+6R? =0. (74)

Setting
R=g'2—a92—g4, RI:gZ

yields
g" =2¢° +ag (Painlevé II) . (75)
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Hard edge limit:
Remembering the hard edge limit (21) for the Hermitian Laguerre ensemble
(20):
1

lim P<no eigenvalues € 4E> = det(I — KF) |

n—w n
L (76)
K, (u,v) = §J, sJy (sv/u)J, (s8/v) ds

0

defined in terms of Bessel functions, consider the KdV reduction with initial
conditions:

¥ (z,0,2) = e B((1 —x)z) = e"*(1+0(1/2)) ,

<D2 - (V_‘)ll)>u7(x,0,z) = 220(,0,2) (77)

with (see [19])

z2u+1/2 L —v+1/2 —uz
B(z) := eNJzH, (iz) = ¢ J - S
1

M+ ) =

T 1 1
I e i )2 = -
§ Z\Ee ’ 2 =V =3

-1 .
( 4 W(ac,O,z),7’(O)> = (q(z,1),@(x,t,2),7(t)) , (78)

where

Under the KdV flow:

2 -1’

where 7(t) is both a Laplace matrix integral and a vacuum vector [16, 18] due
to Grassmannian invariance:

Laplace integral:

(t) = lim S, () by 4X det XV 12T 27X b, Y So(¥)e” XV
7(t) = lim S;

N-ow 4 dXefTrXQZ
e

with Zdiag: t, = —1/ntr Z=", H} = H, n (matrices with non-negative
spectrum) and S1(t), So(Y') are symmetric functions,

Vacuum condition:

Wi = ((20)2 = 1)k, k= -1, (79)
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Grassmannian invariance:
22W W, AW c W,
{ A= %z(fz - 1), (442 =24 — % + 1)¥(0,0, 2) = 2¥(0,0, z)..
We have the initial kernel:

KGyOWX)
Ig(\)

= D Y@t VAN (see (48), (49) and (57))
Is(Y) .
= >\1/4)\/1/4 ZC“‘Q' (z,t, +\/7 Eb+¥7 (z,t, +\F
a IE()\/) T ,Leuru/Z 6—17”//2
= 2)\1/4)\/1/4J o W(l‘,t,—\/X) + — o (z,tv\/i)
efzwu/Q 17r1//2
X (— NG U(x,t, \/7) Ton W(m,t,—ﬂ)) dx

:IE(/\/)QJ s, (sNAN) T, (sVN) ds  at (z,t0) = (144, —e1),  (80)
and under the t-flow
tg—>t
Kooy N) =25 KE (LX)

Conditions on 7(t, E):

7(t, B) = 7(t)det(I — K(; ) = 7(to)(I — KJ) at (2,t0) = (1 +i,e1)
(by (58) and (80)), (81)
satisfies (33) and (35) :

0 4 0?2 02 2

and by (59), (42), (62) and (81), the

Virasoro constraints:

;(ZthrFatlJrz(i—u))T

=1

1 0? 0
PRI i Y
<Z;Z Gt 208 at3> 4

1\3\»—\
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Replace t-derivatives of T(t, E) at (1 +1i,—ey) with A derivatives in KdV:

Q0T 1 9 _ 10%r i ot .
BO(A)T— iaitl <4_V >T7 BI(A) - 4at% +26t37 at (1+Z7_61)

yielding
Theorem 1.2 (Adler—Shiota—van Moerbeke [16]).
. . E E
R :=log lim P [ no eigenvalues € o logdet(I — K;)
n—ow n

7(%,0,0,...; E)

~1
°®7(i.0,0,..: R)

satisfies

(By —2B§ + (1 —v*)B] + B1(Bo — 3))R — 4(BoR)(BiR) + 6(B{R)* = 0.

Setting :
E=(0,2), f= —x%f
yields
” 12 / — 1,2\ !
f///+L_6f +4ff +(l‘ V)f —Lzo (PainleVéV).

x x 2 2 222

2 Recursion Relations for Unitary Integrals

2.1 Results concerning unitary integrals

Many generating functions in a parameter t for combinatorial problems are
expressible in the form of unitary integrals I,,(¢) over U(n) (see [20, 22, 47,
51]). Our methods can be used to either get a differential equation for I,,(¢) in ¢
[2] or a recursion relation in n [3] and in the present case we concentrate on the
latter. Borodin first got such results [26] using Riemann—Hilbert techniques.
Consider the following basic objects (A, (z) is the Vandermonde determinant,

i =+/—1):

Unitary integral:

I f det (M*p(M)) dM
U(n)

1 2 - 3 de
o 1P TT (o)

(sHm k=1

o dZ
= det ete g 83
¢ (an p(z)2m'z)1si', ' (83)
j'<n
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with weight p(2):

"

p(z) = ePEHPETN 0 (1 = gy 2) (1 — dyz) 2 (1 — dy e )

x (1—dy'z=t)e (84)

N2

ALY U_; 2"
Pi(z)i= ) == Pa(z) =3 ==, (85)

7 T 2

and we introduce the

Basic recursion variables:

n A ndn
Tp = (_1) W sy Yn 1= (_1) @ ) (86)
1),
Uy =1 =2y, = L(LT , (87)
and so .
10 = () T =z, (88)
thus

(z,y) recursively yields {I{?)} .

We also introduce the fundamental semi-infinite matrices:

Toeplitz matrices:

—z1yo 1 — 191 0 0
—T2yo —T2y1 1— w2y 0 ..
Li(z,y) i= | —wayo —wsys  —w3ys 1 —a3ys ) (89)

Ly := L?(y,fﬂ) ’

in terms of which we write the following:

Recursion matrices:®

£{" = (al +bLy +cL3)P{(L1) + c(n+7% + 75+ 1) L1 ,
Eg”) := (eI + bLy + aL2)Py(Ly) + a(n + 'y/l/ + 7;’ — )L .

There exists the following basic involution ~ :

(90)

5 I in (90) is the semi-infinite identity matrix and P/(z) = dP;(z)/dz.
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Basic involution:

~izo Tl p(z) - ez

17(10) <« 17(10)7 I;f — I~

n

LTn < Yn, a < C, b(_)bv it
Ly & LT, ﬁgn) o Eén)T .
Self-dual case:
P =p"), wn=mgn = La=1F, £V =c{""

Let us define the “total discrete derivative”:%

onf(n) = f(n+1)—f(n).
We now state the main theorems of Adler—van Moerbeke [3]:
Rational relations for (z,y):
Theorem 2.1. The (zk, yx)r>1 Satisfy 2 finite step relations:
Case 1.
In the generic situation, to wit:
dy, dyydy — da, [yi| + UL el + hel # 0 inp(2)

we find for n =1 that

(+) @n(ﬁgﬂ) - ‘an))n,n + (cL1 —ala)pn =0
+
On(on L") = L5 10 + (L3 +DL1)ns1 nsr = (same),_ |

with
1

Vdids

and the dual equations (+), also hold.

(a,b,c) = (1, —di, —d2,d1d2) ,

Case 2.

Upon rescaling,
p(2) = 27(1 + 2) VP (A+P(=T)

and then (+), (+) are satisfied with (a,b,c) = (1,1,0) or (0,1,1).

23

(94)

(95)

(96)

6 The total derivative means you must take account, in writing f(n), of all the
places n appears either implicitly or explicitly, so f(n) = g(n,n,n,...) in reality.
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Case 3.

Upon rescaling,
p(z) = 27eP @ +PTY) (97)

and then (+), (+) are satisfied for a, b, ¢ arbitrary and in addition finer
relations hold:

Lo(z,y) =0, Dh(z,y)=0,

oo [~ BRI — (E2Pa(L2)),, (98)

In(z,y) == — + nz, .
Yn -+ (P{(Ll)) + PQI(LZ)n ,n+1

n+1l,n

If [Ny — Na| < 1, where N; = degree P;, the rational relations of Theo-
rem 2.1 become, upon setting z, := (Z,, Yn):

Rational recursion relations:

Theorem 2.2. For Ny = Ny +1 or Ny = N», the rational relations of Theo-
rem 2.1 become recursion relations as follows:

Case 1.
Yields inductive rational N1 + No + 4 step relations:
Zn = Fp(Zn—1,2n-2, -+ Zn—Ny—N5—3) -
Case 2.
Yields inductive rational N1 + No + 3 step relations:
Zn = Fn(Zn—1,2n-2, -y Zn—Ny—No—2) »
with either
Ny =Ny or Ny+1: (a,bc)=(1,1,0),
or
Ny =Ny or Ny—1: (a,b,c)=(0,1,1).
Case 3.
Yields inductive rational N1 + No — 1 step relations:
Zn = Fp(Zn—1,2n—2, s Zn—Ny—Ns)s

upon using I3, and I, and in the case of the
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Self dual weight:
p(z) _ eZi\jl wi (2271 /i )
One finds recursion relations:

Tp = Fn(mnflaxnf% e 7I7172N) .

2.2 Examples from combinatorics

In this section, we give some well-known examples from combinatorics in
the notation of the previous section. In the case of a permutation 7y, of k—
numbers, L(7y) shall denote the length of the largest increasing subsequence
of . If 7y, is only a word of size k from an alphabet of o numbers, L(®) (mk)
shall denote the length of the largest weakly increasing subsequence in the
word 7. We will also consider odd permutations 7 on (—k,...,—1,1,...,k)
or (—k,...,—1,0,1,... k), which means w(—j) = —x(j), for all j.

Ezample 1. p(z) = e!*+27") (self-dual case)

o0
IO¢) = Z fp(m € Sp) | L(m) < n) = J el TrM+MT) gap
k! U(n)
the latter equality due to I. Gessel, with

S AN O g
zn(t) = (- SU(n) ot Te(M+M=Y) g0 [ )

(as in (86))

and

[7(10)( [(0) H n i

One finds a

3-step recursion relation for x;:

— r?
(1Tnn)(t(L1)n+1,n+1 +t(L1)nn) (asin (98))

=nx, +t(1 —22)(2py1 + 1) (Borodin [26])

0=nx, —

which possesses an
Invariant : @(zp41,20) = @(Th, Tn-1) ,
Dy, 2) = (1 —y*)(1 = 2%) — %yz (McMillan [43]) .
The initial conditions in the recursion relation are as follows:

1d
o = ]., T = 5&10g[0(2t) Il(o) = Io(Qt) s

with Iy the hyperbolic Bessel function of the first kind (see [19]).
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Ezample 2. p(z) = e+ )+5G"+27%) (gelf-dual case)
Set

S93d — {71 € Sop, acts on (=k,...,—1,1,...,k) oddly} ,
Sond = {mops1 € Sopy1 acts on (—=k,...,—1,0,1,...,k) oddly}

and then one finds:

G (V2

g

P € S99 | L(mar) < n) = f s T MPHMT) gy
U(n)

I
= k!
£ (/2s)2k

( k,,) P(mars1 € Sopty | L(maks1) < n)
k=0 .

2
_1/0 l[ eTrEM+MTN)+s(M*+M™%) gar L game (t,—s)
4\ ot U(n) 7

as observed by M. Rains [47] and Tracy-Widom [51]. Moreover,

t=0

§17(ny det(M) QT s MT5) g p
zn(t,x) = (1) SU(n) ST (M M) T s(M24 M=) g)f ,

and )
I(O)(t) (I(O) (t))” H(l _ x?)n—z
i=1
One finds a

5-step recursion relation for x;:

NLp + 10 (Trn—1 +Tnt1) + 2500 (Tnt2Vnt1 +Tp2Un—1—Tn(Tni1 +xn_1)2) =0

(v, =1-— xi)

which possesses the

Invariant : @(z,—1, Tn, Tri1, Tniz) = same| ,

non41

&(z,y,z,u) :=nyz — (1 — yz)(l — 22)(15 + 2s(z(u —y)—z(u+ y))) ,

analogous to the McMillan invariant of the previous example.

—1

Ezample 3. p(z) = (1 4+ z)e®*  (Case 2 of Theorem 2.1)
Set

Sk.a = {words 7, of length k from alphabet of size a} ,
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with

5 (as)k
= P (T € Sk | L™ () < n)
=0 :

= J det(I + M)*e* ™" qpr
U(n)

x>

the latter identity observed by Tracy—Widom [52]. Then setting in
Case 2
Pl(z) = 07 PQ(Z) = 5%, Nl = Oa N2 = 17 (a,b,c) = (07131)7
L =(m+a)Ly, LS =s(I+Ly),
one finds the

Recursion relations:

é’n((n + Ot)Ll — SLQ)nn + (Ll)nn
On((n—1)+a)vu1Ly —sLa), _ + (L} + L1)p.n = (same)

n=1

(Un =1- xnyn) )

with )
1) §1 gy (det M)E det(1 + M)“es ™M™ dy
LnyYn =

MG SU(n) det(I + M)@estr M~ g\

and
I'r(LO)( I(O) 1_[ 1 —zy:)" - )
leading to the

3 and 4 step relations for (x;,y;):

—(n+a+Dxni1Yn + TpYns1 + (M +a — 1)Tp¥Yn_1 — STp_1yn =0,
— vy, ((n +a+ Dzpi1yn_1 + 5) + V1 ((n +a—2)x,Yn_o+ 5)
+ ZnYn-1(@nyn-1—1) = =01 ((2 + @)z + 5) + 21(x1 — 1)
(To=yo=1).

27
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2.3 Bi-orthogonal polynomials on the circle and the Toeplitz
lattice

It turns out that the appropriate integrable system for our problem is the
Toeplitz lattice, an invariant subsystem of the 2-Toda lattice. Indeed x,, and
yn of Section 2.1 turn out to be dual Hamiltonian variables for the integrable
system; moreover x,, and y, are nothing but the constant term of the nth bi-
orthogonal polynomials on the circle, generated by a natural time deformation
of our measure p(z) of (84). These things are discussed by Adler—van Moerbeke
in [2, 3] in detail. Consider the bi-orthogonal polynomials and inner product
generated by the following measure on S*:

dz :eziﬁ(tkzk_sszk) dz (99)

Tz 2miz

pZtS
(7’)2
with

Inner product:

dz — L (2t —sizTt
9@ i= § o fgle D T 100)
S1
Bi-orthogonal polynomials:
PN, PPy = Gpmhin, By = T"*Et(ts)s) nym=0,1,... . (101)
Tnll,

The polynomials are parametrized by
2-Toda T functions:

Tu(t,s) = det((z*, 25)o<r.  (Toeplitz determinant)
¢

<n-—1
n . .

= l' |An(2)]? H er;l(th;ifSJZ;")diZ”f

uz (S1)m el 271"sz
_ l[ TXL WM =M™ ) grr > 1, p=1, (102)

U(n)
as follows:
u"’L

(p’Ell)7p’$L2))(u; 2 8) (Tn (t - [u71]7 8)7 Tn(t’ s+ [uil]))

Tn(t, 8)

( §ir(my det(ul — M) M =M g

SU(n) eTr(ZtiM,;fsiM—i) dM ,

SU(n) det(ul — M~1)Tr(Xf taM' =M™ g
eTr(XtiMi—siM~%) d M ’

SU(n)
[] = (x,2%/2,2%/3,...) . (103)
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The constant term of our polynomials yield the

Dynamical variables:

zo(t,x) = pI(0st,s),  ynlt,s) = pP(0;t,5),

Tn+1Tn—1 |
b

Up = 1- TnlYn = 2
Tn

giving rise to an invariant subsystem of the

Toda equations:

—z1yo 1 — z191 0 0
—ToYyo —T2y1 1 — Ty 0

Li(z,y) :== —T3yo —T3Yy1 —T3y2 1—x3ys3 ’

LZ(xvy) = L1T(y,$) 3 hn = T’rLJrl/Tn 5 h = diag(ho, hl P ) )
Ly =hLh™Y, Lo=Lsy,

oL, . -
ot = [(L?)-HLZ]?

(T) aﬁ L i=1,2, n=12...
L, S
L = ly)-. L

with
(A); = upper tri(A) + diag(A4) ,
(A)— = lower tri(A) .

We find, (T') & Toeplitz lattice:”

0Ty oHY oy, oY
= Un ) = ~Un
ot; Oyn = Ol 0n i=1,2
axn aHl(Q) ayn aHl(Q) ) = L4y
= Un s = —Un
0s; OYn 0s; 0%y,
. tr L% L d d
Hi(]) =——", WZZM, U =1 = 2nyn ,
7 =1 Vg
with
$n(070) = yn(0,0) =0, n=1, (see [2 3])
zo(t,s) = yo(t,s) =1, Vi,s, o

29

(104)
(105)

(106)

(107)
(108)

(109)

(110)

(111)

(112)

7 Equations (T) are the 2-Toda equations of Ueno-Takasaki [55], but equations (1)
with precisely the initial conditions (106) and (107) are an invariant subsystem
of the 2-Toda equations which are equivalent to the Toeplitz lattice, (110), (111).

The latter equations are Hamiltonian, with w the symplectic form.



30 Mark Adler

FEzample
0xy, OYn
N T (1 - ‘rnyn)xn-‘rl s Ay T _(1 - xnyn)yn—l s
atl 6151
(113)
a96—”—(1—30 ) ay—n——(l—x )
D51 = nYn)Tn—1 , 051 = nYn)Yn+1
yielding the
Ladik—Ablowitz lattice:
0 0 0
= 114
ot (%1 681 ( )

2.4 Virasoro constraints and difference relations

In this section, using a 2-Toda vertex operator, which generates a subspace of
the tangent space of the sequence of 2-Toda 7-functions {7,(t, s)}, we derive
Virasoro relations in our special case. Indeed, deriving a Lax-equation for the
vertex operator leads to a fixed point theorem for our particular sequence
of matrix integral 7-functions, fixed under an integrated version of the ver-
tex operator, integrated over the unit circle. The Virasoro relations coupled
with the Toeplitz lattice identities then lead to difference relations after some
manipulation.
We present the following operators:

Toda vertex operator:

X (u,v) (fn(t, 5))n;0
= (X (b = ) (=l ([, s+ [0 ])eso . (115)

Integrated version:

d
Y7 = J 27Tqumx(u,u—l) . (116)
S’l

Virasoro operator:

Vi = (Vi nzo := 370 = 380 (=) = (k =) (033 (1) + (1 = )10} (=)
(vector differential operator in ¢, s, acting diagonally
as defined explicitly in (123), (124), and (125)) . (117)
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Main facts:
d
Lax-equation: uf"’ud—ukJ”X(u, u ™)) = [V, X (u,u™ )], (118)
u
Commutativity: LY =0, (119)
Fixed Point: YT =1, I:=n7{(ts),_, (120)
where
(¢, s) = ij |An(2)]2 ﬁ N ) B
" ’ n! (S1)m hel k 27T’LZk ’

(o =1) (121)
and {T,(L'Y) (t,s)} satisfy an s(2,7Z) algebra of Virasoro constraints:

k=-1, =0,
Vz,nﬂﬁ”)(t, 5) =0 for k= 0, 0 arbitrary , (n=0). (122)
k= 1, 0=1,

Proof of main facts.

The proof of the Lax-equation is a lengthy calculation (see [3]). Integrating
the Lax-equation with regard to
J’ du u”
g1 2miu

immediately leads to the commutativity statement. To see the fixed point
statement, compute (setting u = z,)

L(t,s) = n!T’I(L’Y) (t,s)
_ J uﬂyd.uez‘f(tjujfsju_j)unflufnjtl
51 2miu
= z U oy e —iy 20 dZ
f An—l(Z)An—l(Z)H 1—2E ) (1= =2 ) eXi (tazissz?) 222k
(S1)n—t 1 u Zk 271'sz
_ J I S (kg =) (g =y o= S (w0 0oty = [ 0f0))
g1 2miu
n—1 ) . "/dz
A, 1(2)A,, Y (b —s5z77) 202k
(j(sl)n—1 " I(Z) ' 1(Z)kl:[16 ) ) 27rizk

=YD, ,

yielding the fixed point statement. Finally, to see the s¢(2, Z) Virasoro state-
ment, observe that from the other main facts, we have
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0= ([Vi,(Y")"]D)n
= (Vi(¥")" I = (Y")" Vi),
= (VI = (Y")"ViI)n
V) I, - J w7 T S (=) = S 3 0f0t— [ /05)
ko g1 2miu
.. J uv;ieﬁ(tjutsju—f)ef S oot =l [ ooy g
S1 iU

upon using the backward shift (see (115)) present in Y7. Note Iy = 1, and
so it follows from the explicit Virasoro formulas given below, that V;',1 = 0
precisely if k = —1, 0, 1 and 0 is as specified in (122), yielding the Virasoro
constraints (122). We now make explicit the Virasoro relations.

Ezxplicit Virasoro formulas:

J;(fl) = (J,ﬁl) + 100k )n>0
(

(123)
I = 2P + @+ k+ 1)J + n(n + 1)k )ns0 -
I = a% +(=k)t
, k p , if k=0,41. (124)

Virasoro relations:

( 1
Vzl,nT'f(L’Y) = (

1o, 10 ON_L 9N
2(]71(15) 2J1 (S)+n<tl+8sl> 7681>T" =0,

1 1
4 Vg,nT,gw = <2Jé2)(t)_2jé2)(s)+m) =0, (125)

) B (R ST PRUNE BTCIP N 0N o
Vl,nTn ( 2‘]71 (S)+2J1 ( )+n<51+6t1 +76t1 Tn O .

We now derive the first difference relation (the second is similar) in Case 2 of
Theorem 2.1. Setting for arbitrary a, b, ¢, t, and s,

Oll(t) = CL(’L + 1)ti+1 + bit; + C(Z — ]-)ti—l + c(n + ’7)(511 ,

126
ﬂl(s) = CL(Z — 1)51‘,1 + bis; + C(Z + 1)Si+1 — a(n — ’)’)511 R ( )
£ =Y ()L and LYV = Bi(t)L (127)

=1 =1

and remembering

(A
@) = 0N ( 2B ) e = L=
n n
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compute, using the Virasoro relations and the Toeplitz flow:

0= Lvy {+ @V, +OVE, 4+ VT + —(aVZ,, + bV, + V1,07
n T

Tn n

2
— —(aV,Ln + bVO,n + CVLTL)T"}

n

= vayL (Z (ai(t)ﬁti — ﬁi(s)a&) log ., Yn

_ TnYn 0,0
= U (Z (az ot ﬁz (?87,> (10g Ty + lOg yn)

i>1
0 0
+ (cat1 — a&sl) (log ,, — log yn)>

= (ﬁgn) — £§n) + aL2 — CLl)nn
- (’an) - ‘Cén) - aL2 + CLl)TL+1,n+1 5
_aﬂ(ﬁgn) - Egn))n,n + (aLQ - CLl)nn . (128)

We then find our result by specializing the above identity to the precise locus
L in t, s space corresponding to the measure p(z) of Case 2 of Theorem 2.1:

GO {ui — (idi +pdh), for1<i<N
’ v —(Yidl +~4dy), for Ny +1<i< o0
[o— ( 1%1 2. 2) _ 1 (129)
io = is® . —u_; + (Y{di" +5d3"), for 1 <i< Ny
’ C (AT +4dgY), for Na+ 1< < oo
with 1
(a, b, C) = 7(1, —d1 — dQ,dldg) , (130)

Vdids
and so in (129) all a;(t) = 0 for all ¢ = Ny +2 and all 5;(¢) = 0 for i = Ny +2.

2.5 Singularity confinement of recursion relations

Since for the combinatorial examples the unitary integral I,(LO) (t) satisfies
Painlevé differential equations in ¢, it is natural to expect they satisfy a dis-
crete version of the Painlevé property regarding the development of poles.
For instance, algebraically integrable systems (a.c.i.) 2 = f(z), z € C", admit
Laurent solutions depending on the maximal number, n—1, of free parameters
[see [14]). An analogous property for rational recursion relations

k
Zn=F(anla'~'7Zn75)v ZnGC )
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would be that there exists solutions of the recursion relation {z;(\)} which are
“formal Laurent” solutions in A developing a pole which disappears after a
finite number of steps, and such that these “formal Laurent” solutions depend
on the maximal number of free parameters ¢ x k (counting \) and moreover
the coefficients of the expansions depend rationally on these free parameters.
We shall give results for Case 2 of Theorem 2.1 and 2.2, where Ny = Ny = N.
The results in this section, Theorem 2.3-2.6, are due to Adler—van Moerbeke—
Vanhaecke and can be found with proofs in [13].

Self-dual case:
plz) = exi Wi+ (131)

Theorem 2.3 (Singularity confinement: self-dual case). For any n €
7.8 the difference equations I'y(x) = 0, (k € Z) admit two formal Laurent
solution x = (nck()\))keZ in a parameter A, having a (simple) pole at k = n
only and A = 0. These solutions depend on 2N non-zero free parameters

a = (Gp_2aN,...,0p—2) and A.

Explicitly, these series with coefficients rational in « are given by (e = +1):

Zx(l) N k<n—2N,

a:k()\)=ozk, n—-2N<k<n-2
mn_l(/\)=€+)\,

)

o0
Tnt1(A) = —e + Z xffll(a))\i ,

General case:
p(z) = eXit (wiz'tu—sz"/i
Theorem 2.4 (Singularity confinement: general case). For any n € Z,

the difference equations I.(z,y) = Ii(x,y) = 0, (k € Z) admit a formal
Laurent solution x = (xk()\))kez andy = (yk ()‘))keZ in a parameter A, having

8 We consider the obvious bi-infinite extension of L;(z,y) (89) which through (98)
defines a bi-infinite extension of I'y(x,y), I'k(z,y)-
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a (simple) pole at k = n and X\ = 0, and no other singularities. These solutions
depend on 4N non-zero free parameters

Qp_aN, - Q2,0 _1,Pn_2N,...,Bn_2 and X.

Setting zn, = (Tn,yn) and v; 1= (i, 3i), and v 1= (Yn-2N,- -+, Yn—2, ¥n—1),
the explicit series with coefficients rational in v read as follows:

s
zp(A) = Z z,(cl)('y)/\i , k<n—-2N,
i=0

2\ =7, n—2N<k<n-2,

xn—l()\) = Qp_1,

1
n—1(A) = )‘a
Y 1( ) o +
1S ,
2N = 5 220N,

1=0
o0

ze(A,y) = Z zl(f)(’y))\i , n<k.

Singularity confinement is consequence of :

(1) Painlevé property of a.c.i. Toeplitz lattice.

(2) Rational difference relations as a whole define an invariant manifold of
the Toeplitz lattice.

(3) Formal Laurent solutions of Toeplitz lattice with maximal parameters
restrict to the above invariant manifold, restricting the parameters.

(4) Reparametrizing the “restricted” Laurent solutions by ¢ — A\ and “re-
stricted parameters” — v yields the confinement result.

We discuss (1) and (2). Indeed, consider the Toeplitz lattice with the
Hamiltonian H = Hl(l) — H1(2), yielding the flow of (114):
General case:
al’k

W = (1 - xkyk)(xkﬂ - kal) )
kelZ.

0

% = (1 — zeyr) Wr+1 — Tr—1) ,
Self-dual case:

oxy, 2

¢ = (1= 2)(@he1 —2e1), kED.

Then we have
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Mazximal formal Laurent solutions:

Theorem 2.5. For arbitrary but fixed n, the first Toeplitz lattice vector field
(114) admits the following formal Laurent solutions,

1

() = —————— (an_1an11(1 + at) + O(t?)) |
ot (an—1 = ang1)t (an-1n+1(1 + at) + O(t%))

1 an+104 — 10— 9
n) =\ 7! t+0()),
om0 (an 1 _an+1)t( " <a+ Op41 — Gn-1 ) +O)

Zps1(t) = nz1 + aprazt + O(%)
1 a+t
Yn1(t) = - = 10

Ap+1 anil

whereas for all remaining k such that |k —n| = 2,

zp(t) = ar + (1 — agby) (k11 — ap—1)t + O(t2) ,

Yk(t) = b + (1 — agbp) (brs1 — be—1)t + O(t?)
where a, ay, ant1 and all a;, by, with i€ Z\{n —1,n,n+ 1} and with b1 =
1/ap41, are arbitrary free parameters, and with (ap—1 — ant1)an—1an+1 # 0.

In the self-dual case it admits the following two formal Laurent solutions,
parametrized by € = +1,

n(t) = _%(1 +(ay —a )t +0(t?)
Tt (t) = 5( Fl+4dagt+ O(tQ)) ,
zp(t) = ear + (1 — aj)(aks1 — ap—1)t + O(t%)) , |k —n|>2,
where a, a— and all a;, with i € Z\{n—1,n,n+1} are arbitrary free parameter
and Gp_1 = —apy1 = 1.

Together with time ¢ these parameters are in bijection with the phase space
variables; we can put for the general Toeplitz lattice for example zy, <> (ag, b)
for |k —n| =21 and xp41 © an+1 and yp41, Tn, Yn < ax, a, t. Consider the
locus £ defined by the difference relations (98) of Case 3 of Theorem 2.1,
namely:

General case:
L={(z,y) | Tn(z,y,u) =0, Tp(z,y,u) =0,Yn} .
Self-dual case:
L={x|h(z,y,u) =0, ¥n},

where we now explicitly exhibit the dependence of I7,, I, on the coefficients
of the measure, namely u. The point of the following theorem is that L is
an invariant manifold for the flow generated by H = H fl) -H 1(2), upon our
imposing the following u dependence on ¢ (v, = 1 — 2, yn).
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Theorem 2.6. Upon setting duy,; /0t = 14, the recursion relations satisfy the
following differential equations

Iy = on(Tegr — Tieo1) + (@rg1 — 2xm1) (@elh — yelk)
fk = 0k(Tigr = Thmr) = (a1 — ve—1) (@l — yele) |
which specialize in the self-dual case to
I = vr(D1 — D) -
Sketch of proof:
The proof is based on the crucial identities:
Iy =Voxn +na, and I = —Voyn + NYn ,

where 5 5
Vo = ; (Uz(%l +Ui68¢) )

and

= 'UnFnil + xnil(xnfn - ynFn) 5

{of

ol ~ -
7., N = _Unrn$1 + ynil(xnf‘n - ynFn) )
g

S1

which, upon using d/0t = 0/0t1 — 0/0s1, yields the theorem.

3 Coupled Random Matrices and the 2—Toda Lattice

3.1 Main results for coupled random matrices

The study of coupled random matrices will lead us to the 2-Toda lattice and
bi-orthogonal polynomials, which are essentially 2 of the 4 wave functions
for the 2-Toda lattice. This problem will lead to many techniques which will
come up again, as well as a PDE for the basic probability in coupled random
matrices.

Let My, Ms € ‘H,,, Hermitian n x n matrices and consider the probability
ensemble of
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COUpled random matrices:
dM dM e 1/2 Ir(M12+M22—20]\41M2)
SS 1 2 (1 )

dM; dMye=1/2 Tr(MZ+MZ—2cMy Ms)

P((Ml,MQ) C S) = S
HnxHnp

with . "
dMy = A2 (x) [ [ dai dUy,  dMy = A2 (y) [ [ dyi dU> .
1 1

Given E = Ey x Ey = |Ji[a2i—1,a2:] x [J][b2i—1,b2:], define the boundary

operators:
2r 2s 27
1 0 0 0 0
A= — —+c) 0— |, A=) aj=——c+,
1—¢2 (; 6aj ; 8b]> le J aa]‘ oc (133)
Bl = .Al 5 BQ = A2| )
a<b aeb
which form a Lie algebra:
1+4c? 2c
[A1,B1] =0, [A1,As] = sAL, [A2,Bi] = ——— A1,
1—c 1-c
9 (134)
1+c 2c
[AQ,BQ] =0, [81762] = 1 281 s [627"41] == 281 )
—c 1—c
We can now state the main theorem of Section 3:
Theorem 3.1 (Adler—van Moerbeke [4]). The statistics
1 1 _
F, := —log P,,(F) := — log P(all (My—eigenvalues) € Eq,
n n
all (My—-eigenvalues) € E3) (135)
satisfies the third order nonlinear PDE:
BgAan AQBan
A =B =0. 136
| ) -5 (s i) 130

B A F,, + C/(1 — 02)
In particular for E = (—0, a] x (—o0,b], setting: x :== —a + cb, y := —ac+b,
Ay — —d/ox, By — 0/dy, (136) becomes

0 [ (2 —=1)%0%F,/0xdc + 2cx — (1 + *)y
ox ( (2 —1)0?F, [0xdy + ¢ )
_ ((02 —1)20%F,,/dydc + 2cy — (1 + c2)x> (137)
Jy (¢2 —1)0%F, Joyox + ¢ '
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3.2 Link with the 2—Toda hierarchy

In this section we deform the coupled random matrix problem in a natural
way to introduce the 2-Toda hierarchy into the problem. We first need the
celebrated Harish-Chandra—Itzkson—Zuber formula [23]:

HCIZ: z = diag(x1,...,2n), y = diag(y1,- .-, Yn)

n(n—1)/2 cTiY; .
f dU e TR (2“> det(e™ M isigen ()
U(n)

c nlA, (z)AL(y)

Compute, using HCIZ:

f dM;y dMye™ Mi My o Tr (N1 (t: M —s:M3)) (t, s deformation)

Hn(E1)xHn(E2)

- j {Ai(z)Ai(y) [T e Cerimeida, dyk}
ETEZ

k=1
% Jf e Tr Ui xU; ' UayUy * dU, dU2

U(n)xU(n)

- | {Ai(z)Ai(y) [ ] exf ko) day, dyk}
BT Ey

k=1

% l[ dU1J e Tr xUl_lUQyUr;lUldUz
U(n) U(n)

- | {Ai(x)Ai(y) [] = turiseviay, dyk}
T YES

k=1
-1 U=U'U
x dU J ecTr xUyU dU ( 1 2)
JU(n) ! U(n) dU = dU2

o | | Au@da)deter g, [T kb dy,
T YEY

j<n 1

n

= Cnf - An(I)An(y) < Z (_1)‘7 Hecmiya(i)> X Hdu(g}k) d¢(yk)
1 2 1

ogeS, 1
(setting: Yo (i) = Yis E} — EY)
= nle, f An(@)An() [ e | | dinlan)dep(yr)
T YEY 1 1
n o . .
=nley | An(@)An(y) [ [ Xt Gmimswihersvidy, dy,, E=Fy xE,

En k=1

where we have used in the above that Haar measure is translation invariant.
We now make a further c-deformation of this matrix integral.
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Define T-function:

Tn (t’ S’ C7 E)
1 L sl i i i,
= | J, An(x)An(y) H 621 (timk_siyk)+2i=j>1 Cijm’“ykdmk dyk )
n! Jgn Follet
(1o = 1) which is not a matrix integral! (139)
Thus s OB
W is ¢, s, C deformation of P, (F) .

It is quite crucial to recast the T-function using the de Bruijn trick:

Moment matriz form of T-function:

Tn(t, s, ¢, E)
= An(x)An(y) H 621 (tizp—siyp)+2 j>1 cijxkykdxk dyk:
k=1

, f det (fi(w;))1<i, det (gi(y5)) 1< Hd¢($k7yk)

1
n. J<n J<n

(fi(x) = gi(x) = ')
== > (—1)U+“J nHfa(i)(xi)gi(yu(i))dw(xu(i)7yu(i))
1

o,1ESy

S|

S|

= D=7 JE [T Fron @) 9i W) (@ iy Ypuiiy)
"1

o,UESR

= Z Z (_1)0/ljJrEfaf(i)(ff)gi(y)di/J(z,y)

" ueS, o’'eS,
3 de ([ A@mwasen),
" ueS, E gE:{

= det(pij)o<i, (140)

j<n—1

SRR

I
[ —

3

with
i (t, s, 07 E) :J miyjeZIf;l(tka:k_sky,lz)-l-za,ﬁ>l caﬂzayﬁdx dy=<3017 y]> ) (141)
E

Thus we have shown:

Tn(t, s, C, E) =detmy ,  mp = (Wijlo<i, - (142)

j<n—1

This immediately leads to the
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2-Toda differential equations — Moment form:

aﬂij: ) ) 5/%3‘:_}}
6tk Hitk,j » ask Hij+k

which we reformulate in terms of the moment matrix m.,

Om., & oM., Tk
= A%m., = —m (A
T My, Do me (A7)

or equivalently
my (t,s) = et tkAkm% (0,0)e~ X7 s (AT)

with the semi-infinite shift matrix

0100...
0010...
A.= |0001...
0000...

Thus
Tn(t,s,C, E) = det my,(t,s) = det ((En(t)mx‘(0,0)Eg;(—s)) ,

with
En(t) = (I + Sl(t)/l + Sg(t)/l2 +--- )nxy_,‘

and
oz

eXT tiz' si(t)zi ,
0

with s;(t) the elementary Schur polynomials.

41

(143)

(144)

(145)

(146)

(147)

(148)

3.3 L — U decomposition of the moment matrix, bi-orthogonal

polynomials and 2—Toda wave operators

The L — U decomposition of m, is equivalent to bi-orthogonal polynomials;

indeed, consider the L — U decomposition of m., as follows (see [9]):
m., = LhU := S~ (m.,.) (h(m,.) (S~ (mZ))") := ;1S5

where we define the string orthogonal polynomials

(149)
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det
1
Yy
(pgll)(y))n;o = S(mx) y? | = (150)
n=0
and
1
(2) — sy | 4 151
(P (V) pso = S(mz) [ 42 | - (151)
Setting o
< ’ >: <'rlayj> = /’Llj(t587c) ) (152)

conclude (as a tautology) the defining relations of the monic bi-orthogonal
polynomials, namely

WPy = hidiy = S(m)m (S(mD))" = h(m,),  (153)

]

with the first identity a consequence of (150) and (151), which also implies

. det m;
h(m..) := diag (ho,hl,...,h,;=dem;,...) , (154)
and by (149)
Sy =S(my), Sa=h(my)(S  (mI)" . (155)
We now define the 2—Toda operators:
Ly =S1ASTY, Ly = SATS;t. (156)

Since m., = Sfng, with
Siel+g-, S2€g94+,

then ) )
S1S7teg ., S2S;tegy,

with g_ strictly lower triangular matrices and g, upper triangular matrices,
including the diagonal, and g_ +¢,; = ¢ := all semi-infinite matrices. Compute

Sy, Syt = S1(S718y) S5t = —8157 + 528, eg + g, (157)
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where we have used (S7!) = —S715,57 . On the other hand, one computes,
using (144), for ¢/dt,, or d/0s, separately, that:

S aé”’ Syt = 1AM, Syt = S1AST 8,85 = §y A"ST!
=LY :=(LY)- + (LY)+ € 9- + 9+ , (158)
and
§ M g1 L g, (ATYSEL = —81 Sy (AT) S5

Osp
= —Sy(AT)" Sy
=—Ly:=—(L3)- —(L3)+ €9 + 9+, (159)

and so (157), (158), and (159) yield the differential equations

081 . 08y .
G ST = st = (s
o8 pre (160)
1o—1_ n UR20-1_ _(7n
@S (L3)-, 6sn5 (L3)-

Setting x(z) = (1,2,2%,...)T we now connect the bi-orthogonal polynomials
with the 2-Toda wave functions:

2-Toda wave functions:

U (z) = eXT t"’zkp(l)(Z) = e t"’zkle(z) )
U3 (z) 1= em I RTIp®)(zmh) = e X (5 )Ty
Eigenfunction identities:
Ly (2) = 20 (2),  L3Ws(2) = 2705 (2) .
Formulas (160) and (156) yield,

t — s flows for L; and ¥:

oL; " oL; n .
at :[(L1)+’Li]7 as :[(L2)*7Li]7 7’:1727 n:1a2;-~-
ov ov
1 76151 = (L7)+¥1, 7631 = (L3) Y1,
ok " ovF "
6752 = _(L1)IW1*7 032 = _(LQ)TQIQ*'
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Wave operators:
Wy = SleZ?t’“Ak , Ws:= SQ@Z?C si(AT)" , (161)
satisfy
Wi(t,s)Wyi(t',s") ™" = Wa(t,s)Wa(t',s) ", Vi, st s . (162)
All the data in 2-Toda is parametrized by 7-functions, to wit:

Ly, Lo, ¥, U5 parametrized by T-functions:

( L4 (Zv t, 5)
= (Tn(t_[z_l]’s)ezly tizizn>
n(2,
w*( ts) T( 3) n=0 , [x]:(x,x2/27“.)’ (163)
2 22
_ (Me—z{ siziz_n)
\ Tn+1(t, S) =0
rLlf = Z[: diag 50(0) Tn 2410 T AF—t
£=0 Tntk—0+1Tn 20 ’
s (164)
L J; a)Tn k—0+1 09 Tpn
MLTYeR=1) = 3% (dia 50(0¢) T4 k—t+ ’
L( ( 2) ) 2870 g Tntk—0+1Tn a_}_;
with
X 1 1
and the
Hirota symbol:
ot : ay |y=0 .

3.4 Bilinear identities and 7-function PDE’s

Just like in KP theory (see Section 1.3), where the bilinear identity generates
the KP hierarchy of PDE’s for the 7-function, the same situation holds for
the 2-Toda Lattice. In general 2-Toda theory (see [17]) the bilinear identity
is a consequence of (163) and (162), but in the special case of 2-Toda being
generated from bi-orthogonal polynomials, we can and will, at the end of
this section, sketch a quick direct alternate proof of Adler—van Moerbek—
Vanhaecke [15] based on the bi-orthogonal polynomials, which has been vastly
generalized. Since all we ever need of integrability in any problem is the PDE
hierarchy, it is clearly of great practical use to have in general a quick proof of
just the bilinear identities, but without all the usual integrable baggage. We
now give the
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2-Toda bilinear identities:

3£ Tt = [z 1] 8 T (t 4 [271], /)20 (0 m o g

Z=00

= § Tng1(t,s — [z )Tt 8" + [z*l])ezcl)o(si*"Ii)zizm*”*1 dz ,
z2=0

Vs, t,s',t',m,n. (166)

The identities are a consequence of (162) and (163) and they yield, as in
Section 1.3 (see Appendix) a generating function involving elementary Schur
polynomials s;(-) and arbitrary parameters a, b, in the following®

Hirota form:

Se)
0=- Z sm—n+j(_2a)8.7(51&)62({0(ak(‘!/(ﬂtk+bk€/ask)7—m+l ©Tn
Jj=0 0
+ Z S_m+n+j(_2b)3j(és)ezf(“kf/f”tk+bkr”/(’sk)7m °oTny1  (167)
7=0
. 02
= aj+1 <28j(at)7_n+2 O Tn + m7n+1 (¢} Tn+1> + 0(a?+1) 5 (168)
J

upon setting m = n + 1, and all b, ar = 0, except a;j;1. Note:

A 0 0
so(t) =1, s1(t) =t1, Sl(at)fog:ganfl_ angl’

and s(t) =t + poly. (f1,...,tk—1). This immediately yields the

2-Toda T-function identities:

62

5k—1(0¢)Tnt2 0 Tn
log 741

_(?81615]C TT2H_1

(169)

Tn+2Tn

2
Tn+1

; k:]-a

Tn+4+2Tn i log Tn+2 k=29 (170)
T2, Ot Tn ’

from which we deduce, by forming the ratio of the k = 1,2 identities, and
using (164):

9 Hopefully there will be no confusion in this section between the elementary Schur
polynomials, s;(-), which are functions, and the time variables s;, which are pa-
rameters, but the situation is not ideal.
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Fundamental identities:

0 Tng1  0°/0s10talog T,

LY)n-1n = - log = 171
( 1)n L at Tn—l 62/6316t1 ].Ong ’ ( 7 )
(and by duality t > —s, Ly <> hLTh™1)
2
(hLTh1)2 _ 0 log Tny1 _ 0°/0t10s3log Ty (172)

n=ln = 6e Tn_l ~ 0%/0t10s1 log T,
As promised we now give, following Adler—van Moerbeke—Vanhaecke [15]:
Sketch of alternate proof of bilinear identities:

The proof is based on the following identities concerning the bi-orthogonal
polynomials and their Cauchy transforms with regard to the measure dp defin-
ing the moments of (141) and (152) p,;:

dp(z,y,t,5,¢) = ext (i =58+ D g1 cans™v” g gy

Namely, the bi-orthogonal polynomials of (150) and (151) and their formal
Cauchy transforms with regard to dp can be expressed in terms of T-functions
as follows:!?

Tnll — z_l,s
()(zts) on (t=[=""]9)

Toltis)
(i)

(suppressing ¢ and F in p;’ and 7,) ,
(2) _ g Tm(ts+ [271])
Jomlate) =T (173)
_ anflTnJrl(ta s—[27"])
Tn(t, s) ’
,p$5> _ L maTmn(t+[2]s)
Tm(t, s)

These formulas are not hard to prove, they depend on substituting

S0 (¢/2)1 i = (1 - i) T 3 C) or 1 —g (174)

120

into formula (142), which express 7,(t,s,C,E) in terms of the moments
wij(t,s,c, E) of (141). Then one must expand the rows or columns of the
ensuing determinants using (174) and make the identification of (173), using
(150) and (151), an amusing exercise. If one then substitutes (173) into the bi-
linear identity (166) divided by 7, (¢, $)Tm (¢, s), thus eliminating 7-functions,
and if we make use of the following self-evident formal residue identities:

01/(z =) == 1/2 37 (x/2)", etc., 1/(z —y), and thus 2 is viewed as large.
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§.ﬂa<h“)mw B fa)ha), a())

z—x’ 27
= (175)
1) (ate), 29 5 = alo). S0

with .
flz) =Y iz, (176)
=0

the bilinear identity becomes a tautology.

3.5 Virasoro constraints for the 7-functions

In this section we derive the Virasoro constraints for our 7-functions 7(¢, s, C, E)
using their integral form:

Vilr(ts,.C.E) =0, VPr(ts,C.E)=0,  k>-1.  (77)

Explicitly:

1 ij=1 OCitk,j

S a a ~ b)
R <J(2) —s) + E jei >TnE = V1P

Z ob k,n( ) = J acz’,j+k

=
Il

U[a2i—17a2i] X U[bQi—17b2i] ; (179)
1 i

F = Tn(t,s,C, E)

]. n o0 i
= o (An(x) H e tﬂkdiﬂk)

k=1

%M@Hfﬂwwoﬂﬁmwﬁmm>
k=1

k=1

and
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1) = (E00) 1m0 = (SO + 1T )nz0 .

2 2
T2 () = (I2010),20
1
= SO+ @n 4k + DI @) +n(n+ 1))z as1)
0
T () = a t k:)t I
it ) (gt
(?t 615 (?tH_k +i+;7k(l )(J ])
Main fact:
J],(f) forms a Virasoro algebra of charge ¢ = —2,
k3 —k
32 = - 002+ (-2 M (12)
To prove (178) we need the following lemma:
Lemma 3.1 (Adler—van Moerbeke [5]). Given
-V . pl ! g Z
=e with ——=V'== )
’ P Fo3s azz’
the integrand
n
I, (z ]_[ X1 0 o )day) (183)

satisfies the following variational formula:

d

,
1
de = Z(aszMn 5@J,(n)+g+17n)dln, (184)

=0 =0

d-[n(xl — T +€f($z) m+1)

The contribution coming from ||} dz; is given by

o0
S ag+m+ 1)1, dl, . (185)
=0

Proof of (178).

First make the change of coordinates x; — x; + Exf“, 1 €7 < n, in the
integral (180), which remains unchanged, and then differentiate the results by
e, at ¢ = 0, which of course yields 0, i.e.,

d&‘ Tn T;—T;+ex _

i) =0 (186)
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Now, by (180), there are precisely 3 contributions to the £.h.s. of (186), namely
one of the form (184), with p(z) = 1, yielding J](jz,b(t)TE one coming from

n o
n .
i eZi,j;l Ciszyé
d
o (=1

zs—>ms+5m§+1|5:0
n n o
. i j . gt
_ 2 : ici; §:$2+kyi | | i, iz1 CiiTeYy
i,j=1 (=1 =1

n . .
ptad
eZi,y’;l CijZpYy ,

I
18e
.
3

yielding >3, ;- , icij0/0cir TE 1! Finally, we have a third contribution, since
the limits of integration the integral (180) must change:

a+i—a;—ealtt +0(?), 1<i<2r.
Upon differentiating 77 with respect to the ¢ in these new limits of integra-
tion, we have by the chain rule, the contribution — 3" a®+13/da;7F. Thus
altogether we have:

0 E

T

ac,ya:ci+exf+1

2r
0 . 0
== af“—a T AT O+ D WCija—— o s
=0 1 @ i,j=>1 Citk,n

_4d
T de

=

yielding the first expression (178). The second expression follows from the first
by duality, t <> —s, a <> b, ¢;; > cj;.

3.6 Consequences of the Virasoro relations

Observe from (132), (139) that (e = (0,1,0,0,...))

Tf(t — 62/275 + 62/2’0)
P.(E) = = ,
TE(t —e2/2,5 +€2/2,C) |,
L:={t=s5=0, all ¢;; =0, but ¢;1 =¢}, (188)

(187)

and so computing (178) for 77 (t —

in J,(CQ’ZL(t), Jl(le(—s) accordingly, and we find from (181) shifted, the following;:

€2,5+ %62, () requires us to shift the ¢, s

-Aan = ViTn, By, = Wi Tn, k= 1,2 (189)
with
T = Tf(t — %62,8 + %62,0) ,
and

1 Tt must be noted that: /(dco,n) = —/(8sn), 8/(dcn,0) = 0/ (tn).
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2r a 2s
As = i , Bo=>» b;—,
2 zlla] 6aj 2 1 ]abj
with
1 ~
Vl 1— 2(V,1 +CV,1)=V1+’U1
_ 0 nfti—cs)
N &’tl 62 -1
1 0 0
— AR +cs; + ciilt +7jc ,
62 -1 ; < 6251, 0 1> i,j;l, ]( 601;17]‘ J 601‘,]'4)
i,j#(1,1)
Wi = — (CV_1 +V_1) =Wi1 4w,
0 n(cty —s1)
T 01 -1
1 0 0 0 0
— t| ctim—— 45— |+ cij| ct +J ;
62 -1 ; ( 6251‘,1 6511)“;:7 J( (?01;1,1' J aci,jl)
4,5#(1,1)
0
Vo :=Vog—c—:=Vs+wvy
dc
0 0 n(n+1)
=——+4) i+ + 1C;5 )
Oto 1; ot; 2 ij;; 0cij

5

(1,))#(1,1)

0 .0 n(n+1) . 0
T I e RSP el
i 1,j=1,
(4,5)#(1,1)

Note 1’}1, 17\/\1, 172, )7\/\2 are first order operators such that (and this is the point):

A~ 6 —~ 6 O 0 T
Vl = T 5, Wl = 5 VQ = T > W2 = 53 (191)
LT T T T T, T
and
n(t; —csy) n(ct; — s1) n(n + 1)
W= -am o WS Ty 0 wTwes g (192)

Because of (191) we call this a principal symbol analysis. Hence
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Ailogr, = ]A/k log T +vk , BplogT, = Wk log 7, +wy, k=12, (193)
and so on the locus £ using (191) — (193) we find:

i10g7’n|=—./4110g7'n| , i1ong|zBllong| ,
L L L L

oty 0s1
0 0
—logT, = —Aslogt,, , —log7, = Bslogt, (194)
Oto |[, |L 052 |L |L
N n(n+1) n(n + 1)
2 2 '

Extending this analysis to second derivatives, compute:

81A110g7n| 281(]’}110ng+’01)| zBllA)llong| +B1(1}1)|
c c

L L

(i) 9181 log Tn| + Bl(v1)|
L

)

c

0  —~
—— Wi logt, + w1)|

6t1 +Bl(vl)|

L L

0 0 0
L | _ 9 1
o (681 + ) Ong|£ 5t1w1|L +31(Ul)|L (195)

where we have used in (z) that [Bl,f/l]| =0 and in (%) that 171| = —0/0t;.
L

L
So we must compute

0 —~ 02 0 ne

T M T Tanes o T, @1 Bl =0 099

L
and so conclude that (7, = 72(t — Jea,5 + 3e2,C))

2

ne
———logm, =-B log 7, . 197
Ot10s1 8T |£ 1A log 7 + 2 -1 (197)
The crucial points in this calculation were:
By, V1], =0, V 9 w2y (198)
1, V1 |L_ ) 1|£_ at1, 1_631 s

and indeed this is a model calculation, which shall be repeated over and over
again. And so in the same fashion, conclude:

62 2
—1 n =-B A 1 n A AL
6151652 08T |£ 2008 T a&latg

where we have used 0/dt1(n(n +1)/2) = 0/ds1 (n(n +1)/2) = 0.

log Tn| = —AsBilogT,, (199)
L

3.7 Final equations

We have derived in Section 3.6, the following
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Relations on Locus L:

1

(3?1 IOngE:_-Al logrf, %1OgTEZ—A2 10g%§+@ )
1

IOng:lgllongE7 ilOngnglong—M7 (200)
031 682 2
o log 7P = —By Ay log 7P 02 log 7F = — AyBy log 7F
atlasz €Tn = 2A1 108 T, 6816t2 2T, = 2B log 7,
’ log7? = By A; log 7F + e
0t1081 &7Tn = 1ALI08 Tn c2—1"

Remember from Section 3.4:

2-Toda relations

ilog e, _ 02/0s10ty log TF
ot1 7B 0%/ot10s1 logTE

n

(201)
—ilo . _ 0%/0t10s21log TF
0s1 ngL{l ~ 0%2/0t10s1 log TE

Substitute the relations on £ into the 2-Toda relations, which yields:

Pure boundary relations on the locus L

A log TT?H _ AsBylog TF
TE AiBylogF +ne/(1 —c?)

n—1

202
_Bilo Tt By Ay log 7} (202)
1708 ) -~ BiAylogTE +ne/(1 —c2)

Since A8 =B1A, conclude that

By Ajlog 7F AaBy log TF
A L —) =8 L =) . (203)
Bi A log 7F +nc/(1—c?) A1Bylog 7E+nc/(1—-c?)

Notice that since 7 is independent of a; and b;, we find that

A log Tf = A log Tf — A log TE
>
= .Al log T%R = .Al 10g Pn(E) s (204)

n

and so (203) is true with log ¥ — log P, (E), yielding the final equation for
F,(E) =1/nlog P, (E), and proving Theorem 3.1.
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4 Dyson Brownian Motion and the Airy Process

4.1 Processes

The joint distribution for the Dyson process at 2-times deforms naturally to
the 2—Toda integrable system, as it is described by a coupled Hermitian matrix
integral, analyzed in the previous section. Taking limits of the Dyson process
leads to the Airy and Sine processes. We describe the processes in this section
in an elementary and intuitive fashion. A good reference for this discussion
would be [33] and Dyson’s celebrated papers [30, 31] on Dyson diffusion.

A random walk corresponds to a particle moving either left or right at
time n with probability p. If the particle is totally drunk, one may take p = %
In that case, if X, is its location after n steps,

BE(X,)=0, BE(X2) =n, (205)
and in any case, this discrete process has no memory:
P(Xni1 =7 | (X, =1) n (arbitrary past event)) = P(X; = j | Xg = 1),

i.e. it is Markovian. In the continuous version of this process (say with p = %),

[t/5] steps are taken in time t and each step is of magnitude /8, consistent

with the scaling of (205). By the central limit theorem (CLT) for the binomial

distribution, or in other words by Stirlings formula, it follows immediately that
o—(X-X)?/2t

—d
N 27t

Note that P(t, X, X) satisfies the (heat) diffusion equation

lim P(X, € (X, X4dX)| Xo=X) = X =:P(t,X,X)dX . (206)

2
or_1or. (207)
ot 20X2

The limiting motion where the particle moves ++/8 with equal probability %
in time ¢, is in the limit, as § — 0, Brownian motion. The process is scale
invariant and so infinitesimally its fluctuations in ¢ are no larger than 4/ A(t)
and hence while the paths are continuous, they are nowhere differentiable
(for almost all initial conditions.) We may also consider Brownian motion
in n directions, all independent, and indeed, it was first observed in n = 2
directions, under the microscope by Robert Brown, an English botanist, in
1828. In general, by independence,

- = = 1 n =2
P(t, X, X) = [ [ P(t. Xi, Xi) = o SIR02 2008 (g
(7 ) ) ) (7 ) ) ((27rt)/ﬂ)n/26 1 , ( 08)

hence
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oP 1 & 82
— =—5% —P 209

o~ maax (209)
where we have changed the variance and hence the diffusion constant from
1- 0.

In addition (going back to n = 1), besides changing the rate of diffusion,
we may also subject the diffusing particle located at X, to a harmonic force
—pX, pointing toward the origin. Thus you have a drunken particle executing
Brownian motion under the influence of a steady wind pushing him towards
the origin — the Ornstein—Uhlenbeck (see [33]) process — where now the
probability density P(t, X, X) is given by the diffusion equation:

P (1 & @
&= (ZMXQ - aX(_pX)) P. (210)

This can immediately be transformed to the case p = 0, yielding (¢ = e~ **)

1 X)?2 2
—(X—cX)?/((1=¢2)/pB) 211
V2r((1 - 02)/2pﬂ)1/2e 7 o

which as p — 0, (1 — ¢?)/2p — t, transforms to the old case. This process
becomes stationary, i.e. the probabilities at a fixed time do not change in ¢,
if and only if the initial distribution of X is given by the limiting t — oo
distribution of (211):

Pt,X,X) =

2
e—PBX

\T/pB

and this is the only “normal Markovian process” with this property.
Finally, consider a Hermitian matrix B = (B;;) with n? real quantities B;;
undergoing n? independent Ornstein—Uhlenbeck processes with p = 1, but

dX , (212)

B=1 for By (on diagonal) ,
B=2 for By (off diagonal) ,

and so the respective probability distribution P;;, P;; satisfy by (210):
0Py 1 02 0
5 - —Bii) | Pii s
ot (2 0B% 0B ( ))
OP;; 1 8 0
ot (2 x 2 0B, aB,»j( J)> !

(213)

with solution, by (211) (¢ = e™t), given by:

—_— 1 I53 2 2
P;i(t, Bii, Bii) = g™ (BumeBu)/(1=c) |
( = 1-c2)2 (214)
P,(t, By, Biy) ! ~(Bij—cBi,)*/(1-¢)/2)

T e/ )




Integrable Systems, Random Matrices and Random Processes 55

By the independence of the processes the joint probability distribution is given
by:

7-1 _
— Tr(B—cB)?/(1—=c?
P(t, B, B) Hp“npmzﬁe (B=eB)*/(1=¢")  (915)

1<q,
Jj<n,
i#£]

with Z = (2m)""/220-7"+7/2) which by (213) and (215) evolves by the
Ornstein—Uhlenbeck process:

o 02 0

zzl ( (1+6i;) a5 +6B”BZJ>P

n 0 0 1

b ( (1-+6,) 55 0(B) 55 @(B))Pw),

with @(B) = exp(— tr B?). Note that the most general solution (215) to (216)
is invariant under the unitary transformation

or
ot
(216)

(B,B) - (UBU~Y, UBU™), (217)

which forces the actual process (216) to possess this unitary invariance and
in fact (216) induces a random motion purely on the spectrum of B. This
motion, discovered by Dyson in [30, 31], is called Dyson diffusion, and indeed
the Ornstein—Uhlenbeck process

B(t) = (Bi;(t))

given by (216) with solution (215), induces Dyson Brownian motion:
(A1(t), ..., An(t)) € R™ on the eigenvalues of B(t).
The transition probability P(t, A\, ) satisfies the following diffusion equa-

tion:
P (18 2 g VIO
ot 4\20)2 0N o\
1< ¢ 0 1 (218)
) ; T3, o(N)
with

Z(\) ﬁe*’\? ,
1

which is a Brownian motion, where instead of the particle at \; feeling only
the harmonic restoring force —\;, as in the Ornstein—Uhlenbeck process, it
feels the full force

Fi(\) := 6log . Z y _)\ Ai s (219)
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which acts to keep the particles apart. In short, the Vandermonde in ®(\)
creates n—repelling Brownian motions, while the exponential term keeps them
from flying out to infinity. The equation (218) was shown by Dyson in [30, 31]
by observing that Brownian motion with a force term F' = (F;) is, in general,
completely characterized infinitesimally by the dynamics:

E(6X;) = F;(\)st,  E((0X:)?) =6t , (220)
and so in particular (216) yields
E((SB”) = —Bijét, E(((sB”)2) = %(1 + (52‘]‘)(% . (221)

Then by the unitary invariance (217) of the process (216), one may set at time
t: B(t) = diag (A1(¢), ..., An(t)), and then using the perturbation formula:

(6Bji)* + (0Bji)*
>, o L

5)\1| = 5Bi,’ +
¢ J#i

compute E(d);) and E((é)\i)z) by employing (221), immediately yielding
(220) with F;(X) given by (219). Thus by the characterization of (218) by
(220), we have verified Dysons result (218).

Remember an Ornstein—Uhlenbeck process has a stationary measure pre-
cisely if we take for the initial measure the equilibrium measure at ¢t — oo.
So consider our Ornstein-Uhlenbeck transition density (215) with ¢ — oo
stationary distribution:

Z—le—trB2 dB ,

and with this invariant measure as initial condition, one finds for the joint
distribution (¢ = e—(tz—h))
P(B(t1) € dB1, B(t2) € dBs)

71( 0531?)]322/2 ¢ /(=) T(B] 2B By BY) (999
1—c2)n ’

and similarly (¢; = e~(t+17%)) compute
P(B(t) € By, ..., B(ty) € dBy)

k
_ 7l w B [ V- T B g, ap,
=2

k n
= 7 [ [ WO 0+ 0= S X [ Ty,
i=1 j=1

k—1
H det(e(QCi/(l_C?)) A[’7"Jr1>\m’i)1$£, An(Al)An()\k)a

. <
i=1 msn

(N = i Az -5 An) 22
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using the HCIZ formula (138).

The distribution of the eigenvalues for GUE is expressible as a Fredholm
determinant (9) involving the famous Hermite kernel (5) and Eynard and
Mehta [32] showed that you have for the Dyson process an analogous extended
Hermite kernel, specifically the matrix kernel [39]:

o0
e_k(ti_tj)@nfk(m)wn*k(y)’ tz = t_/ )
Hn =
K/ = k=1 (224)
O (@)enk(y). i<ty

with
2
J (Pz( ) ( )d.’t = 61]; LPi(JC) = pi(x)e*” /2 ,
where
: _ Hy(z)
2 for k > ith k
or(r) = ‘ P(®) o 0, with  py.(z) = 2k/2\[F\m1/4

0, for k <0;

so pg(z) are the normalized Hermite polynomials. Then we have

Prob (all B(t;) eigenvalues ¢ E;, 1 <i < m) = det(I — K7F):
K5 (w,y) = Lo (@)K (@) e, (y) - (225)

the above being a Fredholm determinant with a matrix kernel.

Remark. In general such a Fredholm determinant is given by:

det(I — Z(Ktitj)lsi,jsnz)

e S g [ [
R

N=1 0<T;§N
I
14
x det ((Ktkte( ( ) 5 )))1<z<rk,> )
1sjsre / 1<k 4<m

where the N—fold integral above is taken over the range

1 1
—oo<a§)<-~-<a(r1)<oo
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with integrand equal to the determinant of an N x N matrix, with blocks given

(]) (0

J ) 1<i<ry, In particular, for m = 2, we

by the r; x 7, matrices (Ktkt[(
1<j<ry

have

J*/<Q1S Sar</ Hdalndﬂl

N=1 0<r,s<N, {—/<,6’1< <Ps<H
r4+s=N

(f(tltl (i )1, (f(tltz(oéu Bi))1<isr,

x det | , Jsr N Isiss . (226
(Kot (Bis aj))1<iss,  (Kioe, (Bis B5)) 1<, (226)
1<j<r Jj<s z=1

These processes have scaling limits corresponding to the bulk and edge
scaling limits in the GUE.
The Airy process is defined by rescaling in the extended Hermite kernel:

T
J)—\/ +\/71/6’ \/ +\/71/6’ t:m, (227)

and the Sine process by rescaling in the extended Hermite kernel:

um U o T

=—, = , t=m"— . 228

V2n Y \V2n 2n (228)

This amounts to following, in slow time, the eigenvalues at the edge and in

the bulk, but with a microscope specified by the above rescalings. Then the
extended kernels have well-defined limits as n — oo:

r o0
f T A (x + 2) Ay +2)dz, i
KA @) =1 % (229)
_J e* ) Ay (x + 2) Ay (y + 2) dz, ty <tj,
\ — o0
L7 ey
2| e i=%) cos z(z — y) dz, ti =t ,
Kfitj = 4 7{ 07 R (230)
_7[ e~ (F /D=4 cos 2(x — y) dz, t; <tj,
m T

with A; the Airy function. Letting A(t) and S(t) denote the Airy and Sine
processes, we define them below by

Prob(A(t;) ¢ Ei, 1 <i < k) =det( — K4F) |
(At:) ¢ E; =S ) ( ) (231)

Prob(S(t;) ¢ Fi, 1 <i < k) = det(I — K5F)
where the determinants are matrix Fredholm determinants defined by the
matrix kernels (229) and (230) in the same fashion as (225). The Airy process
was first defined by Prahofer and Spohn in [46] and the Sine process was first
defined by Tracy and Widom in [53].
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4.2 PDE’s and asymptotics for the processes

It turns out that the 2-time joint probabilities for all three processes, Dyson,
Airy and Sine satisfy PDE’s, which moreover lead to long time t = t5 — t;
asymptotics in, for example, the Airy case. In this section we state the results
of Adler and van Moerbeke [6], sketching the proofs in the next section. The
first result concerns the Dyson process:

Theorem 4.1 (Dyson process). Given t; < to andt = to—ty, the logarithm
of the joint distribution for the Dyson Brownian motion (Ai(t), ..., An(t)),

Gn(t;al, . ..agT;bl, . ,bgs) = logP(all )\i(tl) c El, all )\i(tz) € EQ) s

satisfies a third-order nonlinear PDE in the boundary points of Ey and Es

and t, which takes on the simple form, setting c = e ¢,

B A1G, _ AsB1 G,
A B AG, + 2ne By A1B1G,, +2nc (232)

The sets Ey and Ey are the disjoint union of intervals

B, = U[a%_hagi] and Fo := U[b2i—17b2i] cR,

i=1 i=1

which specify the linear operators
2r 2s
0 0
A=Y ey o
; da 21: 0b;
2r 2s
0 0
Bi=cdla+3 2,
; da; ; 0b;

2r P 2s P P
Az—zllajaaj—i-c leb]é‘bj (1 C)é’t c,

2r P 2s P P
By =¢? i— bi— +(1—c)= — 2.
2 Czllaﬂaaﬁ;ﬂabj*( R
The duality a; < b; reflects itself in the duality A; < B;.

The next result concerns the Airy process:

Theorem 4.2 (Airy process). Given t; < ty and t = to — t1, the joint
distribution for the Airy process A(t),

G(t;ul, e UQp Uy e 71)25) = IOgP(A(tl) € El,A(tg) € Eg) s

satisfies a third-order nonlinear PDE in the u;, v; and t, in terms of the
Wronskian {f(y), 9(y)}y == ' (v)9(y) — F(v)g'(v),
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((L" + LU)(L"E” - LUEH) + tQ(Lu - Lv)LuLv)G
= M(L2 = L2)G, (Ly + L,)*G} 1,41, - (233)

The sets Ey and Ey are the disjoint union of intervals

S

E, = U[uzz;l,um'] and FEy:= U[UQI;MU%] cR,
i1

i=1

which specify the set of linear operators

2s P
U; L’U = Z avi ’
- Y

The duality v; < v; reflects itself in the duality L, < L., F, < E,.

S
S,

Corollary 4.1. In the case of semi-infinite intervals E1 and Eo, the PDE for
the Airy joint probability

H(t;z,y) = logP(A(m) <L A) < ygx) ,

takes on the following simple form in x, y and t?, with t = to — t1, also in
terms of the Wronskian,

3 2 2 2 2
2t6H:t2i 0 0°H 0°H +8 0H70H C(239)
otoxdy ox 6y 022 0y? oxdy’ oy* J,
Remark. Note for the solution H(t;z,y),
. y+xr y—x
tlg‘nH(ta:y) logF2<m1n( 53 )) .

The following theorem concerns the Sine process and uses the same sets
and operators as Theorem 4.2:

Theorem 4.3 (Sine process). For t; < ta, and compact Ey and Fy C R,
the log of the joint probability for the Sine processes S;(t),

G(t;ul, U2 Vg e ey V2g 1= logP(all Sz(tl) S Ef, all Sz(tg) € Eg) s
satisfies

(2E,Ly + (Ey — By — 1)L,)G

L,
(Ly + Ly)%G + w2

2E,Ly + (Ey — E, —1)L,)G
(Ly + Ly)?G + w2

_ 1t (235)
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Corollary 4.2. In the case of a single interval, the logarithm of the joint
probability for the Sine process,

H(t;z,y) =log P(S(t1) ¢ [v1 + 22,21 — 2], S(t2) ¢ [y1 + y2, 1 — ¥2])
satisfies

0 (2E,0/01 + (E, — Ey — 1)3/0y1)H

o0x1 (0/0x1 + 0/0y1)*H + w2
0 (2B:0/oy + (B — By — 1)0/021)H (236)
T o (0/0x1 + 0/0y1)?H + w2 ’

Asymptotic consequences:

Prahofer and Spohn showed that the Airy process is a stationary process with
continuous sample paths; thus the probability P(A(t) < u) is independent of
t, and is given by the Tracy-Widom distribution

P <0 = Faw) = e (= [ (@ = P@)da) . (2a)

u

with ¢(«) the solution of the Painlevé II equation,

o~ (2/3)a"
—_ for a /" w0
¢" = aq+2¢> with q(a)~ 2 /ral/t ’

V—a/2, for a \y —oo .

The PDE’s obtained above provide a very handy tool to compute large
time asymptotics for these different processes, with the disadvantage that
one usually needs, for justification, a nontrivial assumption concerning the
interchange of sums and limits, which can be avoided upon directly using the
Fredholm determinant formula for the joint probabilities (see Widom [57])
the latter method, however, tends to be quite tedious and quickly gets out of
hand. We now state the following asymptotic result:

(238)

Theorem 4.4 (Large time asymptotics for the Airy process). For large
t =ty — t1, the joint probability admits the asymptotic series

P(A(t1) € u, A(t2) <)

— Fy(u)Fa(v) + F3(u)F5(v) N &(u,v) + (v, u) . 0( 1

= . ts) . (239)

with the function ¢ = q(«) given by (238) and

D(u,v) .

= rme)(( [#aa) ( [#ae) @ (2w -3 ( [#a0))
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Vsl

+ J: da(2(v — a)¢® + ¢ — ¢*) J

u

q2da> . (240)

Moreover, the covariance for large t = to — t1 behaves as

B(AMR)A(M)) ~ BAW)E(AR) = 5+ o+, (241)

c:= 2JJQ5(u7v) dudv .
R2

Conjecture. The Airy process satisfies the nonexplosion condition for fized x:

where

lim P(A(t) zz+ 2| A(0) < —2) =0. (242)

zZ—>0

4.3 Proof of the results

In this section we sketch the proofs of the results of the prior section, but all
of these proofs are ultimately based on a fundamental theorem that we have
proven in Section 3, which we now restate.

Let My, M5 € ‘H,,, Hermitian n x n matrices and consider the ensemble:

§ g dMydMpe~ /2 Tr(ME+M5 —2cMy Mz)

dM;ydMye—1/2 Tr(M7+M3—2cMi M)

P((Ml,MQ) C S) = ) (243)

SanHn
with . .
dMy = A2 () [ | dwidUy ,  dMy = A% (y) [ | dyi dUs .

1 1

Given
r

S
E=E1><E2=Ua21 17a21 Xszz 1,bzz ,
1 1

define the boundary operators:

~ 1 "0 500 - " 0 0
Al=—c2_1(§aaj“2@bj>’ A2 =205 e

9 BQZA

2

a<b

Note Algl = B~1A1.
The following theorem was proven in Section 3:

Theorem 4.5. The statistics

F.(caq,...,a9:5b1,...,ba5) :=log P, (F)
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:= log P(all (M, —eigenvalues) € Ey, all (My—eigenvalues) € Es) |

satisfies the third order nonlinear PDE:

/’(1( - BQ.Aan ) _ Bl( _ AQBan ) ) (244)
Bi A F, +nc/(1 — c¢?) A1B1Fy, +ne/(1 —c?)

Proof of Theorem 4.1.

Changing limits of integration in the integral F;, defined by the measure (243)
to agree with the integral G,, defined by the measure (222), we find the func-
tion G, of Theorem 4.1 is related to the function Fj of Theorem 4.5 by a
trivial rescaling:

ay agr
Gn(t;ar,...,a9:;01,...,b25) = Fip| ¢ ey ;
(it ooy taribiseos o) (\/a—cz)/z V-2
bl b2$

) (245)

9

- " Ji-2)
and applying the chain rule to (244) using (245) leads to Theorem 4.1 imme-
diately, upon clearing denominators.

In order to prove the theorems concerning the Airy and Sine processes, we
need a rigorous statement concerning the asymptotics of our Dyson, Airy and
Sine kernels. To that end, letting

xr—>«/2n+1+\/§u1/6
81 = t'-’w,Sf—)m, ,ZL
y—A2n+1+ 7\/5711/6 (246)
S {t w2t m2s ™ v }
= = — S — T Y/ Y > B
2 2n 2n 2n 4 /2n

we have:

Proposition 4.1. Under the substitutions S and So, the extended Hermite
kernel tends with derivative,respectively, to the extended Airy and Sine kernel,
when n — o0, uniformly for u,v € compact subsets < R:

lim Kfs’”(x,y) dy| = K{ (u,v)dv,
S1

n—a0

) (247)
lim K, y) dy| = (=S (4, 0)dv .
n—o0 ’ So ’

Remark. The proof involves careful estimating and Riemann—Hilbert tech-
niques and is found in [6].
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Proof of Theorem 4.2.

Rescale in Theorem 4.1

u; N v Vi -7
a; = \/ﬁ‘i‘ W ) bz - 2n + \/§n1/6 ) t= n1/3 (248)

and then from Proposition 4.1 it follows that, with derivatives that,

T . _ l _ 1/6
Gn(nl/g,a,b>—G(T,u,v)—i-O(k), k=n"'". (249)

We now do large n asymptotics on the operators A;, B;, setting L = L, + L,,
F=F, + FE,, with L,, L,, E,, E, defined in Theorem 4.2; we find:

T 72 73 1
T 72 73 1
Bi = 2k (L‘ (k2_2k4+6k6>L“+0<k8>> !

Ay =2k* (L — 2lLv + i(E —1447%L,)
k2 2k4
A . (250)
T 2
(B ) o))
n 2T 1 9
By = 2%k" (L= 5 Lu+ 57 (B = 1+47°Ly)

T 4 1
—— (B, -1+ =1L —
(e gn) <o)

and consequently

1
—— B A
22ks 2T
1
_I2_ é(L + L)L+ g (L(E = 2) + 7 (4Lu(L + Ly) + LLy))
T

1 2
_T (L(Eu—2) +5Lo(E+2)+ %(8LLu +18L, Ly +LLU)>

kG
1
+0( 1 (251)
L ogoa =12 lL2+i i (i L )vol L
ok2 1T k2 k4 \ 2 utty k6 \ 6 utty K8 )

Feeding these estimates and (249) into the relation (232) of Theorem 4.1,
multiplied by (B1.41 G, +2nc)?, which by the quotient rule becomes an identity
involving Wronskians, we then find ({f,g}x = ¢Xf — fXg)
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o
|

= {lBgAle ! (B1A1G,, +2k667/’€2)}

24/2k5 2k A1 /(V3k)

1 1
- {2\/§k5 -AQBIGna @
2t

- ﬁ |:((Lu + Lv)(L“EU - LUEH) + T2(Lu - Lv)LuLv)Gn

(A1B.G,, + 2k6e—f/’<2)}
B1/(v2k)

1 1
- 5{(1’121, - L?})Hna (Lu + Lv)2Gn}Lu+LU:| +0 (k?’)

2
- % [((Lu + Lo)(LuBy = LoBy) + 7(Lu — Lu) LuLy) G

1 1
- 5{(LZ — LHG, (L, + LU)QG}Lu+LU] + 0(;@) .

In this calculation, we used the linearity of the Wronskian {X,Y}7 in its
three arguments and the following commutation relations:

[LuaEu] = LU7 [LuaEv] = [Lu;Lv] = [LuaT] = Oa [EuvT] =T,

including their dual relations by u < wv; also we have {L?G,1}., 1, =
{L(L, — L,)G,1}1. It is also useful to note that the two Wronskians in the
first expression are dual to each other by u < v. The point of the computation
is to preserve the Wronskian structure up to the end. This proves Theorem 4.2,
upon replacing 7 — t.

Proof of Corollary 4.1.
Equation (233) for the probability
G(t;u,v) :=log P(A(11) € u, A(m2) €v), T=T0—T11,
takes on the explicit form
Ti ﬁ_ﬁ G = aSG 2627G+62G_a2£+u_v_2
oT \ du?  Ov? T ou2ov \” ov?: ' Oudv  du? 4
G ( G *G PG 2)
—u+v—T

Cov2ou\"ou? T dudv 02
3G o0 G o 0 0
—— == |l =+ = ]G. (252
* (6u3 dv  ovd 6u) (é’u * 61}) (252)
This equation enjoys an obvious u <> v duality. Finally the change of variables
in the statement of Corollary 4.1 leads to (234).
The proof of Theorem 4.3 is done in the same spirit as that of Theorem 4.2

and Corollary 4.2 follows immediately by substitution in Theorem 4.3. Next,
we need some preliminaries to prove Theorem 4.4. The first being:
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Proposition 4.2. The following ratio of probabilities admits the asymptotic
expansion for large t > 0 in terms of functions f;(u,v), symmetric in u and v

P(A(0) Sw, AM) <v) D @ , (253)

P(A0) < wP(A() <v) A

from which it follows that

lim P(A(0) < u, A(t) < v) = P(A(0) < u)P(A(t) < v) = Fo(u)Fa(v)

t—0
this means that the Airy process decouples at co.

The proof necessitates using the extended Airy kernel. Note, since the
probabilities in (253) are symmetric in u and v, the coefficients f; are sym-
metric as well. The last equality in the formula above follows from stationarity
and (237).

Congecture. The coefficients f;(u,v) have the property

lim f;(u,v) =0 for fized ve R, (254)
u—>0

and
lim fi(—z,z4+x) =0 for firedzeR. (255)
Z—0

The justification for this plausible conjecture will now follow. First, con-
sidering the following conditional probability:

P(A(0) < u, A(t) < wv)
P(A(0) < u)

= Fy(v) (1 +3 fi(;‘;“)) :

=1

P(A(t) < v | A(0) < u) =

and letting v — o0, we have automatically

1= lim P(A(t) <v | A(0) < u) = lim [FQ(U) (1 + ] f(;“’)ﬂ

VW0 EE1vs) 4
=1

. fl (U, U)
L+ ; T
which would imply, assuming the interchange of the limit and the summation
is valid,

lim f;(u,v) =0, (256)

VoL
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and, by symmetry

lim fi(u,v)=0.

uU—>0

To deal with (255) we assume the following nonezplosion condition for any
fixed t > 0, z € R, namely, that the conditional probability satisfies

lim P(A(t) 2z + 2| A(0) < —2) =0.

Z— 00
Hence, the conditional probability satisfies, upon setting
v=z+x, U=-—2,
and using lim,_,,, Fa(z + z) = 1, the following:

)

_ B . fi(=z,z 4+ x)
1= lim P(A(t) S z+ 2] A(0) < —2) = 1 + le)r{z;l e

which, assuming the validity of the same interchange, implies that

lim fi(—z,z+x)=0 forali>1.

Z—0
Proof of Theorem 4.4.
Putting the log of the expansion (253)

G(t;u,v) =log P(A(0) < u, A(t) <)

= log Fy(u) +log Fy(v) + > hiu, v) (;‘ V) (257)
=1
= log F5(u) +log F>(v) + fl(l;’ v) + EICD) _tﬁ(u’ v)/2 oo,

into (252) leads to:
(i) a leading term of order ¢, given by

Lhy =0, (258)

where

0 o\ 0?

The most general solution to (258) is given by
hi(u,v) = ri(u) + r3(v) + ro(u + v) ,

with arbitrary functions 71, ro, r3. Hence,
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P(A(0) < u, A(t) € v) = Fy(u)Fa(v) (1 + hl(?’v) 4. >

with hy(u,v) = fi(u,v) as in (253). Applying (254)
ri(u) + r3(0) +1r2(00) =0 forallue R,

implying
r1(u) = constant = rq(o0),

and similarly
r3(u) = constant = rs(o0) .

Therefore, without loss of generality, we may absorb the constants 71 (c0)
and r3(c0) in the definition of r3(u + v). Hence, from (257),

fi(u,v) = hy(u,v) = ro(u + v)

and using (255),
0= lim fi(—2,2+1) = rafz)

Z—0

implying that the hj(u,v)—term in the series (257) vanishes.

(ii) One computes that the term hg(u, v) in the expansion (257) of G(t; u, v)
sastisfies
%9 *g %9 g

Lhy

T oudov? 0vd oul

This is the term of order t°, by putting the series (257) in (252). The most
general solution to (260) is

with g(u) := log Fa(u) . (260)

h2(u,’U) = g’(U)g'(v) + Tl(u) 4+ 7’3(’0) + 7’2(’& + 11) )
Then
P(A(0) < u, A(t) <v) = oG (tu,v)

= By(u)Fav)esp Y M)

=2

— Fy(u)Fa(v) (1 + hQ(;;’ LI ) . (261)

In view of the explicit formula for the distribution F5 (237) and the behavior
of g(«a) for o /" 0, we have that

. , IERT ’
Jim ¢'(u) = lim (log Fy(u))
o0
= lim (a)da =0.

u—>0 m
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Hence

0= lim fa(u,v) = uli_r)r‘}‘hg(u,v) =r1(0) + r3(v) + 12(00) ,

u—>0 el

showing r3 and similarly r; are constants. Therefore, by absorbing r (o) and
r3(00) into ro(u + v), we have

fo(u,v) = ha(u,v) = ¢ (u)g'(v) + re(u +v) .

Again, by the behavior of ¢(x) at +00 and —o0, we have for large z > 0,

o0 1)
g (=2)d (z + 1) = J q2(a) daf qz(a) da < 23223
-z z+x
Hence
0= lim fo(—2,2 + ) =ra(z)

and so #
fa(u,v) = ha(u,v) = ¢'(u)g'(v)

yielding the 1/¢? term in the series (257), and so it goes.
Finally, to prove (241), we compute from (239), after integration by parts
and taking into account the boundary terms using (238):

2
E(A(0)A(t)) = J’J, uv ﬁjﬁvP(A(O) <wu, A(t) < v)dudv
R2

_ J " P () du J i vFj(v) dv

—0 —0

1 0 0
+ t—QJ Fi(u) dul[ Fi(v) dv
0O — 0

+ %4 HJgr (B(u,v) + B(v,u)) dudv

where

c:i= Jf (B(u,v) + B(v,u)) dudv = QJJQS(U,’U) dudv ,
R? R?

thus ending the proof of Theorem 4.4.



70 Mark Adler

5 The Pearcey Distribution

5.1 GUE with an external source and Brownian motion

In this section we discuss the equivalence of GUE with an external source, in-
troduced by Brézin—Hikami [27] and a conditional Brownian motion, following
Aptkarev, Bleher and Kuijlaars [21].

Non-intersecting Brownian paths:

Consider n—non-intersecting Brownian paths with predetermined endpoints
at t = 0,1, as specified in Figure 2.

T-Hpese
T — .
(=g _\____.-" - f:l S \"\-\._.-'" A
— —, a e L
I . R e e
S S

LN I=|[:-]H\“‘—" R N P

— t] - S b
CEL i _____“.E'I.[ :L__. "--\.____-"'

i-time
]

Fig. 2.

By the Karlin-McGregor formula [42], the above situation has probability
density

Pty T, ..., 2py) = 1 det (10(041-7 xj, t))lgi’ det (p(xi7 a;,1— t))lgi’

Zn j<n j<n

1 n
— = Hefw?/t(lft) det(e2tuzvj/t)lsi7 det(e2awj/17t)1<i’ ’
no1

Jj<sn Jj<n
(262)
with!2
(2,y,t) = LW (263)
p 7ya - \/H

For example,'? let all the particles start out at = 0, at ¢t = 0, with n;
particles ending up at a, no ending up at —a at t = 1, with n = ny + no.

2 Here Z,, = Zn(a, ).
13 Obviously, implicit in this example is a well-defined limit as the endpoints come
together.
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my paths  _—aa
— .a{'}"?
i i " -~ P T
Pl PRl A
P T | Tm—1s
e B
o Fi == Ty + Mg
e —
--___".'_- . ;}_ e
H"'-.__H_;: ’ -..\"\-\. s
*E_l____H "-{:'--.x
S
ng paths e P
Fig. 3
Here
+
1 ( +(lb))%§§2<ni
t L1y I =—A x)det o SJsnN1+n2
pn17n2( ’ ) ’ n) an’n% n1+n2( ) (wl_ (%‘ I<i_<ns. 5
1<jsni+ng
with

%i(l") _ xi—le—mz/t(l—t)t2az/(1—t) )

So setting F = Ulgi@[bgi_l, bai], we find

P¢ . (t,b) := Prob.

S (all z;(t) < E)

ny left-most paths end up at a
ne right-most paths end up at —a
and all start at 0, with all paths

non-intersecting.

+
(wu( .7')) 1<iy<ni,
1<5<
det <Jsni+n2

ni,n2

:= Prob | all z;(t) c E

S 117 dziA

by

1<i_<nao,

( )1<]<n1+n2 (264)
( (wj))1§i+<n1, '
(@)

1<j<n1+n2

S]Rn H;l dl‘i n det ( _ (r )

Random matriz with external source:

Consider the ensemble, introduced by Brézin—Hikami [27], on n x n Hermitian
matrices H,,
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1
P(Me (M5M+dM)) = Zfetr(*V(MHAM) M

with
A = diag(aq,...,an) .

By HCIZ (see (138)), we find

1

P(spec (M) c E)) Z

n JE™ 1 U(n)
dete®* 1<,
L<i,

1
= Zj’l Ai(z)

1
=" An(2)

N

For example: consider the limiting case

T
A =diag(—a,—a,...,—a,a,a,...,a), E =1 ]|[bai-1,b2],
- - N\ —
~ N i=1
no ni

P(spec(M) c E) := Py, n,(a,b)

e V) dgy——_ISU

(p;jr (mj))lgz}gnh

SETL I_HL d;CZAn(Z) det B 1<j<ni+nsg
(7 @) 1<i_<ns,

_ 1<j<ni+n2
(pi+ (Ij))1<i_+sn1,

S]R" Hl deAn(Z) det B 1<j<ni+na
(PL (mJ)) i—<na,

where

pf(z) = 2 tem V@ — iy 4y .

Then we have by Aptkarev, Bleher, Kuijlaars [21]:

Non-intersecting Brownian motion < GUE with external source

2t 2
PO (£,b) = Py 4] n b
’I’L1,TL2( ’ ) 1, 2( l—ta t(l _t) )

)

V(z)=22/2

(265)

— A2(z2) H e V() 4z, J etr AVAUT g7

(266)

(267)

(268)

(269)

(270)

so the two problems: non-intersecting Brownian motion and GUE with an

external source, are equivalent!
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5.2 MOPS and a Riemann—Hilbert problem

In this section, we introduce multiple orthogonal polynomials (MOPS), fol-
lowing Bleher and Kuijlaars [24]. This lead them to a determinal m—point cor-
relation function for the GUE with external source, in terms of a “Christoffel-
Darboux” kernel for the MOPS, as in the pure GUE case. In addition, they
formulated a Riemann-Hilbert (RH) problem for the MOPS, analogous to
that for classical orthogonal polynomials, thus enabling them to understand
universal behavior for the MOPS and hence universal behavior for the GUE
with external source (see [21, 25]).

Let us first order the spectrum of A of (267) in some definite fashion, for
example

Ordered spectrum of (4) = (—a,a,a,—a,...,—a) := (a1, Q9,...,ay) .
For each k =0,1,...,n, let k = k1 + ko, k1, ko defined as follows:

ki1 := # times a appears in aq,...,a
1= ' ppears In as, .. k., (271)
ko := # times — a appears in ay,...,a .

We now define the 2 kinds of MOPS.
MOP II: Define a unique monic kth degree polynomial pr = P, ,:

P@) = Plaa(@)s [ @ () dz =0

*
i

P i—le—V(x)ia:L’

(z) = L o1<iy <k, 1<i_<ky, (272)

MOP I: Define unique polynomials q;rrl ko (T)s Qp; g, 1 () Of respective
degrees k1 — 1, ko — 1:

Q=1 (2) = G ko () = G, 1, (@)1 (%) + G, gy 1 (@)1 ()
: f g q(z)de =061, 0<j<k—1, (273)
R

which immediately yields:

Bi-orthonal polynomials:

Jpj(x)qk(x)dmzcsj,k jk=0,1,....,.n—1. (274)
R
This leads to a Christoffel-Darboux kernel, as in (5):
n—1
K\, (2,y) i= K (a,y) = e PVYEORRVO N p(@)gu(y),  (275)
0

which is independent of the ad hoc ordering of the spectrum of A and which,
due to bi-orthonality, has the usual reproducing properties:
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- Ky(z,z)dx =n JI Ko (z,9)Kn(y,2)dy = Kp(z,2) . (276)

— 0

The joint probability density can be written in terms of K,

1 1
——Tr=VIFAN A ()) = — det[Kn (N A<, » (277)

n Jjsn

with A = diag(A1, ..., A,), yielding the m—point correlation function:

Roy(A1y .o, Am) = det[Kn (AN Aj)i<s, (278)

j<m
and we find the usual Fredholm determinant formula:
P(spec(M) c E€) = det (I — Kn(z,y)Is(y)) - (279)
Finally, we have a Riemann—Hilbert (RH) problem for the MOPS.
Riemann—Hilbert problem for MOPS:

MOP II:

Pning (2) CiPnyns C_Pnyny
Y(2):= | ciPni—1me(2)  1CiPni—1ny  1C_Dny—1my (280)
Canl,nz—l(Z) 020+Pn1,n2—1 CQC—Pnl,n2—1

with Cy Cauchy transforms:

1 f(5)pt (s) ds + —V(2)t
= £(z) = e V(R)taz 281
Caf9)i= o [ TR i) = e (281)
Then Y (z) satisfies the RH problem:

1. Y(z) analytic on C\R.
2. Jump condition for x € R:

3. Behavior as z — ®©

v (o7 e ) e

MOP I: A dual RH problem for ¢;_ , and (Y =)
Finally we have a Christoffel-Darboux type formula (see (5)) for the kernel

K (z,y) of (275) expressed in terms of the RH matrix (280):
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K\ (z,y) =

n,n

o 1/A +47)

2mi(x — y)

(O,e“y,e*ay)Yfl(y)Y(x) 0

75

1
(283)
0

Thus to understand the large n asymptotics of the GUE with external source,
from (277), (278), and (279), it suffices to understand the asymptotics of
K&“}L(x, y) given by (275). Thus by (283) it suffices to understand the asymp-
totics of the solution Y'(z) to the RH problem of (282), which is the subject

of [21] and [25].

5.3 Results concerning universal behavior

In this section we will first discuss universal behavior for the equivalent ran-
dom matrix and Brownian motion models, leading to the Pearcey process.
We will then give a PDE of Adler—van Moerbeke [7] governing this behavior,
and finally a PDE for the n-time correlation function of this process, deriving
the first PDE in the following sections. The following pictures illustrate the

situation.

Universal behavior:

I. Brownian motion: 2n paths, a = y/n

1 Regimes

ol

Fig. 4.

__-;"-_?"!IF
L]
t——n paths
————m patha
4
'E':-h.—.,'."ﬁ
1 o= time

At t = % the Brownian paths start to separate into 2 distinct groups.



76 Mark Adler
II. Random matrices: ny = ny =n, V(2) = 22/2, a := a/2n.

Density of eigenvalues: p(x) := limn_m(Kg)‘,éT"( 2nx,/2nx))/2n

\ \
II.a=1
e T ‘\\.
. 1
III.a>1
Fig. 5.

The 3 corresponding regimes, I, IT and III, for the random matrix density
of states p(z) and thus the corresponding situation for the Brownian motion,
are explained by the following theorem:

Theorem 5.1 (Aptkarev, Bleher, Kuijlaars [21]). For the GUE with ez-
ternal source, the limiting mean density of states for a > 0 is:

K2 (\onz, \[2nz)

n,n

p(z) ;= lim

n—w 2n

= lme@)], (289
with

E(z): & -2 — (6> —1)E+2a> =0 (Pastur’s equation [45])
yielding the density of eigenvalues pictures.

It is natural to look for universal behavior near a = 1 by looking with a
microscope about x = 0. Equivalently, thinking in terms of the 2n—Brownian
motions, one sets a = /n and about ¢ = § one looks with a microscope near
x = 0 to see the 2n—Brownian motions slowly separating into two distinct
groups. Rescale as follows:

1 T (7
SRt T TV 259)
Remembering the equivalence between Brownian motion and the GUE with
external source, namely (270), the Fredholm determinant formula (279), for
the GUE with external source, yields:
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Prob? . (all z;(t) c E°) = det(I — KF) ,

ni,nz

~ 2ta/(1—t 286
RE(2,y) =y | o FoN 20l ’<\/ 2 w7\/2)y>fb~<y).( :

t(1—t) t(1—t) t(1—t

Universal behavior for n — oo amounts to understanding K E(z,y) forn — oo,
under the rescaling (285) and indeed we have the results:

Universal Pearcey limiting behavior:

Theorem 5.2 (Tracy—Widom [54]). Upon rescaling the Brownian kernel,
we find the following limiting behavior, with derivates:

. _ 2 2ta/(1—t) 2 2
1 1/4 7K’n iy
" -t ™ (\/t(l—t) x’\/t(l—t) y)

with the Pearcy kernel K, (u,v) of Brézin—Hikami [27] defined as follows:

a=4/n,
t=1 +7/\/m,

2
(x,y)=(u,v)/n'/*
= Kf(ua v),

p(z)q"(y) — p'(x)qd'(y) + p"(z)q(y) — Tp(x)q(y)

K, (z,y) := Ty
_ LL Pz + 2)aly +2) dz , (287)
where (note w = e'™/*)
1 x 4 2 .
p(x) == o » e W/ AT 2miuE gy
a(y) = % N out/A=Tu? 24 uy g (288)

w * 4 .9
=Im |:J due™™ [A—iTu /2(60-’“?/ _ e—wuy)
T Jo

satisfy the differential equations (adjoint to each other)

p" —1p —ap=0 and ¢" —7¢ +yq=0.

The contour X is given by the ingoing rays from +00e™* to 0 and the outgoing

rays from 0 to +ooe~""/4,

Theorem 5.2 allows us to define the Pearcey process P(7) as the motion
of an infinite number of non-intersecting Brownian paths, near ¢t = %, upon
taking a limit in (286), using the precise scaling of (285), to wit:
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1 T
: NG a, (LT _ _ P
nh_r)r‘;‘Probn’n <all n xl<2 + \/H) ¢ E) det(I — K; Ig)
=: Prob(P(7) ¢ E), (289)

which defines for us the Pearcey process. Note the pathwise interpretation
of P(7) certainly needs to be resolved. The Pearcey distribution with the
parameter 7 can also be interpreted as the transitional probability for the
Pearcey process. We now give a PDE for the distribution, which shall be
derived in the following section:

Theorem 5.3 (Adler—van Moerbeke [7]).
For compact E = | J;_,[u2i—1, u2],

F(T;u1,...,u2-) := logProb(P(7) ¢ E) (290)

satisfies the following 4th order, 3rd degree PDE in 7 and the u;:

- (;(03F>/<arg>+(Bo—2>B%F+116{3wF/ﬁﬂ BﬂF}Bl)

B2 ,0F/or
=0, (201)

where

2r P 2r g
B,1=Z= " BO:Z:ui " (292)

It is natural to ask about the joint Pearcey distribution involving k—times,
namely:

1 7 .
nh_r)n/ Prob;fn (all n1/4o:7;(2+\/%> ¢ ;1< sk)
— Prob(P(r;) ¢ Ej,1 <i < k)
= det ([ ]E K IEj)lgi,) 5 (293)
i<k

where the above is a Fredholm determinant involving a matrix kernel, and the
extended Pearcey kernel of Tracy-Widom [54] KT is given by

TT7

—S TS S T x ds dt
KP ( y) — 47T2 J J /4+ j /2 ys+t /4 it /2+ t t (294)
—i0

TiTj

with X the same contour of (288). We note KX (z,y) = KX (z,y) of (287),
the Brézin—Hikami Pearcey kernel. We then have the analogous theorem to
Theorem 5.3 (which we will not prove here) namely:

Theorem 5.4 (Adler—van Moerbeke [12]).
For compact E; = Ul 1[ugjz) 1ugjz)] 1<j<k,
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F(r,712,... M u® ,u(k)) :=logProb(P(7;) ¢ E;,1 <j<k) (295)

satisfies the following 4th order, 3rd degree PDE in 7; and ul): D_1 X =0,
with

X = (296)
A(E?,~D_yD_1)E_F+(2E,+Dy—2)D* | F+{D_E_F,D* F}p ,
D2,E_|F

where
k . N k ‘
Dj:= ) Bj(ul), D_y:= ) 7B_y(u),
i=1 i=1
2r; () 6 k ) 6
Bi(u®) = Y (uyt —— B =Y I
J ;1 i auﬁz) J ;1 67’2‘

5.4 3-KP deformation of the random matrix problem

In this section we shall deform the measures (269) in the random matrix
problem, for V(z) = 22/2, so as to introduce 3-KP 7—functions into the picture,
and using the bilinear identities, we will derive some useful 3-KP PDE for these
T—functions. The probability distribution for the GUE with external source
was given by (268), to wit:

P(spec(M) c E) ) n (oF, (=) 12 <,
— _ . I<jg<ni+n
= Py, (E) = Z J’ . lj[dzlA”(z) det ( 172 | where

(Pfﬁ (z,-)) 1<i_<na,
1<jsni+nz

pE(z) = Sl 2taz (297)
Let us deform p(2) as follows:
p?(z) - ﬁ?(z) i1z 240zt 2% N (t—si)2" 7 (298)
yielding a deformation of the probability:

T’rbl,ng (t7 S+? 877 E)

Py ny (B . 299
1, 2( ) - Tnl’n2(t,8+7s_,R) ( )
Where, by the same argument used to derive (140),

Toyms (B, 87,87, E) i=detmp, n,(t,sT,57, E), (300)

with
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[N:;-](ljsusnl, )
<< -
mn17n2 (t? S+7S_?E) = — ! n1+n2 ) (301)
[Uij]lsifsnzy
0<j<ni+na—1

and
s sy [ p ) d
E
We also need the identity (n = ny + n2)

Tnla”Q(t7S+’377E) = det mn1,n2(t78+a377E)

n2

= L A (z,y) ﬁ o7tz H oS iy

Ino!
nimno: Jpn j=1 j=1

(

ni .
% Anl ((ﬁ) H e*$?/2+a1j +ﬁac? e > sj'wj dl'j>
j=1
2 2 2 oo =i
X (Ang (y) H eiyj/Qfayjfﬁyj e~ 2185 Y; dyj> . (302)
=1

That the above is a 3-KP deformation is the content of the following theorem.

Theorem 5.5 (Adler—van Moerbeke—Vanhaecke [15]). Given the func-
ti0NS Ty, my, as in (300), the wave matrices

W,J[hnz (\;t, st s7)

1+ )t (3)*
wgll)wnz (_1)n2¢n1+1.n2 wnl,n2+1
1
=— ng ., (DT )t no (3T
- ) (=124 4 Yo s (=0 200 n |
ni,n2(t,s7,87
€)) 1,52 7F 3
w”l»’”z—l (=)=t wn1+1,n2_1 1/1%1):;2
- P
Uy mp (At s7,87) (303)
1) 1,27 3)~
¥ ny (-nrety =D
1
= na+1,, (17 2)~ no, (3)7
= | U, v, yr2e® ],
Tni,na(t,st,s7)
(1)~ 1 (2" 3 —
“Vng ot (—nm2+ Dt ot wglrl),ﬂg

with wave functions

GE (Nt st s7) o= AE(UEm) ST 0N L (A st s
DRE (Nt st s7) = ATReENT ST L (st F A, 87) (304)
77[}53)7"2 (Ast, 5T, 57) = ATzt XY S:)\iTnhnz (t, st,s™F [/\_1]) )

satisfy the bilinear identity,
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Jﬁw,jl koW AN =0, Vhiky, 01, 0o, Vt, 55,1, 5%, (305)

o0

of which the (1,1) component spelled out is:

§ Ty ko (E— [N 1], 87,87 )70, 0, (EH[N 1], 87, 87 ) Atha =t eXT (L)X gy

k2+22 éTkﬁ-l kz t st [)‘71]7 87)7-@1—1,42 (L §+ + [)‘71]’§7)
x0

> )\51—k1—2621”(5j—§3—)>‘i da\ (306)

- §Tk1,k2+1(t’ S+v s — [A_l])7—5175271@»§+7§_ + P‘_l])
o0

 N2—ka=2 50 (s7=s7)N g\ — .
Sketch of Proof:

The proof is via the MOPS of Section 5.2. We use the formal Cauchy trans-
form, thinking of z as large:

sz—s

which should be compared with the Cauchy transform of (281), which we
used in the Riemann Hilbert problem involving MOPS, and let Cjy denote the
Cauchy transform with 1 instead of ﬁli We now make the following identi-
fication between the MOPS of (272), (273) defined with pF — p (and so
dependent on ¢, sT, s7) and their Cauchy transforms and shifted 7—functions,
namely:

Z J s lds, (307)

1>1

_ /\k1+k2 Tk17k2(t [)‘71] st 87)

A
Dhy ko (A) = (b5t 57 ;
t.st — )\71 V(=1 k2
C+pk1,k2(>\) _ )\7]{)171 Tk1+1,k2( S [ ]78 )( ) 7
Tk17k2( )

- ete )
C_ ) = \—ha—1 Thukar1(E
pkhkz( ) Thy ko (t S+ s ) )

_ A kl kQTklykZ(t+ [A ] 8+ 57)

(308)

COQkhkz ()‘)

Tk1,k2 (t st ) ’
1 Thi—1,ks (8T + [ ] T)(=DkHt
G -1k, (N) = A Thy, k2(t ) ’

q];l,kQ—l ()\)

)

, S
)\kQ 1 Tk ko — 1(t st [ ])
Tk1,ks (t st )
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wherepy, k,(\) wasthe MOP of thesecond kind and gy, x,(A) = ;. _; 5, (\)p7 +
Qi ky—1(A)P7 was the MOP of the first kind. This in effect identifies all the

elements in the RH matrix Y (\) given in (280) and (Y1) the latter which
also satisfies a dual RH problem in terms of ratio’s of 7—functions; indeed,
W;7k2(A) without the exponenials is precisely Y()), ete. for ¥, . Then us-
ing a self-evident formal residue identity, to wit:

% (f(z) X JR % dﬂ(s)) dz = JR f(s)g(s)dp(s),  (309)

with f(z) = Yy aiz’, and designating f(t,s*,s7)" := f(t,s*,s7), we imme-
diately conclude that

%eZ‘f (tifiz:)vpkhkz (COQZl,fz ()‘))I dA
o
_ J er(ti_Ei))\lpkl,kQ ()\, t, S+, 5_)qz17£2 (/\, L §+,§_) d\
R
= J’ ezf(ti_ii)’\zpkl,kg(%t,3+75_)(qz§71 ek st 8T
R

+ qa’gg_l()‘at7§+a§7)ﬁ1_) d)\

§ (C+pk1,k2 ()\)) (‘12171,142 (/\))’QZ(sT—J)Ai d\

o0

+ jﬁ (C_pryks (V) (a7, ’52_1()\))162(5;75 Max.  (310)

o0

By (308), this is nothing but the bilinear identity (306). In fact, all the other
entries of (305) are just (306) with its subscripts shifted. To say a quick word
about (308), all that really goes into it is solving explicitly the linear systems
defining pr, k., ¢i 1 x, and ¢, j,_;, namely (272) and (273), and making use
of the identity exp(£ Y] 2'/i) = (1 — 2)T! for 2 small in the formula (300)
for Th, k, (¢, 87, 57).

An immediate consequence of Theorem 5.5 is the following:

Corollary 5.1. Given the above T-functions Ty, k,(t,s%,s7), they satisfy the
following bilinear identities™*

1 With X7 4% = > si(t)z* defining the elementary Schur polynomials.
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o0
3 C(ag 0/Ot,+bi, &/0s) +cx 0)8s,
D Stutta ki haj1(—2a)s;(0p)eRT (@ OO Y05y Hen /s )

=0
/ Tey,2 © Tk ko
- +
~ el A/A /A AJAe—
. . ag O[Otk +by, 0/0sT +ci 0/0s
- Z Sky—t 4145 (—2b)85 (O e (@7 o5k /o) (311)
=0

T¢1—1,05 © Tk1+1,kz(—1)k2+€2
o0
_ Z Sk27£2+1+j(_2c)sj (55—)62{ (ay /0ty +by ("/("s:+c;C 0/0s;;)
=0 Tty 0a—1 © Ty k41 =0,
with a,b,c e C* arbitrary.
Upon specializing, these identities imply PDE’s expressed in terms of Hi-
rota’s symbol for j =1,2...:

~ 5 02

sj(at)7k1+17k2 OTki—1,ks = _Tkl,k‘gﬁ log Tky,k2 » (312)
51 0lj1
~ 9 -2
$; (08 Ty —1,ks © Thy 41,k = —TkthWlOg Thi ks s (313)
105541
yielding
0%1 _
Ongi,kz — _Tk1+1,k3227_k‘1 l,kz , (314)
6’t1681 Tk1,k2
i log Thi+1,ks 02/6@681’_ log Tr, ks (315)

otq Th1—1,ks B 62/67516.9{ log Tk, ks ’

0 0?/0t10s3 1
——+log Thitlks _ 2/ 1 33_ OF Tk ko 7 (316)
s} Thi—1,ka  02/0t105] 10g Ty ko

Proof. Applying Lemma A.1 to the bilinear identity (306) immediately yields
(311). Then Taylor expanding in a, b, ¢ and setting in equation (311) all
a;, bi, c; = 0, except aj41, and also setting ¢1 = ki +2, {2 = ko, equation (311)
becomes
~ 0?2

Aj+1 ( - QSj(at)Tk1+2,k2 OTki,ks = 3 F A,  Tki+1lka© Tk1+1,k2) + O(a?+1) =0,
681 675]‘_;,_1

and the coefficient of a;,1 must vanish identically, yielding equation (312)
upon setting k1 — k1 — 1. Setting in equation (311) all a;,b;,¢; = 0, except
bj+1, and £y = kq, 2 = ko, the vanishing of the coefficient of b;4; in equa-
tion (311) yields equation (313). Specializing equation (312) to 5 = 0 and 1
respectively yields (since s1(t) = ¢; implies sl(ét) = 0/0ty; also s = 1):

2
0 longle _ _Tk1+1,k277€1*17k2

+ 2
atlasl Tkl,kg
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and

02 1 0 0
65 ot IOngle = _ﬂ aitlTkH-l,kz Thi—1,k2 ~ Thki41,k2 67]517791—1,’92 .

Upon dividing the second equation by the first, we find equation (315) and
similarly equation (316) follows from equation (313).

5.5 Virasoro constraints for the integrable deformations

Given the Heisenberg and Virasoro operators, for m > —1, k > 0:

1
'En)k - m + (_m)tfm + kdo,m ’

72, < Z at 5 +2 Zzt + D itijtj> (317)

m+1 0 k(k+1)
+—<k+- 5 )(at + (= ﬂm>-+f26mp,

we now state (explicitly exhibiting the dependence of 74, x, on 5):

Theorem 5.6. The integral Ty, i, (t, s7,s7; 3; E), given by (302) satisfies
BmTkl,kz V"; kQTkl,k'Q f07’ m = 1 (318)

where By, and V,, are differential operators:

2r

Z bm+1 e for E = LIJ[bQi—la byl € R (319)
and

Vhtke = (g @) — (m o+ DI ()
+I2 (st +all) (st = (=201, (—s)

m,kl
+ 32, (=) —alllyy 4y (=) = (L4 28)10 5 4, (—57)} - (320)

Lemma 5.1. Setting

k:l ) k}2 .
AL, = An(w,y) [ [ X7 o [ ] e 0

j=1 j=1

k1
% (Akl(l,)n —x3 /2+az]+ﬁz]e s dIJ>

j=1
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k}2 o
' (% () [ ] s em it 4 dyj) ,

j=1
the following variational formula holds for m > —1:
idl x> x; + m;’”ll
de " \yi > yi+eyt
Proof. The variational formula (321) is an immediate consequence of applying

the variational formula (184) separately to the three factors of dI,, and in
addition applying formula (185) to the first factor, to account for the fact

that ]_[jlzl dx; Hfil dy; is missing from the first factor.

= Vhvk2(dr,) . (321)
e=0

Proof of Theorem 5.6:

Formula (318) follows immediately from formula (321) by taking into account
the variation of 0F under the change of coordinates.
From (317) and (320) and from the identity when acting on on 7, x,,

0 0 0

ot~ ost dse 322
atn 68;{_ 85; ’ ( )
compute that
1 82 82 62
Vklka [ ( I n )
" 2 i+jZ::m 0t;0t 68}83} 0s; 0s;
+ 1t + ZslJr + 7:8; = >
; < ati-&-m as;;m asi+m
0 P .
+ (k1 + k2) ot +(=m)t_m | — k1 a? + (—m)st,,
- k2 (aj * (_m)s_n),) + (kf + klkg + k%)ém,o + a(kl - k2)67n+170
mim+1) N
5 (—tom + 55 + 57, =
0 0
T 1)(st -
+a( ost 1 + 511 +(m4+1)(s7,,_, 5m1)>
0 0
2 — A+ | = —1. 393
- ﬂ(asm+2 6s;+2) m (323)

The following identities, valid when acting on 7k, , (¢, s7,s7; 8, E), will
also be used:

o0 _ (e @y o _ 1(a 2
st 2\t da)’ dsf 2\t 9B/’
1

_ (e _9\ o __1fo 0
T2 oty da )’ Sg_ 2\ Otqy 65 '
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Corollary 5.2. The T-function T = T, 1, (t,s7,s7; 8, E) satisfies the follow-
ing differential identities, with By, = 33" b *10/db;.

0
—B_ it =ViT+uT = (6751 — 28— >

—Z it; 4 +ist é’ + 18, 0 T
"oty ast, sy,

=2
+ (a(k‘Q - k‘l) + k‘lsl + k‘QSl_ — (/ﬁ + /4}2) 1)7’

1 0 0 0
2(31 — 6’@)7. =WiT+wiT = (+ +ﬂaa>7
0 0
+ R
2Z< Gt ia$4+“i%;)7

1
+ (2(/€1 — kz) + *(/ﬁ + kg)tl - ]{718-1*_ - ]{7281_>T
(325)

o or
— (BO — a) = VoT + vaT = 61,‘2 ﬁ%

oa
—Z(zt—i—zs i—i— a)T
S\ ot ‘os %3

— (k2 + k2 + kyko)T

0 0 or or
(BO — a—aa — aﬂ)T = WoT + waT =: 7@3; + ﬁ—aﬂ
0 0
*Z@m“%+“w)7

=1

+ 5(/s% + k3 + kiko)T

where Vi, Wh, Vo, Wy are first order operators and vy, wy, vs, Wy are func-

tions, acting as multiplicative operators.

Corollary 5.3. On the locus L := {t = sT = s~ = 0,8 = 0}, the function
f =1og 7k, k,(t, 87,57 0, FE) satisfies the following differential identities:

0
an; = Byf +alky— k),

0 1
687']:_ =2(B_1 )f+ (k/’g—k/’l)
1
of 0
T (—Bo+a&l>f+k%+k1k2+k§a
0 1 0 0 1
asji_Q( o—aaa—aﬁ>f—2(k%+k§+k‘1k2)7 (326)
2
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62f B4 (6 —Bl)f_le )

(%1651* - oa
?f 0 0 of

m == (aaa + % - BO + I)B_lf - 2% - 2a(k1 - kz) 5 (327)
> f 0 0

Ot20sf  da (BO —as CLB—l)f —B_1(Bo —1)f — 2a(ky — k) .

Proof. Upon dividing equations (325) by 7 and restricting to the locus L,
equations (326) follow immediately.

Remembering f = log 7 and setting

1 0
-A11=—371, By == 1= 5]
2 da (328)
0 1 0 0
AQ.——(BO—CLaa>7 82'_2<80_a&1_@[}>’
we may recast (325) as (compare with (193))
Apf =Vif +v, Brpf =Wif+wy, k=12, (329)
where (compare with (191)) we note that
0
Vil =g W = k=1,2. (330)
L

. = atk ) @ )
To prove (327) we will copy the argument of Section 3.6 (see (195)). Indeed,
compute

BiAif|, = Bi(Vif +v1) = B1V1f| + 31(U1)|

L

) ViBL| +Bi(w))
L

L

(¥ 0
= o (W1f+w1)| +31(U1)|
1 L L
0 0 ow,
- () 422 4B : 331
8t1<6sf >f|£ |, 1(v1)|£ (331)

where we used in (*) that [Bl,V1]| =0 and in (%) that V1| = ¢/0ty, and
L

L
so from (331) we must compute

0 02 owq

1
W) = ——, — = = —(k1—ko) . (332
oty M. T otiast T ot |, 5 (k1 =h2) - (332)

1
5(/61 +k2) R Bl(’Ul)|

L

Now from (331) and (332), we find
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0’ f 1 1 0*f
B =— 4+ —(k k —(k1 — ko) = —— +k&k
A o0 st Ttk + 5k —k) =7 oF Th
L
and so
o f 1 0
— —BiAf —ki=-B_=(Bi——)f —ki,
8t163f| 1 1f|£ 1 12< 1 8a>f|£ 1
L

which is just the first equation in (327). The crucial point in the calculation
being (330) and [Bl,V1]| = 0. The other two formulas in (327) are done

L
in precisely the same fashion, using the crucial facts (330) and [62,V1]| =

L
[As, W1]| = 0 and the analogs of (332).
L
5.6 A PDE for the Gaussian ensemble with external source and
the Pearcey PDE

From now on set: k1 = ko := k and restrict to the locus £. From (315) and
(316) we have the

3-KP relations:

0 *f 0 0% f f (333)
ot.) = dtyost | onast ©  ost atosy/ otiost
with
fi=logThr, ¢:=10g(Thy1,k/Th-1k)
while from (326), we find
Virasoro relations on L:
dg dg 1 A
(?7“ = B_lg + 2a 3 657"" = 5 (B_l a@)g a . (334)
Eliminating dg/dt1, dg/0sT from (333) using (334) and then further elimi-
nating A1g 1= —B_g and Big := 2(B_; — d/da)g using A;Big = BiAig
yields
B <a2/atgasl+—262/atlas;)f)
- 02f /ot10s]
_ 6((82/6t265f—2a62/8t165f)f> (335)
~ da 02 f /ot10s] ’

while from (327) we find the
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Virasoro relations on L:

Py (5—6 )f—2k—-F+
6t163+ oa -t o ’
02 02 af
2 -2 HJr —2B_4 336
(atzasf atlas;>f 138 (336)

02 02 +
2 + —2a + 1/ =Hy,
(%2681 6751 682
where the precise formulas for H;" will be given later. Substituting (336) into
(335) and clearing the denominator yields!®

(?i +1 + +1 +
R M LS T A U S

and by the involution: a — —a, 8 — —/f, which by (302), clearly fixes f =
log Tk ont =st =s~ =0, we find (H; = Hj,

ila—— a)

ﬁf _ 1 1
{B_ 5 } {Hl ’§F }3_1 —{H2 ,§F }_F/Pa. (338)

These 2 relations (337) and (338) yield a linear system for:

af 2 Of
B_i1—= B2, = .
1 (?ﬂ ) —1 (9ﬁ
Solving the system yields:
of 2 Of
B_ 195 Ry, B° 193 = =Ry,
and so
BflRl(f) = Rz(f) s f = IOng7k(O,O,O,E)|
B=0
Since (0.0,0, 5)
Tk,k\YU, U, U,
P M F)=—~""'"12"2
(spec(M) € E) = — = 00,0 |
B=0
with

k—1 2
Tk,k(o,o,o,R)| = <Hj!> 2k (—am)keka® gk

B=0

we find the following theorem:

Y A{f.gtx =gXf— fXg.
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Theorem 5.7 (Adler—van Moerbeke [7]).
k
For E = Ji[b2i—1,b2], A = diag(—a,...,—a,a,...,d),

i, e”[‘r(féjwzvtAM) AM
S (339)

P(a;bl,...,bgr)Z 1
{ T3 M2+ AM) gpr
Harmr)

satisfies a nonlinear 4th order PDE in a, by,...b.:
(F+B_1G7 + F78_1G+)(F+B_1F7 — F78_1F+)
—(FTG~ + F~GY)(F*B*,F- —F~ B>, F") =0, (340)
where

2r 2r
B—l = i ) BO = szi
1

1
Ft =—2k+B_4 (a—81> IOgP R
da

+::{Hl—i_’F+}5_1_{H;_aF+}F/E‘aa
2

0 0 0 k
+._ Y L v o
H = % (BO a&’a alB_q +46a> log P+BoB_1log P+4ak+4 L0 (341)
H;Z=aaa(80—aaaa—a81) 1ogP+(2ale—BoB,1+2B,1)logP,
F~=F* and G- =G 16

|a—>—a a——a

We now show how Theorem 5.7 implies Theorem 5.3. Indeed, remember
our picture of 2k Brownian paths diverging at t = %

Also, remembering the equivalence (270) between GUE with external
source and the above Brownian motion, and (286), we find

Py (t; b1, ..., byy) := Proby i (all z;(t

—P (b1,. .. 42
l—t 1—t 1 7 (3 )

= det(l — K£)

where the function P(x;+) is that of (339).
Letting the number of particles 2k — oo and looking about the location

z =0 at time t = % with a microscope, and slowing down time as follows:

16 Note P(a;by,...ba) = P(—a;by,...,b.).
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e
s -__#._;:r‘"
Ik’:“] T —— —"ﬂ_
.
"l-".- - -_f.-'l-l.-l- : -,
A 1~ & path gotoa
E L
1k Browmian paths
—
—_ N'\-.
"'“'~-.,_-::__“ ) \:.-\ | —— % paths go ta —a
. S S S
~, ¥
L] | e S
= T M
T —
a t 1
Fig. 6
1 1 1 9
kz;, iazi?, bi =uiz, t=g5+72", z—0, (343)

which is just the Pearcey scaling (285), we find by Theorem 5.2 and (342),
that

1 T
Prob({/ 41/24) (all T; (2 + Tz2> € U[zugi_l, Zu2i])

=det(I - KX I.) + O(2)
= Q(T;u1,...,u2) + O(2) ,

am1/2,bmuisi=gra2 (344)

where K7 P is the Pearcey kernel (287) and E = U1 Ug;—1, Ug;]. Taking account

of
Py p(t;b1,...,02) = Ml—t 4/ T (b1,..., b, (345)

P(A, By, ..., By,

where the function P(x, #) is that of (339), and the scaling (343) of the Pearcey
process, we subject the equation (340) to both the change of coordinates
involved in the equation (345) and the Pearcey scaling (343) simultaneously:

0= {(F+B,1G_ + F_B,1G+)(F+B,1F_ — F_B,1F+)
—(FY*G +F G*Y)(FtB*,F —F B2, F*)}

1
A:\/E §+722

22 % —r22’

U; 22
Bij=—F2=

1_.2.4
i-T%z2
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1
— (PDE in 7 and u for log Py, (¢;b1,...,b2;)

217

1
. )*O(zw)

1 1
o7 (same PDE for log Q(7,uq,... ,uzr)) +0 (216> ;

the first step is accomplished by the chain rule and the latter step by (344),
yielding Theorem 5.3 for F' = log Q.

A Hirota Symbol Residue Identity

Lemma A.1. We have the following formal residue identity

% %f(t/ i [Z—l]7 s',u’)g(t” + [2—1], s//’ull)er(t;—t;/)zizr dz
0
o
_ Z ijlfr(_Qa)Sj(ét)ezf (ap &0ty +be 8/0se+cy ?/(’ue)g of, (A346)
>0
where
t'=t—a, s=s—-b, v=u—c, (A347)
t"=t+a, s"=s+b, v =u+c, '
0y = <) S DO (A.348)
oty 2 0ty 3 Ot 5
and the Hirota symbol
p(ah 687 au)g o f
= p(0y, 05, Ou)g(t +t' s+ s, u+u)ft —t',s — s, u—1u) (A.349)
t'=0,
s':O,
u'=0
Proof. By definition,
1 § =00 )
—¢ > adz=a, (A.350)
271'2% =

and so by Tayler’s Theorem, following [28] compute:

dz

§f(t/ _ [271], s u')g(t” + [271], 5", u//)ezf(t;—t;’)zizr :
2ms
0

dx

= jgf(t —a—[z"Y,s=bu—c)g(t+a+[z""],s+bu —i—c)e_gziC “izizrz -
i

0
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X W/ (1 — s —bu— )g(t +a,s +b,u+ c)e 22T G T =

]

0 o g]
= 3€Z 2795;(0a)f(t —a,5 —b,u—c)g(t +a,s + bu + c) Z z”TSZ(—Za)d—Z_
J =0

(picking out the residue term)

Il
V)
<
|
_
|
3
—
|
[\
S
~—
»
<
—~
QA

) f(t—a,s —bu—c)g(t+a,s+bu+c)

_ Sj_l_r(—Qa)Sj(&1)62?(&[ 0/dt),+by 0/dsy+cy P/Fui")f(t _ t/, 5 — SI, w— u/)
xgit+t,s+su+u) att' = =u=0
_ Z Sj—l—r(_2a)5j(ét’)eziﬁ(w 0/t +be 0/ds)y+ce 0/duy)

xglt+t s+ ut+u)ft—t,s—s,u—u) att' =5 =u"=0
I ~
_ Z Sj_1_r(—2a)8j(at)621 (ag 0/dte+by 0/dsg+cy P/rue)g(t) o f(t) ,
j=0

completing the proof.
Proof of (28):

To deduce (28) from (27), observe that since ¢, ¢ are arbitrary in (27), when
we make the change of coordinates (A.347), a becomes arbitrary and we then
apply Lemma A.1, with s and u absent, r = 0 and f = g = 7, to deduce (28).

Proof of (166):

To deduce (167) from (166), apply Lemma A.1 to the L.h.s. of (166), setting
f = "Tn g = Tms1, 7 = n—m — 1, where no u, v’ is present, and when
we make the change of coordinates (A.347), since ¢, t', s, s’ are arbitrary,
so is a and b, while in the r.h.s. of (166), we first need to make the change
of coordinates z — 2z~ 1, so 2" ™ 1dz — 2™ "1z (taking account of the
switch in orientation) and then we apply Lemma A.1, with f = 7,1, ¢ = T,
r=m —n—1, and so deduce (167) from (166).
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